NASA Astrophysics Data System (ADS)
Cai, Jianhua
2017-05-01
The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.
NASA Astrophysics Data System (ADS)
Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu
2018-03-01
Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.
Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution
NASA Astrophysics Data System (ADS)
Wang, Jianming; Liu, Lihua; Yu, Hua
2015-12-01
The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.
Kittell, David E; Mares, Jesus O; Son, Steven F
2015-04-01
Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Kiyono, Ken; Tsujimoto, Yutaka
2016-07-01
We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.
Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis
NASA Astrophysics Data System (ADS)
Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.
2016-09-01
Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.
EMD-WVD time-frequency distribution for analysis of multi-component signals
NASA Astrophysics Data System (ADS)
Chai, Yunzi; Zhang, Xudong
2016-10-01
Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.
Time-frequency signal analysis and synthesis - The choice of a method and its application
NASA Astrophysics Data System (ADS)
Boashash, Boualem
In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and instantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as 'asymptotic'. For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.
Time-Frequency Signal Analysis And Synthesis The Choice Of A Method And Its Application
NASA Astrophysics Data System (ADS)
Boashash, Boualem
1988-02-01
In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and in-stantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as "asymptotic". For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.
Adaptive phase extraction: incorporating the Gabor transform in the matching pursuit algorithm.
Wacker, Matthias; Witte, Herbert
2011-10-01
Short-time Fourier transform (STFT), Gabor transform (GT), wavelet transform (WT), and the Wigner-Ville distribution (WVD) are just some examples of time-frequency analysis methods which are frequently applied in biomedical signal analysis. However, all of these methods have their individual drawbacks. The STFT, GT, and WT have a time-frequency resolution that is determined by algorithm parameters and the WVD is contaminated by cross terms. In 1993, Mallat and Zhang introduced the matching pursuit (MP) algorithm that decomposes a signal into a sum of atoms and uses a cross-term free pseudo-WVD to generate a data-adaptive power distribution in the time-frequency space. Thus, it solved some of the problems of the GT and WT but lacks phase information that is crucial e.g., for synchronization analysis. We introduce a new time-frequency analysis method that combines the MP with a pseudo-GT. Therefore, the signal is decomposed into a set of Gabor atoms. Afterward, each atom is analyzed with a Gabor analysis, where the time-domain gaussian window of the analysis matches that of the specific atom envelope. A superposition of the single time-frequency planes gives the final result. This is the first time that a complete analysis of the complex time-frequency plane can be performed in a fully data-adaptive and frequency-selective manner. We demonstrate the capabilities of our approach on a simulation and on real-life magnetoencephalogram data.
Gear fault diagnosis based on the structured sparsity time-frequency analysis
NASA Astrophysics Data System (ADS)
Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong
2018-03-01
Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.
NASA Astrophysics Data System (ADS)
Yang, Yang; Peng, Zhike; Dong, Xingjian; Zhang, Wenming; Clifton, David A.
2018-03-01
A challenge in analysing non-stationary multi-component signals is to isolate nonlinearly time-varying signals especially when they are overlapped in time and frequency plane. In this paper, a framework integrating time-frequency analysis-based demodulation and a non-parametric Gaussian latent feature model is proposed to isolate and recover components of such signals. The former aims to remove high-order frequency modulation (FM) such that the latter is able to infer demodulated components while simultaneously discovering the number of the target components. The proposed method is effective in isolating multiple components that have the same FM behavior. In addition, the results show that the proposed method is superior to generalised demodulation with singular-value decomposition-based method, parametric time-frequency analysis with filter-based method and empirical model decomposition base method, in recovering the amplitude and phase of superimposed components.
Wacker, M; Witte, H
2013-01-01
This review outlines the methodological fundamentals of the most frequently used non-parametric time-frequency analysis techniques in biomedicine and their main properties, as well as providing decision aids concerning their applications. The short-term Fourier transform (STFT), the Gabor transform (GT), the S-transform (ST), the continuous Morlet wavelet transform (CMWT), and the Hilbert transform (HT) are introduced as linear transforms by using a unified concept of the time-frequency representation which is based on a standardized analytic signal. The Wigner-Ville distribution (WVD) serves as an example of the 'quadratic transforms' class. The combination of WVD and GT with the matching pursuit (MP) decomposition and that of the HT with the empirical mode decomposition (EMD) are explained; these belong to the class of signal-adaptive approaches. Similarities between linear transforms are demonstrated and differences with regard to the time-frequency resolution and interference (cross) terms are presented in detail. By means of simulated signals the effects of different time-frequency resolutions of the GT, CMWT, and WVD as well as the resolution-related properties of the interference (cross) terms are shown. The method-inherent drawbacks and their consequences for the application of the time-frequency techniques are demonstrated by instantaneous amplitude, frequency and phase measures and related time-frequency representations (spectrogram, scalogram, time-frequency distribution, phase-locking maps) of measured magnetoencephalographic (MEG) signals. The appropriate selection of a method and its parameter settings will ensure readability of the time-frequency representations and reliability of results. When the time-frequency characteristics of a signal strongly correspond with the time-frequency resolution of the analysis then a method may be considered 'optimal'. The MP-based signal-adaptive approaches are preferred as these provide an appropriate time-frequency resolution for all frequencies while simultaneously reducing interference (cross) terms.
Real-Time Stability Margin Measurements for X-38 Robustness Analysis
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Stachowiak, Susan J.
2005-01-01
A method has been developed for real-time stability margin measurement calculations. The method relies on a tailored-forced excitation targeted to a specific frequency range. Computation of the frequency response is matched to the specific frequencies contained in the excitation. A recursive Fourier transformation is used to make the method compatible with real-time calculation. The method was incorporated into the X-38 nonlinear simulation and applied to an X-38 robustness test. X-38 stability margins were calculated for different variations in aerodynamic and mass properties over the vehicle flight trajectory. The new method showed results comparable to more traditional stability analysis techniques, and at the same time, this new method provided coverage that is more complete and increased efficiency.
Advance in ERG Analysis: From Peak Time and Amplitude to Frequency, Power, and Energy
Lina, Jean-Marc; Lachapelle, Pierre
2014-01-01
Purpose. To compare time domain (TD: peak time and amplitude) analysis of the human photopic electroretinogram (ERG) with measures obtained in the frequency domain (Fourier analysis: FA) and in the time-frequency domain (continuous (CWT) and discrete (DWT) wavelet transforms). Methods. Normal ERGs (n = 40) were analyzed using traditional peak time and amplitude measurements of the a- and b-waves in the TD and descriptors extracted from FA, CWT, and DWT. Selected descriptors were also compared in their ability to monitor the long-term consequences of disease process. Results. Each method extracted relevant information but had distinct limitations (i.e., temporal and frequency resolutions). The DWT offered the best compromise by allowing us to extract more relevant descriptors of the ERG signal at the cost of lesser temporal and frequency resolutions. Follow-ups of disease progression were more prolonged with the DWT (max 29 years compared to 13 with TD). Conclusions. Standardized time domain analysis of retinal function should be complemented with advanced DWT descriptors of the ERG. This method should allow more sensitive/specific quantifications of ERG responses, facilitate follow-up of disease progression, and identify diagnostically significant changes of ERG waveforms that are not resolved when the analysis is only limited to time domain measurements. PMID:25061605
Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
2013-01-01
Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109
Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods
NASA Technical Reports Server (NTRS)
Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.
2003-01-01
In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.
NASA Astrophysics Data System (ADS)
Tsai, Christina; Yeh, Ting-Gu
2017-04-01
Extreme weather events are occurring more frequently as a result of climate change. Recently dengue fever has become a serious issue in southern Taiwan. It may have characteristic temporal scales that can be identified. Some researchers have hypothesized that dengue fever incidences are related to climate change. This study applies time-frequency analysis to time series data concerning dengue fever and hydrologic and meteorological variables. Results of three time-frequency analytical methods - the Hilbert Huang transform (HHT), the Wavelet Transform (WT) and the Short Time Fourier Transform (STFT) are compared and discussed. A more effective time-frequency analysis method will be identified to analyze relevant time series data. The most influential time scales of hydrologic and meteorological variables that are associated with dengue fever are determined. Finally, the linkage between hydrologic/meteorological factors and dengue fever incidences can be established.
NASA Astrophysics Data System (ADS)
Chen, Xiaowang; Feng, Zhipeng
2016-12-01
Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to get the time-frequency distribution of original signal. The proposed method is validated using both numerical simulated and lab experimental planetary gearbox vibration signals. The time-varying gear fault symptoms are successfully extracted, showing effectiveness of the proposed iterative generalized time-frequency reassignment method in planetary gearbox fault diagnosis under nonstationary conditions.
Improved analysis of ground vibrations produced by man-made sources.
Ainalis, Daniel; Ducarne, Loïc; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges
2018-03-01
Man-made sources of ground vibration must be carefully monitored in urban areas in order to ensure that structural damage and discomfort to residents is prevented or minimised. The research presented in this paper provides a comparative evaluation of various methods used to analyse a series of tri-axial ground vibration measurements generated by rail, road, and explosive blasting. The first part of the study is focused on comparing various techniques to estimate the dominant frequency, including time-frequency analysis. The comparative evaluation of the various methods to estimate the dominant frequency revealed that, depending on the method used, there can be significant variation in the estimates obtained. A new and improved analysis approach using the continuous wavelet transform was also presented, using the time-frequency distribution to estimate the localised dominant frequency and peak particle velocity. The technique can be used to accurately identify the level and frequency content of a ground vibration signal as it varies with time, and identify the number of times the threshold limits of damage are exceeded. Copyright © 2017 Elsevier B.V. All rights reserved.
Radar Imaging Using The Wigner-Ville Distribution
NASA Astrophysics Data System (ADS)
Boashash, Boualem; Kenny, Owen P.; Whitehouse, Harper J.
1989-12-01
The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. This paper first discusses the radar equation in terms of the time-frequency representation of the signal received from a radar system. It then presents a method of tomographic reconstruction for time-frequency images to estimate the scattering function of the aircraft. An optical archi-tecture is then discussed for the real-time implementation of the analysis method based on the WVD.
Time-variant random interval natural frequency analysis of structures
NASA Astrophysics Data System (ADS)
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry
NASA Astrophysics Data System (ADS)
Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo
2008-12-01
In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.
The Researches on Damage Detection Method for Truss Structures
NASA Astrophysics Data System (ADS)
Wang, Meng Hong; Cao, Xiao Nan
2018-06-01
This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.
The Fourier decomposition method for nonlinear and non-stationary time series analysis.
Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik
2017-03-01
for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.
Performance comparison of ISAR imaging method based on time frequency transforms
NASA Astrophysics Data System (ADS)
Xie, Chunjian; Guo, Chenjiang; Xu, Jiadong
2013-03-01
Inverse synthetic aperture radar (ISAR) can image the moving target, especially the target in the air, so it is important in the air defence and missile defence system. Time-frequency Transform was applied to ISAR imaging process widely. Several time frequency transforms were introduced. Noise jamming methods were analysed, and when these noise jamming were added to the echo of the ISAR receiver, the image can become blur even can't to be identify. But the effect is different to the different time frequency analysis. The results of simulation experiment show the Performance Comparison of the method.
NASA Astrophysics Data System (ADS)
Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.
2010-07-01
Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfield’s steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.
Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng
2015-08-01
Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
NASA Astrophysics Data System (ADS)
Eriksen, Vibeke R.; Hahn, Gitte H.; Greisen, Gorm
2015-03-01
The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency domain, outcome variables were coherence and gain, whereas the cerebral oximetry index (COx) and the regression coefficient were the outcome variables in the time domain. Correlation between coherence and COx was poor. The disagreement between the two methods was due to the MAP and cerebral oxygenation signals being in counterphase in three cases. High gain and high coherence may arise spuriously when cerebral oxygenation decreases as MAP increases; hence, time-domain analysis appears to be a more robust-and simpler-method to describe CA.
NASA Technical Reports Server (NTRS)
Huang, Norden E.
1999-01-01
A new method for analyzing nonlinear and nonstationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum, Example of application of this method to earthquake and building response will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Peng, Zhike; Chen, Shiqian; Yang, Yang; Zhang, Wenming
2018-06-01
With the development of large rotary machines for faster and more integrated performance, the condition monitoring and fault diagnosis for them are becoming more challenging. Since the time-frequency (TF) pattern of the vibration signal from the rotary machine often contains condition information and fault feature, the methods based on TF analysis have been widely-used to solve these two problems in the industrial community. This article introduces an effective non-stationary signal analysis method based on the general parameterized time-frequency transform (GPTFT). The GPTFT is achieved by inserting a rotation operator and a shift operator in the short-time Fourier transform. This method can produce a high-concentrated TF pattern with a general kernel. A multi-component instantaneous frequency (IF) extraction method is proposed based on it. The estimation for the IF of every component is accomplished by defining a spectrum concentration index (SCI). Moreover, such an IF estimation process is iteratively operated until all the components are extracted. The tests on three simulation examples and a real vibration signal demonstrate the effectiveness and superiority of our method.
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
Automated Bayesian model development for frequency detection in biological time series.
Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J
2011-06-24
A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure.
Automated Bayesian model development for frequency detection in biological time series
2011-01-01
Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure. PMID:21702910
NASA Astrophysics Data System (ADS)
Endreny, Theodore A.; Pashiardis, Stelios
2007-02-01
SummaryRobust and accurate estimates of rainfall frequencies are difficult to make with short, and arid-climate, rainfall records, however new regional and global methods were used to supplement such a constrained 15-34 yr record in Cyprus. The impact of supplementing rainfall frequency analysis with the regional and global approaches was measured with relative bias and root mean square error (RMSE) values. Analysis considered 42 stations with 8 time intervals (5-360 min) in four regions delineated by proximity to sea and elevation. Regional statistical algorithms found the sites passed discordancy tests of coefficient of variation, skewness and kurtosis, while heterogeneity tests revealed the regions were homogeneous to mildly heterogeneous. Rainfall depths were simulated in the regional analysis method 500 times, and then goodness of fit tests identified the best candidate distribution as the general extreme value (GEV) Type II. In the regional analysis, the method of L-moments was used to estimate location, shape, and scale parameters. In the global based analysis, the distribution was a priori prescribed as GEV Type II, a shape parameter was a priori set to 0.15, and a time interval term was constructed to use one set of parameters for all time intervals. Relative RMSE values were approximately equal at 10% for the regional and global method when regions were compared, but when time intervals were compared the global method RMSE had a parabolic-shaped time interval trend. Relative bias values were also approximately equal for both methods when regions were compared, but again a parabolic-shaped time interval trend was found for the global method. The global method relative RMSE and bias trended with time interval, which may be caused by fitting a single scale value for all time intervals.
Fast time- and frequency-domain finite-element methods for electromagnetic analysis
NASA Astrophysics Data System (ADS)
Lee, Woochan
Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.
Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.
2003-01-01
The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and calculated the generalized aerodynamic forces, eigenvalues, and response amplitudes. The eigenvalues determine the flutter frequency and damping. As a test case, the flutter of a helical fan was calculated with LINFLUX and compared with calculations from TURBO-AE, a nonlinear time domain code, and from ASTROP2, a code based on linear unsteady aerodynamics.
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study
NASA Astrophysics Data System (ADS)
Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin
2011-03-01
Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.
Improving resolution of crosswell seismic section based on time-frequency analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, H.; Li, Y.
1994-12-31
According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less
2003-11-01
Distributions In contrast to the linear time-frequency transforms such as the short-time Fourier transform, the Wigner - Ville distribution ( WVD ) is...23 9 Results of nine TFDs: (a) Wigner - Ville distribution , (b) Born-Jordan distribution , (c) Choi-Williams distribution , (d) bilinear TFD...are applied in the Wigner - Ville class of time-frequency transforms and the reassignment methods, which are applied to any time-frequency distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency formore » all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.« less
Zhang, Y; Huang, S L; Wang, S; Zhao, W
2016-05-01
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.
Fault detection of gearbox using time-frequency method
NASA Astrophysics Data System (ADS)
Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.
2017-04-01
This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).
Komorowski, Dariusz; Pietraszek, Stanislaw
2016-01-01
This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.
NASA Technical Reports Server (NTRS)
Eggleston, John M; Mathews, Charles W
1954-01-01
In the process of analyzing the longitudinal frequency-response characteristics of aircraft, information on some of the methods of analysis has been obtained by the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics. In the investigation of these methods, the practical applications and limitations were stressed. In general, the methods considered may be classed as: (1) analysis of sinusoidal response, (2) analysis of transient response as to harmonic content through determination of the Fourier integral by manual or machine methods, and (3) analysis of the transient through the use of least-squares solutions of the coefficients of an assumed equation for either the transient time response or frequency response (sometimes referred to as curve-fitting methods). (author)
[Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].
Panchelyuga, V A; Panchelyuga, M S
2015-01-01
Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.
Fulop, Sean A; Fitz, Kelly
2006-01-01
A modification of the spectrogram (log magnitude of the short-time Fourier transform) to more accurately show the instantaneous frequencies of signal components was first proposed in 1976 [Kodera et al., Phys. Earth Planet. Inter. 12, 142-150 (1976)], and has been considered or reinvented a few times since but never widely adopted. This paper presents a unified theoretical picture of this time-frequency analysis method, the time-corrected instantaneous frequency spectrogram, together with detailed implementable algorithms comparing three published techniques for its computation. The new representation is evaluated against the conventional spectrogram for its superior ability to track signal components. The lack of a uniform framework for either mathematics or implementation details which has characterized the disparate literature on the schemes has been remedied here. Fruitful application of the method is shown in the realms of speech phonation analysis, whale song pitch tracking, and additive sound modeling.
A New Instantaneous Frequency Measure Based on The Stockwell Transform
NASA Astrophysics Data System (ADS)
yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.
2011-12-01
We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R.A., Lauzon, M.L. and Frayne, R. "General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly", IEEE Transactions on Signal Processing, 1:281-90 (2010).
Time/Frequency Analysis of Terrestrial Impack Crater Records
NASA Astrophysics Data System (ADS)
Chang, Heon-Young
2006-09-01
The terrestrial impact cratering record recently has been examined in the time domain by Chang & Moon (2005). It was found that the ˜ 26 Myr periodicity in the impact cratering rate exists over the last ˜ 250 Myrs. Such a periodicity can be found regardless of the lower limit of the diameter up to D ˜ 35 km. It immediately called pros and cons. The aim of this paper is two-fold: (1) to test if reported periodicities can be obtained with an independent method, (2) to see, as attempted earlier, if the phase is modulated. To achieve these goals we employ the time/frequency analysis and for the first time apply this method to the terrestrial impact cratering records. We have confirmed that without exceptions noticeable peaks appear around ˜ 25 Myr, corresponding to a frequency of ˜ 0.04 (Myr)^{-1}. We also find periodicities in the data base including small impact craters, which are longer. Though the time/frequency analysis allows us to observe directly phase variations, we cannot find any indications of such changes. Instead, modes display slow variations of power in time. The time/frequency analysis shows a nonstationary behavior of the modes. The power can grow from just above the noise level and then decrease back to its initial level in a time of order of 10 Myrs.
Fan, Shu-Han; Chou, Chia-Ching; Chen, Wei-Chen; Fang, Wai-Chi
2015-01-01
In this study, an effective real-time obstructive sleep apnea (OSA) detection method from frequency analysis of ECG-derived respiratory (EDR) and heart rate variability (HRV) is proposed. Compared to traditional Polysomnography (PSG) which needs several physiological signals measured from patients, the proposed OSA detection method just only use ECG signals to determine the time interval of OSA. In order to be feasible to be implemented in hardware to achieve the real-time detection and portable application, the simplified Lomb Periodogram is utilized to perform the frequency analysis of EDR and HRV in this study. The experimental results of this work indicate that the overall accuracy can be effectively increased with values of Specificity (Sp) of 91%, Sensitivity (Se) of 95.7%, and Accuracy of 93.2% by integrating the EDR and HRV indexes.
NASA Astrophysics Data System (ADS)
Kbaier Ben Ismail, Dhouha; Lazure, Pascal; Puillat, Ingrid
2016-10-01
In marine sciences, many fields display high variability over a large range of spatial and temporal scales, from seconds to thousands of years. The longer recorded time series, with an increasing sampling frequency, in this field are often nonlinear, nonstationary, multiscale and noisy. Their analysis faces new challenges and thus requires the implementation of adequate and specific methods. The objective of this paper is to highlight time series analysis methods already applied in econometrics, signal processing, health, etc. to the environmental marine domain, assess advantages and inconvenients and compare classical techniques with more recent ones. Temperature, turbidity and salinity are important quantities for ecosystem studies. The authors here consider the fluctuations of sea level, salinity, turbidity and temperature recorded from the MAREL Carnot system of Boulogne-sur-Mer (France), which is a moored buoy equipped with physico-chemical measuring devices, working in continuous and autonomous conditions. In order to perform adequate statistical and spectral analyses, it is necessary to know the nature of the considered time series. For this purpose, the stationarity of the series and the occurrence of unit-root are addressed with the Augmented-Dickey Fuller tests. As an example, the harmonic analysis is not relevant for temperature, turbidity and salinity due to the nonstationary condition, except for the nearly stationary sea level datasets. In order to consider the dominant frequencies associated to the dynamics, the large number of data provided by the sensors should enable the estimation of Fourier spectral analysis. Different power spectra show a complex variability and reveal an influence of environmental factors such as tides. However, the previous classical spectral analysis, namely the Blackman-Tukey method, requires not only linear and stationary data but also evenly-spaced data. Interpolating the time series introduces numerous artifacts to the data. The Lomb-Scargle algorithm is adapted to unevenly-spaced data and is used as an alternative. The limits of the method are also set out. It was found that beyond 50% of missing measures, few significant frequencies are detected, several seasonalities are no more visible, and even a whole range of high frequency disappears progressively. Furthermore, two time-frequency decomposition methods, namely wavelets and Hilbert-Huang Transformation (HHT), are applied for the analysis of the entire dataset. Using the Continuous Wavelet Transform (CWT), some properties of the time series are determined. Then, the inertial wave and several low-frequency tidal waves are identified by the application of the Empirical Mode Decomposition (EMD). Finally, EMD based Time Dependent Intrinsic Correlation (TDIC) analysis is applied to consider the correlation between two nonstationary time series.
Local regression type methods applied to the study of geophysics and high frequency financial data
NASA Astrophysics Data System (ADS)
Mariani, M. C.; Basu, K.
2014-09-01
In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.
Multi-frequency data analysis in AFM by wavelet transform
NASA Astrophysics Data System (ADS)
Pukhova, V.; Ferrini, G.
2017-10-01
Interacting cantilevers in AFM experiments generate non-stationary, multi-frequency signals consisting of numerous excited flexural and torsional modes and their harmonics. The analysis of such signals is challenging, requiring special methodological approaches and a powerful mathematical apparatus. The most common approach to the signal analysis is to apply Fourier transform analysis. However, FT gives accurate spectra for stationary signals, and for signals changing their spectral content over time, FT provides only an averaged spectrum. Hence, for non-stationary and rapidly varying signals, such as those from interacting cantilevers, a method that shows the spectral evolution in time is needed. One of the most powerful techniques, allowing detailed time-frequency representation of signals, is the wavelet transform. It is a method of analysis that allows representation of energy associated to the signal at a particular frequency and time, providing correlation between the spectral and temporal features of the signal, unlike FT. This is particularly important in AFM experiments because signals nonlinearities contains valuable information about tip-sample interactions and consequently surfaces properties. The present work is aimed to show the advantages of wavelet transform in comparison with FT using as an example the force curve analysis in dynamic force spectroscopy.
NASA Astrophysics Data System (ADS)
Boashash, Boualem; Lovell, Brian; White, Langford
1988-01-01
Time-Frequency analysis based on the Wigner-Ville Distribution (WVD) is shown to be optimal for a class of signals where the variation of instantaneous frequency is the dominant characteristic. Spectral resolution and instantaneous frequency tracking is substantially improved by using a Modified WVD (MWVD) based on an Autoregressive spectral estimator. Enhanced signal-to-noise ratio may be achieved by using 2D windowing in the Time-Frequency domain. The WVD provides a tool for deriving descriptors of signals which highlight their FM characteristics. These descriptors may be used for pattern recognition and data clustering using the methods presented in this paper.
OMA analysis of a launcher under operational conditions with time-varying properties
NASA Astrophysics Data System (ADS)
Eugeni, M.; Coppotelli, G.; Mastroddi, F.; Gaudenzi, P.; Muller, S.; Troclet, B.
2018-05-01
The objective of this paper is the investigation of the capability of operational modal analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the frequency-domain decomposition and the Hilbert transform method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios, and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight.
NASA Astrophysics Data System (ADS)
Lenoir, Guillaume; Crucifix, Michel
2018-03-01
Geophysical time series are sometimes sampled irregularly along the time axis. The situation is particularly frequent in palaeoclimatology. Yet, there is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework. To this end, we define the scalogram as the continuous-wavelet-transform equivalent of the extended Lomb-Scargle periodogram defined in Part 1 of this study (Lenoir and Crucifix, 2018). The signal being analysed is modelled as the sum of a locally periodic component in the time-frequency plane, a polynomial trend, and a background noise. The mother wavelet adopted here is the Morlet wavelet classically used in geophysical applications. The background noise model is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, which is more general than the traditional Gaussian white and red noise processes. The scalogram is smoothed by averaging over neighbouring times in order to reduce its variance. The Shannon-Nyquist exclusion zone is however defined as the area corrupted by local aliasing issues. The local amplitude in the time-frequency plane is then estimated with least-squares methods. We also derive an approximate formula linking the squared amplitude and the scalogram. Based on this property, we define a new analysis tool: the weighted smoothed scalogram, which we recommend for most analyses. The estimated signal amplitude also gives access to band and ridge filtering. Finally, we design a test of significance for the weighted smoothed scalogram against the stationary Gaussian CARMA background noise, and provide algorithms for computing confidence levels, either analytically or with Monte Carlo Markov chain methods. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
Regularization of Instantaneous Frequency Attribute Computations
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates
NASA Astrophysics Data System (ADS)
Borgnat, Pierre; Flandrin, Patrick; Richard, Cédric; Ferrari, André; Amoud, Hassan; Honeine, Paul
2012-03-01
Time-frequency representations provide a powerful tool for nonstationary signal analysis and classification, supporting a wide range of applications [12]. As opposed to conventional Fourier analysis, these techniques reveal the evolution in time of the spectral content of signals. In Ref. [7,38], time-frequency analysis is used to test stationarity of any signal. The proposed method consists of a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogate signals for defining the null hypothesis of stationarity and, based upon this information, to derive statistical tests. An open question remains, however, about how to choose relevant time-frequency features. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. These learning machines have gained popularity due to their conceptual simplicity and their outstanding performance [30]. Initiated by Vapnik’s support vector machines (SVM) [35], they offer now a wide class of supervised and unsupervised learning algorithms. In Ref. [17-19], the authors have shown how the most effective and innovative learning machines can be tuned to operate in the time-frequency domain. This chapter follows this line of research by taking advantage of learning machines to test and quantify stationarity. Based on one-class SVM, our approach uses the entire time-frequency representation and does not require arbitrary feature extraction. Applied to a set of surrogates, it provides the domain boundary that includes most of these stationarized signals. This allows us to test the stationarity of the signal under investigation. This chapter is organized as follows. In Section 22.2, we introduce the surrogate data method to generate stationarized signals, namely, the null hypothesis of stationarity. The concept of time-frequency learning machines is presented in Section 22.3, and applied to one-class SVM in order to derive a stationarity test in Section 22.4. The relevance of the latter is illustrated by simulation results in Section 22.5.
Melkonian, D; Korner, A; Meares, R; Bahramali, H
2012-10-01
A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.
2011-03-01
Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraiskii, A V; Mironova, T V
2015-08-31
The results of the study of interdiffusion of two liquids, obtained using the holographic recording scheme with a nonstationary reference wave with the frequency linearly varying in space and time are compared with the results of correlation processing of digital photographs, made with a random background screen. The spatio-temporal behaviour of the signal in four basic representations ('space – temporal frequency', 'space – time', 'spatial frequency – temporal frequency' and 'spatial frequency – time') is found in the holographic experiment and calculated (in the appropriate coordinates) based on the background-oriented schlieren method. Practical coincidence of the results of the correlationmore » analysis and the holographic double-exposure interferometry is demonstrated. (interferometry)« less
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-05-18
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-01-01
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation. PMID:28524090
The Fourier decomposition method for nonlinear and non-stationary time series analysis
Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik
2017-01-01
for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of ‘Fourier intrinsic band functions’ (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time–frequency–energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms. PMID:28413352
Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis
He, Qingbo; Wang, Xiangxiang; Zhou, Qiang
2014-01-01
Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods. PMID:24379045
A new time-frequency method for identification and classification of ball bearing faults
NASA Astrophysics Data System (ADS)
Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel
2017-06-01
In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.
Delay differential analysis of time series.
Lainscsek, Claudia; Sejnowski, Terrence J
2015-03-01
Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.
2013-01-01
Background The fovea, which is the most sensitive part of the retina, is known to have birefringent properties, i.e. it changes the polarization state of light upon reflection. Existing devices use this property to obtain information on the orientation of the fovea and the direction of gaze. Such devices employ specific frequency components that appear during moments of fixation on a target. To detect them, previous methods have used solely the power spectrum of the Fast Fourier Transform (FFT), which, unfortunately, is an integral method, and does not give information as to where exactly the events of interest occur. With very young patients who are not cooperative enough, this presents a problem, because central fixation may be present only during very short-lasting episodes, and can easily be missed by the FFT. Method This paper presents a method for detecting short-lasting moments of central fixation in existing devices for retinal birefringence scanning, with the goal of a reliable detection of eye alignment. Signal analysis is based on the Continuous Wavelet Transform (CWT), which reliably localizes such events in the time-frequency plane. Even though the characteristic frequencies are not always strongly expressed due to possible artifacts, simple topological analysis of the time-frequency distribution can detect fixation reliably. Results In all six subjects tested, the CWT allowed precise identification of both frequency components. Moreover, in four of these subjects, episodes of intermittent but definitely present central fixation were detectable, similar to those in Figure 4. A simple FFT is likely to treat them as borderline cases, or entirely miss them, depending on the thresholds used. Conclusion Joint time-frequency analysis is a powerful tool in the detection of eye alignment, even in a noisy environment. The method is applicable to similar situations, where short-lasting diagnostic events need to be detected in time series acquired by means of scanning some substrate along a specific path. PMID:23668264
Statistical analysis of hydrodynamic cavitation events
NASA Astrophysics Data System (ADS)
Gimenez, G.; Sommer, R.
1980-10-01
The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.
Time-frequency analysis in optical coherence tomography for technical objects examination
NASA Astrophysics Data System (ADS)
StrÄ kowski, Marcin R.; Kraszewski, Maciej; Trojanowski, Michał; Pluciński, Jerzy
2014-05-01
Optical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis of the backscattered optical signal delivered by the OCT. The time-frequency method gives spectral characteristic of optical radiation backscattered or backreflected from the particular points inside the tested device. This provides more information about the sample, which are useful for further analysis. Nowadays, the applications of spectroscopic analysis for composite layers characterization or tissue recognition have been reported. During our studies we have found new applications of spectroscopic analysis. We have used this method for thickness estimation of thin films, which are under the resolution of OCT. Also, we have combined the spectroscopic analysis with polarization sensitive OCT (PS-OCT). This approach enables to obtain a multiorder retardation value directly and may become a breakthrough in PS-OCT measurements of highly birefringent media. In this work, we present the time-frequency spectroscopic algorithms and their applications for OCT. Also, the theoretical simulations and measurement validation of this method are shown.
Online frequency estimation with applications to engine and generator sets
NASA Astrophysics Data System (ADS)
Manngård, Mikael; Böling, Jari M.
2017-07-01
Frequency and spectral analysis based on the discrete Fourier transform is a fundamental task in signal processing and machine diagnostics. This paper aims at presenting computationally efficient methods for real-time estimation of stationary and time-varying frequency components in signals. A brief survey of the sliding time window discrete Fourier transform and Goertzel filter is presented, and two filter banks consisting of: (i) sliding time window Goertzel filters (ii) infinite impulse response narrow bandpass filters are proposed for estimating instantaneous frequencies. The proposed methods show excellent results on both simulation studies and on a case study using angular speed data measurements of the crankshaft of a marine diesel engine-generator set.
On the Analysis Methods for the Time Domain and Frequency Domain Response of a Buried Objects*
NASA Astrophysics Data System (ADS)
Poljak, Dragan; Šesnić, Silvestar; Cvetković, Mario
2014-05-01
There has been a continuous interest in the analysis of ground-penetrating radar systems and related applications in civil engineering [1]. Consequently, a deeper insight of scattering phenomena occurring in a lossy half-space, as well as the development of sophisticated numerical methods based on Finite Difference Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM), Method of Moments (MoM) and various hybrid methods, is required, e.g. [2], [3]. The present paper deals with certain techniques for time and frequency domain analysis, respectively, of buried conducting and dielectric objects. Time domain analysis is related to the assessment of a transient response of a horizontal straight thin wire buried in a lossy half-space using a rigorous antenna theory (AT) approach. The AT approach is based on the space-time integral equation of the Pocklington type (time domain electric field integral equation for thin wires). The influence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The obtained results for the transient current induced along the electrode due to the transmitted plane wave excitation are compared to the numerical results calculated via an approximate transmission line (TL) approach and the AT approach based on the space-frequency variant of the Pocklington integro-differential approach, respectively. It is worth noting that the space-frequency Pocklington equation is numerically solved via the Galerkin-Bubnov variant of the Indirect Boundary Element Method (GB-IBEM) and the corresponding transient response is obtained by the aid of inverse fast Fourier transform (IFFT). The results calculated by means of different approaches agree satisfactorily. Frequency domain analysis is related to the assessment of frequency domain response of dielectric sphere using the full wave model based on the set of coupled electric field integral equations for surfaces. The numerical solution is carried out by means of the improved variant of the Method of Moments (MoM) providing numerically stable and an efficient procedure for the extraction of singularities arising in integral expressions. The proposed analysis method is compared to the results obtained by using some commercial software packages. A satisfactory agreement has been achieved. Both approaches discussed throughout this work and demonstrated on canonical geometries could be also useful for benchmark purpose. References [1] L. Pajewski et al., Applications of Ground Penetrating Radar in Civil Engineering - COST Action TU1208, 2013. [2] U. Oguz, L. Gurel, Frequency Responses of Ground-Penetrating Radars Operating Over Highly Lossy Grounds, IEEE Trans. Geosci. and Remote sensing, Vol. 40, No 6, 2002. [3] D.Poljak, Advanced Modeling in Computational electromagnetic Compatibility, John Wiley and Sons, New York 2007. *This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Multi-component separation and analysis of bat echolocation calls.
DiCecco, John; Gaudette, Jason E; Simmons, James A
2013-01-01
The vast majority of animal vocalizations contain multiple frequency modulated (FM) components with varying amounts of non-linear modulation and harmonic instability. This is especially true of biosonar sounds where precise time-frequency templates are essential for neural information processing of echoes. Understanding the dynamic waveform design by bats and other echolocating animals may help to improve the efficacy of man-made sonar through biomimetic design. Bats are known to adapt their call structure based on the echolocation task, proximity to nearby objects, and density of acoustic clutter. To interpret the significance of these changes, a method was developed for component separation and analysis of biosonar waveforms. Techniques for imaging in the time-frequency plane are typically limited due to the uncertainty principle and interference cross terms. This problem is addressed by extending the use of the fractional Fourier transform to isolate each non-linear component for separate analysis. Once separated, empirical mode decomposition can be used to further examine each component. The Hilbert transform may then successfully extract detailed time-frequency information from each isolated component. This multi-component analysis method is applied to the sonar signals of four species of bats recorded in-flight by radiotelemetry along with a comparison of other common time-frequency representations.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
Wavelet Analyses of F/A-18 Aeroelastic and Aeroservoelastic Flight Test Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
1997-01-01
Time-frequency signal representations combined with subspace identification methods were used to analyze aeroelastic flight data from the F/A-18 Systems Research Aircraft (SRA) and aeroservoelastic data from the F/A-18 High Alpha Research Vehicle (HARV). The F/A-18 SRA data were produced from a wingtip excitation system that generated linear frequency chirps and logarithmic sweeps. HARV data were acquired from digital Schroeder-phased and sinc pulse excitation signals to actuator commands. Nondilated continuous Morlet wavelets implemented as a filter bank were chosen for the time-frequency analysis to eliminate phase distortion as it occurs with sliding window discrete Fourier transform techniques. Wavelet coefficients were filtered to reduce effects of noise and nonlinear distortions identically in all inputs and outputs. Cleaned reconstructed time domain signals were used to compute improved transfer functions. Time and frequency domain subspace identification methods were applied to enhanced reconstructed time domain data and improved transfer functions, respectively. Time domain subspace performed poorly, even with the enhanced data, compared with frequency domain techniques. A frequency domain subspace method is shown to produce better results with the data processed using the Morlet time-frequency technique.
NASA Astrophysics Data System (ADS)
Shao, Xupeng
2017-04-01
Glutenite bodies are widely developed in northern Minfeng zone of Dongying Sag. Their litho-electric relationship is not clear. In addition, as the conventional sequence stratigraphic research method drawbacks of involving too many subjective human factors, it has limited deepening of the regional sequence stratigraphic research. The wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data have advantages of dividing sequence stratigraphy quantitatively comparing with the conventional methods. Under the basis of the conventional sequence research method, this paper used the above techniques to divide the fourth-order sequence of the upper Es4 in northern Minfeng zone of Dongying Sag. The research shows that the wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data are essentially consistent, both of which divide sequence stratigraphy quantitatively in the frequency domain; wavelet transform technique has high resolutions. It is suitable for areas with wells. The seismic time-frequency analysis technique has wide applicability, but a low resolution. Both of the techniques should be combined; the upper Es4 in northern Minfeng zone of Dongying Sag is a complete set of third-order sequence, which can be further subdivided into 5 fourth-order sequences that has the depositional characteristics of fine-upward sequence in granularity. Key words: Dongying sag, northern Minfeng zone, wavelet transform technique, time-frequency analysis technique ,the upper Es4, sequence stratigraphy
Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.
2015-06-01
Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the largemore » computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.« less
Phase and amplitude analysis in time-frequency space--application to voluntary finger movement.
Ginter, J; Blinowska, K J; Kamiński, M; Durka, P J
2001-09-30
Two methods operating in time-frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time-frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of mu- and beta-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of 'cross-talk' between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and beta activity post-movement synchronization was found.
A straightforward frequency-estimation technique for GPS carrier-phase time transfer.
Hackman, Christine; Levine, Judah; Parker, Thomas E; Piester, Dirk; Becker, Jürgen
2006-09-01
Although Global Positioning System (GPS) carrier-phase time transfer (GPSCPTT) offers frequency stability approaching 10-15 at averaging times of 1 d, a discontinuity occurs in the time-transfer estimates between the end of one processing batch (1-3 d in length) and the beginning of the next. The average frequency over a multiday analysis period often has been computed by first estimating and removing these discontinuities, i.e., through concatenation. We present a new frequency-estimation technique in which frequencies are computed from the individual batches then averaged to obtain the mean frequency for a multiday period. This allows the frequency to be computed without the uncertainty associated with the removal of the discontinuities and requires fewer computational resources. The new technique was tested by comparing the fractional frequency-difference values it yields to those obtained using a GPSCPTT concatenation method and those obtained using two-way satellite time-and-frequency transfer (TWSTFT). The clocks studied were located in Braunschweig, Germany, and in Boulder, CO. The frequencies obtained from the GPSCPTT measurements using either method agreed with those obtained from TWSTFT at several parts in 1016. The frequency values obtained from the GPSCPTT data by use of the new method agreed with those obtained using the concatenation technique at 1-4 x 10(-16).
A comprehensive prediction and evaluation method of pilot workload
Feng, Chuanyan; Wanyan, Xiaoru; Yang, Kun; Zhuang, Damin; Wu, Xu
2018-01-01
BACKGROUND: The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit. OBJECTIVE: A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot workload prediction and improve the evaluation method. METHODS: The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensitive physiological data and the predicted value. RESULTS: Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency, mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio between low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean phasic) were all sensitive to typical workloads of subjects. CONCLUSION: A multinominal logistic regression model based on combination of physiological indices (fixation frequency, mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%. PMID:29710742
Study on time-frequency analysis method of very fast transient overvoltage
NASA Astrophysics Data System (ADS)
Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun
2018-04-01
The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.
A symmetrical method to obtain shear moduli from microrheology.
Nishi, Kengo; Kilfoil, Maria L; Schmidt, Christoph F; MacKintosh, F C
2018-05-16
Passive microrheology typically deduces shear elastic loss and storage moduli from displacement time series or mean-squared displacements (MSD) of thermally fluctuating probe particles in equilibrium materials. Common data analysis methods use either Kramers-Kronig (KK) transformation or functional fitting to calculate frequency-dependent loss and storage moduli. We propose a new analysis method for passive microrheology that avoids the limitations of both of these approaches. In this method, we determine both real and imaginary components of the complex, frequency-dependent response function χ(ω) = χ'(ω) + iχ''(ω) as direct integral transforms of the MSD of thermal particle motion. This procedure significantly improves the high-frequency fidelity of χ(ω) relative to the use of KK transformation, which has been shown to lead to artifacts in χ'(ω). We test our method on both model and experimental data. Experiments were performed on solutions of worm-like micelles and dilute collagen solutions. While the present method agrees well with established KK-based methods at low frequencies, we demonstrate significant improvement at high frequencies using our symmetric analysis method, up to almost the fundamental Nyquist limit.
[An EMD based time-frequency distribution and its application in EEG analysis].
Li, Xiaobing; Chu, Meng; Qiu, Tianshuang; Bao, Haiping
2007-10-01
Hilbert-Huang transform (HHT) is a new time-frequency analytic method to analyze the nonlinear and the non-stationary signals. The key step of this method is the empirical mode decomposition (EMD), with which any complicated signal can be decomposed into a finite and small number of intrinsic mode functions (IMF). In this paper, a new EMD based method for suppressing the cross-term of Wigner-Ville distribution (WVD) is developed and is applied to analyze the epileptic EEG signals. The simulation data and analysis results show that the new method suppresses the cross-term of the WVD effectively with an excellent resolution.
Full waveform inversion in the frequency domain using classified time-domain residual wavefields
NASA Astrophysics Data System (ADS)
Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan
2017-04-01
We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.
Basic gait analysis based on continuous wave radar.
Zhang, Jun
2012-09-01
A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
Chu, Catherine. J.; Chan, Arthur; Song, Dan; Staley, Kevin J.; Stufflebeam, Steven M.; Kramer, Mark A.
2017-01-01
Summary Background High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. New Method The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. Results We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. Comparison with Existing Method The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Conclusions Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. PMID:27988323
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
NASA Astrophysics Data System (ADS)
Zelinsky, N. R.; Kleimenova, N. G.; Gromova, L. I.
2017-09-01
This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29-30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.
3-D surface profilometry based on modulation measurement by applying wavelet transform method
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao
2017-01-01
A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.
Deng, Yuqiang; Yang, Weijian; Zhou, Chun; Wang, Xi; Tao, Jun; Kong, Weipeng; Zhang, Zhigang
2008-12-01
We propose and demonstrate an analysis method to directly extract the group delay rather than the phase from the white-light spectral interferogram. By the joint time-frequency analysis technique, group delay is directly read from the ridge of wavelet transform, and group-delay dispersion is easily obtained by additional differentiation. The technique shows reasonable potential for the characterization of ultra-broadband chirped mirrors.
Frequency-phase analysis of resting-state functional MRI
Goelman, Gadi; Dan, Rotem; Růžička, Filip; Bezdicek, Ondrej; Růžička, Evžen; Roth, Jan; Vymazal, Josef; Jech, Robert
2017-01-01
We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience. PMID:28272522
Parametric Time-Frequency Analysis and Its Applications in Music Classification
NASA Astrophysics Data System (ADS)
Shen, Ying; Li, Xiaoli; Ma, Ngok-Wah; Krishnan, Sridhar
2010-12-01
Analysis of nonstationary signals, such as music signals, is a challenging task. The purpose of this study is to explore an efficient and powerful technique to analyze and classify music signals in higher frequency range (44.1 kHz). The pursuit methods are good tools for this purpose, but they aimed at representing the signals rather than classifying them as in Y. Paragakin et al., 2009. Among the pursuit methods, matching pursuit (MP), an adaptive true nonstationary time-frequency signal analysis tool, is applied for music classification. First, MP decomposes the sample signals into time-frequency functions or atoms. Atom parameters are then analyzed and manipulated, and discriminant features are extracted from atom parameters. Besides the parameters obtained using MP, an additional feature, central energy, is also derived. Linear discriminant analysis and the leave-one-out method are used to evaluate the classification accuracy rate for different feature sets. The study is one of the very few works that analyze atoms statistically and extract discriminant features directly from the parameters. From our experiments, it is evident that the MP algorithm with the Gabor dictionary decomposes nonstationary signals, such as music signals, into atoms in which the parameters contain strong discriminant information sufficient for accurate and efficient signal classifications.
Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve
2010-02-01
In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.
Extracting a shape function for a signal with intra-wave frequency modulation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).
Digital signal processing for velocity measurements in dynamical material's behaviour studies.
Devlaminck, Julien; Luc, Jérôme; Chanal, Pierre-Yves
2014-03-01
In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach-Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine.
A time and frequency synchronization method for CO-OFDM based on CMA equalizers
NASA Astrophysics Data System (ADS)
Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum
2018-06-01
In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.
Application of the Hilbert-Huang Transform to Financial Data
NASA Technical Reports Server (NTRS)
Huang, Norden
2005-01-01
A paper discusses the application of the Hilbert-Huang transform (HHT) method to time-series financial-market data. The method was described, variously without and with the HHT name, in several prior NASA Tech Briefs articles and supporting documents. To recapitulate: The method is especially suitable for analyzing time-series data that represent nonstationary and nonlinear phenomena including physical phenomena and, in the present case, financial-market processes. The method involves the empirical mode decomposition (EMD), in which a complicated signal is decomposed into a finite number of functions, called "intrinsic mode functions" (IMFs), that admit well-behaved Hilbert transforms. The HHT consists of the combination of EMD and Hilbert spectral analysis. The local energies and the instantaneous frequencies derived from the IMFs through Hilbert transforms can be used to construct an energy-frequency-time distribution, denoted a Hilbert spectrum. The instant paper begins with a discussion of prior approaches to quantification of market volatility, summarizes the HHT method, then describes the application of the method in performing time-frequency analysis of mortgage-market data from the years 1972 through 2000. Filtering by use of the EMD is shown to be useful for quantifying market volatility.
Huart, C; Rombaux, Ph; Hummel, T; Mouraux, A
2013-09-01
The clinical usefulness of olfactory event-related brain potentials (OERPs) to assess olfactory function is limited by the relatively low signal-to-noise ratio of the responses identified using conventional time-domain averaging. Recently, it was shown that time-frequency analysis of the obtained EEG signals can markedly improve the signal-to-noise ratio of OERPs in healthy controls, because it enhances both phase-locked and non phase-locked EEG responses. The aim of the present study was to investigate the clinical usefulness of this approach and evaluate its feasibility in a clinical setting. We retrospectively analysed EEG recordings obtained from 45 patients (15 anosmic, 15 hyposmic and 15 normos- mic). The responses to olfactory stimulation were analysed using conventional time-domain analysis and joint time-frequency analysis. The ability of the two methods to discriminate between anosmic, hyposmic and normosmic patients was assessed using a Receiver Operating Characteristic analysis. The discrimination performance of OERPs identified using conventional time-domain averaging was poor. In contrast, the discrimination performance of the EEG response identified in the time-frequency domain was relatively high. Furthermore, we found a significant correlation between the magnitude of this response and the psychophysical olfactory score. Time-frequency analysis of the EEG responses to olfactory stimulation could be used as an effective and reliable diagnostic tool for the objective clinical evaluation of olfactory function in patients.
The DTIC Review. Volume 2, Number 3: Optical and Infrared Detection and Countermeasures
1996-10-01
are different from those en- countered in designing wavelets for other applications. For use in time- frequency analysis of signals, for example, it...view within the field of regard, and for high -fidelity simulation of optical blurring and temporal effects such as jitter. The real-time CLDWSG method ...integration methods or, for near spatially invariant FOV regions, by convolution methods or by way of the convolution theorem using OTF frequency -domain
Frequency-dependent FDTD methods using Z transforms
NASA Technical Reports Server (NTRS)
Sullivan, Dennis M.
1992-01-01
While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.
Wang, Haibin; Zha, Daifeng; Li, Peng; Xie, Huicheng; Mao, Lili
2017-01-01
Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analysis method which combines short time Fourier transform with wavelet transform, and ST time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods are used to analyze the fault signals, which is reasonable and effective in general Gaussian noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribution in some special cases. The performance of ST-TFR method will degrade under α stable distribution noise environment, following the ST-TFF method fail. Hence, a new fractional lower order ST time frequency representation(FLOST-TFR) method employing fractional lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and IFLOST is also proposed, whose simplified method is presented in this paper. The discrete implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized. Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the existing ST-TFR algorithm under α stable distribution noise, which can work better under Gaussian noise environment, and is robust. The FLOST-TFF method can effectively filter out α stable distribution noise, and restore the original signal. The performance of FLOST-TFF algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault features under α stable distribution noise, where excellent performances can be shown. PMID:28406916
Determination of fundamental asteroseismic parameters using the Hilbert transform
NASA Astrophysics Data System (ADS)
Kiefer, René; Schad, Ariane; Herzberg, Wiebke; Roth, Markus
2015-06-01
Context. Solar-like oscillations exhibit a regular pattern of frequencies. This pattern is dominated by the small and large frequency separations between modes. The accurate determination of these parameters is of great interest, because they give information about e.g. the evolutionary state and the mass of a star. Aims: We want to develop a robust method to determine the large and small frequency separations for time series with low signal-to-noise ratio. For this purpose, we analyse a time series of the Sun from the GOLF instrument aboard SOHO and a time series of the star KIC 5184732 from the NASA Kepler satellite by employing a combination of Fourier and Hilbert transform. Methods: We use the analytic signal of filtered stellar oscillation time series to compute the signal envelope. Spectral analysis of the signal envelope then reveals frequency differences of dominant modes in the periodogram of the stellar time series. Results: With the described method the large frequency separation Δν can be extracted from the envelope spectrum even for data of poor signal-to-noise ratio. A modification of the method allows for an overview of the regularities in the periodogram of the time series.
Chu, Catherine J; Chan, Arthur; Song, Dan; Staley, Kevin J; Stufflebeam, Steven M; Kramer, Mark A
2017-02-01
High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. Copyright © 2016 Elsevier B.V. All rights reserved.
Pulse analysis of acoustic emission signals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Houghton, J. R.
1976-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
NASA Astrophysics Data System (ADS)
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
Efficient Power Network Analysis with Modeling of Inductive Effects
NASA Astrophysics Data System (ADS)
Zeng, Shan; Yu, Wenjian; Hong, Xianlong; Cheng, Chung-Kuan
In this paper, an efficient method is proposed to accurately analyze large-scale power/ground (P/G) networks, where inductive parasitics are modeled with the partial reluctance. The method is based on frequency-domain circuit analysis and the technique of vector fitting [14], and obtains the time-domain voltage response at given P/G nodes. The frequency-domain circuit equation including partial reluctances is derived, and then solved with the GMRES algorithm with rescaling, preconditioning and recycling techniques. With the merit of sparsified reluctance matrix and iterative solving techniques for the frequency-domain circuit equations, the proposed method is able to handle large-scale P/G networks with complete inductive modeling. Numerical results show that the proposed method is orders of magnitude faster than HSPICE, several times faster than INDUCTWISE [4], and capable of handling the inductive P/G structures with more than 100, 000 wire segments.
A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
Zhang, Yufeng; Guo, Zhenyu; Wang, Weilian; He, Side; Lee, Ting; Loew, Murray
2003-09-01
Doppler spectrum analysis provides a non-invasive means to measure blood flow velocity and to diagnose arterial occlusive disease. The time-frequency representation of the Doppler blood flow signal is normally computed by using the short-time Fourier transform (STFT). This transform requires stationarity of the signal during a finite time interval, and thus imposes some constraints on the representation estimate. In addition, the STFT has a fixed time-frequency window, making it inaccurate to analyze signals having relatively wide bandwidths that change rapidly with time. In the present study, wavelet transform (WT), having a flexible time-frequency window, was used to investigate its advantages and limitations for the analysis of the Doppler blood flow signal. Representations computed using the WT with a modified Morlet wavelet were investigated and compared with the theoretical representation and those computed using the STFT with a Gaussian window. The time and frequency resolutions of these two approaches were compared. Three indices, the normalized root-mean-squared errors of the minimum, the maximum and the mean frequency waveforms, were used to evaluate the performance of the WT. Results showed that the WT can not only be used as an alternative signal processing tool to the STFT for Doppler blood flow signals, but can also generate a time-frequency representation with better resolution than the STFT. In addition, the WT method can provide both satisfactory mean frequencies and maximum frequencies. This technique is expected to be useful for the analysis of Doppler blood flow signals to quantify arterial stenoses.
Time-frequency analysis of transient signals - application to cardiovascular control
NASA Astrophysics Data System (ADS)
Keselbrener, Laurence; Akselrod, Solange
A method for time-frequency decomposition (SDA) is presented for the analysis of cardiovascular signals, during steady state as well as under transient conditions. The SDA is applied to a simulated noisy non-stationary signal. It reliably discloses the time evolution of the different spectral components of the signal and does not present noise propagation as other time-frequency methods, such as Wigner-Ville distribution does. A comparison with the well-known short-time Fourier transform is also performed for non-stationary simulated signal showing that the SDA achieves a higher time-frequency resolution. Two physiological applications are then presented in which the SDA is used for the analysis of HR and BP variability, reflecting the activity of the autonomic nervous system. The power spectra of heart rate (HR) and blood pressure (BP) fluctuations during a change of posture from supine to standing are calculated. The decrease of vagal activity on standing is obvious and can be quantified from the spectrum of HR fluctuations. The increase in the LF fluctuations of both BP and HR spectra reflect the enhancement in sympathetic activity on standing. Finally, the power spectrum of fetal HR fluctuations is obtained by SDA. The respiratory peak is observed and can help in evaluating fetal well-being.
Frequency and time properties of decimeter narrowband spikes in solar flares
NASA Astrophysics Data System (ADS)
Wang, Shujuan
2013-07-01
In this paper, we focus to study the frequency and time properties of a group of spikes recorded by the 1.08-2.04 GHz spectrometer of NAOC on 27 October 2003. At the first we calculate the mean and minimum bandwidth of the spikes. We apply two different methods based on the wavelet analysis according to Messmer & Benz (2000). The first method determines the dominant spike bandwidth scale based on their scalegram, and the second method is a feature detection algorithm in the time-frequency plane. Secondly the time profile of each single spike was fitted and analyzed. In particular, we determined the e-folding rise and decay times corresponding to the ascending and decaying parts of the time profile, respectively. Several important correlations were studied and compared with the results in earlier literature, i.e. those between duration and frequency, e-folding rise time and decay time, e-folding decay time and duration, and e-folding decay time and peak flux. Finally some parameters of source region were estimated and the possible decaying mechanism was discussed.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
Ikemi, A
1988-01-01
Experiments were conducted to investigate the psychophysiological effects of self-regulation method (SRM), a newly developed method of self-control, using EEG frequency analysis and contingent negative variations (CNV). The results of the EEG frequency analysis showed that there is a significant increase in the percentage (power) of the theta-band and a significant decrease in the percentage (power) of the beta-band during SRM. Moreover, the results of an identical experiment conducted on subjects in a drowsy state showed that the changes in EEG frequencies during SRM can be differentiated from those of a drowsy state. Furthermore, experiments using CNV showed that there is a significant reduction of CNV amplitude during SRM. Despite the reduced amplitude during SRM, the number of errors in a task to evoke the CNV was reduced significantly without significant delay of reaction time. When an identical experiment was conducted in a drowsy state, CNV amplitude was reduced significantly, but reaction time and errors increased. From these experiments, the state of vigilance during SRM was discussed as a state of 'relaxed alertness'.
Time-Frequency Analysis of the Dispersion of Lamb Modes
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the AO, A I , So, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
The time-frequency method of signal analysis in internal combustion engine diagnostics
NASA Astrophysics Data System (ADS)
Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.
2017-01-01
The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.
Spontaneous Swallowing Frequency [Has Potential to] Identify Dysphagia in Acute Stroke
Carnaby, Giselle D; Sia, Isaac; Khanna, Anna; Waters, Michael
2014-01-01
Background and Purpose Spontaneous swallowing frequency has been described as an index of dysphagia in various health conditions. This study evaluated the potential of spontaneous swallow frequency analysis as a screening protocol for dysphagia in acute stroke. Methods In a cohort of 63 acute stroke cases swallow frequency rates (swallows per minute: SPM) were compared to stroke and swallow severity indices, age, time from stroke to assessment, and consciousness level. Mean differences in SPM were compared between patients with vs. without clinically significant dysphagia. ROC analysis was used to identify the optimal threshold in SPM which was compared to a validated clinical dysphagia examination for identification of dysphagia cases. Time series analysis was employed to identify the minimally adequate time period to complete spontaneous swallow frequency analysis. Results SPM correlated significantly with stroke and swallow severity indices but not with age, time from stroke onset, or consciousness level. Patients with dysphagia demonstrated significantly lower SPM rates. SPM differed by dysphagia severity. ROC analysis yielded a threshold of SPM ≤ 0.40 which identified dysphagia (per the criterion referent) with 0.96 sensitivity, 0.68 specificity, and 0.96 negative predictive value. Time series analysis indicated that a 5 to 10 minute sampling window was sufficient to calculate spontaneous swallow frequency to identify dysphagia cases in acute stroke. Conclusions Spontaneous swallowing frequency presents high potential to screen for dysphagia in acute stroke without the need for trained, available personnel. PMID:24149008
Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M; Graversen, Carina; Sørensen, Helge B D; Bastlund, Jesper F
2017-04-01
Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.
He, Xiyang; Zhang, Xiaohong; Tang, Long; Liu, Wanke
2015-12-22
Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented method. The results indicate that the ambiguity fixing rate can be up to more than 98% when using BDS medium baseline observations, which is much higher than that of dual-frequency Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy can be achieved with this method, which is comparable to that of carrier-smoothed code differential positioning method. Signal interruption simulation experiment indicates that the proposed method can realize fast high-precision positioning whereas the carrier-smoothed code differential positioning method needs several hundreds of seconds for obtaining high precision results. We can conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL method with single-epoch observations, displaying significant advantage comparing to traditional carrier-smoothed code differential positioning method.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.
Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan
2016-09-24
This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.
Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P
2013-01-01
We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas.
Measuring sperm movement within the female reproductive tract using Fourier analysis.
Nicovich, Philip R; Macartney, Erin L; Whan, Renee M; Crean, Angela J
2015-02-01
The adaptive significance of variation in sperm phenotype is still largely unknown, in part due to the difficulties of observing and measuring sperm movement in its natural, selective environment (i.e., within the female reproductive tract). Computer-assisted sperm analysis systems allow objective and accurate measurement of sperm velocity, but rely on being able to track individual sperm, and are therefore unable to measure sperm movement in species where sperm move in trains or bundles. Here we describe a newly developed computational method for measuring sperm movement using Fourier analysis to estimate sperm tail beat frequency. High-speed time-lapse videos of sperm movement within the female tract of the neriid fly Telostylinus angusticollis were recorded, and a map of beat frequencies generated by converting the periodic signal of an intensity versus time trace at each pixel to the frequency domain using the Fourier transform. We were able to detect small decreases in sperm tail beat frequency over time, indicating the method is sensitive enough to identify consistent differences in sperm movement. Fourier analysis can be applied to a wide range of species and contexts, and should therefore facilitate novel exploration of the causes and consequences of variation in sperm movement.
Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D
2005-05-30
A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.
Analysis of Scattering from Archival Pulsar Data using a CLEAN-based Method
NASA Astrophysics Data System (ADS)
Tsai, -Wei, Jr.; Simonetti, John H.; Kavic, Michael
2017-02-01
In this work, we adopted a CLEAN-based method to determine the scatter time, τ, from archived pulsar profiles under both the thin screen and uniform medium scattering models and to calculate the scatter time frequency scale index α, where τ \\propto {ν }α . The value of α is -4.4, if a Kolmogorov spectrum of the interstellar medium turbulence is assumed. We deconvolved 1342 profiles from 347 pulsars over a broad range of frequencies and dispersion measures. In our survey, in the majority of cases the scattering effect was not significant compared to pulse profile widths. For a subset of 21 pulsars scattering at the lowest frequencies was large enough to be measured. Because reliable scatter time measurements were determined only for the lowest frequency, we were limited to using upper limits on scatter times at higher frequencies for the purpose of our scatter time frequency slope estimation. We scaled the deconvolved scatter time to 1 GHz assuming α =-4.4 and considered our results in the context of other observations which yielded a broad relation between scatter time and dispersion measure.
NASA Astrophysics Data System (ADS)
Lenoir, Guillaume; Crucifix, Michel
2018-03-01
We develop a general framework for the frequency analysis of irregularly sampled time series. It is based on the Lomb-Scargle periodogram, but extended to algebraic operators accounting for the presence of a polynomial trend in the model for the data, in addition to a periodic component and a background noise. Special care is devoted to the correlation between the trend and the periodic component. This new periodogram is then cast into the Welch overlapping segment averaging (WOSA) method in order to reduce its variance. We also design a test of significance for the WOSA periodogram, against the background noise. The model for the background noise is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, more general than the classical Gaussian white or red noise processes. CARMA parameters are estimated following a Bayesian framework. We provide algorithms that compute the confidence levels for the WOSA periodogram and fully take into account the uncertainty in the CARMA noise parameters. Alternatively, a theory using point estimates of CARMA parameters provides analytical confidence levels for the WOSA periodogram, which are more accurate than Markov chain Monte Carlo (MCMC) confidence levels and, below some threshold for the number of data points, less costly in computing time. We then estimate the amplitude of the periodic component with least-squares methods, and derive an approximate proportionality between the squared amplitude and the periodogram. This proportionality leads to a new extension for the periodogram: the weighted WOSA periodogram, which we recommend for most frequency analyses with irregularly sampled data. The estimated signal amplitude also permits filtering in a frequency band. Our results generalise and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. They also constitute the starting point for an extension to the continuous wavelet transform developed in a companion article (Lenoir and Crucifix, 2018). All the methods presented in this paper are available to the reader in the Python package WAVEPAL.
Algorithms for Efficient Computation of Transfer Functions for Large Order Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Giesy, Daniel P.
1998-01-01
An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, still-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open- and closed-loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, the present method was up to two orders of magnitude faster than a traditional method. The present method generally showed good to excellent accuracy throughout the range of test frequencies, while traditional methods gave adequate accuracy for lower frequencies, but generally deteriorated in performance at higher frequencies with worst case errors being many orders of magnitude times the correct values.
Adaptive synchrosqueezing based on a quilted short-time Fourier transform
NASA Astrophysics Data System (ADS)
Berrian, Alexander; Saito, Naoki
2017-08-01
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
Instrument-independent analysis of music by means of the continuous wavelet transform
NASA Astrophysics Data System (ADS)
Olmo, Gabriella; Dovis, Fabio; Benotto, Paolo; Calosso, Claudio; Passaro, Pierluigi
1999-10-01
This paper deals with the problem of automatic recognition of music. Segments of digitized music are processed by means of a Continuous Wavelet Transform, properly chosen so as to match the spectral characteristics of the signal. In order to achieve a good time-scale representation of the signal components a novel wavelet has been designed suited to the musical signal features. particular care has been devoted towards an efficient implementation, which operates in the frequency domain, and includes proper segmentation and aliasing reduction techniques to make the analysis of long signals feasible. The method achieves very good performance in terms of both time and frequency selectivity, and can yield the estimate and the localization in time of both the fundamental frequency and the main harmonics of each tone. The analysis is used as a preprocessing step for a recognition algorithm, which we show to be almost independent on the instrument reproducing the sounds. Simulations are provided to demonstrate the effectiveness of the proposed method.
A comprehensive prediction and evaluation method of pilot workload.
Feng, Chuanyan; Wanyan, Xiaoru; Yang, Kun; Zhuang, Damin; Wu, Xu
2018-01-01
The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit. A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot workload prediction and improve the evaluation method. The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensitive physiological data and the predicted value. Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency, mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio between low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean phasic) were all sensitive to typical workloads of subjects. A multinominal logistic regression model based on combination of physiological indices (fixation frequency, mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%.
Research on vibration signal of engine based on subband energy method
NASA Astrophysics Data System (ADS)
Wu, Chunmei; Cui, Feng; Zhao, Yong; Fu, Baohong; Ma, Junchi; Yang, Guihua
2017-04-01
Based on the research of DA462 type engine cylinder and cylinder head vibration signal of the surface, the signal measured in the time domain and frequency domain are analyzed in detail, draw the following conclusions: the analysis of vibration signal of the subband energy method is applied to the engine, the concentration response of each of the motivation band can clearly be seen. Through the analysis we can see that the combustion excitation frequency response from 0k to 1K, the vibration influence on the body piston lateral impact force is mainly concentrated in 2K˜5K frequency range of Hz, valve opening and closing the excitation response frequency is mainly concentrated in the 3K˜4K range of Hz, and thus locating the valve clearance fault. This method is simple, accurate and practical for the post processing and analysis of vibration signals.
EMG circuit design and AR analysis of EMG signs.
Hardalaç, Firat; Canal, Rahmi
2004-12-01
In this study, electromyogram (EMG) circuit was designed and tested on 27 people. Autoregressive (AR) analysis of EMG signals recorded on the ulnar nerve region of the right hand in resting position was performed. AR method, especially in the calculation of the spectrums of stable signs, is used for frequency analysis of signs, which give frequency response as sharp peaks and valleys. In this study, as the result of AR method analysis of EMG signals frequency-time domain, frequency spectrum curves (histogram curves) were obtained. As the images belonging to these histograms were evaluated, fibrillation potential widths of the muscle fibers of the ulnar nerve region of the people (material of the study) were examined. According to the degeneration degrees of the motor nerves, nine people had myopathy, nine had neuropathy, and nine were normal.
Method for network analyzation and apparatus
Bracht, Roger B.; Pasquale, Regina V.
2001-01-01
A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.
Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles
NASA Astrophysics Data System (ADS)
Gay, M.; De Angelis, M.; Lacoume, J.-L.
2014-09-01
Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.
Time-Frequency Analysis of the Dispersion of Lamb Modes
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm
NASA Astrophysics Data System (ADS)
Neri, P.
2017-05-01
Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.
NASA Astrophysics Data System (ADS)
Escalas, M.; Queralt, P.; Ledo, J.; Marcuello, A.
2012-04-01
Magnetotelluric (MT) method is a passive electromagnetic technique, which is currently used to characterize sites for the geological storage of CO2. These later ones are usually located nearby industrialized, urban or farming areas, where man-made electromagnetic (EM) signals contaminate the MT data. The identification and characterization of the artificial EM sources which generate the so-called "cultural noise" is an important challenge to obtain the most reliable results with the MT method. The polarization attributes of an EM signal (tilt angle, ellipticity and phase difference between its orthogonal components) are related to the character of its source. In a previous work (Escalas et al. 2011), we proposed a method to distinguish natural signal from cultural noise in the raw MT data. It is based on the polarization analysis of the MT time-series in the time-frequency domain, using a wavelet scheme. We developed an algorithm to implement the method, and was tested with both synthetic and field data. In 2010, we carried out a controlled-source electromagnetic (CSEM) experiment in the Hontomín site (the Research Laboratory on Geological Storage of CO2 in Spain). MT time-series were contaminated at different frequencies with the signal emitted by a controlled artificial EM source: two electric dipoles (1 km long, arranged in North-South and East-West directions). The analysis with our algorithm of the electric field time-series acquired in this experiment was successful: the polarization attributes of both the natural and artificial signal were obtained in the time-frequency domain, highlighting their differences. The processing of the magnetic field time-series acquired in the Hontomín experiment has been done in the present work. This new analysis of the polarization attributes of the magnetic field data has provided additional information to detect the contribution of the artificial source in the measured data. Moreover, the joint analysis of the polarization attributes of the electric and magnetic field has been crucial to fully characterize the properties and the location of the noise source. Escalas, M., Queralt, P., Ledo, J., Marcuello, A., 2011. Identification of cultural noise sources in magnetotelluric data: estimating polarization attributes in the time-frequency domain using wavelet analysis. Geophysical Research Abstracts Vol. 13, EGU2011-6085. EGU General Assembly 2011.
An Improved Time-Frequency Analysis Method in Interference Detection for GNSS Receivers
Sun, Kewen; Jin, Tian; Yang, Dongkai
2015-01-01
In this paper, an improved joint time-frequency (TF) analysis method based on a reassigned smoothed pseudo Wigner–Ville distribution (RSPWVD) has been proposed in interference detection for Global Navigation Satellite System (GNSS) receivers. In the RSPWVD, the two-dimensional low-pass filtering smoothing function is introduced to eliminate the cross-terms present in the quadratic TF distribution, and at the same time, the reassignment method is adopted to improve the TF concentration properties of the auto-terms of the signal components. This proposed interference detection method is evaluated by experiments on GPS L1 signals in the disturbing scenarios compared to the state-of-the-art interference detection approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-terms problem and also preserves good TF localization properties, which has been proven to be effective and valid to enhance the interference detection performance of the GNSS receivers, particularly in the jamming environments. PMID:25905704
NASA Astrophysics Data System (ADS)
Haris, A.; Pradana, G. S.; Riyanto, A.
2017-07-01
Tectonic setting of the Bird Head Papua Island becomes an important model for petroleum system in Eastern part of Indonesia. The current exploration has been started since the oil seepage finding in Bintuni and Salawati Basin. The biogenic gas in shallow layer turns out to become an interesting issue in the hydrocarbon exploration. The hydrocarbon accumulation appearance in a shallow layer with dry gas type, appeal biogenic gas for further research. This paper aims at delineating the sweet spot hydrocarbon potential in shallow layer by applying the spectral decomposition technique. The spectral decomposition is decomposing the seismic signal into an individual frequency, which has significant geological meaning. One of spectral decomposition methods is Continuous Wavelet Transform (CWT), which transforms the seismic signal into individual time and frequency simultaneously. This method is able to make easier time-frequency map analysis. When time resolution increases, the frequency resolution will be decreased, and vice versa. In this study, we perform low-frequency shadow zone analysis in which the amplitude anomaly at a low frequency of 15 Hz was observed and we then compare it to the amplitude at the mid (20 Hz) and the high-frequency (30 Hz). The appearance of the amplitude anomaly at a low frequency was disappeared at high frequency, this anomaly disappears. The spectral decomposition by using CWT algorithm has been successfully applied to delineate the sweet spot zone.
Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling
Olofsson, K. Erik J.; Hanson, Jeremy M.; Shiraki, Daisuke; ...
2014-07-14
Here, time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models.more » The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones.« less
A frequency domain analysis of respiratory variations in the seismocardiogram signal.
Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A
2013-01-01
The seismocardiogram (SCG) signal traditionally measured using a chest-mounted accelerometer contains low-frequency (0-100 Hz) cardiac vibrations that can be used to derive diagnostically relevant information about cardiovascular and cardiopulmonary health. This work is aimed at investigating the effects of respiration on the frequency domain characteristics of SCG signals measured from 18 healthy subjects. Toward this end, the 0-100 Hz SCG signal bandwidth of interest was sub-divided into 5 Hz and 10 Hz frequency bins to compare the spectral energy in corresponding frequency bins of the SCG signal measured during three key conditions of respiration--inspiration, expiration, and apnea. Statistically significant differences were observed between the power in ensemble averaged inspiratory and expiratory SCG beats and between ensemble averaged inspiratory and apneaic beats across the 18 subjects for multiple frequency bins in the 10-40 Hz frequency range. Accordingly, the spectral analysis methods described in this paper could provide complementary and improved classification of respiratory modulations in the SCG signal over and above time-domain SCG analysis methods.
NASA Astrophysics Data System (ADS)
Price, V.; Weber, T.; Jerram, K.; Doucet, M.
2016-12-01
The analysis of multi-frequency, narrow-band single-beam acoustic data for fisheries applications has long been established, with methodology focusing on characterizing targets in the water column by utilizing complex algorithms and false-color time series data to create and compare frequency response curves for dissimilar biological groups. These methods were built on concepts developed for multi-frequency analysis of satellite imagery for terrestrial analysis and have been applied to a broad range of data types and applications. Single-beam systems operating at multiple frequencies are also used for the detection and identification of seeps in water column data. Here we incorporate the same analysis and visualization techniques used for fisheries applications to attempt to characterize and quantify seeps by creating and comparing frequency response curves and applying false coloration to shallow and deep multi-channel seep data. From this information, we can establish methods to differentiate bubble size in the echogram and differentiate seep composition. These techniques are also useful in differentiating plume content from biological noise (volume reverberation) created by euphausid layers and fish with gas-filled swim bladders. The combining of the multiple frequencies using false coloring and other image analysis techniques after applying established normalization and beam pattern correction algorithms is a novel approach to quantitatively describing seeps. Further, this information could be paired with geological models, backscatter, and bathymetry data to assess seep distribution.
Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming
2016-06-21
Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R
2017-11-17
This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing driving performance compared to time domain analyses.
Nishi, Kengo
2018-01-01
Passive microrheology typically deduces shear elastic loss and storage moduli from displacement time series or mean-squared displacements (MSD) of thermally fluctuating probe particles in equilibrium materials. Common data analysis methods use either Kramers–Kronig (KK) transformation or functional fitting to calculate frequency-dependent loss and storage moduli. We propose a new analysis method for passive microrheology that avoids the limitations of both of these approaches. In this method, we determine both real and imaginary components of the complex, frequency-dependent response function χ(ω) = χ′(ω) + iχ′′(ω) as direct integral transforms of the MSD of thermal particle motion. This procedure significantly improves the high-frequency fidelity of χ(ω) relative to the use of KK transformation, which has been shown to lead to artifacts in χ′(ω). We test our method on both model and experimental data. Experiments were performed on solutions of worm-like micelles and dilute collagen solutions. While the present method agrees well with established KK-based methods at low frequencies, we demonstrate significant improvement at high frequencies using our symmetric analysis method, up to almost the fundamental Nyquist limit. PMID:29611576
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan
2012-01-01
Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.
Methods for improved forewarning of critical events across multiple data channels
Hively, Lee M [Philadelphia, TN
2007-04-24
This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.
Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique
2016-01-01
Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865
Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique
2016-04-18
Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.
Post-exercise heart rate variability recovery: a time-frequency analysis.
Peçanha, Tiago; de Paula-Ribeiro, Marcelle; Nasario-Junior, Olivassé; de Lima, Jorge Roberto Perrout
2013-12-01
Most studies investigating the effects of non-pharmacological interventions, such as physical training (PT), on cardiac autonomic control, assessed the HRV only in resting conditions. Recently, a new time-frequency mathematical approach based on the short-time Fourier transform (STFT) method has been validated for the assessment of HRV in non-stationary conditions such as the immediate post-exercise period. The aim of this study was to evaluate the effects of the PT on post-exercise cardiac autonomic control using the time-frequency STFT analysis of the HRV. Twenty-one healthy male volunteers participated in this study. The subjects were initially evaluated for their physical exercise/sport practice and allocated to groups of low physical training ((Low)PT, n = 13) or high physical training (H(igh)PT, n = 8). The post-exercise HRV was assessed by the STFT method, which provides the analysis of dynamic changes in the power of the low- and high-frequency spectral components (LF and HF, respectively) of the HRV during the whole recovery period. Greater LF (from the min 5 to 10) and HF (from the min 6 to 10) in the post-exercise period in the H(igh)PT compared to the (Low)PT group (P < 0.05) was observed. These results indicate that exercise training exerts beneficial effects on post-exercise cardiac autonomic control.
NASA Technical Reports Server (NTRS)
Deyoung, James A.; Klepczynski, William J.; Mckinley, Angela Davis; Powell, William M.; Mai, Phu V.; Hetzel, P.; Bauch, A.; Davis, J. A.; Pearce, P. R.; Baumont, Francoise S.
1995-01-01
The international transatlantic time and frequency transfer experiment was designed by participating laboratories and has been implemented during 1994 to test the international communications path involving a large number of transmitting stations. This paper will present empirically determined clock and time scale differences, time and frequency domain instabilities, and a representative power spectral density analysis. The experiments by the method of co-location which will allow absolute calibration of the participating laboratories have been performed. Absolute time differences and accuracy levels of this experiment will be assessed in the near future.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Li, Hui; Qu, Zhi
2012-04-01
Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.
Kircher, J.E.; Dinicola, Richard S.; Middelburg, R.F.
1984-01-01
Monthly values were computed for water-quality constituents at four streamflow gaging stations in the Upper Colorado River basin for the determination of trends. Seasonal regression and seasonal Kendall trend analysis techniques were applied to two monthly data sets at each station site for four different time periods. A recently developed method for determining optimal water-discharge data-collection frequency was also applied to the monthly water-quality data. Trend analysis results varied with each monthly load computational method, period of record, and trend detection model used. No conclusions could be reached regarding which computational method was best to use in trend analysis. Time-period selection for analysis was found to be important with regard to intended use of the results. Seasonal Kendall procedures were found to be applicable to most data sets. Seasonal regression models were more difficult to apply and were sometimes of questionable validity; however, those results were more informative than seasonal Kendall results. The best model to use depends upon the characteristics of the data and the amount of trend information needed. The measurement-frequency optimization method had potential for application to water-quality data, but refinements are needed. (USGS)
Detection of main tidal frequencies using least squares harmonic estimation method
NASA Astrophysics Data System (ADS)
Mousavian, R.; Hossainali, M. Mashhadi
2012-11-01
In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.
Necessary and sufficient condition for the realization of the complex wavelet
NASA Astrophysics Data System (ADS)
Keita, Alpha; Qing, Qianqin; Wang, Nengchao
1997-04-01
Wavelet theory is a whole new signal analysis theory in recent years, and the appearance of which is attracting lots of experts in many different fields giving it a deepen study. Wavelet transformation is a new kind of time. Frequency domain analysis method of localization in can-be- realized time domain or frequency domain. It has many perfect characteristics that many other kinds of time frequency domain analysis, such as Gabor transformation or Viginier. For example, it has orthogonality, direction selectivity, variable time-frequency domain resolution ratio, adjustable local support, parsing data in little amount, and so on. All those above make wavelet transformation a very important new tool and method in signal analysis field. Because the calculation of complex wavelet is very difficult, in application, real wavelet function is used. In this paper, we present a necessary and sufficient condition that the real wavelet function can be obtained by the complex wavelet function. This theorem has some significant values in theory. The paper prepares its technique from Hartley transformation, then, it gives the complex wavelet was a signal engineering expert. His Hartley transformation, which also mentioned by Hartley, had been overlooked for about 40 years, for the social production conditions at that time cannot help to show its superiority. Only when it came to the end of 70s and the early 80s, after the development of the fast algorithm of Fourier transformation and the hardware implement to some degree, the completely some positive-negative transforming method was coming to take seriously. W transformation, which mentioned by Zhongde Wang, pushed the studying work of Hartley transformation and its fast algorithm forward. The kernel function of Hartley transformation.
High frequency resolution terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Sangala, Bagvanth Reddy
2013-12-01
A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
Analysis of microstrip patch antennas using finite difference time domain method
NASA Astrophysics Data System (ADS)
Reineix, Alain; Jecko, Bernard
1989-11-01
The study of microstrip patch antennas is directly treated in the time domain, using a modified finite-difference time-domain (FDTD) method. Assuming an appropriate choice of excitation, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The FDTD method allows a rigorous treatment of one or several dielectric interfaces. Different types of excitation can be taken into consideration (coaxial, microstrip lines, etc.). Plotting the spatial distribution of the current density gives information about the resonance modes. The usual frequency-depedent parameters (input impedance, radiation pattern) are given for several examples.
NASA Astrophysics Data System (ADS)
Świt, G.; Adamczak, A.; Krampikowska, A.
2017-10-01
Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.
Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps
NASA Technical Reports Server (NTRS)
Stroeer, A.; Blackburn, L.; Camp, J.
2011-01-01
Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.
A developed nearly analytic discrete method for forward modeling in the frequency domain
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai
2018-02-01
High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.
NASA Astrophysics Data System (ADS)
Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M.; Graversen, Carina; Sørensen, Helge B. D.; Bastlund, Jesper F.
2017-04-01
Objective. Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-06-16
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.
Terrien, Jérémy; Marque, Catherine; Germain, Guy
2008-05-01
Time-frequency representations (TFRs) of signals are increasingly being used in biomedical research. Analysis of such representations is sometimes difficult, however, and is often reduced to the extraction of ridges, or local energy maxima. In this paper, we describe a new ridge extraction method based on the image processing technique of active contours or snakes. We have tested our method on several synthetic signals and for the analysis of uterine electromyogram or electrohysterogram (EHG) recorded during gestation in monkeys. We have also evaluated a postprocessing algorithm that is especially suited for EHG analysis. Parameters are evaluated on real EHG signals in different gestational periods. The presented method gives good results when applied to synthetic as well as EHG signals. We have been able to obtain smaller ridge extraction errors when compared to two other methods specially developed for EHG. The gradient vector flow (GVF) snake method, or GVF-snake method, appears to be a good ridge extraction tool, which could be used on TFR of mono or multicomponent signals with good results.
Measurement methods and algorithms for comparison of local and remote clocks
NASA Technical Reports Server (NTRS)
Levine, Judah
1993-01-01
Several methods for characterizing the performance of clocks with special emphasis on using calibration information that is acquired via an unreliable or noisy channel is discussed. Time-domain variance estimators and frequency-domain techniques such as cross-spectral analysis are discussed. Each of these methods has advantages and limitations that will be illustrated using data obtained via GPS, ACTS, and other methods. No one technique will be optimum for all of these analyses, and some of these problems cannot be completely characterized by any of the techniques discussed. The inverse problem of communicating frequency and time corrections to a real-time steered clock are also discussed. Methods were developed to mitigate the disastrous problems of data corruption and loss of computer control.
Wavelet Statistical Analysis of Low-Latitude Geomagnetic Measurements
NASA Astrophysics Data System (ADS)
Papa, A. R.; Akel, A. F.
2009-05-01
Following previous works by our group (Papa et al., JASTP, 2006), where we analyzed a series of records acquired at the Vassouras National Geomagnetic Observatory in Brazil for the month of October 2000, we introduced a wavelet analysis for the same type of data and for other periods. It is well known that wavelets allow a more detailed study in several senses: the time window for analysis can be drastically reduced if compared to other traditional methods (Fourier, for example) and at the same time allow an almost continuous accompaniment of both amplitude and frequency of signals as time goes by. This advantage brings some possibilities for potentially useful forecasting methods of the type also advanced by our group in previous works (see for example, Papa and Sosman, JASTP, 2008). However, the simultaneous statistical analysis of both time series (in our case amplitude and frequency) is a challenging matter and is in this sense that we have found what we consider our main goal. Some possible trends for future works are advanced.
Target Identification Using Harmonic Wavelet Based ISAR Imaging
NASA Astrophysics Data System (ADS)
Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.
2006-12-01
A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.
Mizuta, Sora; Saito, Itsuro; Isoyama, Takashi; Hara, Shintaro; Yurimoto, Terumi; Li, Xinyang; Murakami, Haruka; Ono, Toshiya; Mabuchi, Kunihiko; Abe, Yusuke
2017-09-01
1/R control is a physiological control method of the total artificial heart (TAH) with which long-term survival was obtained with animal experiments. However, 1/R control occasionally diverged in the undulation pump TAH (UPTAH) animal experiment. To improve the control stability of the 1/R control, appropriate control time constant in relation to characteristics of the baroreflex vascular system was investigated with frequency analysis and numerical simulation. In the frequency analysis, data of five goats in which the UPTAH was implanted were analyzed with first Fourier transform technique to examine the vasomotion frequency. The numerical simulation was carried out repeatedly changing baroreflex parameters and control time constant using the elements-expanded Windkessel model. Results of the frequency analysis showed that the 1/R control tended to diverge when very low frequency band that was an indication of the vasomotion frequency was relative high. In numerical simulation, divergence of the 1/R control could be reproduced and the boundary curves between the divergence and convergence of the 1/R control varied depending on the control time constant. These results suggested that the 1/R control tended to be unstable when the TAH recipient had high reflex speed in the baroreflex vascular system. Therefore, the control time constant should be adjusted appropriately with the individual vasomotion frequency.
Laboratory and Modeling Studies of Insect Swarms
2016-03-10
and measuring the response. These novel methods allowed us for the first time to characterize precisely properties of the swarm at the group level... Time series for a randomly chosen pair as well as its continuous wavelet transform (CWT; bottom panel). Nearly all of the power in the signal for... based time -frequency analysis to identify such transient interactions, as long as they modified the frequency structure of the insect flight
Wigner-Ville distribution and Gabor transform in Doppler ultrasound signal processing.
Ghofrani, S; Ayatollahi, A; Shamsollahi, M B
2003-01-01
Time-frequency distributions have been used extensively for nonstationary signal analysis, they describe how the frequency content of a signal is changing in time. The Wigner-Ville distribution (WVD) is the best known. The draw back of WVD is cross-term artifacts. An alternative to the WVD is Gabor transform (GT), a signal decomposition method, which displays the time-frequency energy of a signal on a joint t-f plane without generating considerable cross-terms. In this paper the WVD and GT of ultrasound echo signals are computed analytically.
Estimation of frequency offset in mobile satellite modems
NASA Technical Reports Server (NTRS)
Cowley, W. G.; Rice, M.; Mclean, A. N.
1993-01-01
In mobilesat applications, frequency offset on the received signal must be estimated and removed prior to further modem processing. A straightforward method of estimating the carrier frequency offset is to raise the received MPSK signal to the M-th power, and then estimate the location of the peak spectral component. An analysis of the lower signal to noise threshold of this method is carried out for BPSK signals. Predicted thresholds are compared to simulation results. It is shown how the method can be extended to pi/M MPSK signals. A real-time implementation of frequency offset estimation for the Australian mobile satellite system is described.
Nonlinear dynamics of cardiovascular ageing
NASA Astrophysics Data System (ADS)
Shiogai, Y.; Stefanovska, A.; McClintock, P. V. E.
2010-03-01
The application of methods drawn from nonlinear and stochastic dynamics to the analysis of cardiovascular time series is reviewed, with particular reference to the identification of changes associated with ageing. The natural variability of the heart rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA) corresponding to modulation of the instantaneous cardiac frequency by the rhythm of respiration. HRV has been intensively studied using traditional spectral analyses, e.g. by Fourier transform or autoregressive methods, and, because of its complexity, has been used as a paradigm for testing several proposed new methods of complexity analysis. These methods are reviewed. The application of time-frequency methods to HRV is considered, including in particular the wavelet transform which can resolve the time-dependent spectral content of HRV. Attention is focused on the cardio-respiratory interaction by introduction of the respiratory frequency variability signal (RFV), which can be acquired simultaneously with HRV by use of a respiratory effort transducer. Current methods for the analysis of interacting oscillators are reviewed and applied to cardio-respiratory data, including those for the quantification of synchronization and direction of coupling. These reveal the effect of ageing on the cardio-respiratory interaction through changes in the mutual modulation of the instantaneous cardiac and respiratory frequencies. Analyses of blood flow signals recorded with laser Doppler flowmetry are reviewed and related to the current understanding of how endothelial-dependent oscillations evolve with age: the inner lining of the vessels (the endothelium) is shown to be of crucial importance to the emerging picture. It is concluded that analyses of the complex and nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of blood circulation, and that the heart, the lungs and the vascular system function as a single entity in dynamical terms. Clear evidence is found for dynamical ageing.
New approaches to some methodological problems of meteor science
NASA Technical Reports Server (NTRS)
Meisel, David D.
1987-01-01
Several low cost approaches to continuous radioscatter monitoring of the incoming meteor flux are described. Preliminary experiments were attempted using standard time frequency stations WWVH and CHU (on frequencies near 15 MHz) during nighttime hours. Around-the-clock monitoring using the international standard aeronautical beacon frequency of 75 MHz was also attempted. The techniques are simple and can be managed routinely by amateur astronomers with relatively little technical expertise. Time series analysis can now be performed using relatively inexpensive microcomputers. Several algorithmic approaches to the analysis of meteor rates are discussed. Methods of obtaining optimal filter predictions of future meteor flux are also discussed.
Ground roll attenuation using polarization analysis in the t-f-k domain
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, Y.
2017-07-01
S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.
Sparse time-frequency decomposition based on dictionary adaptation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
1990-01-01
Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.
A new approach to harmonic elimination based on a real-time comparison method
NASA Astrophysics Data System (ADS)
Gourisetti, Sri Nikhil Gupta
Undesired harmonics are responsible for noise in a transmission channel, power loss in power electronics and in motor control. Selective Harmonic Elimination (SHE) is a well-known method used to eliminate or suppress the unwanted harmonics between the fundamental and the carrier frequency harmonic/component. But SHE bears the disadvantage of its incapability to use in real-time applications. A novel reference-carrier comparative method has been developed which can be used to generate an SPWM signal to apply in real-time systems. A modified carrier signal is designed and tested for different carrier frequencies based on the generated SPWM FFT. The carrier signal may change for different fundamental to carrier ratio that leads to solving the equations each time. An analysis to find all possible solutions for a particular carrier frequency and fundamental amplitude is performed and found. This proves that there is no one global maxima instead several local maximas exists for a particular condition set that makes this method less sensitive. Additionally, an attempt to find a universal solution that is valid for any carrier signal with predefined fundamental amplitude is performed. A uniform distribution Monte-Carlo sensitivity analysis is performed to measure the window i.e., best and worst possible solutions. The simulations are performed using MATLAB and are justified with experimental results.
Testing for Granger Causality in the Frequency Domain: A Phase Resampling Method.
Liu, Siwei; Molenaar, Peter
2016-01-01
This article introduces phase resampling, an existing but rarely used surrogate data method for making statistical inferences of Granger causality in frequency domain time series analysis. Granger causality testing is essential for establishing causal relations among variables in multivariate dynamic processes. However, testing for Granger causality in the frequency domain is challenging due to the nonlinear relation between frequency domain measures (e.g., partial directed coherence, generalized partial directed coherence) and time domain data. Through a simulation study, we demonstrate that phase resampling is a general and robust method for making statistical inferences even with short time series. With Gaussian data, phase resampling yields satisfactory type I and type II error rates in all but one condition we examine: when a small effect size is combined with an insufficient number of data points. Violations of normality lead to slightly higher error rates but are mostly within acceptable ranges. We illustrate the utility of phase resampling with two empirical examples involving multivariate electroencephalography (EEG) and skin conductance data.
Frequency analysis via the method of moment functionals
NASA Technical Reports Server (NTRS)
Pearson, A. E.; Pan, J. Q.
1990-01-01
Several variants are presented of a linear-in-parameters least squares formulation for determining the transfer function of a stable linear system at specified frequencies given a finite set of Fourier series coefficients calculated from transient nonstationary input-output data. The basis of the technique is Shinbrot's classical method of moment functionals using complex Fourier based modulating functions to convert a differential equation model on a finite time interval into an algebraic equation which depends linearly on frequency-related parameters.
Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery
NASA Astrophysics Data System (ADS)
Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki
2016-05-01
A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.
Filla, Robert T; Schrell, Adrian M; Coulton, John B; Edwards, James L; Roper, Michael G
2018-02-20
A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.
The Application of Time-Frequency Methods to HUMS
NASA Technical Reports Server (NTRS)
Pryor, Anna H.; Mosher, Marianne; Lewicki, David G.; Norvig, Peter (Technical Monitor)
2001-01-01
This paper reports the study of four time-frequency transforms applied to vibration signals and presents a new metric for comparing them for fault detection. The four methods to be described and compared are the Short Time Frequency Transform (STFT), the Choi-Williams Distribution (WV-CW), the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels, are analyzed using these methods. The new metric for automatic fault detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the methods on this data set. Analysis with the CWT detects mechanical problems with the test rig not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic fault detection and to develop methods of setting the threshold for the metric.
Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators
NASA Astrophysics Data System (ADS)
Nishimura, Joel
2015-01-01
We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.
Quantification of peripheral and central blood pressure variability using a time-frequency method.
Kouchaki, Z; Butlin, M; Qasem, A; Avolio, A P
2016-08-01
Systolic blood pressure variability (BPV) is associated with cardiovascular events. As the beat-to-beat variation of blood pressure is due to interaction of several cardiovascular control systems operating with different response times, assessment of BPV by spectral analysis using the continuous measurement of arterial pressure in the finger is used to differentiate the contribution of these systems in regulating blood pressure. However, as baroreceptors are centrally located, this study considered applying a continuous aortic pressure signal estimated noninvasively from finger pressure for assessment of systolic BPV by a time-frequency method using Short Time Fourier Transform (STFT). The average ratio of low frequency and high frequency power band (LF PB /HF PB ) was computed by time-frequency decomposition of peripheral systolic pressure (pSBP) and derived central aortic systolic blood pressure (cSBP) in 30 healthy subjects (25-62 years) as a marker of balance between cardiovascular control systems contributing in low and high frequency blood pressure variability. The results showed that the BPV assessed from finger pressure (pBPV) overestimated the BPV values compared to that assessed from central aortic pressure (cBPV) for identical cardiac cycles (P<;0.001), with the overestimation being greater at higher power.
Wavelet-based group and phase velocity measurements: Method
NASA Astrophysics Data System (ADS)
Yang, H. Y.; Wang, W. W.; Hung, S. H.
2016-12-01
Measurements of group and phase velocities of surface waves are often carried out by applying a series of narrow bandpass or stationary Gaussian filters localized at specific frequencies to wave packets and estimating the corresponding arrival times at the peak envelopes and phases of the Fourier spectra. However, it's known that seismic waves are inherently nonstationary and not well represented by a sum of sinusoids. Alternatively, a continuous wavelet transform (CWT) which decomposes a time series into a family of wavelets, translated and scaled copies of a generally fast oscillating and decaying function known as the mother wavelet, is capable of retaining localization in both the time and frequency domain and well-suited for the time-frequency analysis of nonstationary signals. Here we develop a wavelet-based method to measure frequency-dependent group and phase velocities, an essential dataset used in crust and mantle tomography. For a given time series, we employ the complex morlet wavelet to obtain the scalogram of amplitude modulus |Wg| and phase φ on the time-frequency plane. The instantaneous frequency (IF) is then calculated by taking the derivative of phase with respect to time, i.e., (1/2π)dφ(f, t)/dt. Time windows comprising strong energy arrivals to be measured can be identified by those IFs close to the frequencies with the maximum modulus and varying smoothly and monotonically with time. The respective IFs in each selected time window are further interpolated to yield a smooth branch of ridge points or representative IFs at which the arrival time, tridge(f), and phase, φridge(f), after unwrapping and correcting cycle skipping based on a priori knowledge of the possible velocity range, are determined for group and phase velocity estimation. We will demonstrate our measurement method using both ambient noise cross correlation functions and multi-mode surface waves from earthquakes. The obtained dispersion curves will be compared with those by a conventional narrow bandpass method.
NASA Astrophysics Data System (ADS)
Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei
2015-07-01
Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.
A new method for gravity field recovery based on frequency analysis of spherical harmonics
NASA Astrophysics Data System (ADS)
Cai, Lin; Zhou, Zebing
2017-04-01
All existing methods for gravity field recovery are mostly based on the space-wise and time-wise approach, whose core processes are constructing the observation equations and solving them by the least square method. It's should be pointed that the least square method means the approximation. On the other hand, we can directly and precisely obtain the coefficients of harmonics by computing the Fast Fourier Transform (FFT) when we do 1-D data (time series) analysis. So the question whether we directly and precisely obtain the coefficients of spherical harmonic by computing 2-D FFT of measurements of satellite gravity mission is of great significance, since this may guide us to a new understanding of the signal components of gravity field and make us determine it quickly by taking advantage of FFT. Like the 1-D data analysis, the 2-D FFT of measurements of satellite can be computed rapidly. If we can determine the relationship between spherical harmonics and 2-D Fourier frequencies and the transfer function from measurements to spherical coefficients, the question mentioned above can be solved. So the objective of this research project is to establish a new method based on frequency analysis of spherical harmonic, which directly compute the confidents of spherical harmonic of gravity field, which is differ from recovery by least squares. There is a one to one correspondence between frequency spectrum and the time series in 1-D FFT. The 2-D FFT has a similar relationship to 1-D FFT. Owing to the fact that any degree or order (higher than one) of spherical function has multi frequencies and these frequencies may be aliased. Fortunately, the elements and ratio of these frequencies of spherical function can be determined, and we can compute the coefficients of spherical function from 2-D FFT. This relationship can be written as equations and equivalent to a matrix, which is solid and can be derived in advance. Until now the relationship has be determined. Some preliminary results, which only compute lower degree spherical harmonics, indicates that the difference between the input (EGM2008) and output (coefficients from recovery) is smaller than 5E-17, while the minimal precision of computer software (Matlab) is 2.2204E-16.
Hauk, O; Keil, A; Elbert, T; Müller, M M
2002-01-30
We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The performance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.
Fine structure of the low-frequency spectra of heart rate and blood pressure.
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-10-13
The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.
Fractal dimension approach in postural control of subjects with Prader-Willi Syndrome
2011-01-01
Background Static posturography is user-friendly technique suitable for the study of the centre of pressure (CoP) trajectory. However, the utility of static posturography in clinical practice is somehow limited and there is a need for reliable approaches to extract physiologically meaningful information from stabilograms. The aim of this study was to quantify the postural strategy of Prader-Willi patients with the fractal dimension technique in addition to the CoP trajectory analysis in time and frequency domain. Methods 11 adult patients affected by Prader-Willi Syndrome (PWS) and 20 age-matched individuals (Control group: CG) were included in this study. Postural acquisitions were conducted by means of a force platform and the participants were required to stand barefoot on the platform with eyes open and heels at standardized distance and position for 30 seconds. Platform data were analysed in time and frequency domain. Fractal Dimension (FD) was also computed. Results The analysis of CoP vs. time showed that in PWS participants all the parameters were statistically different from CG, with greater displacements along both the antero-posterior and medio-lateral direction and longer CoP tracks. As for frequency analysis, our data showed no significant differences between PWS and CG. FD evidenced that PWS individuals were characterized by greater value in comparison with CG. Conclusions Our data showed that while the analysis in the frequency domain did not seem to explain the postural deficit in PWS, the FD method appears to provide a more informative description of it and to complement and integrate the time domain analysis. PMID:21854639
Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shouxian; Wang Detian; Li Tao
2011-02-15
The short time Fourier transform (STFT) cannot resolve rapid velocity changes in most photonic Doppler velocimetry (PDV) data. A practical analysis method based on the continuous wavelet transform (CWT) was presented to overcome this difficulty. The adaptability of the wavelet family predicates that the continuous wavelet transform uses an adaptive time window to estimate the instantaneous frequency of signals. The local frequencies of signal are accurately determined by finding the ridge in the spectrogram of the CWT and then are converted to target velocity according to the Doppler effects. A performance comparison between the CWT and STFT is demonstrated bymore » a plate-impact experiment data. The results illustrate that the new method is automatic and adequate for analysis of PDV data.« less
Localization of optic disc and fovea in retinal images using intensity based line scanning analysis.
Kamble, Ravi; Kokare, Manesh; Deshmukh, Girish; Hussin, Fawnizu Azmadi; Mériaudeau, Fabrice
2017-08-01
Accurate detection of diabetic retinopathy (DR) mainly depends on identification of retinal landmarks such as optic disc and fovea. Present methods suffer from challenges like less accuracy and high computational complexity. To address this issue, this paper presents a novel approach for fast and accurate localization of optic disc (OD) and fovea using one-dimensional scanned intensity profile analysis. The proposed method utilizes both time and frequency domain information effectively for localization of OD. The final OD center is located using signal peak-valley detection in time domain and discontinuity detection in frequency domain analysis. However, with the help of detected OD location, the fovea center is located using signal valley analysis. Experiments were conducted on MESSIDOR dataset, where OD was successfully located in 1197 out of 1200 images (99.75%) and fovea in 1196 out of 1200 images (99.66%) with an average computation time of 0.52s. The large scale evaluation has been carried out extensively on nine publicly available databases. The proposed method is highly efficient in terms of quickly and accurately localizing OD and fovea structure together compared with the other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kapucu, Fikret E.; Välkki, Inkeri; Mikkonen, Jarno E.; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M. A.; Hyttinen, Jari A. K.
2016-01-01
Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis. PMID:27803660
NASA Astrophysics Data System (ADS)
Geltner, I.; Hashimshony, D.; Zigler, A.
2002-07-01
We use a time-domain analysis method to characterize the outer layer of a multilayer structure regardless of the inner ones, thus simplifying the characterization of all the layers. We combine this method with THz reflection spectroscopy to detect nondestructively a hidden aluminum oxide layer under opaque paint and to measure its conductivity and high-frequency dielectric constant in the THz range.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.
The instantaneous frequency rate spectrogram
NASA Astrophysics Data System (ADS)
Czarnecki, Krzysztof
2016-01-01
An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.
Determining XV-15 aeroelastic modes from flight data with frequency-domain methods
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1993-01-01
The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.
Time-frequency analysis of electric motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, C.L.; Dunn, M.E.; Mattingly, J.K.
1995-12-31
Physical signals such as the current of an electric motor become nonstationary as a consequence of degraded operation and broken parts. In this instance, their power spectral densities become time dependent, and time-frequency analysis techniques become the appropriate tools for signal analysis. The first among these techniques, generally called the short-time Fourier transform (STFT) method, is the Gabor transform 2 (GT) of a signal S(t), which decomposes the signal into time-local frequency modes: where the window function, {Phi}(t-{tau}), is a normalized Gaussian. Alternatively, one can decompose the signal into its multi-resolution representation at different levels of magnification. This representation ismore » achieved by the continuous wavelet transform (CWT) where the function g(t) is a kernel of zero average belonging to a family of scaled and shifted wavelet kernels. The CWT can be interpreted as the action of a microscope that locates the signal by the shift parameter b and adjusts its magnification by changing the scale parameter a. The Fourier-transformed CWT, W,{sub g}(a, {omega}), acts as a filter that places the high-frequency content of a signal into the lower end of the scale spectrum and vice versa for the low frequencies. Signals from a motor in three different states were analyzed.« less
Evaluation of Piloted Inputs for Onboard Frequency Response Estimation
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Martos, Borja
2013-01-01
Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.
Precise and fast spatial-frequency analysis using the iterative local Fourier transform.
Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook
2016-09-19
The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.
Application of wavelet multi-resolution analysis for correction of seismic acceleration records
NASA Astrophysics Data System (ADS)
Ansari, Anooshiravan; Noorzad, Assadollah; Zare, Mehdi
2007-12-01
During an earthquake, many stations record the ground motion, but only a few of them could be corrected using conventional high-pass and low-pass filtering methods and the others were identified as highly contaminated by noise and as a result useless. There are two major problems associated with these noisy records. First, since the signal to noise ratio (S/N) is low, it is not possible to discriminate between the original signal and noise either in the frequency domain or in the time domain. Consequently, it is not possible to cancel out noise using conventional filtering methods. The second problem is the non-stationary characteristics of the noise. In other words, in many cases the characteristics of the noise are varied over time and in these situations, it is not possible to apply frequency domain correction schemes. When correcting acceleration signals contaminated with high-level non-stationary noise, there is an important question whether it is possible to estimate the state of the noise in different bands of time and frequency. Wavelet multi-resolution analysis decomposes a signal into different time-frequency components, and besides introducing a suitable criterion for identification of the noise among each component, also provides the required mathematical tool for correction of highly noisy acceleration records. In this paper, the characteristics of the wavelet de-noising procedures are examined through the correction of selected real and synthetic acceleration time histories. It is concluded that this method provides a very flexible and efficient tool for the correction of very noisy and non-stationary records of ground acceleration. In addition, a two-step correction scheme is proposed for long period correction of the acceleration records. This method has the advantage of stable results in displacement time history and response spectrum.
Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform
NASA Astrophysics Data System (ADS)
Liu, W.; Yao, H.; Yang, H. Y.
2017-12-01
Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.
Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals
Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.
2014-01-01
Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402
Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals.
Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F
2014-01-01
Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-01-01
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266
NASA Technical Reports Server (NTRS)
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
The local properties of ocean surface waves by the phase-time method
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.
1992-01-01
A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.
Graph Frequency Analysis of Brain Signals
Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro
2016-01-01
This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325
NASA Astrophysics Data System (ADS)
Pérez Rosas, Osvaldo G.; Rivera Martínez, José L.; Maldonado Cano, Luis A.; López Rodríguez, Mario; Amaya Reyes, Laura M.; Cano Martínez, Elizabeth; García Vázquez, Mireya S.; Ramírez Acosta, Alejandro A.
2017-09-01
The automatic identification and classification of musical genres based on the sound similarities to form musical textures, it is a very active investigation area. In this context it has been created recognition systems of musical genres, formed by time-frequency characteristics extraction methods and by classification methods. The selection of this methods are important for a good development in the recognition systems. In this article they are proposed the Mel-Frequency Cepstral Coefficients (MFCC) methods as a characteristic extractor and Support Vector Machines (SVM) as a classifier for our system. The stablished parameters of the MFCC method in the system by our time-frequency analysis, represents the gamma of Mexican culture musical genres in this article. For the precision of a classification system of musical genres it is necessary that the descriptors represent the correct spectrum of each gender; to achieve this we must realize a correct parametrization of the MFCC like the one we present in this article. With the system developed we get satisfactory detection results, where the least identification percentage of musical genres was 66.67% and the one with the most precision was 100%.
Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability.
Krafty, Robert T
2016-07-01
Many studies record replicated time series epochs from different groups with the goal of using frequency domain properties to discriminate between the groups. In many applications, there exists variation in cyclical patterns from time series in the same group. Although a number of frequency domain methods for the discriminant analysis of time series have been explored, there is a dearth of models and methods that account for within-group spectral variability. This article proposes a model for groups of time series in which transfer functions are modeled as stochastic variables that can account for both between-group and within-group differences in spectra that are identified from individual replicates. An ensuing discriminant analysis of stochastic cepstra under this model is developed to obtain parsimonious measures of relative power that optimally separate groups in the presence of within-group spectral variability. The approach possess favorable properties in classifying new observations and can be consistently estimated through a simple discriminant analysis of a finite number of estimated cepstral coefficients. Benefits in accounting for within-group spectral variability are empirically illustrated in a simulation study and through an analysis of gait variability.
Pulse analysis of acoustic emission signals
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Packman, P. F.
1977-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.
Pulse analysis of acoustic emission signals
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Packman, P. F.
1977-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.
On-Line Loss of Control Detection Using Wavelets
NASA Technical Reports Server (NTRS)
Brenner, Martin J. (Technical Monitor); Thompson, Peter M.; Klyde, David H.; Bachelder, Edward N.; Rosenthal, Theodore J.
2005-01-01
Wavelet transforms are used for on-line detection of aircraft loss of control. Wavelet transforms are compared with Fourier transform methods and shown to more rapidly detect changes in the vehicle dynamics. This faster response is due to a time window that decreases in length as the frequency increases. New wavelets are defined that further decrease the detection time by skewing the shape of the envelope. The wavelets are used for power spectrum and transfer function estimation. Smoothing is used to tradeoff the variance of the estimate with detection time. Wavelets are also used as front-end to the eigensystem reconstruction algorithm. Stability metrics are estimated from the frequency response and models, and it is these metrics that are used for loss of control detection. A Matlab toolbox was developed for post-processing simulation and flight data using the wavelet analysis methods. A subset of these methods was implemented in real time and named the Loss of Control Analysis Tool Set or LOCATS. A manual control experiment was conducted using a hardware-in-the-loop simulator for a large transport aircraft, in which the real time performance of LOCATS was demonstrated. The next step is to use these wavelet analysis tools for flight test support.
Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean
2013-01-01
Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892
NASA Astrophysics Data System (ADS)
Berezina-Greene, Maria A.; Guinan, John J.
2015-12-01
To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.
Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.
NASA Astrophysics Data System (ADS)
Won, Hong-In; Chung, Jintai
2018-04-01
This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.
Hu, Y; Luk, K D; Lu, W W; Holmes, A; Leong, J C
2001-05-01
Spinal somatosensory evoked potential (SSEP) has been employed to monitor the integrity of the spinal cord during surgery. To detect both temporal and spectral changes in SSEP waveforms, an investigation of the application of time-frequency analysis (TFA) techniques was conducted. SSEP signals from 30 scoliosis patients were analysed using different techniques; short time Fourier transform (STFT), Wigner-Ville distribution (WVD), Choi-Williams distribution (CWD), cone-shaped distribution (CSD) and adaptive spectrogram (ADS). The time-frequency distributions (TFD) computed using these methods were assessed and compared with each other. WVD, ADS, CSD and CWD showed better resolution than STFT. Comparing normalised peak widths, CSD showed the sharpest peak width (0.13+/-0.1) in the frequency dimension, and a mean peak width of 0.70+/-0.12 in the time dimension. Both WVD and CWD produced cross-term interference, distorting the TFA distribution, but this was not seen with CSD and ADS. CSD appeared to give a lower mean peak power bias (10.3%+/-6.2%) than ADS (41.8%+/-19.6%). Application of the CSD algorithm showed both good resolution and accurate spectrograms, and is therefore recommended as the most appropriate TFA technique for the analysis of SSEP signals.
NASA Astrophysics Data System (ADS)
Xu, Yue-Ping; Yu, Chaofeng; Zhang, Xujie; Zhang, Qingqing; Xu, Xiao
2012-02-01
Hydrological predictions in ungauged basins are of significant importance for water resources management. In hydrological frequency analysis, regional methods are regarded as useful tools in estimating design rainfall/flood for areas with only little data available. The purpose of this paper is to investigate the performance of two regional methods, namely the Hosking's approach and the cokriging approach, in hydrological frequency analysis. These two methods are employed to estimate 24-h design rainfall depths in Hanjiang River Basin, one of the largest tributaries of Yangtze River, China. Validation is made through comparing the results to those calculated from the provincial handbook approach which uses hundreds of rainfall gauge stations. Also for validation purpose, five hypothetically ungauged sites from the middle basin are chosen. The final results show that compared to the provincial handbook approach, the Hosking's approach often overestimated the 24-h design rainfall depths while the cokriging approach most of the time underestimated. Overall, the Hosking' approach produced more accurate results than the cokriging approach.
NASA Astrophysics Data System (ADS)
Merabet, Lucas; Robert, Sébastien; Prada, Claire
2018-04-01
In this paper, we present two frequency-domain algorithms for 2D imaging with plane wave emissions, namely Stolt's migration and Lu's method. The theoretical background is first presented, followed by an analysis of the algorithm complexities. The frequency-domain methods are then compared to the time-domain plane wave imaging in a realistic inspection configuration where the array elements are not in contact with the specimen. Imaging defects located far away from the array aperture is assessed and computation times for the three methods are presented as a function of the number of pixels of the reconstructed image. We show that Lu's method provides a time gain of up to 33 compared to the time-domain algorithm, and demonstrate the limitations of Stolt's migration for defects far away from the aperture.
Effect of train carbody's parameters on vertical bending stiffness performance
NASA Astrophysics Data System (ADS)
Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune
2016-10-01
Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.
New instantaneous frequency estimation method based on the use of image processing techniques
NASA Astrophysics Data System (ADS)
Borda, Monica; Nafornita, Ioan; Isar, Alexandru
2003-05-01
The aim of this paper is to present a new method for the estimation of the instantaneous frequency of a frequency modulated signal, corrupted by additive noise. This method represents an example of fusion of two theories: the time-frequency representations and the mathematical morphology. Any time-frequency representation of a useful signal is concentrated around its instantaneous frequency law and realizes the diffusion of the noise that perturbs the useful signal in the time - frequency plane. In this paper a new time-frequency representation, useful for the estimation of the instantaneous frequency, is proposed. This time-frequency representation is the product of two others time-frequency representations: the Wigner - Ville time-frequency representation and a new one obtained by filtering with a hard thresholding filter the Gabor representation of the signal to be processed. Using the image of this new time-frequency representation the instantaneous frequency of the useful signal can be extracted with the aid of some mathematical morphology operators: the conversion in binary form, the dilation and the skeleton. The simulations of the proposed method have proved its qualities. It is better than other estimation methods, like those based on the use of adaptive notch filters.
NASA Astrophysics Data System (ADS)
Liu, Lisheng; Zhang, Heyong; Guo, Jin; Zhao, Shuai; Wang, Tingfeng
2012-08-01
In this paper, we report a mathematical derivation of probability density function (PDF) of time-interval between two successive photoelectrons of the laser heterodyne signal, and give a confirmation of the theoretical result by both numerical simulation and an experiment. The PDF curve of the beat signal displays a series of fluctuations, the period and amplitude of which are respectively determined by the beat frequency and the mixing efficiency. The beat frequency is derived from the frequency of fluctuations accordingly when the PDF curve is measured. This frequency measurement method still works while the traditional Fast Fourier Transform (FFT) algorithm hardly derives the correct peak value of the beat frequency in the condition that we detect 80 MHz beat signal with 8 Mcps (counts per-second) photons count rate, and this indicates an advantage of the PDF method.
Chirp-Z analysis for sol-gel transition monitoring.
Martinez, Loïc; Caplain, Emmanuel; Serfaty, Stéphane; Griesmar, Pascal; Gouedard, Gérard; Gindre, Marcel
2004-04-01
Gelation is a complex reaction that transforms a liquid medium into a solid one: the gel. In gel state, some gel materials (DMAP) have the singular property to ring in an audible frequency range when a pulse is applied. Before the gelation point, there is no transmission of slow waves observed; after the gelation point, the speed of sound in the gel rapidly increases from 0.1 to 10 m/s. The time evolution of the speed of sound can be measured, in frequency domain, by following the frequency spacing of the resonance peaks from the Synchronous Detection (SD) measurement method. Unfortunately, due to a constant frequency sampling rate, the relative error for low speeds (0.1 m/s) is 100%. In order to maintain a low constant relative error, in the whole speed time evolution range, Chirp-Z Transform (CZT) is used. This operation transforms a time variant signal to a time invariant one using only a time dependant stretching factor (S). In the frequency domain, the CZT enables us to stretch each collected spectrum from time signals. The blind identification of the S factor gives us the complete time evolution law of the speed of sound. Moreover, this method proves that the frequency bandwidth follows the same time law. These results point out that the minimum wavelength stays constant and that it only depends on the gel.
Current techniques for the real-time processing of complex radar signatures
NASA Astrophysics Data System (ADS)
Clay, E.
A real-time processing technique has been developed for the microwave receiver of the Brahms radar station. The method allows such target signatures as the radar cross section (RCS) of the airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys to be characterized. The method allows optimization of experimental parameters including the analysis frequency band, the receiver gain, and the wavelength range of EM analysis.
Pi2 detection using Empirical Mode Decomposition (EMD)
NASA Astrophysics Data System (ADS)
Mieth, Johannes Z. D.; Frühauff, Dennis; Glassmeier, Karl-Heinz
2017-04-01
Empirical Mode Decomposition has been used as an alternative method to wavelet transformation to identify onset times of Pi2 pulsations in data sets of the Scandinavian Magnetometer Array (SMA). Pi2 pulsations are magnetohydrodynamic waves occurring during magnetospheric substorms. Almost always Pi2 are observed at substorm onset in mid to low latitudes on Earth's nightside. They are fed by magnetic energy release caused by dipolarization processes. Their periods lie between 40 to 150 seconds. Usually, Pi2 are detected using wavelet transformation. Here, Empirical Mode Decomposition (EMD) is presented as an alternative approach to the traditional procedure. EMD is a young signal decomposition method designed for nonlinear and non-stationary time series. It provides an adaptive, data driven, and complete decomposition of time series into slow and fast oscillations. An optimized version using Monte-Carlo-type noise assistance is used here. By displaying the results in a time-frequency space a characteristic frequency modulation is observed. This frequency modulation can be correlated with the onset of Pi2 pulsations. A basic algorithm to find the onset is presented. Finally, the results are compared to classical wavelet-based analysis. The use of different SMA stations furthermore allows the spatial analysis of Pi2 onset times. EMD mostly finds application in the fields of engineering and medicine. This work demonstrates the applicability of this method to geomagnetic time series.
Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity
NASA Technical Reports Server (NTRS)
Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.
1995-01-01
To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant introduced in this paper is the 'variance coupled model,' which redistributes LWP using the local standard deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two- parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to demonstrate both the strengths and weaknesses of these models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arzoumanian, Zaven; Brazier, Adam; Chatterjee, Shami
2015-11-01
We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. Inmore » conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.« less
Lock-in amplifier error prediction and correction in frequency sweep measurements.
Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose
2007-01-01
This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
A Space Affine Matching Approach to fMRI Time Series Analysis.
Chen, Liang; Zhang, Weishi; Liu, Hongbo; Feng, Shigang; Chen, C L Philip; Wang, Huili
2016-07-01
For fMRI time series analysis, an important challenge is to overcome the potential delay between hemodynamic response signal and cognitive stimuli signal, namely the same frequency but different phase (SFDP) problem. In this paper, a novel space affine matching feature is presented by introducing the time domain and frequency domain features. The time domain feature is used to discern different stimuli, while the frequency domain feature to eliminate the delay. And then we propose a space affine matching (SAM) algorithm to match fMRI time series by our affine feature, in which a normal vector is estimated using gradient descent to explore the time series matching optimally. The experimental results illustrate that the SAM algorithm is insensitive to the delay between the hemodynamic response signal and the cognitive stimuli signal. Our approach significantly outperforms GLM method while there exists the delay. The approach can help us solve the SFDP problem in fMRI time series matching and thus of great promise to reveal brain dynamics.
Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen
2014-02-01
To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost and equipment. (2) The frequency of the KRAS mutation is correlated with gender. BRAF mutation is correlated with primary tumor site, TNM stage, histological types and histological grades.(3) BRAF gene mutation is an independent prognostic marker for colorectal carcinomas.
Instantaneous Frequency Attribute Comparison
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Ben Horin, Y.
2013-12-01
The instantaneous seismic data attribute provides a different means of seismic interpretation, for all types of seismic data. It first came to the fore in exploration seismology in the classic paper of Taner et al (1979), entitled " Complex seismic trace analysis". Subsequently a vast literature has been accumulated on the subject, which has been given an excellent review by Barnes (1992). In this research we will compare two different methods of computation of the instantaneous frequency. The first method is based on the original idea of Taner et al (1979) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method is based on the computation of the power centroid of the time-frequency spectrum, obtained using either the Gabor Transform as computed by Margrave et al (2011) or the Stockwell Transform as described by Stockwell et al (1996). We will apply both methods to exploration seismic data and the DPRK events recorded in 2006 and 2013. In applying the classical analytic signal technique, which is known to be unstable, due to the division of the square of the envelope, we will incorporate the stabilization and smoothing method proposed in the two paper of Fomel (2007). This method employs linear inverse theory regularization coupled with the application of an appropriate data smoother. The centroid method application is straightforward and is based on the very complete theoretical analysis provided in elegant fashion by Cohen (1995). While the results of the two methods are very similar, noticeable differences are seen at the data edges. This is most likely due to the edge effects of the smoothing operator in the Fomel method, which is more computationally intensive, when an optimal search of the regularization parameter is done. An advantage of the centroid method is the intrinsic smoothing of the data, which is inherent in the sliding window application used in all Short-Time Fourier Transform methods. The Fomel technique has a larger CPU run-time, resulting from the necessary matrix inversion. Barnes, Arthur E. "The calculation of instantaneous frequency and instantaneous bandwidth.", Geophysics, 57.11 (1992): 1520-1524. Fomel, Sergey. "Local seismic attributes.", Geophysics, 72.3 (2007): A29-A33. Fomel, Sergey. "Shaping regularization in geophysical-estimation problems." , Geophysics, 72.2 (2007): R29-R36. Stockwell, Robert Glenn, Lalu Mansinha, and R. P. Lowe. "Localization of the complex spectrum: the S transform."Signal Processing, IEEE Transactions on, 44.4 (1996): 998-1001. Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. "Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063. Cohen, Leon. "Time frequency analysis theory and applications."USA: Prentice Hall, (1995). Margrave, Gary F., Michael P. Lamoureux, and David C. Henley. "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data." Geophysics, 76.3 (2011): W15-W30.
A comparison of three approaches to non-stationary flood frequency analysis
NASA Astrophysics Data System (ADS)
Debele, S. E.; Strupczewski, W. G.; Bogdanowicz, E.
2017-08-01
Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled "Around and about an application of the GAMLSS package in non-stationary flood frequency analysis".
Method and apparatus for determining material structural integrity
Pechersky, M.J.
1994-01-01
Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Ultrasonic test of resistance spot welds based on wavelet package analysis.
Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao
2015-02-01
In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Qian; Di, Bangrang; Wei, Jianxin; Yuan, Sanyi; Si, Wenpeng
2016-12-01
Sparsity constraint inverse spectral decomposition (SCISD) is a time-frequency analysis method based on the convolution model, in which minimizing the l1 norm of the time-frequency spectrum of the seismic signal is adopted as a sparsity constraint term. The SCISD method has higher time-frequency resolution and more concentrated time-frequency distribution than the conventional spectral decomposition methods, such as short-time Fourier transformation (STFT), continuous-wavelet transform (CWT) and S-transform. Due to these good features, the SCISD method has gradually been used in low-frequency anomaly detection, horizon identification and random noise reduction for sandstone and shale reservoirs. However, it has not yet been used in carbonate reservoir prediction. The carbonate fractured-vuggy reservoir is the major hydrocarbon reservoir in the Halahatang area of the Tarim Basin, north-west China. If reasonable predictions for the type of multi-cave combinations are not made, it may lead to an incorrect explanation for seismic responses of the multi-cave combinations. Furthermore, it will result in large errors in reserves estimation of the carbonate reservoir. In this paper, the energy and phase spectra of the SCISD are applied to identify the multi-cave combinations in carbonate reservoirs. The examples of physical model data and real seismic data illustrate that the SCISD method can detect the combination types and the number of caves of multi-cave combinations and can provide a favourable basis for the subsequent reservoir prediction and quantitative estimation of the cave-type carbonate reservoir volume.
NASA Astrophysics Data System (ADS)
Liu, Tzu-Chi; Wu, Hau-Tieng; Chen, Ya-Hui; Chen, Ya-Han; Fang, Te-Yung; Wang, Pa-Chun; Liu, Yi-Wen
2018-05-01
The presence of click-evoked (CE) otoacoustic emissions (OAEs) has been clinically accepted as an indicator of normal cochlear processing of sounds. For treatment and diagnostic purposes, however, clinicians do not typically pay attention to the detailed spectrum and waveform of CEOAEs. A possible reason is due to the lack of noise-robust signal processing tools to estimate physiologically meaningful time-frequency properties of CEOAEs, such as the latency of spectral components. In this on-going study, we applied a modern tool called concentration of frequency and time (ConceFT, [1]) to analyze CEOAE waveforms. Randomly combined orthogonal functions are used as windowing functions for time-frequency analysis. The resulting spectrograms are subject to nonlinear time-frequency reassignment so as to enhance the concentration of time-varying sinusoidal components. The results after reassignment could be further averaged across the random choice of windows. CEOAE waveforms are acquired by a linear averaging paradigm, and longitudinal data are currently being collected from patients with Ménière's disease (MD) and a control group of normal hearing subjects. When CEOAE is present, the ConceFT plots show traces of decreasing but fluctuating instantaneous frequency against time. For comparison purposes, same processing methods are also applied to analyze CEOAE data from cochlear mechanics simulation.
Multifrequency method for dielectric monitoring of cold-preserved organs.
Raicu, V; Saibara, T; Irimajiri, A
2000-05-01
To answer a growing need for non-invasive monitoring of biological organs, we have developed an automated system capable of repeated dielectric measurements over the frequency range 10 kHz-100 MHz. Further, we propose a novel method of data analysis that may convert the acquired, individual dispersion curves into a diagram of the time course of specific phenomenological parameters, such as the characteristic frequency. By using this new procedure, unattended, long-term monitoring of temporal changes in the dielectric behaviour of excised liver lobes stored at 4 degrees C was successfully realized. The 'multifrequency' method presented here was definitely superior to the conventional 'fixed-frequency' method in providing reliable results.
Characterizing resonant component in speech: A different view of tracking fundamental frequency
NASA Astrophysics Data System (ADS)
Dong, Bin
2017-05-01
Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.
Placek, Michał M; Wachel, Paweł; Iskander, D Robert; Smielewski, Peter; Uryga, Agnieszka; Mielczarek, Arkadiusz; Szczepański, Tomasz A; Kasprowicz, Magdalena
2017-01-01
Classic methods for assessing cerebral autoregulation involve a transfer function analysis performed using the Fourier transform to quantify relationship between fluctuations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). This approach usually assumes the signals and the system to be stationary. Such an presumption is restrictive and may lead to unreliable results. The aim of this study is to present an alternative method that accounts for intrinsic non-stationarity of cerebral autoregulation and the signals used for its assessment. Continuous recording of CBFV, ABP, ECG, and end-tidal CO2 were performed in 50 young volunteers during normocapnia and hypercapnia. Hypercapnia served as a surrogate of the cerebral autoregulation impairment. Fluctuations in ABP, CBFV, and phase shift between them were tested for stationarity using sphericity based test. The Zhao-Atlas-Marks distribution was utilized to estimate the time-frequency coherence (TFCoh) and phase shift (TFPS) between ABP and CBFV in three frequency ranges: 0.02-0.07 Hz (VLF), 0.07-0.20 Hz (LF), and 0.20-0.35 Hz (HF). TFPS was estimated in regions locally validated by statistically justified value of TFCoh. The comparison of TFPS with spectral phase shift determined using transfer function approach was performed. The hypothesis of stationarity for ABP and CBFV fluctuations and the phase shift was rejected. Reduced TFPS was associated with hypercapnia in the VLF and the LF but not in the HF. Spectral phase shift was also decreased during hypercapnia in the VLF and the LF but increased in the HF. Time-frequency method led to lower dispersion of phase estimates than the spectral method, mainly during normocapnia in the VLF and the LF. The time-frequency method performed no worse than the classic one and yet may offer benefits from lower dispersion of phase shift as well as a more in-depth insight into the dynamic nature of cerebral autoregulation.
Computer implemented empirical mode decomposition method, apparatus and article of manufacture
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
1999-01-01
A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Analysis of cardiac signals using spatial filling index and time-frequency domain
Faust, Oliver; Acharya U, Rajendra; Krishnan, SM; Min, Lim Choo
2004-01-01
Background Analysis of heart rate variation (HRV) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system (ANS). HRV analysis is based on the concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It shows that the structure generating the signal is not simply linear, but also involves nonlinear contributions. These signals are essentially non-stationary; may contain indicators of current disease, or even warnings about impending diseases. The indicators may be present at all times or may occur at random in the time scale. However, to study and pinpoint abnormalities in voluminous data collected over several hours is strenuous and time consuming. Methods This paper presents the spatial filling index and time-frequency analysis of heart rate variability signal for disease identification. Renyi's entropy is evaluated for the signal in the Wigner-Ville and Continuous Wavelet Transformation (CWT) domain. Results This Renyi's entropy gives lower 'p' value for scalogram than Wigner-Ville distribution and also, the contours of scalogram visually show the features of the diseases. And in the time-frequency analysis, the Renyi's entropy gives better result for scalogram than the Wigner-Ville distribution. Conclusion Spatial filling index and Renyi's entropy has distinct regions for various diseases with an accuracy of more than 95%. PMID:15361254
Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio
1997-11-01
A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).
Liu, Hongwei; Zhang, Lei; Liu, Hong Fei; Chen, Shuting; Wang, Shihua; Wong, Zheng Zheng; Yao, Kui
2018-05-16
Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below ∼100 µm has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method. Copyright © 2018 Elsevier B.V. All rights reserved.
Casanova-Moreno, J; Bizzotto, D
2015-02-17
Electrostatic control of the orientation of fluorophore-labeled DNA strands immobilized on an electrode surface has been shown to be an effective bioanalytical tool. Modulation techniques and later time-resolved measurements were used to evaluate the kinetics of the switching between lying and standing DNA conformations. These measurements, however, are the result of a convolution between the DNA "switching" response time and the other frequency limited responses in the measurement. In this work, a method for analyzing the response of a potential driven DNA sensor is presented by calculating the potential effectively dropped across the electrode interface (using electrochemical impedance spectroscopy) as opposed to the potential applied to the electrochemical cell. This effectively deconvolutes the effect of the charging time on the observed frequency response. The corrected response shows that DNA is able to switch conformation faster than previously reported using modulation techniques. This approach will ensure accurate measurements independent of the electrochemical system, removing the uncertainty in the analysis of the switching response, enabling comparison between samples and measurement systems.
Q estimation of seismic data using the generalized S-transform
NASA Astrophysics Data System (ADS)
Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming
2016-12-01
Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.
Nonlinear dynamics of cardiovascular ageing
Shiogai, Y.; Stefanovska, A.; McClintock, P.V.E.
2010-01-01
The application of methods drawn from nonlinear and stochastic dynamics to the analysis of cardiovascular time series is reviewed, with particular reference to the identification of changes associated with ageing. The natural variability of the heart rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA) corresponding to modulation of the instantaneous cardiac frequency by the rhythm of respiration. HRV has been intensively studied using traditional spectral analyses, e.g. by Fourier transform or autoregressive methods, and, because of its complexity, has been used as a paradigm for testing several proposed new methods of complexity analysis. These methods are reviewed. The application of time–frequency methods to HRV is considered, including in particular the wavelet transform which can resolve the time-dependent spectral content of HRV. Attention is focused on the cardio-respiratory interaction by introduction of the respiratory frequency variability signal (RFV), which can be acquired simultaneously with HRV by use of a respiratory effort transducer. Current methods for the analysis of interacting oscillators are reviewed and applied to cardio-respiratory data, including those for the quantification of synchronization and direction of coupling. These reveal the effect of ageing on the cardio-respiratory interaction through changes in the mutual modulation of the instantaneous cardiac and respiratory frequencies. Analyses of blood flow signals recorded with laser Doppler flowmetry are reviewed and related to the current understanding of how endothelial-dependent oscillations evolve with age: the inner lining of the vessels (the endothelium) is shown to be of crucial importance to the emerging picture. It is concluded that analyses of the complex and nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of blood circulation, and that the heart, the lungs and the vascular system function as a single entity in dynamical terms. Clear evidence is found for dynamical ageing. PMID:20396667
A Computationally Efficient Method for Polyphonic Pitch Estimation
NASA Astrophysics Data System (ADS)
Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio
2009-12-01
This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.
Scaling analysis of bilateral hand tremor movements in essential tremor patients.
Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos
2011-08-01
Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.
Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W
2011-01-01
Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.
Signal Processing Applications Of Wigner-Ville Analysis
NASA Astrophysics Data System (ADS)
Whitehouse, H. J.; Boashash, B.
1986-04-01
The Wigner-Ville distribution (WVD), a form of time-frequency analysis, is shown to be useful in the analysis of a variety of non-stationary signals both deterministic and stochastic. The properties of the WVD are reviewed and alternative methods of calculating the WVD are discussed. Applications are presented.
Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D
2010-10-01
The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.
Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM
NASA Astrophysics Data System (ADS)
Zhao, Li; Li, Xiaoqin; Bian, Yan
2018-04-01
Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.
Real-Time Parameter Estimation in the Frequency Domain
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2000-01-01
A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented
Maguire, Mandy J; Abel, Alyson D
2013-10-01
EEG is a primary method for studying temporally precise neuronal processes across the lifespan. Most of this work focuses on event related potentials (ERPs); however, using time-locked time frequency analysis to decompose the EEG signal can identify and distinguish multiple changes in brain oscillations underlying cognition (Bastiaansen et al., 2010). Further this measure is thought to reflect changes in inter-neuronal communication more directly than ERPs (Nunez and Srinivasan, 2006). Although time frequency has elucidated cognitive processes in adults, applying it to cognitive development is still rare. Here, we review the basics of neuronal oscillations, some of what they reveal about adult cognitive function, and what little is known relating to children. We focus on language because it develops early and engages complex cortical networks. Additionally, because time frequency analysis of the EEG related to adult language comprehension has been incredibly informative, using similar methods with children will shed new light on current theories of language development and increase our understanding of how neural processes change over the lifespan. Our goal is to emphasize the power of this methodology and encourage its use throughout developmental cognitive neuroscience. Copyright © 2013 Elsevier Ltd. All rights reserved.
Functional feature embedded space mapping of fMRI data.
Hu, Jin; Tian, Jie; Yang, Lei
2006-01-01
We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.
NASA Astrophysics Data System (ADS)
Lee, Sang-Kwon
This thesis is concerned with the development of a useful engineering technique to detect and analyse faults in rotating machinery. The methods developed are based on the advanced signal processing such as the adaptive signal processing and higher-order time frequency methods. The two-stage Adaptive Line Enhancer (ALE), using adaptive signal processing, has been developed for increasing the Signal to Noise Ratio of impulsive signals. The enhanced signal can then be analysed using time frequency methods to identify fault characteristics. However, if after pre-processing by the two stage ALE, the SNR of the signals is low, the residual noise often hinders clear identification of the fault characteristics in the time-frequency domain. In such cases, higher order time-frequency methods have been proposed and studied. As examples of rotating machinery, the internal combustion engine and an industrial gear box are considered in this thesis. The noise signal from an internal combustion engine and vibration signal measured on a gear box are studied in detail. Typically an impulsive signal manifests itself when the fault occurs in the machinery and is embedded in background noise, such as the fundamental frequency and its harmonic orders of the rotation speed and broadband noise. The two-stage ALE is developed for reducing this background noise. Conditions for the choice of adaptive filter parameters are studied and suitable adaptive algorithms given. The enhanced impulsive signal is analysed in the time- frequency domain using the Wigner higher order moment spectra (WHOMS) and the multi-time WHOMS (which is a dual form of the WHOMS). The WHOMS suffers from unwanted cross-terms, which increase dramatically as the order increases. Novel expressions for the cross-terms in WHOMS have been presented. The number of cross-terms can be reduced by taking the principal slice of the WHOMS. The residual cross-terms are smoothed by using a general class of kernel functions and the γ-method kernel function which is a novel development in this thesis. The WVD and the sliced WHOMS for synthesised signals and measured data from rotating machinery are analysed. The estimated ROC (Receive Operating Characteristic) curves for these methods are computed. These results lead to the conclusion that the detection performance when using the sliced WHOMS, for impulsive signals in embedded in broadband noise, is better than that of the Wigner-Ville distribution. Real data from a faulty car engine and faulty industrial gears are analysed. The car engine radiates an impulsive noise signal due to the loosening of a spark plug. The faulty industrial gear produces an impulsive vibration signal due to a spall on the tooth face in gear. The two- stage ALE and WHOMS are successfully applied to detection and analysis of these impulsive signals.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID
2010-09-07
A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.
2010-01-01
Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA). Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis. PMID:21047441
A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps.
Greenwood, J B; Kelly, O; Calvert, C R; Duffy, M J; King, R B; Belshaw, L; Graham, L; Alexander, J D; Williams, I D; Bryan, W A; Turcu, I C E; Cacho, C M; Springate, E
2011-04-01
In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components. © 2011 American Institute of Physics
Analysis of frequency shifting in seismic signals using Gabor-Wigner transform
NASA Astrophysics Data System (ADS)
Kumar, Roshan; Sumathi, P.; Kumar, Ashok
2015-12-01
A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.
Time-Frequency Analyses of Tide-Gauge Sensor Data
Erol, Serdar
2011-01-01
The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors’ data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829
Time-frequency analyses of tide-gauge sensor data.
Erol, Serdar
2011-01-01
The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.
NASA Astrophysics Data System (ADS)
Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.
2014-01-01
In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-01-01
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171
Comparison of frequency-domain and time-domain rotorcraft vibration control methods
NASA Technical Reports Server (NTRS)
Gupta, N. K.
1984-01-01
Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.
Precession missile feature extraction using sparse component analysis of radar measurements
NASA Astrophysics Data System (ADS)
Liu, Lihua; Du, Xiaoyong; Ghogho, Mounir; Hu, Weidong; McLernon, Des
2012-12-01
According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation results illustrate the validity of the proposed method.
NASA Astrophysics Data System (ADS)
Liu, Qimao
2018-02-01
This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.
NASA Astrophysics Data System (ADS)
Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko
2018-04-01
A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.
Multivariate frequency domain analysis of protein dynamics
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori
2009-03-01
Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.
Analysis of Synchronization Phenomena in Broadband Signals with Nonlinear Excitable Media
NASA Astrophysics Data System (ADS)
Chernihovskyi, Anton; Elger, Christian E.; Lehnertz, Klaus
2009-12-01
We apply the method of frequency-selective excitation waves in excitable media to characterize synchronization phenomena in interacting complex dynamical systems by measuring coincidence rates of induced excitations. We relax the frequency-selectivity of excitable media and demonstrate two applications of the method to signals with broadband spectra. Findings obtained from analyzing time series of coupled chaotic oscillators as well as electroencephalographic (EEG) recordings from an epilepsy patient indicate that this method can provide an alternative and complementary way to estimate the degree of phase synchronization in noisy signals.
Vonderschen, Katrin; Wagner, Hermann
2012-04-25
Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.
Fine structure of the low-frequency spectra of heart rate and blood pressure
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-01-01
Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660
Tağluk, M E; Cakmak, E D; Karakaş, S
2005-04-30
Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics.
Signal processing of aircraft flyover noise
NASA Technical Reports Server (NTRS)
Kelly, Jeffrey J.
1991-01-01
A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.
Weighted combination of LOD values oa splitted into frequency windows
NASA Astrophysics Data System (ADS)
Fernandez, L. I.; Gambis, D.; Arias, E. F.
In this analysis a one-day combined time series of LOD(length-of-day) estimates is presented. We use individual data series derived by 7 GPS and 3 SLR analysis centers, which routinely contribute to the IERS database over a recent 27-month period (Jul 1996 - Oct 1998). The result is compared to the multi-technique combined series C04 produced by the Central Bureau of the IERS that is commonly used as a reference for the study of the phenomena of Earth rotation variations. The Frequency Windows Combined Series procedure brings out a time series, which is close to C04 but shows an amplitude difference that might explain the evident periodic behavior present in the differences of these two combined series. This method could be useful to generate a new time series to be used as a reference in the high frequency variations of the Earth rotation studies.
Depicting Changes in Multiple Symptoms Over Time.
Muehrer, Rebecca J; Brown, Roger L; Lanuza, Dorothy M
2015-09-01
Ridit analysis, an acronym for Relative to an Identified Distribution, is a method for assessing change in ordinal data and can be used to show how individual symptoms change or remain the same over time. The purposes of this article are to (a) describe how to use ridit analysis to assess change in a symptom measure using data from a longitudinal study, (b) give a step-by-step example of ridit analysis, (c) show the clinical relevance of applying ridit analysis, and (d) display results in an innovative graphic. Mean ridit effect sizes were calculated for the frequency and distress of 64 symptoms in lung transplant patients before and after transplant. Results were displayed in a bubble graph. Ridit analysis allowed us to maintain the specificity of individual symptoms and to show how each symptom changed or remained the same over time. The bubble graph provides an efficient way for clinicians to identify changes in symptom frequency and distress over time. © The Author(s) 2014.
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2015-01-01
Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919
Time Domain Radar Laboratory Operating System Development and Transient EM Analysis.
1981-09-01
polarization of the return, arg used. Other similar methods use amplitude and phase differences or special properties of Rayleigh region scattering. All these...3ptias Inverse Scattering ... 19 2. "!xact" Inverse Scattering !Nethod .. 20 3. Other Methods ................... 21 C. REVIEW OF TDRL PROGRESS AT SPS...explicit independant variable in.most methods . In the past, frequency domain analysis has been the primary means of analyzing aan-monochromatic EM
NASA Astrophysics Data System (ADS)
Zakharchenko, V. D.; Kovalenko, I. G.
2014-05-01
A new method for the line-of-sight velocity estimation of a high-speed near-Earth object (asteroid, meteorite) is suggested. The method is based on the use of fractional, one-half order derivative of a Doppler signal. The algorithm suggested is much simpler and more economical than the classical one, and it appears preferable for use in orbital weapon systems of threat response. Application of fractional differentiation to quick evaluation of mean frequency location of the reflected Doppler signal is justified. The method allows an assessment of the mean frequency in the time domain without spectral analysis. An algorithm structure for the real-time estimation is presented. The velocity resolution estimates are made for typical asteroids in the X-band. It is shown that the wait time can be shortened by orders of magnitude compared with similar value in the case of a standard spectral processing.
Eulerian frequency analysis of structural vibrations from high-speed video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venanzoni, Andrea; Siemens Industry Software NV, Interleuvenlaan 68, B-3001 Leuven; De Ryck, Laurent
An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motionmore » of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency content retrieval of the tip of a shaker, excited at selected fixed frequencies. The goal of this setup is to retrieve the frequencies at which the tip is excited. The second validation case consists of two thin metal beams connected to a randomly excited bar. It is shown that the holographic representation visually highlights the predominant frequency content of each pixel and locates the global frequencies of the motion, thus retrieving the natural frequencies for each beam.« less
NASA Astrophysics Data System (ADS)
Yi, Cancan; Lv, Yong; Xiao, Han; Huang, Tao; You, Guanghui
2018-04-01
Since it is difficult to obtain the accurate running status of mechanical equipment with only one sensor, multisensor measurement technology has attracted extensive attention. In the field of mechanical fault diagnosis and condition assessment based on vibration signal analysis, multisensor signal denoising has emerged as an important tool to improve the reliability of the measurement result. A reassignment technique termed the synchrosqueezing wavelet transform (SWT) has obvious superiority in slow time-varying signal representation and denoising for fault diagnosis applications. The SWT uses the time-frequency reassignment scheme, which can provide signal properties in 2D domains (time and frequency). However, when the measured signal contains strong noise components and fast varying instantaneous frequency, the performance of SWT-based analysis still depends on the accuracy of instantaneous frequency estimation. In this paper, a matching synchrosqueezing wavelet transform (MSWT) is investigated as a potential candidate to replace the conventional synchrosqueezing transform for the applications of denoising and fault feature extraction. The improved technology utilizes the comprehensive instantaneous frequency estimation by chirp rate estimation to achieve a highly concentrated time-frequency representation so that the signal resolution can be significantly improved. To exploit inter-channel dependencies, the multisensor denoising strategy is performed by using a modulated multivariate oscillation model to partition the time-frequency domain; then, the common characteristics of the multivariate data can be effectively identified. Furthermore, a modified universal threshold is utilized to remove noise components, while the signal components of interest can be retained. Thus, a novel MSWT-based multisensor signal denoising algorithm is proposed in this paper. The validity of this method is verified by numerical simulation, and experiments including a rolling bearing system and a gear system. The results show that the proposed multisensor matching synchronous squeezing wavelet transform (MMSWT) is superior to existing methods.
Analysis of magnitude and duration of floods and droughts in the context of climate change
NASA Astrophysics Data System (ADS)
Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold
2016-04-01
Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171-192. http://dx.doi.org/10.2166/nh.2011.062
A new method to extract modal parameters using output-only responses
NASA Astrophysics Data System (ADS)
Kim, Byeong Hwa; Stubbs, Norris; Park, Taehyo
2005-04-01
This work proposes a new output-only modal analysis method to extract mode shapes and natural frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated modal basis. The proposed method is particularly efficient when a high resolution of mode shape is essential. The accuracy of the method is numerically verified using a set of time histories that are simulated using a finite-element method. The feasibility and practicality of the method are verified using experimental data collected at the newly constructed King Storm Water Bridge in California, United States.
Weighted network analysis of high-frequency cross-correlation measures
NASA Astrophysics Data System (ADS)
Iori, Giulia; Precup, Ovidiu V.
2007-03-01
In this paper we implement a Fourier method to estimate high-frequency correlation matrices from small data sets. The Fourier estimates are shown to be considerably less noisy than the standard Pearson correlation measures and thus capable of detecting subtle changes in correlation matrices with just a month of data. The evolution of correlation at different time scales is analyzed from the full correlation matrix and its minimum spanning tree representation. The analysis is performed by implementing measures from the theory of random weighted networks.
2014-10-16
Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Bian, Songhan
2017-05-01
In this paper, we apply the empirical mode decomposition (EMD) method to the recurrence plot (RP) and recurrence quantification analysis (RQA), to evaluate the frequency- and time-evolving dynamics of the traffic flow. Based on the cumulative intrinsic mode functions extracted by the EMD, the frequency-evolving RP regarding different oscillation of modes suggests that apparent dynamics of the data considered are mainly dominated by its components of medium- and low-frequencies while severely affected by fast oscillated noises contained in the signal. Noises are then eliminated to analyze the intrinsic dynamics and consequently, the denoised time-evolving RQA diversely characterizes the properties of the signal and marks crucial points more accurately where white bands in the RP occur, whereas a strongly qualitative agreement exists between all the non-denoised RQA measures. Generally, the EMD combining with the recurrence analysis sheds more reliable, abundant and inherent lights into the traffic flow, which is meaningful to the empirical analysis of complex systems.
Analysis of digital communication signals and extraction of parameters
NASA Astrophysics Data System (ADS)
Al-Jowder, Anwar
1994-12-01
The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).
An autocorrelation method to detect low frequency earthquakes within tremor
Brown, J.R.; Beroza, G.C.; Shelly, D.R.
2008-01-01
Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.
Method and apparatus for frequency spectrum analysis
NASA Technical Reports Server (NTRS)
Cole, Steven W. (Inventor)
1992-01-01
A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification
Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-01-01
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference. PMID:29186075
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification.
Li, Fangmin; Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-11-29
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.
Time-frequency domain SNR estimation and its application in seismic data processing
NASA Astrophysics Data System (ADS)
Zhao, Yan; Liu, Yang; Li, Xuxuan; Jiang, Nansen
2014-08-01
Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan
2017-10-01
An optimized method to calculate error correction capability of tool influence function (TIF) in certain polishing conditions will be proposed based on smoothing spectral function. The basic mathematical model for this method will be established in theory. A set of polishing experimental data with rigid conformal tool is used to validate the optimized method. The calculated results can quantitatively indicate error correction capability of TIF for different spatial frequency errors in certain polishing conditions. The comparative analysis with previous method shows that the optimized method is simpler in form and can get the same accuracy results with less calculating time in contrast to previous method.
Aircraft Fault Detection Using Real-Time Frequency Response Estimation
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2016-01-01
A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.
NASA Astrophysics Data System (ADS)
Addison, Paul S.; Watson, James N.
2004-11-01
We present a novel time-frequency method for the measurement of oxygen saturation using the photoplethysmogram (PPG) signals from a standard pulse oximeter machine. The method utilizes the time-frequency transformation of the red and infrared PPGs to derive a 3D Lissajous figure. By selecting the optimal Lissajous, the method provides an inherently robust basis for the determination of oxygen saturation as regions of the time-frequency plane where high- and low-frequency signal artefacts are to be found are automatically avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoy, B.W.
1988-01-01
The measurement of ultra-low frequency vibration (.01 to 1.0 Hz) in motion based flight simulators was undertaken to quantify the energy and frequencies of motion present during operation. Methods of measurement, the selection of transducers, recorders, and analyzers and the development of a test plan, as well as types of analysis are discussed. Analysis of the data using a high-speed minicomputer and a comparison of the computer analysis with standard FFT analysis are also discussed. Measurement of simulator motion with the pilot included as part of the control dynamics had not been done up to this time. The data aremore » being used to evaluate the effect of low frequency energy on the vestibular system of the air crew, and the incidence of simulator induced sickness. 11 figs.« less
An at-site flood estimation method in the context of nonstationarity I. A simulation study
NASA Astrophysics Data System (ADS)
Gado, Tamer A.; Nguyen, Van-Thanh-Van
2016-04-01
The stationarity of annual flood peak records is the traditional assumption of flood frequency analysis. In some cases, however, as a result of land-use and/or climate change, this assumption is no longer valid. Therefore, new statistical models are needed to capture dynamically the change of probability density functions over time, in order to obtain reliable flood estimation. In this study, an innovative method for nonstationary flood frequency analysis was presented. Here, the new method is based on detrending the flood series and applying the L-moments along with the GEV distribution to the transformed ;stationary; series (hereafter, this is called the LM-NS). The LM-NS method was assessed through a comparative study with the maximum likelihood (ML) method for the nonstationary GEV model, as well as with the stationary (S) GEV model. The comparative study, based on Monte Carlo simulations, was carried out for three nonstationary GEV models: a linear dependence of the mean on time (GEV1), a quadratic dependence of the mean on time (GEV2), and linear dependence in both the mean and log standard deviation on time (GEV11). The simulation results indicated that the LM-NS method performs better than the ML method for most of the cases studied, whereas the stationary method provides the least accurate results. An additional advantage of the LM-NS method is to avoid the numerical problems (e.g., convergence problems) that may occur with the ML method when estimating parameters for small data samples.
Torsional resonance frequency analysis: a novel method for assessment of dental implant stability.
Tang, Yu-Long; Li, Bing; Jin, Wei; Li, De-Hua
2015-06-01
To establish and experimentally validate a novel resonance frequency analysis (RFA) method for measurement of dental implant stability by analyzing torsional resonance frequency (TRF). A numerical study and in vitro measurements were performed to evaluate the feasibility and reliability of the method of torsional RFA (T-RFA) using a T-shaped bilateral cantilever beam transducer. The sensitivity of this method was assessed by measuring the TRFs of dental implants with 8 sizes of T-shaped transducers during polymerization, which simulated the process of bone healing around an implant. The TRFs of the test implants detected using this new method and the bending resonance frequencies (BRFs) measured by Osstell(®) ISQ were compared. TRFs and BRFs on implant models in polymethyl methacrylate (PMMA) blocks with three exposure heights were also measured to assess the specificity of this method. Finite element analysis showed two bending modes (5333 and 6008 Hz) following a torsional mode (8992 Hz) in the lower rank frequency. During in vitro measurements, a bending formant (mean 6075 Hz) and a torsional formant (mean 10225 Hz) appeared, which were verified by multipoint measurement with invariable excitation frequency in the laboratory. In the self-curing resin experiments, the average growth rate at all time points of TRFs using the new method with Transducer II was 2.36% and that of BRFs using Osstell(®) ISQ was 1.97%. In the implant exposure height tests, the mean declined rate of TRFs was 2.06% and that of BRFs using Osstell(®) ISQ was 12.34%. A novel method for assessment of implant stability through TRF was established using a T-shape transducer, which showed high reliability and sensibility. The method alleviated the effects of implant exposure height on the measurements compared with Osstell(®) ISQ. The application of T-RFA represents another way in the investigation of dental implant osseointegration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.
Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L
2008-06-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.
Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures
Peng, Chung-Kang; Goldberger, Ary L.
2016-01-01
Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and nonequilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools— multiscale entropy and multiscale time irreversibility—are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs. PMID:18172763
A Study on Regional Rainfall Frequency Analysis for Flood Simulation Scenarios
NASA Astrophysics Data System (ADS)
Jung, Younghun; Ahn, Hyunjun; Joo, Kyungwon; Heo, Jun-Haeng
2014-05-01
Recently, climate change has been observed in Korea as well as in the entire world. The rainstorm has been gradually increased and then the damage has been grown. It is very important to manage the flood control facilities because of increasing the frequency and magnitude of severe rain storm. For managing flood control facilities in risky regions, data sets such as elevation, gradient, channel, land use and soil data should be filed up. Using this information, the disaster situations can be simulated to secure evacuation routes for various rainfall scenarios. The aim of this study is to investigate and determine extreme rainfall quantile estimates in Uijeongbu City using index flood method with L-moments parameter estimation. Regional frequency analysis trades space for time by using annual maximum rainfall data from nearby or similar sites to derive estimates for any given site in a homogeneous region. Regional frequency analysis based on pooled data is recommended for estimation of rainfall quantiles at sites with record lengths less than 5T, where T is return period of interest. Many variables relevant to precipitation can be used for grouping a region in regional frequency analysis. For regionalization of Han River basin, the k-means method is applied for grouping regions by variables of meteorology and geomorphology. The results from the k-means method are compared for each region using various probability distributions. In the final step of the regionalization analysis, goodness-of-fit measure is used to evaluate the accuracy of a set of candidate distributions. And rainfall quantiles by index flood method are obtained based on the appropriate distribution. And then, rainfall quantiles based on various scenarios are used as input data for disaster simulations. Keywords: Regional Frequency Analysis; Scenarios of Rainfall Quantile Acknowledgements This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.
Method and apparatus for determining material structural integrity
Pechersky, Martin
1996-01-01
A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Li, Yang; Cui, Weigang; Luo, Meilin; Li, Ke; Wang, Lina
2018-01-25
The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Decoding spike timing: the differential reverse correlation method
Tkačik, Gašper; Magnasco, Marcelo O.
2009-01-01
It is widely acknowledged that detailed timing of action potentials is used to encode information, for example in auditory pathways; however the computational tools required to analyze encoding through timing are still in their infancy. We present a simple example of encoding, based on a recent model of time-frequency analysis, in which units fire action potentials when a certain condition is met, but the timing of the action potential depends also on other features of the stimulus. We show that, as a result, spike-triggered averages are smoothed so much they do not represent the true features of the encoding. Inspired by this example, we present a simple method, differential reverse correlations, that can separate an analysis of what causes a neuron to spike, and what controls its timing. We analyze with this method the leaky integrate-and-fire neuron and show the method accurately reconstructs the model's kernel. PMID:18597928
NASA Astrophysics Data System (ADS)
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-01-01
The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.
Theoretical analysis of HVAC duct hanger systems
NASA Technical Reports Server (NTRS)
Miller, R. D.
1987-01-01
Several methods are presented which, together, may be used in the analysis of duct hanger systems over a wide range of frequencies. The finite element method (FEM) and component mode synthesis (CMS) method are used for low- to mid-frequency range computations and have been shown to yield reasonably close results. The statistical energy analysis (SEA) method yields predictions which agree with the CMS results for the 800 to 1000 Hz range provided that a sufficient number of modes participate. The CMS approach has been shown to yield valuable insight into the mid-frequency range of the analysis. It has been demonstrated that it is possible to conduct an analysis of a duct/hanger system in a cost-effective way for a wide frequency range, using several methods which overlap for several frequency bands.
A stacking method and its applications to Lanzarote tide gauge records
NASA Astrophysics Data System (ADS)
Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta
2009-12-01
A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.
Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing
2018-05-01
The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.
Comprehensive time average digital holographic vibrometry
NASA Astrophysics Data System (ADS)
Psota, Pavel; Lédl, Vít; Doleček, Roman; Mokrý, Pavel; Vojtíšek, Petr; Václavík, Jan
2016-12-01
This paper presents a method that simultaneously deals with drawbacks of time-average digital holography: limited measurement range, limited spatial resolution, and quantitative analysis of the measured Bessel fringe patterns. When the frequency of the reference wave is shifted by an integer multiple of frequency at which the object oscillates, the measurement range of the method can be shifted either to smaller or to larger vibration amplitudes. In addition, phase modulation of the reference wave is used to obtain a sequence of phase-modulated fringe patterns. Such fringe patterns can be combined by means of phase-shifting algorithms, and amplitudes of vibrations can be straightforwardly computed. This approach independently calculates the amplitude values in every single pixel. The frequency shift and phase modulation are realized by proper control of Bragg cells and therefore no additional hardware is required.
A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method
NASA Astrophysics Data System (ADS)
Zhan, Lei; Xiong, Juntao; Liu, Feng
2016-05-01
The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.
Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin
2013-01-01
Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509
Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes
NASA Astrophysics Data System (ADS)
Peter, Simon; Scheel, Maren; Krack, Malte; Leine, Remco I.
2018-02-01
Determining frequency response curves is a common task in the vibration analysis of nonlinear systems. Measuring nonlinear frequency responses is often challenging and time consuming due to, e.g., coexisting stable or unstable vibration responses and structure-exciter-interaction. The aim of the current paper is to develop a method for the synthesis of nonlinear frequency responses near an isolated resonance, based on data that can be easily and automatically obtained experimentally. The proposed purely experimental approach relies on (a) a standard linear modal analysis carried out at low vibration levels and (b) a phase-controlled tracking of the backbone curve of the considered forced resonance. From (b), the natural frequency and vibrational deflection shape are directly obtained as a function of the vibration level. Moreover, a damping measure can be extracted by power considerations or from the linear modal analysis. In accordance with the single nonlinear mode assumption, the near-resonant frequency response can then be synthesized using this data. The method is applied to a benchmark structure consisting of a cantilevered beam attached to a leaf spring undergoing large deflections. The results are compared with direct measurements of the frequency response. The proposed approach is fast, robust and provides a good estimate for the frequency response. It is also found that direct frequency response measurement is less robust due to bifurcations and using a sine sweep excitation with a conventional force controller leads to underestimation of maximum vibration response.
Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V
2007-01-01
Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.
Analysis of dual-frequency MEMS antenna using H-MRTD method
NASA Astrophysics Data System (ADS)
Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong
2004-10-01
For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.
Riding and handling qualities of light aircraft: A review and analysis
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Summery, D. C.; Johnson, W. D.
1972-01-01
Design procedures and supporting data necessary for configuring light aircraft to obtain desired responses to pilot commands and gusts are presented. The procedures employ specializations of modern military and jet transport practice where these provide an improvement over earlier practice. General criteria for riding and handling qualities are discussed in terms of the airframe dynamics. Methods available in the literature for calculating the coefficients required for a linearized analysis of the airframe dynamics are reviewed in detail. The review also treats the relation of spin and stall to airframe geometry. Root locus analysis is used to indicate the sensitivity of airframe dynamics to variations in individual stability derivatives and to variations in geometric parameters. Computer programs are given for finding the frequencies, damping ratios, and time constants of all rigid body modes and for generating time histories of aircraft motions in response to control inputs. Appendices are included presenting the derivation of the linearized equations of motion; the stability derivatives; the transfer functions; approximate solutions for the frequency, damping ratio, and time constants; an indication of methods to be used when linear analysis is inadequate; sample calculations; and an explanation of the use of root locus diagrams and Bode plots.
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G
2011-10-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone
Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.
2011-01-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378
Methods of measurement signal acquisition from the rotational flow meter for frequency analysis
NASA Astrophysics Data System (ADS)
Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek
One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Schultz-Coulon, H J
1975-07-01
The applicability of a newly developed fundamental frequency analyzer to diagnosis in phoniatrics is reviewed. During routine voice examination, the analyzer allows a quick and accurate measurement of fundamental frequency and sound level of the speaking voice, and of vocal range and maximum phonation time. By computing fundamental frequency histograms, the median fundamental frequency and the total pitch range can be better determined and compared. Objective studies of certain technical faculties of the singing voice, which usually are estimated subjectively by the speech therapist, may now be done by means of this analyzer. Several examples demonstrate the differences between correct and incorrect phonation. These studies compare the pitch perturbations during the crescendo and decrescendo of a swell-tone, and show typical traces of staccato, thrill and yodel. Conclusions of the study indicate that fundamental frequency analysis is a valuable supplemental method for objective voice examination.
Peláez-Coca, M. D.; Orini, M.; Lázaro, J.; Bailón, R.; Gil, E.
2013-01-01
A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG) signal is estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was estimated only in those intervals where the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates, with the median error {0.00; 0.98} mHz ({0.00; 0.31}%) and the interquartile range error {4.88; 6.59} mHz ({1.60; 1.92}%). The estimation error of the presented methodology was largely lower than the estimation error obtained without combining different PPG features related to respiration. PMID:24363777
Carbon financial markets: A time-frequency analysis of CO2 prices
NASA Astrophysics Data System (ADS)
Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana
2014-11-01
We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.
Turbulence excited frequency domain damping measurement and truncation effects
NASA Technical Reports Server (NTRS)
Soovere, J.
1976-01-01
Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.
Finite time step and spatial grid effects in δf simulation of warm plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturdevant, Benjamin J., E-mail: benjamin.j.sturdevant@gmail.com; Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309; Parker, Scott E.
2016-01-15
This paper introduces a technique for analyzing time integration methods used with the particle weight equations in δf method particle-in-cell (PIC) schemes. The analysis applies to the simulation of warm, uniform, periodic or infinite plasmas in the linear regime and considers the collective behavior similar to the analysis performed by Langdon for full-f PIC schemes [1,2]. We perform both a time integration analysis and spatial grid analysis for a kinetic ion, adiabatic electron model of ion acoustic waves. An implicit time integration scheme is studied in detail for δf simulations using our weight equation analysis and for full-f simulations usingmore » the method of Langdon. It is found that the δf method exhibits a CFL-like stability condition for low temperature ions, which is independent of the parameter characterizing the implicitness of the scheme. The accuracy of the real frequency and damping rate due to the discrete time and spatial schemes is also derived using a perturbative method. The theoretical analysis of numerical error presented here may be useful for the verification of simulations and for providing intuition for the design of new implicit time integration schemes for the δf method, as well as understanding differences between δf and full-f approaches to plasma simulation.« less
Frequency analysis of uncertain structures using imprecise probability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modares, Mehdi; Bergerson, Joshua
2015-01-01
Two new methods for finite element based frequency analysis of a structure with uncertainty are developed. An imprecise probability formulation based on enveloping p-boxes is used to quantify the uncertainty present in the mechanical characteristics of the structure. For each element, independent variations are considered. Using the two developed methods, P-box Frequency Analysis (PFA) and Interval Monte-Carlo Frequency Analysis (IMFA), sharp bounds on natural circular frequencies at different probability levels are obtained. These methods establish a framework for handling incomplete information in structural dynamics. Numerical example problems are presented that illustrate the capabilities of the new methods along with discussionsmore » on their computational efficiency.« less
Vibration Signature Analysis of a Faulted Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.
Complexity in congestive heart failure: A time-frequency approach
NASA Astrophysics Data System (ADS)
Banerjee, Santo; Palit, Sanjay K.; Mukherjee, Sayan; Ariffin, MRK; Rondoni, Lamberto
2016-03-01
Reconstruction of phase space is an effective method to quantify the dynamics of a signal or a time series. Various phase space reconstruction techniques have been investigated. However, there are some issues on the optimal reconstructions and the best possible choice of the reconstruction parameters. This research introduces the idea of gradient cross recurrence (GCR) and mean gradient cross recurrence density which shows that reconstructions in time frequency domain preserve more information about the dynamics than the optimal reconstructions in time domain. This analysis is further extended to ECG signals of normal and congestive heart failure patients. By using another newly introduced measure—gradient cross recurrence period density entropy, two classes of aforesaid ECG signals can be classified with a proper threshold. This analysis can be applied to quantifying and distinguishing biomedical and other nonlinear signals.
Model-based spectral estimation of Doppler signals using parallel genetic algorithms.
Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F
2000-05-01
Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.
NASA Astrophysics Data System (ADS)
Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán
2018-03-01
This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.
Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.
2015-01-01
Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678
Arjunan, V; Rani, T; Santhanam, R; Mohan, S
2012-10-01
The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.
MEM spectral analysis for predicting influenza epidemics in Japan.
Sumi, Ayako; Kamo, Ken-ichi
2012-03-01
The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.
Acoustic Analysis of Speech of Cochlear Implantees and Its Implications
Patadia, Rajesh; Govale, Prajakta; Rangasayee, R.; Kirtane, Milind
2012-01-01
Objectives Cochlear implantees have improved speech production skills compared with those using hearing aids, as reflected in their acoustic measures. When compared to normal hearing controls, implanted children had fronted vowel space and their /s/ and /∫/ noise frequencies overlapped. Acoustic analysis of speech provides an objective index of perceived differences in speech production which can be precursory in planning therapy. The objective of this study was to compare acoustic characteristics of speech in cochlear implantees with those of normal hearing age matched peers to understand implications. Methods Group 1 consisted of 15 children with prelingual bilateral severe-profound hearing loss (age, 5-11 years; implanted between 4-10 years). Prior to an implant behind the ear, hearing aids were used; prior & post implantation subjects received at least 1 year of aural intervention. Group 2 consisted of 15 normal hearing age matched peers. Sustained productions of vowels and words with selected consonants were recorded. Using Praat software for acoustic analysis, digitized speech tokens were measured for F1, F2, and F3 of vowels; centre frequency (Hz) and energy concentration (dB) in burst; voice onset time (VOT in ms) for stops; centre frequency (Hz) of noise in /s/; rise time (ms) for affricates. A t-test was used to find significant differences between groups. Results Significant differences were found in VOT for /b/, F1 and F2 of /e/, and F3 of /u/. No significant differences were found for centre frequency of burst, energy concentration for stops, centre frequency of noise in /s/, or rise time for affricates. These findings suggest that auditory feedback provided by cochlear implants enable subjects to monitor production of speech sounds. Conclusion Acoustic analysis of speech is an essential method for discerning characteristics which have or have not been improved by cochlear implantation and thus for planning intervention. PMID:22701768
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit
NASA Astrophysics Data System (ADS)
Rong, R. W.; Ming, T. F.
2017-12-01
In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.
Time-Frequency Methods for Structural Health Monitoring †
Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.
2014-01-01
Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740
Adventitious sounds identification and extraction using temporal-spectral dominance-based features.
Jin, Feng; Krishnan, Sridhar Sri; Sattar, Farook
2011-11-01
Respiratory sound (RS) signals carry significant information about the underlying functioning of the pulmonary system by the presence of adventitious sounds (ASs). Although many studies have addressed the problem of pathological RS classification, only a limited number of scientific works have focused on the analysis of the evolution of symptom-related signal components in joint time-frequency (TF) plane. This paper proposes a new signal identification and extraction method for various ASs based on instantaneous frequency (IF) analysis. The presented TF decomposition method produces a noise-resistant high definition TF representation of RS signals as compared to the conventional linear TF analysis methods, yet preserving the low computational complexity as compared to those quadratic TF analysis methods. The discarded phase information in conventional spectrogram has been adopted for the estimation of IF and group delay, and a temporal-spectral dominance spectrogram has subsequently been constructed by investigating the TF spreads of the computed time-corrected IF components. The proposed dominance measure enables the extraction of signal components correspond to ASs from noisy RS signal at high noise level. A new set of TF features has also been proposed to quantify the shapes of the obtained TF contours, and therefore strongly, enhances the identification of multicomponents signals such as polyphonic wheezes. An overall accuracy of 92.4±2.9% for the classification of real RS recordings shows the promising performance of the presented method.
Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R
2012-01-01
This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.
The Analysis of Surface EMG Signals with the Wavelet-Based Correlation Dimension Method
Zhang, Yanyan; Wang, Jue
2014-01-01
Many attempts have been made to effectively improve a prosthetic system controlled by the classification of surface electromyographic (SEMG) signals. Recently, the development of methodologies to extract the effective features still remains a primary challenge. Previous studies have demonstrated that the SEMG signals have nonlinear characteristics. In this study, by combining the nonlinear time series analysis and the time-frequency domain methods, we proposed the wavelet-based correlation dimension method to extract the effective features of SEMG signals. The SEMG signals were firstly analyzed by the wavelet transform and the correlation dimension was calculated to obtain the features of the SEMG signals. Then, these features were used as the input vectors of a Gustafson-Kessel clustering classifier to discriminate four types of forearm movements. Our results showed that there are four separate clusters corresponding to different forearm movements at the third resolution level and the resulting classification accuracy was 100%, when two channels of SEMG signals were used. This indicates that the proposed approach can provide important insight into the nonlinear characteristics and the time-frequency domain features of SEMG signals and is suitable for classifying different types of forearm movements. By comparing with other existing methods, the proposed method exhibited more robustness and higher classification accuracy. PMID:24868240
Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems
NASA Technical Reports Server (NTRS)
Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.
2016-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability margins. At each time point, the system was linearized about the current operating point using Simulink's built-in solver. Each linearized system in time was evaluated for its rigid-body gain margin (high frequency gain margin), rigid-body phase margin, and aero gain margin (low frequency gain margin) for each control axis. Using the stability margins derived from the baseline linearization approach, the time domain derived stability margins were determined by executing time domain simulations in which axis-specific incremental gain and phase adjustments were made to the nominal system about the expected neutral stability point at specific flight times. The baseline stability margin time histories were used to shift the system gain to various values around the zero margin point such that a precise amount of expected gain margin was maintained throughout flight. When assessing the gain margins, the gain was applied starting at the time point under consideration, thereafter following the variation in the margin found in the linear analysis. When assessing the rigid-body phase margin, a constant time delay was applied to the system starting at the time point under consideration. If the baseline stability margins were correctly determined via the linear analysis, the time domain simulation results should contain unstable behavior at certain gain and phase values. Examples will be shown from repeated simulations with variable added gain and phase lag. Faithfulness of margins calculated from the linear analysis to the nonlinear system will be demonstrated.
NASA Astrophysics Data System (ADS)
Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan
In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.
NASA Technical Reports Server (NTRS)
Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)
2003-01-01
A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Acoustic analysis of trill sounds.
Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri
2012-04-01
In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang;
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.
Structural-change localization and monitoring through a perturbation-based inverse problem.
Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa
2014-11-01
Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.
2011-03-01
resampling a second time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 70 Plot of RSA bitgroup exponentiation with DAILMOM after a...14 DVFS Dynamic Voltage and Frequency Switching . . . . . . . . . . . . . . . . . . . 14 MDPL Masked Dual-Rail...algorithms to prevent whole-sale discovery of PINs and other simple methods to prevent employee tampering [5]. In time , cryptographic systems have
Sumi, Ayako; Kobayashi, Nobumichi
2017-01-01
In this report, we present a short review of applications of time series analysis, which consists of spectral analysis based on the maximum entropy method in the frequency domain and the least squares method in the time domain, to the incidence data of infectious diseases. This report consists of three parts. First, we present our results obtained by collaborative research on infectious disease epidemics with Chinese, Indian, Filipino and North European research organizations. Second, we present the results obtained with the Japanese infectious disease surveillance data and the time series numerically generated from a mathematical model, called the susceptible/exposed/infectious/recovered (SEIR) model. Third, we present an application of the time series analysis to pathologic tissues to examine the usefulness of time series analysis for investigating the spatial pattern of pathologic tissue. It is anticipated that time series analysis will become a useful tool for investigating not only infectious disease surveillance data but also immunological and genetic tests.
Frequency modulation indicator, Arnold’s web and diffusion in the Stark Quadratic-Zeeman problem
NASA Astrophysics Data System (ADS)
Cordani, Bruno
2008-11-01
We notice that the fundamental frequencies of a slightly perturbed integrable Hamiltonian system are not time-constant inside a resonance but frequency modulated, as is evident from pendulum models and wavelet analysis. Exploiting an intrinsic imprecision inherent to the numerical frequency analysis algorithm itself, hence transforming a drawback into an opportunity, we define the Frequency Modulation Indicator, a very sensitive tool in detecting where fundamental frequencies are modulated, localizing so the resonances without having to resort, as in other methods, to the integration of variational equations. For the Kepler problem, the space of the orbits with a fixed energy has the topology of the product of two 2-spheres. The perturbation Hamiltonian, averaged over the mean anomaly, has surely a maximum and a minimum, to which correspond two periodic orbits in physical space. Studying the neighbourhood of these two elliptic stable points, we are able to define adapted action-angle variables, for example, the usual but “SO(4)-rotated” Delaunay variables. The procedure, implemented in the program KEPLER, is performed transparently for the user, providing a general scheme suited for generic perturbation. The method is then applied to the Stark-Quadratic-Zeeman problem, displaying very clearly the Arnold web of the resonances. Sectioning transversely one of the resonance strips so highlighted and performing a numerical frequency analysis, one is able to locate with great precision the thin stochastic layer surrounding a separatrix. Another very long (10 8 revolutions) frequency analysis on an orbit starting here reveals, as expected, a well defined pattern, which ensures that the integration errors do not eject the point out of the layer, and moreover a very slow drift in the frequency values, clearly due to Arnold diffusion.
An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks
NASA Astrophysics Data System (ADS)
Zhao, Peng-yuan; Huang, Xiao-ping
2018-03-01
Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Zhang, Xin; Xie, Jun
2015-03-10
This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method;more » Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.« less
Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qingbang, Han; Ling, Chen; Changping, Zhu
2014-02-18
The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less
Chirplet Wigner-Ville distribution for time-frequency representation and its application
NASA Astrophysics Data System (ADS)
Chen, G.; Chen, J.; Dong, G. M.
2013-12-01
This paper presents a Chirplet Wigner-Ville Distribution (CWVD) that is free for cross-term that usually occurs in Wigner-Ville distribution (WVD). By transforming the signal with frequency rotating operators, several mono-frequency signals without intermittent are obtained, WVD is applied to the rotated signals that is cross-term free, then some frequency shift operators corresponding to the rotating operator are utilized to relocate the signal‧s instantaneous frequencies (IFs). The operators‧ parameters come from the estimation of the IFs which are approached with a polynomial functions or spline functions. What is more, by analysis of error, the main factors for the performance of the novel method have been discovered and an effective signal extending method based on the IFs estimation has been developed to improve the energy concentration of WVD. The excellent performance of the novel method was manifested by applying it to estimate the IFs of some numerical signals and the echolocation signal emitted by the Large Brown Bat.
[EMD Time-Frequency Analysis of Raman Spectrum and NIR].
Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe
2016-02-01
This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.
Helicopter TEM parameters analysis and system optimization based on time constant
NASA Astrophysics Data System (ADS)
Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou
2018-03-01
Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.
Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R
2013-01-01
Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.
Temporal structure of neuronal population oscillations with empirical model decomposition
NASA Astrophysics Data System (ADS)
Li, Xiaoli
2006-08-01
Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation.
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
NASA Astrophysics Data System (ADS)
Kuznetsov, Michael V.
2006-05-01
For reliable teamwork of various systems of automatic telecommunication including transferring systems of optical communication networks it is necessary authentic recognition of signals for one- or two-frequency service signal system. The analysis of time parameters of an accepted signal allows increasing reliability of detection and recognition of the service signal system on a background of speech.
NASA Astrophysics Data System (ADS)
Huang, Huan; Baddour, Natalie; Liang, Ming
2018-02-01
Under normal operating conditions, bearings often run under time-varying rotational speed conditions. Under such circumstances, the bearing vibrational signal is non-stationary, which renders ineffective the techniques used for bearing fault diagnosis under constant running conditions. One of the conventional methods of bearing fault diagnosis under time-varying speed conditions is resampling the non-stationary signal to a stationary signal via order tracking with the measured variable speed. With the resampled signal, the methods available for constant condition cases are thus applicable. However, the accuracy of the order tracking is often inadequate and the time-varying speed is sometimes not measurable. Thus, resampling-free methods are of interest for bearing fault diagnosis under time-varying rotational speed for use without tachometers. With the development of time-frequency analysis, the time-varying fault character manifests as curves in the time-frequency domain. By extracting the Instantaneous Fault Characteristic Frequency (IFCF) from the Time-Frequency Representation (TFR) and converting the IFCF, its harmonics, and the Instantaneous Shaft Rotational Frequency (ISRF) into straight lines, the bearing fault can be detected and diagnosed without resampling. However, so far, the extraction of the IFCF for bearing fault diagnosis is mostly based on the assumption that at each moment the IFCF has the highest amplitude in the TFR, which is not always true. Hence, a more reliable T-F curve extraction approach should be investigated. Moreover, if the T-F curves including the IFCF, its harmonic, and the ISRF can be all extracted from the TFR directly, no extra processing is needed for fault diagnosis. Therefore, this paper proposes an algorithm for multiple T-F curve extraction from the TFR based on a fast path optimization which is more reliable for T-F curve extraction. Then, a new procedure for bearing fault diagnosis under unknown time-varying speed conditions is developed based on the proposed algorithm and a new fault diagnosis strategy. The average curve-to-curve ratios are utilized to describe the relationship of the extracted curves and fault diagnosis can then be achieved by comparing the ratios to the fault characteristic coefficients. The effectiveness of the proposed method is validated by simulated and experimental signals.
Force analysis of magnetic bearings with power-saving controls
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1992-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.
Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo
2010-05-01
A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.
Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon
2017-01-01
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352
Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.
Wang, Yazhou; Li, Guangsheng; Luk, Keith D K; Hu, Yong
2017-05-24
This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.
NASA Technical Reports Server (NTRS)
Zhou, Wei
1993-01-01
In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.
Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis
Her, Shiuh-Chuan; Lin, Sheng-Tung
2014-01-01
Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875
Voss, Andreas; Fischer, Claudia; Schroeder, Rico; Figulla, Hans R; Goernig, Matthias
2012-07-01
The objectives of this study were to introduce a new type of heart-rate variability analysis improving risk stratification in patients with idiopathic dilated cardiomyopathy (DCM) and to provide additional information about impaired heart beat generation in these patients. Beat-to-beat intervals (BBI) of 30-min ECGs recorded from 91 DCM patients and 21 healthy subjects were analyzed applying the lagged segmented Poincaré plot analysis (LSPPA) method. LSPPA includes the Poincaré plot reconstruction with lags of 1-100, rotating the cloud of points, its normalized segmentation adapted to their standard deviations, and finally, a frequency-dependent clustering. The lags were combined into eight different clusters representing specific frequency bands within 0.012-1.153 Hz. Statistical differences between low- and high-risk DCM could be found within the clusters II-VIII (e.g., cluster IV: 0.033-0.038 Hz; p = 0.0002; sensitivity = 85.7 %; specificity = 71.4 %). The multivariate statistics led to a sensitivity of 92.9 %, specificity of 85.7 % and an area under the curve of 92.1 % discriminating these patient groups. We introduced the LSPPA method to investigate time correlations in BBI time series. We found that LSPPA contributes considerably to risk stratification in DCM and yields the highest discriminant power in the low and very low-frequency bands.
Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters
NASA Astrophysics Data System (ADS)
Kim, T.; Kim, Y. S.
2017-12-01
The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results show that probabilistic daily snowfall depth by frequency analysis is decreased at most stations, and most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics. Acknowledgment.This research was supported by a grant(MPSS-NH-2015-79) from Disaster Prediction and Mitigation Technology Development Program funded by Korean Ministry of Public Safety and Security(MPSS).
Tošić, Tamara; Sellers, Kristin K; Fröhlich, Flavio; Fedotenkova, Mariia; Beim Graben, Peter; Hutt, Axel
2015-01-01
For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.
Tošić, Tamara; Sellers, Kristin K.; Fröhlich, Flavio; Fedotenkova, Mariia; beim Graben, Peter; Hutt, Axel
2016-01-01
For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain. PMID:26834580
Pappachan, Bobby K; Caesarendra, Wahyu; Tjahjowidodo, Tegoeh; Wijaya, Tomi
2017-01-01
Process monitoring using indirect methods relies on the usage of sensors. Using sensors to acquire vital process related information also presents itself with the problem of big data management and analysis. Due to uncertainty in the frequency of events occurring, a higher sampling rate is often used in real-time monitoring applications to increase the chances of capturing and understanding all possible events related to the process. Advanced signal processing methods are used to further decipher meaningful information from the acquired data. In this research work, power spectrum density (PSD) of sensor data acquired at sampling rates between 40–51.2 kHz was calculated and the corelation between PSD and completed number of cycles/passes is presented. Here, the progress in number of cycles/passes is the event this research work intends to classify and the algorithm used to compute PSD is Welch’s estimate method. A comparison between Welch’s estimate method and statistical methods is also discussed. A clear co-relation was observed using Welch’s estimate to classify the number of cycles/passes. The paper also succeeds in classifying vibration signal generated by the spindle from the vibration signal acquired during finishing process. PMID:28556809
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
NASA Astrophysics Data System (ADS)
Grasso, M.; Chatterton, S.; Pennacchi, P.; Colosimo, B. M.
2016-12-01
Health condition analysis and diagnostics of rotating machinery requires the capability of properly characterizing the information content of sensor signals in order to detect and identify possible fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the existence and the causes of a fault. The separation of components belonging to different time-frequency scales, either associated to healthy or faulty conditions, represents a challenge that motivates the development of effective methodologies for multi-scale signal decomposition. In this framework, the Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. However, the EMD usually yields an over-decomposition of the original signals into a large number of intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the reference literature lacks automated methods to achieve a synthetic decomposition into few physically meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced characterization of the signal content without any information loss. A novel criterion to assess the dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data is presented to demonstrate the performances of the method and the provided benefits.
Dynamic gas temperature measurement system. Volume 2: Operation and program manual
NASA Technical Reports Server (NTRS)
Purpura, P. T.
1983-01-01
The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.
NASA Astrophysics Data System (ADS)
Varney, Philip; Green, Itzhak
2014-11-01
Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM's ability to intrinsically separate synchronous whirl direction for a non-trivial rotordynamic system. Good agreement is found between the CTM results and previously obtained analytic and experimental results for the elastomer ring supported rotordynamic system.
Pseudorange error analysis for precise indoor positioning system
NASA Astrophysics Data System (ADS)
Pola, Marek; Bezoušek, Pavel
2017-05-01
There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.
Park, SangWook; Kim, Minhyuk
2016-01-01
In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.
Kim, Minhyuk
2016-01-01
In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688
Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin
2014-01-30
The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko
2011-03-01
Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.
Self-adaptive method for high frequency multi-channel analysis of surface wave method
USDA-ARS?s Scientific Manuscript database
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing
NASA Astrophysics Data System (ADS)
Shin, Hyeon Jae; Song, Sung-Jin
2000-05-01
A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.
Analysis of Digital Communication Signals and Extraction of Parameters.
1994-12-01
Fast Fourier Transform (FFT). The correlation methods utilize modified time-frequency distributions , where one of these is based on the Wigner - Ville ... Distribution ( WVD ). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNRs).
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Zakharova, Irina G.; Zagursky, Dmitry Yu.
2017-01-01
Using an experiment with thin paper layers and computer simulation, we demonstrate the principal limitations of standard Time Domain Spectroscopy (TDS) based on using a broadband THz pulse for the detection and identification of a substance placed inside a disordered structure. We demonstrate the spectrum broadening of both transmitted and reflected pulses due to the cascade mechanism of the high energy level excitation considering, for example, a three-energy level medium. The pulse spectrum in the range of high frequencies remains undisturbed in the presence of a disordered structure. To avoid false absorption frequencies detection, we apply the spectral dynamics analysis method (SDA-method) together with certain integral correlation criteria (ICC). PMID:29186849
Speech transformations based on a sinusoidal representation
NASA Astrophysics Data System (ADS)
Quatieri, T. E.; McAulay, R. J.
1986-05-01
A new speech analysis/synthesis technique is presented which provides the basis for a general class of speech transformation including time-scale modification, frequency scaling, and pitch modification. These modifications can be performed with a time-varying change, permitting continuous adjustment of a speaker's fundamental frequency and rate of articulation. The method is based on a sinusoidal representation of the speech production mechanism that has been shown to produce synthetic speech that preserves the waveform shape and is essentially perceptually indistinguishable from the original. Although the analysis/synthesis system originally was designed for single-speaker signals, it is equally capable of recovering and modifying nonspeech signals such as music; multiple speakers, marine biologic sounds, and speakers in the presence of interferences such as noise and musical backgrounds.
Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.
Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied
2014-12-01
Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.
Wavelet analysis of near-resonant series RLC circuit with time-dependent forcing frequency
NASA Astrophysics Data System (ADS)
Caccamo, M. T.; Cannuli, A.; Magazù, S.
2018-07-01
In this work, the results of an analysis of the response of a near-resonant series resistance‑inductance‑capacitance (RLC) electric circuit with time-dependent forcing frequency by means of a wavelet cross-correlation approach are reported. In particular, it is shown how the wavelet approach enables frequency and time analysis of the circuit response to be carried out simultaneously—this procedure not being possible by Fourier transform, since the frequency is not stationary in time. A series RLC circuit simulation is performed by using the Simulation Program with Integrated Circuits Emphasis (SPICE), in which an oscillatory sinusoidal voltage drive signal of constant amplitude is swept through the resonant condition by progressively increasing the frequency over a 20-second time window, linearly, from 0.32 Hz to 6.69 Hz. It is shown that the wavelet cross-correlation procedure quantifies the common power between the input signal (represented by the electromotive force) and the output signal, which in the present case is a current, highlighting not only which frequencies are present but also when they occur, i.e. providing a simultaneous time-frequency analysis. The work is directed toward graduate Physics, Engineering and Mathematics students, with the main intention of introducing wavelet analysis into their data analysis toolkit.
A Sparsity-Based Approach to 3D Binaural Sound Synthesis Using Time-Frequency Array Processing
NASA Astrophysics Data System (ADS)
Cobos, Maximo; Lopez, JoseJ; Spors, Sascha
2010-12-01
Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music, telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time prototype confirm the validity of the proposed approach.
Testing for nonlinearity in non-stationary physiological time series.
Guarín, Diego; Delgado, Edilson; Orozco, Álvaro
2011-01-01
Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency domain. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. Applying our methodology to heart rate variability (HRV) records of five healthy patients, we encountered that nonlinear correlations are present in this non-stationary physiological signals.
Photoacoustic signal attenuation analysis for the assessment of thin layers thickness in paintings
NASA Astrophysics Data System (ADS)
Tserevelakis, George J.; Dal Fovo, Alice; Melessanaki, Krystalia; Fontana, Raffaella; Zacharakis, Giannis
2018-03-01
This study introduces a novel method for the thickness estimation of thin paint layers in works of art, based on photoacoustic signal attenuation analysis (PAcSAA). Ad hoc designed samples with acrylic paint layers (Primary Red Magenta, Cadmium Yellow, Ultramarine Blue) of various thicknesses on glass substrates were realized for the specific application. After characterization by Optical Coherence Tomography imaging, samples were irradiated at the back side using low energy nanosecond laser pulses of 532 nm wavelength. Photoacoustic waves undergo a frequency-dependent exponential attenuation through the paint layer, before being detected by a broadband ultrasonic transducer. Frequency analysis of the recorded time-domain signals allows for the estimation of the average transmitted frequency function, which shows an exponential decay with the layer thickness. Ultrasonic attenuation models were obtained for each pigment and used to fit the data acquired on an inhomogeneous painted mock-up simulating a real canvas painting. Thickness evaluation through PAcSAA resulted in excellent agreement with cross-section analysis with a conventional brightfield microscope. The results of the current study demonstrate the potential of the proposed PAcSAA method for the non-destructive stratigraphic analysis of painted artworks.
NASA Astrophysics Data System (ADS)
Mazurova, Elena; Lapshin, Aleksey
2013-04-01
The method of discrete linear transformations that can be implemented through the algorithms of the Standard Fourier Transform (SFT), Short-Time Fourier Transform (STFT) or Wavelet transform (WT) is effective for calculating the components of the deflection of the vertical from discrete values of gravity anomaly. The SFT due to the action of Heisenberg's uncertainty principle indicates weak spatial localization that manifests in the following: firstly, it is necessary to know the initial digital signal on the complete number line (in case of one-dimensional transform) or in the whole two-dimensional space (if a two-dimensional transform is performed) in order to find the SFT. Secondly, the localization and values of the "peaks" of the initial function cannot be derived from its Fourier transform as the coefficients of the Fourier transform are formed by taking into account all the values of the initial function. Thus, the SFT gives the global information on all frequencies available in the digital signal throughout the whole time period. To overcome this peculiarity it is necessary to localize the signal in time and apply the Fourier transform only to a small portion of the signal; the STFT that differs from the SFT only by the presence of an additional factor (window) is used for this purpose. A narrow enough window is chosen to localize the signal in time and, according to Heisenberg's uncertainty principle, it results in have significant enough uncertainty in frequency. If one chooses a wide enough window it, according to the same principle, will increase time uncertainty. Thus, if the signal is narrowly localized in time its spectrum, on the contrary, is spread on the complete axis of frequencies, and vice versa. The STFT makes it possible to improve spatial localization, that is, it allows one to define the presence of any frequency in the signal and the interval of its presence. However, owing to Heisenberg's uncertainty principle, it is impossible to tell precisely, what frequency is present in the signal at the current moment of time: it is possible to speak only about the range of frequencies. Besides, it is impossible to specify precisely the time moment of the presence of this or that frequency: it is possible to speak only about the time frame. It is this feature that imposes major constrains on the applicability of the STFT. In spite of the fact that the problems of resolution in time and frequency result from a physical phenomenon (Heisenberg's uncertainty principle) and exist independent of the transform applied, there is a possibility to analyze any signal, using the alternative approach - the multiresolutional analysis (MRA). The wavelet-transform is one of the methods for making a MRA-type analysis. Thanks to it, low frequencies can be shown in a more detailed form with respect to time, and high ones - with respect to frequency. The paper presents the results of calculating of the components of the deflection of the vertical, done by the SFT, STFT and WT. The results are presented in the form of 3-d models that visually show the action of Heisenberg's uncertainty principle in the specified algorithms. The research conducted allows us to recommend the application of wavelet-transform to calculate of the components of the deflection of the vertical in the near-field zone. Keywords: Standard Fourier Transform, Short-Time Fourier Transform, Wavelet Transform, Heisenberg's uncertainty principle.
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Zhiwen; Miao, Qiang; Zhang, Xin
2018-03-01
A time-frequency analysis method based on ensemble local mean decomposition (ELMD) and fast kurtogram (FK) is proposed for rotating machinery fault diagnosis. Local mean decomposition (LMD), as an adaptive non-stationary and nonlinear signal processing method, provides the capability to decompose multicomponent modulation signal into a series of demodulated mono-components. However, the occurring mode mixing is a serious drawback. To alleviate this, ELMD based on noise-assisted method was developed. Still, the existing environmental noise in the raw signal remains in corresponding PF with the component of interest. FK has good performance in impulse detection while strong environmental noise exists. But it is susceptible to non-Gaussian noise. The proposed method combines the merits of ELMD and FK to detect the fault for rotating machinery. Primarily, by applying ELMD the raw signal is decomposed into a set of product functions (PFs). Then, the PF which mostly characterizes fault information is selected according to kurtosis index. Finally, the selected PF signal is further filtered by an optimal band-pass filter based on FK to extract impulse signal. Fault identification can be deduced by the appearance of fault characteristic frequencies in the squared envelope spectrum of the filtered signal. The advantages of ELMD over LMD and EEMD are illustrated in the simulation analyses. Furthermore, the efficiency of the proposed method in fault diagnosis for rotating machinery is demonstrated on gearbox case and rolling bearing case analyses.
Short-time fractional Fourier methods for the time-frequency representation of chirp signals.
Capus, Chris; Brown, Keith
2003-06-01
The fractional Fourier transform (FrFT) provides a valuable tool for the analysis of linear chirp signals. This paper develops two short-time FrFT variants which are suited to the analysis of multicomponent and nonlinear chirp signals. Outputs have similar properties to the short-time Fourier transform (STFT) but show improved time-frequency resolution. The FrFT is a parameterized transform with parameter, a, related to chirp rate. The two short-time implementations differ in how the value of a is chosen. In the first, a global optimization procedure selects one value of a with reference to the entire signal. In the second, a values are selected independently for each windowed section. Comparative variance measures based on the Gaussian function are given and are shown to be consistent with the uncertainty principle in fractional domains. For appropriately chosen FrFT orders, the derived fractional domain uncertainty relationship is minimized for Gaussian windowed linear chirp signals. The two short-time FrFT algorithms have complementary strengths demonstrated by time-frequency representations for a multicomponent bat chirp, a highly nonlinear quadratic chirp, and an output pulse from a finite-difference sonar model with dispersive change. These representations illustrate the improvements obtained in using FrFT based algorithms compared to the STFT.
A transient response analysis of the space shuttle vehicle during liftoff
NASA Technical Reports Server (NTRS)
Brunty, J. A.
1990-01-01
A proposed transient response method is formulated for the liftoff analysis of the space shuttle vehicles. It uses a power series approximation with unknown coefficients for the interface forces between the space shuttle and mobile launch platform. This allows the equation of motion of the two structures to be solved separately with the unknown coefficients at the end of each step. These coefficients are obtained by enforcing the interface compatibility conditions between the two structures. Once the unknown coefficients are determined, the total response is computed for that time step. The method is validated by a numerical example of a cantilevered beam and by the liftoff analysis of the space shuttle vehicles. The proposed method is compared to an iterative transient response analysis method used by Martin Marietta for their space shuttle liftoff analysis. It is shown that the proposed method uses less computer time than the iterative method and does not require as small a time step for integration. The space shuttle vehicle model is reduced using two different types of component mode synthesis (CMS) methods, the Lanczos method and the Craig and Bampton CMS method. By varying the cutoff frequency in the Craig and Bampton method it was shown that the space shuttle interface loads can be computed with reasonable accuracy. Both the Lanczos CMS method and Craig and Bampton CMS method give similar results. A substantial amount of computer time is saved using the Lanczos CMS method over that of the Craig and Bampton method. However, when trying to compute a large number of Lanczos vectors, input/output computer time increased and increased the overall computer time. The application of several liftoff release mechanisms that can be adapted to the proposed method are discussed.
Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie
2018-04-01
A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.
Frequency-duration analysis of dissolved-oxygen concentrations in two southwestern Wisconsin streams
Greb, Steven R.; Graczyk, David J.
2007-01-01
Historically, dissolved-oxygen (DO) data have been collected in the same manner as other water-quality constituents, typically at infrequent intervals as a grab sample or an instantaneous meter reading. Recent years have seen an increase in continuous water-quality monitoring with electronic dataloggers. This new technique requires new approaches in the statistical analysis of the continuous record. This paper presents an application of frequency-duration analysis to the continuous DO records of a cold and a warm water stream in rural southwestern Wisconsin. This method offers a quick, concise way to summarize large time-series data bases in an easily interpretable manner. Even though the two streams had similar mean DO concentrations, frequency-duration analyses showed distinct differences in their DO-concentration regime. This type of analysis also may be useful in relating DO concentrations to biological effects and in predicting low DO occurrences.
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
NASA Astrophysics Data System (ADS)
Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin
2015-05-01
Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.
Method of detecting system function by measuring frequency response
NASA Technical Reports Server (NTRS)
Morrison, John L. (Inventor); Morrison, William H. (Inventor); Christophersen, Jon P. (Inventor)
2012-01-01
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
Method of detecting system function by measuring frequency response
Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID
2012-04-03
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
An automated multi-scale network-based scheme for detection and location of seismic sources
NASA Astrophysics Data System (ADS)
Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.
2017-12-01
We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.
Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.
Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen
2014-08-01
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
Time-Lapse Acoustic Impedance Inversion in CO2 Sequestration Study (Weyburn Field, Canada)
NASA Astrophysics Data System (ADS)
Wang, Y.; Morozov, I. B.
2016-12-01
Acoustic-impedance (AI) pseudo-logs are useful for characterising subtle variations of fluid content during seismic monitoring of reservoirs undergoing enhanced oil recovery and/or geologic CO2 sequestration. However, highly accurate AI images are required for time-lapse analysis, which may be difficult to achieve with conventional inversion approaches. In this study, two enhancements of time-lapse AI analysis are proposed. First, a well-known uncertainty of AI inversion is caused by the lack of low-frequency signal in reflection seismic data. To resolve this difficulty, we utilize an integrated AI inversion approach combining seismic data, acoustic well logs and seismic-processing velocities. The use of well logs helps stabilizing the recursive AI inverse, and seismic-processing velocities are used to complement the low-frequency information in seismic records. To derive the low-frequency AI from seismic-processing velocity data, an empirical relation is determined by using the available acoustic logs. This method is simple and does not require subjective choices of parameters and regularization schemes as in the more sophisticated joint inversion methods. The second improvement to accurate time-lapse AI imaging consists in time-variant calibration of reflectivity. Calibration corrections consist of time shifts, amplitude corrections, spectral shaping and phase rotations. Following the calibration, average and differential reflection amplitudes are calculated, from which the average and differential AI are obtained. The approaches are applied to a time-lapse 3-D 3-C dataset from Weyburn CO2 sequestration project in southern Saskatchewan, Canada. High quality time-lapse AI volumes are obtained. Comparisons with traditional recursive and colored AI inversions (obtained without using seismic-processing velocities) show that the new method gives a better representation of spatial AI variations. Although only early stages of monitoring seismic data are available, time-lapse AI variations mapped within and near the reservoir zone suggest correlations with CO2 injection. By extending this procedure to elastic impedances, additional constraints on the variations of physical properties within the reservoir can be obtained.
NASA Technical Reports Server (NTRS)
Atkins, H. L.; Shu, Chi-Wang
2001-01-01
The explicit stability constraint of the discontinuous Galerkin method applied to the diffusion operator decreases dramatically as the order of the method is increased. Block Jacobi and block Gauss-Seidel preconditioner operators are examined for their effectiveness at accelerating convergence. A Fourier analysis for methods of order 2 through 6 reveals that both preconditioner operators bound the eigenvalues of the discrete spatial operator. Additionally, in one dimension, the eigenvalues are grouped into two or three regions that are invariant with order of the method. Local relaxation methods are constructed that rapidly damp high frequencies for arbitrarily large time step.
Patient-Specific Deep Architectural Model for ECG Classification
Luo, Kan; Cuschieri, Alfred
2017-01-01
Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597
Wavelet-based analysis of circadian behavioral rhythms.
Leise, Tanya L
2015-01-01
The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.
Wang, Yubo; Veluvolu, Kalyana C
2017-06-14
It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.
High Frequency Resolution TOA Analysis for ELF/VLFWave Generation Experiments at HAARP
NASA Astrophysics Data System (ADS)
Ruddle, J. D.; Moore, R. C.
2014-12-01
Modulated HF heating of the ionosphere in the presence of natural ionospheric current sources has been used as a method to generate electromagnetic ELF/VLF waves since the 1970's. In the ~1-5 kHz band, the amplitude and phase of the received ELF/VLF signal depends on the amplitude and phase of the conductivity modulation generated throughout the HF-heated ionospheric body, as well as on the signal propagation parameters (i.e., the attenuation and phase constants) between each of the current sources and the receiver. Recent signal processing advances have produced an accurate ELF/VLF time-of-arrival (TOA) analysis technique that differentiates line-of-sight and ionospherically-reflected signal components, determining the amplitude and phase of each component observed at the receiver. This TOA method requires a wide bandwidth (> 2.5 kHz) and therefore is relatively insensitive to the frequency-dependent nature of ELF/VLF wave propagation. In this paper, we present an improved ELF/VLF TOA method that is capable of providing high frequency resolution. The new analysis technique is applied to experimental observations of ELF/VLF signals generated by modulated heating at HAARP. We present measurements of the amplitude and phase of the received ELF/VLF signal as a function of frequency and compare the results with the predictions of an HF heating model.
Do regional methods really help reduce uncertainties in flood frequency analyses?
NASA Astrophysics Data System (ADS)
Cong Nguyen, Chi; Payrastre, Olivier; Gaume, Eric
2013-04-01
Flood frequency analyses are often based on continuous measured series at gauge sites. However, the length of the available data sets is usually too short to provide reliable estimates of extreme design floods. To reduce the estimation uncertainties, the analyzed data sets have to be extended either in time, making use of historical and paleoflood data, or in space, merging data sets considered as statistically homogeneous to build large regional data samples. Nevertheless, the advantage of the regional analyses, the important increase of the size of the studied data sets, may be counterbalanced by the possible heterogeneities of the merged sets. The application and comparison of four different flood frequency analysis methods to two regions affected by flash floods in the south of France (Ardèche and Var) illustrates how this balance between the number of records and possible heterogeneities plays in real-world applications. The four tested methods are: (1) a local statistical analysis based on the existing series of measured discharges, (2) a local analysis valuating the existing information on historical floods, (3) a standard regional flood frequency analysis based on existing measured series at gauged sites and (4) a modified regional analysis including estimated extreme peak discharges at ungauged sites. Monte Carlo simulations are conducted to simulate a large number of discharge series with characteristics similar to the observed ones (type of statistical distributions, number of sites and records) to evaluate to which extent the results obtained on these case studies can be generalized. These two case studies indicate that even small statistical heterogeneities, which are not detected by the standard homogeneity tests implemented in regional flood frequency studies, may drastically limit the usefulness of such approaches. On the other hand, these result show that the valuation of information on extreme events, either historical flood events at gauged sites or estimated extremes at ungauged sites in the considered region, is an efficient way to reduce uncertainties in flood frequency studies.
Sha, Zhichao; Liu, Zhengmeng; Huang, Zhitao; Zhou, Yiyu
2013-08-29
This paper addresses the problem of direction-of-arrival (DOA) estimation of multiple wideband coherent chirp signals, and a new method is proposed. The new method is based on signal component analysis of the array output covariance, instead of the complicated time-frequency analysis used in previous literatures, and thus is more compact and effectively avoids possible signal energy loss during the hyper-processes. Moreover, the a priori information of signal number is no longer a necessity for DOA estimation in the new method. Simulation results demonstrate the performance superiority of the new method over previous ones.
NASA Astrophysics Data System (ADS)
Kodkin, V. L.; Anikin, A. S.; Baldenkov, A. A.
2018-01-01
The results of researches of asynchronous electric drives with the frequency control which are carried out for the purpose of establishment of causes and effect relationships between a control method, the implementable standard frequency converter of the Schneider Electric company (ATV-71, ATV-32) and its efficiency are given in article. Tests with asynchronous motors with wound rotor were for the first time carried out. It allowed registering during the experiments the instantaneous values not only the stator currents, but also rotor currents. Authors for the first time applied spectrum analysis of stator and rotor currents, it showed that «sensorless vector» control leads to origin of high-frequency harmonicas with the considerable amplitude and, as a result of they are non-sinusoidal of the created torque and inefficiency of the electric drive. The accelerations that are carried out during the researches to 94, 157 and 251 Rad/s confirmed this feature of vector control that appears incapable to linearize the asynchronous electric drive as it was supposed authors of a method. These results do not contradict theoretical provisions if not to neglect assumptions which usually become in case of an output of the equations of vector control. Unfortunately, the modern researchers do not subject these assumptions to doubts. Continued studies make it possible to create an effective frequency management of asynchronous electric drives required for current technology.
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Frequency analysis of a step dynamic pressure calibrator.
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency analysis of a step dynamic pressure calibrator
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
NASA Astrophysics Data System (ADS)
Niccolini, Gianni; Manuello, Amedeo; Marchis, Elena; Carpinteri, Alberto
2017-07-01
The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto) in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997) was assessed by the acoustic emission (AE) monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.
NASA Astrophysics Data System (ADS)
Kosmidis, Kosmas; Kalampokis, Alkiviadis; Argyrakis, Panos
2006-10-01
We use the detrended fluctuation analysis (DFA) and the Grassberger-Proccacia analysis (GP) methods in order to study language characteristics. Despite that we construct our signals using only word lengths or word frequencies, excluding in this way huge amount of information from language, the application of GP analysis indicates that linguistic signals may be considered as the manifestation of a complex system of high dimensionality, different from random signals or systems of low dimensionality such as the Earth climate. The DFA method is additionally able to distinguish a natural language signal from a computer code signal. This last result may be useful in the field of cryptography.
Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.
2012-01-01
This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases. PMID:22448233
Linearized spectrum correlation analysis for line emission measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
Sornborger, Andrew T; Lauderdale, James D
2016-11-01
Neural data analysis has increasingly incorporated causal information to study circuit connectivity. Dimensional reduction forms the basis of most analyses of large multivariate time series. Here, we present a new, multitaper-based decomposition for stochastic, multivariate time series that acts on the covariance of the time series at all lags, C ( τ ), as opposed to standard methods that decompose the time series, X ( t ), using only information at zero-lag. In both simulated and neural imaging examples, we demonstrate that methods that neglect the full causal structure may be discarding important dynamical information in a time series.
NASA Astrophysics Data System (ADS)
Moshrefzadeh, Ali; Fasana, Alessandro
2018-05-01
Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding a suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this paper is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of second-order cyclostationarity, especially in the presence of localized faults. The autocovariance function of a 2nd order cyclostationary signal is periodic and the proposed method, named Autogram, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased Autocorrelation (AC) of the squared envelope of the demodulated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. A new indicator, Combined Squared Envelope Spectrum, is employed to consider all the frequency bands with valuable diagnostic information and to improve the fault detectability of the Autogram. The proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics.
Time-frequency analysis : mathematical analysis of the empirical mode decomposition.
DOT National Transportation Integrated Search
2009-01-01
Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...
Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics
NASA Astrophysics Data System (ADS)
Zhu, Yan; Lu, Yu-hui; Ling, Ai-min
2017-07-01
In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.
Spectral analysis method and sample generation for real time visualization of speech
NASA Astrophysics Data System (ADS)
Hobohm, Klaus
A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.
NASA Astrophysics Data System (ADS)
Godsey, S. E.; Kirchner, J. W.
2008-12-01
The mean residence time - the average time that it takes rainfall to reach the stream - is a basic parameter used to characterize catchment processes. Heterogeneities in these processes lead to a distribution of travel times around the mean residence time. By examining this travel time distribution, we can better predict catchment response to contamination events. A catchment system with shorter residence times or narrower distributions will respond quickly to contamination events, whereas systems with longer residence times or longer-tailed distributions will respond more slowly to those same contamination events. The travel time distribution of a catchment is typically inferred from time series of passive tracers (e.g., water isotopes or chloride) in precipitation and streamflow. Variations in the tracer concentration in streamflow are usually damped compared to those in precipitation, because precipitation inputs from different storms (with different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is represented by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. Because convolution in the time domain is equivalent to multiplication in the frequency domain, it is relatively straightforward to estimate the parameters of the travel time distribution in either domain. In the time domain, the parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. In the frequency domain, the travel time distribution parameters can be estimated by fitting a power-law curve to the ratio of precipitation spectral power to stream spectral power. Differences between the methods of parameter estimation in the time and frequency domain mean that these two methods may respond differently to variations in data quality, record length and sampling frequency. Here we evaluate how well these two methods of travel time parameter estimation respond to different sources of uncertainty and compare the methods to one another. We do this by generating synthetic tracer input time series of different lengths, and convolve these with specified travel-time distributions to generate synthetic output time series. We then sample both the input and output time series at various sampling intervals and corrupt the time series with realistic error structures. Using these 'corrupted' time series, we infer the apparent travel time distribution, and compare it to the known distribution that was used to generate the synthetic data in the first place. This analysis allows us to quantify how different record lengths, sampling intervals, and error structures in the tracer measurements affect the apparent mean residence time and the apparent shape of the travel time distribution.
Parameter estimation in Probabilistic Seismic Hazard Analysis: current problems and some solutions
NASA Astrophysics Data System (ADS)
Vermeulen, Petrus
2017-04-01
A typical Probabilistic Seismic Hazard Analysis (PSHA) comprises identification of seismic source zones, determination of hazard parameters for these zones, selection of an appropriate ground motion prediction equation (GMPE), and integration over probabilities according the Cornell-McGuire procedure. Determination of hazard parameters often does not receive the attention it deserves, and, therefore, problems therein are often overlooked. Here, many of these problems are identified, and some of them addressed. The parameters that need to be identified are those associated with the frequency-magnitude law, those associated with earthquake recurrence law in time, and the parameters controlling the GMPE. This study is concerned with the frequency-magnitude law and temporal distribution of earthquakes, and not with GMPEs. TheGutenberg-Richter frequency-magnitude law is usually adopted for the frequency-magnitude law, and a Poisson process for earthquake recurrence in time. Accordingly, the parameters that need to be determined are the slope parameter of the Gutenberg-Richter frequency-magnitude law, i.e. the b-value, the maximum value at which the Gutenberg-Richter law applies mmax, and the mean recurrence frequency,λ, of earthquakes. If, instead of the Cornell-McGuire, the "Parametric-Historic procedure" is used, these parameters do not have to be known before the PSHA computations, they are estimated directly during the PSHA computation. The resulting relation for the frequency of ground motion vibration parameters has an analogous functional form to the frequency-magnitude law, which is described by parameters γ (analogous to the b¬-value of the Gutenberg-Richter law) and the maximum possible ground motion amax (analogous to mmax). Originally, the approach was possible to apply only to the simple GMPE, however, recently a method was extended to incorporate more complex forms of GMPE's. With regards to the parameter mmax, there are numerous methods of estimation, none of which is accepted as the standard one. There is also much controversy surrounding this parameter. In practice, when estimating the above mentioned parameters from seismic catalogue, the magnitude, mmin, from which a seismic catalogue is complete becomes important.Thus, the parameter mmin is also considered as a parameter to be estimated in practice. Several methods are discussed in the literature, and no specific method is preferred. Methods usually aim at identifying the point where a frequency-magnitude plot starts to deviate from linearity due to data loss. Parameter estimation is clearly a rich field which deserves much attention and, possibly standardization, of methods. These methods should be the sound and efficient, and a query into which methods are to be used - and for that matter which ones are not to be used - is in order.
Chenxi, Li; Chen, Yanni; Li, Youjun; Wang, Jue; Liu, Tian
2016-06-01
The multiscale entropy (MSE) is a novel method for quantifying the intrinsic dynamical complexity of physiological systems over several scales. To evaluate this method as a promising way to explore the neural mechanisms in ADHD, we calculated the MSE in EEG activity during the designed task. EEG data were collected from 13 outpatient boys with a confirmed diagnosis of ADHD and 13 age- and gender-matched normal control children during their doing multi-source interference task (MSIT). We estimated the MSE by calculating the sample entropy values of delta, theta, alpha and beta frequency bands over twenty time scales using coarse-grained procedure. The results showed increased complexity of EEG data in delta and theta frequency bands and decreased complexity in alpha frequency bands in ADHD children. The findings of this study revealed aberrant neural connectivity of kids with ADHD during interference task. The results showed that MSE method may be a new index to identify and understand the neural mechanism of ADHD. Copyright © 2016 Elsevier Inc. All rights reserved.
Delaney, Nigel F.; Marx, Christopher J.
2012-01-01
Understanding evolutionary dynamics within microbial populations requires the ability to accurately follow allele frequencies through time. Here we present a rapid, cost-effective method (FREQ-Seq) that leverages Illumina next-generation sequencing for localized, quantitative allele frequency detection. Analogous to RNA-Seq, FREQ-Seq relies upon counts from the >105 reads generated per locus per time-point to determine allele frequencies. Loci of interest are directly amplified from a mixed population via two rounds of PCR using inexpensive, user-designed oligonucleotides and a bar-coded bridging primer system that can be regenerated in-house. The resulting bar-coded PCR products contain the adapters needed for Illumina sequencing, eliminating further library preparation. We demonstrate the utility of FREQ-Seq by determining the order and dynamics of beneficial alleles that arose as a microbial population, founded with an engineered strain of Methylobacterium, evolved to grow on methanol. Quantifying allele frequencies with minimal bias down to 1% abundance allowed effective analysis of SNPs, small in-dels and insertions of transposable elements. Our data reveal large-scale clonal interference during the early stages of adaptation and illustrate the utility of FREQ-Seq as a cost-effective tool for tracking allele frequencies in populations. PMID:23118913
NASA Astrophysics Data System (ADS)
Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.
2012-10-01
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
Instantaneous frequency based newborn EEG seizure characterisation
NASA Astrophysics Data System (ADS)
Mesbah, Mostefa; O'Toole, John M.; Colditz, Paul B.; Boashash, Boualem
2012-12-01
The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are better represented in the joint time-frequency domain than in either the time domain or the frequency domain. Characterising newborn EEG seizure nonstationarities helps to better understand their time-varying nature and, therefore, allow developing efficient signal processing methods for both modelling and seizure detection and classification. In this article, we used the instantaneous frequency (IF) extracted from a time-frequency distribution to characterise newborn EEG seizures. We fitted four frequency modulated (FM) models to the extracted IFs, namely a linear FM, a piecewise-linear FM, a sinusoidal FM, and a hyperbolic FM. Using a database of 30-s EEG seizure epochs acquired from 35 newborns, we were able to show that, depending on EEG channel, the sinusoidal and piecewise-linear FM models best fitted 80-98% of seizure epochs. To further characterise the EEG seizures, we calculated the mean frequency and frequency span of the extracted IFs. We showed that in the majority of the cases (>95%), the mean frequency resides in the 0.6-3 Hz band with a frequency span of 0.2-1 Hz. In terms of the frequency of occurrence of the four seizure models, the statistical analysis showed that there is no significant difference( p = 0.332) between the two hemispheres. The results also indicate that there is no significant differences between the two hemispheres in terms of the mean frequency ( p = 0.186) and the frequency span ( p = 0.302).
Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects
2017-02-22
AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0183 5c. PROGRAM
Methodology for fault detection in induction motors via sound and vibration signals
NASA Astrophysics Data System (ADS)
Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus
2017-01-01
Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.
NASA Astrophysics Data System (ADS)
Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.
2018-01-01
Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.
Investigation of spectral analysis techniques for randomly sampled velocimetry data
NASA Technical Reports Server (NTRS)
Sree, Dave
1993-01-01
It is well known that velocimetry (LV) generates individual realization velocity data that are randomly or unevenly sampled in time. Spectral analysis of such data to obtain the turbulence spectra, and hence turbulence scales information, requires special techniques. The 'slotting' technique of Mayo et al, also described by Roberts and Ajmani, and the 'Direct Transform' method of Gaster and Roberts are well known in the LV community. The slotting technique is faster than the direct transform method in computation. There are practical limitations, however, as to how a high frequency and accurate estimate can be made for a given mean sampling rate. These high frequency estimates are important in obtaining the microscale information of turbulence structure. It was found from previous studies that reliable spectral estimates can be made up to about the mean sampling frequency (mean data rate) or less. If the data were evenly samples, the frequency range would be half the sampling frequency (i.e. up to Nyquist frequency); otherwise, aliasing problem would occur. The mean data rate and the sample size (total number of points) basically limit the frequency range. Also, there are large variabilities or errors associated with the high frequency estimates from randomly sampled signals. Roberts and Ajmani proposed certain pre-filtering techniques to reduce these variabilities, but at the cost of low frequency estimates. The prefiltering acts as a high-pass filter. Further, Shapiro and Silverman showed theoretically that, for Poisson sampled signals, it is possible to obtain alias-free spectral estimates far beyond the mean sampling frequency. But the question is, how far? During his tenure under 1993 NASA-ASEE Summer Faculty Fellowship Program, the author investigated from his studies on the spectral analysis techniques for randomly sampled signals that the spectral estimates can be enhanced or improved up to about 4-5 times the mean sampling frequency by using a suitable prefiltering technique. But, this increased bandwidth comes at the cost of the lower frequency estimates. The studies further showed that large data sets of the order of 100,000 points, or more, high data rates, and Poisson sampling are very crucial for obtaining reliable spectral estimates from randomly sampled data, such as LV data. Some of the results of the current study are presented.
PLATSIM: A Simulation and Analysis Package for Large-Order Flexible Systems. Version 2.0
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Kenny, Sean P.; Giesy, Daniel P.
1997-01-01
The software package PLATSIM provides efficient time and frequency domain analysis of large-order generic space platforms. PLATSIM can perform open-loop analysis or closed-loop analysis with linear or nonlinear control system models. PLATSIM exploits the particular form of sparsity of the plant matrices for very efficient linear and nonlinear time domain analysis, as well as frequency domain analysis. A new, original algorithm for the efficient computation of open-loop and closed-loop frequency response functions for large-order systems has been developed and is implemented within the package. Furthermore, a novel and efficient jitter analysis routine which determines jitter and stability values from time simulations in a very efficient manner has been developed and is incorporated in the PLATSIM package. In the time domain analysis, PLATSIM simulates the response of the space platform to disturbances and calculates the jitter and stability values from the response time histories. In the frequency domain analysis, PLATSIM calculates frequency response function matrices and provides the corresponding Bode plots. The PLATSIM software package is written in MATLAB script language. A graphical user interface is developed in the package to provide convenient access to its various features.
Pierobon, Alberto; DiZio, Paul; Lackner, James R.
2013-01-01
We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired individuals with limited kinematic repeatability. In contrast with previous dynamic stiffness studies, we found that stiffness varies during movement, achieving levels higher than during static postural control. High stiffness was associated with elevated reflexive activity. We observed a decrease in stiffness and a marked reduction in long-latency reflexes around the reaching movement velocity peak. This pattern could partly explain the difference between the high stiffness reported in postural studies and the low stiffness measured in dynamic estimation studies, where perturbations are typically applied near the peak velocity point. PMID:23945781
Polar plot representation of time-resolved fluorescence.
Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M
2014-01-01
Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.
NASA Astrophysics Data System (ADS)
Yang, Qiuming
2018-01-01
This paper presents a predictability study of the 20-30-day low-frequency rainfall over the lower reaches of the Yangtze River valley (LYRV). This study relies on an extended complex autoregressive (ECAR) model method, which is based on the principal components of the global 850 hPa low-frequency meridional wind. ECAR is a recently advanced climate forecast method, based on data-driven models. It not only reflects the lagged variations information between the leading low-frequency components of the global circulation and rainfall in a complex space, but also displays the ability to describe the synergy variations of low-frequency components of a climate system in a low dimensional space. A 6-year forecast experiment is conducted on the low-frequency rainfall over the LYRV for the extended-range daily forecasts during 2009-2014, based on the time-varying high-order ECAR. These experimental results demonstrate that the useful skills of the real-time forecasts are achieved for an extended lead-time up to 28 days with a fifth-order model, and are also shown to be 27-day lead for forecasts which are initiated from weak intraseasonal oscillation (ISO). This high-order ECAR displays the ability to significantly improve the predictions of the ISO. The analysis of the 20-30-day ISO predictability reveals a predictability limit of about 28-40 days. Therefore, the forecast framework used in this study is determined to have the potential to assist in improving the real-time forecasts for the 20-30-day oscillations related to the heavy rainfall over the LYRV in summer.
Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A
2012-01-01
A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
Aristizabal, F.; Glavinovic, M. I.
2003-01-01
Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the “composite spectra” of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses. PMID:14507683
Aristizabal, F; Glavinovic, M I
2003-10-01
Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the "composite spectra" of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2017-12-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2018-06-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
NASA Astrophysics Data System (ADS)
Maslov, Leonid B.
2003-10-01
Recent clinical studies clearly indicate that the resonant frequencies can be used to assess the healing state of a fractured long bone. Although these studies clearly show a certain relation between the resonant frequencies and the stiffness of the bone, the nature of this relation has not yet studied very well. The attempt of considering the locomotion system of a human shank in complex is firstly presented in this paper. The finite element model of the soft and hard tissues composed of the human shank is developed and the vibration numerical analysis is performed. The values of the resonant frequencies for the isolated tibia and for the complex biomechanical system formed by tibia, fibula, achilles tendon and principal shank muscles are obtained during finite element analysis. The obtained result can be used as theoretical fundament to developing low-frequency resonant methods for testing and diagnostics of the physiological conditions of soft and hard tissue during medical treatment and rehabilitation time period after surgery operation.
Representativeness of direct observations selected using a work-sampling equation.
Sharp, Rebecca A; Mudford, Oliver C; Elliffe, Douglas
2015-01-01
Deciding on appropriate sampling to obtain representative samples of behavior is important but not straightforward, because the relative duration of the target behavior may affect its observation in a given sampling interval. Work-sampling methods, which offer a way to adjust the frequency of sampling according to a priori or ongoing estimates of the behavior to achieve a preselected level of representativeness, may provide a solution. Full-week observations of 7 behaviors were conducted for 3 students with autism spectrum disorder and intellectual disabilities. Work-sampling methods were used to select momentary time samples from the full time-of-interest, which produced representative samples. However, work sampling required impractically high numbers of time samples to obtain representative samples. More practical momentary time samples produced less representative samples, particularly for low-duration behaviors. The utility and limits of work-sampling methods for applied behavior analysis are discussed. © Society for the Experimental Analysis of Behavior.
Application of the Radon-FCL approach to seismic random noise suppression and signal preservation
NASA Astrophysics Data System (ADS)
Meng, Fanlei; Li, Yue; Liu, Yanping; Tian, Yanan; Wu, Ning
2016-08-01
The fractal conservation law (FCL) is a linear partial differential equation that is modified by an anti-diffusive term of lower order. The analysis indicated that this algorithm could eliminate high frequencies and preserve or amplify low/medium-frequencies. Thus, this method is quite suitable for the simultaneous noise suppression and enhancement or preservation of seismic signals. However, the conventional FCL filters seismic data only along the time direction, thereby ignoring the spatial coherence between neighbouring traces, which leads to the loss of directional information. Therefore, we consider the development of the conventional FCL into the time-space domain and propose a Radon-FCL approach. We applied a Radon transform to implement the FCL method in this article; performing FCL filtering in the Radon domain achieves a higher level of noise attenuation. Using this method, seismic reflection events can be recovered with the sacrifice of fewer frequency components while effectively attenuating more random noise than conventional FCL filtering. Experiments using both synthetic and common shot point data demonstrate the advantages of the Radon-FCL approach versus the conventional FCL method with regard to both random noise attenuation and seismic signal preservation.
Miller, Brian S; Calderan, Susannah; Gillespie, Douglas; Weatherup, Graham; Leaper, Russell; Collins, Kym; Double, Michael C
2016-03-01
Directional frequency analysis and recording (DIFAR) sonobuoys can allow real-time acoustic localization of baleen whales for underwater tracking and remote sensing, but limited availability of hardware and software has prevented wider usage. These software limitations were addressed by developing a module in the open-source software PAMGuard. A case study is presented demonstrating that this software provides greater efficiency and accessibility than previous methods for detecting, localizing, and tracking Antarctic blue whales in real time. Additionally, this software can easily be extended to track other low and mid frequency sounds including those from other cetaceans, pinnipeds, icebergs, shipping, and seismic airguns.
The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.
Bigan, C; Strungaru, R
1998-01-01
During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.
Modelling switching-time effects in high-frequency power conditioning networks
NASA Technical Reports Server (NTRS)
Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.
1979-01-01
Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.
NASA Technical Reports Server (NTRS)
Lim, Sang G.; Brewe, David E.; Prahl, Joseph M.
1990-01-01
The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution.
NASA Astrophysics Data System (ADS)
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-06-15
An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.
A data-driven approach for denoising GNSS position time series
NASA Astrophysics Data System (ADS)
Li, Yanyan; Xu, Caijun; Yi, Lei; Fang, Rongxin
2017-12-01
Global navigation satellite system (GNSS) datasets suffer from common mode error (CME) and other unmodeled errors. To decrease the noise level in GNSS positioning, we propose a new data-driven adaptive multiscale denoising method in this paper. Both synthetic and real-world long-term GNSS datasets were employed to assess the performance of the proposed method, and its results were compared with those of stacking filtering, principal component analysis (PCA) and the recently developed multiscale multiway PCA. It is found that the proposed method can significantly eliminate the high-frequency white noise and remove the low-frequency CME. Furthermore, the proposed method is more precise for denoising GNSS signals than the other denoising methods. For example, in the real-world example, our method reduces the mean standard deviation of the north, east and vertical components from 1.54 to 0.26, 1.64 to 0.21 and 4.80 to 0.72 mm, respectively. Noise analysis indicates that for the original signals, a combination of power-law plus white noise model can be identified as the best noise model. For the filtered time series using our method, the generalized Gauss-Markov model is the best noise model with the spectral indices close to - 3, indicating that flicker walk noise can be identified. Moreover, the common mode error in the unfiltered time series is significantly reduced by the proposed method. After filtering with our method, a combination of power-law plus white noise model is the best noise model for the CMEs in the study region.
Qian, S.; Dunham, M.E.
1996-11-12
A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.
NASA Astrophysics Data System (ADS)
Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di
2017-04-01
This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.
Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Boucher, Matthew J.
2017-01-01
Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.
Photoacoustic detection of blood in dental pulp by using short-time Fourier transform
NASA Astrophysics Data System (ADS)
Yamada, Azusa; Kakino, Satoko; Matsuura, Yuji
2016-03-01
A method based on photoacoustic analysis is proposed to diagnose dental pulp vitality. Photoacoustic analysis enables to get signal from deeper tissues than other optical analyses and therefore, signal detection from root canal of thick dental tissues such as molar teeth is expected. As a light source for excitation of photoacoustic waves, a microchip Q-switched YAG laser with a wavelength of 1064 nm was used and owing to large penetration depth of the near infrared laser, photoacoustic signals from dental root were successfully obtained. It was found that the photoacoustic signals from the teeth containing hemoglobin solution in the pulp cavity provide vibration in high frequency region. It was also shown that the intensities of the high frequency component have correlation with the hemoglobin concentration of solution. We applied short-time Fourier transform for evaluation of photoacoustic signals and this analysis clearly showed photoacoustic signals from dental root.
Real-time optical image processing techniques
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1988-01-01
Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.
NASA Astrophysics Data System (ADS)
Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige
2018-06-01
In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.
NASA Astrophysics Data System (ADS)
Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige
2018-02-01
In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.
Kalia, Nimisha; Lavin, Robert A; Yuspeh, Larry; Bernacki, Edward J; Tao, Xuguang Grant
2016-09-01
In recent decades, the frequency of Medical Only (MO) and Lost Time (LT) workers' compensation claims has decreased, while average severity (medical and indemnity costs) has increased. The aim of this study was to compare claim frequency, mix, and severity (cost) over two periods using a claim cohort follow-up method. Sixty-two thousand five hundred thirty-three claims during two periods (1999 to 2002 and 2003 to 2006) were followed seven years postinjury. Descriptive analysis and significant testing methods were used to compare claim frequency and costs. The number of claims per $1 M of premium decreased 50.4% for MO claims and 35.6% for LT claims, consequently increasing the LT claim proportion. The average cost of LT claims did not increase. The severity increase is attributable to the proportional change in LT and MO claims. While the number of LT claims decreased, the inflation-adjusted average cost of LT claims did not increase.
Time-frequency characterisation of paediatric heart sounds
NASA Astrophysics Data System (ADS)
Leung, Terence Sze-Tat
1998-08-01
The operation of the heart can be monitored by the sounds it emits. Structural defects or malfunction of the heart valves will cause additional abnormal sounds such as murmurs and ejection clicks. This thesis aims to characterise the heart sounds of three groups of children who either have an Atrial Septal Defect (ASD), a Ventricular Septal Defect (VSD), or are normal. Two aspects of heart sounds have been specifically investigated; the time-frequency analysis of systolic murmurs and the identification of splitting patterns in the second heart sound. The analysis is based on 42 paediatric heart sound recordings. Murmurs are sounds generated by turbulent flow of blood in the heart. They can be found in patients with both pathological and non-pathological conditions. The acoustic quality of the murmurs generated in each heart condition are different. The first aspect of this work is to characterise the three types of murmurs in the time- frequency domain. Modern time-frequency methods including, the Wigner-Ville Distribution, Smoothed Pseudo Wigner-Ville Distribution, Choi-Williams Distribution and spectrogram have been applied to characterise the murmurs. It was found that the three classes of murmurs exhibited different signatures in their time-frequency representations. By performing Discriminant Analysis, it was shown that spectral features extracted from the time- frequency representations can be used to distinguish between the three classes. The second aspect of the research is to identify splitting patterns in the second heart sound, which consists of two acoustic components due to the closure of the aortic valve and pulmonary valve. The aortic valve usually closes before the pulmonary valve, introducing a time delay known as 'split'. The split normally varies in duration over the respiratory cycle. In certain pathologies such as the ASD, the split becomes fixed over the respiration cycle. A technique based on adaptive signal decomposition is developed to measure the split and hence to identify the splitting pattern as either 'variable' or 'fixed'. This work has successfully characterised the murmurs and splitting patterns in the three groups of patients. Features extracted can be used for diagnostic purposes.
Detection of Geomagnetic Pulsations of the Earth Using GPS-TEC Data
NASA Astrophysics Data System (ADS)
Koroglu, Ozan; Arikan, Feza; Köroǧlu, Meltem; Sabri Ozkazanc, Yakup
2016-07-01
The magnetosphere of the Earth is made up of both magnetic fields and plasma. In this layer, plasma waves propagate as Ultra Low Frequency (ULF) waves having mHz scale frequencies. ULF waves are produced due to complicated solar-geomagnetic interactions. In the literature, these ULF waves are defined as pulsations. The geomagnetic pulsations are classified into main two groups as continuous pulsations (Pc) and irregular pulsations (Pi). These pulsations can be determined by ionospheric parameters due to the complex lithosphere-ionosphere-magnetosphere coupling processes. Total Electron Content (TEC) is one of the most important parameters for investigating the variability of ionosphere. Global Positioning System (GPS) provides a cost-effective means for estimating TEC from GPS satellite orbital height of 20,000 km to the ground based receivers. Therefore, the time series of GPS-TEC inherently contains the above mentioned ULF waves. In this study, time series analysis of GPS-TEC is carried out by applying periodogram method to the mid-latitude annual TEC data. After the analysis of GPS-TEC data obtained for GPS stations located in Central Europe and Turkey for 2011, it is observed that some of the fundamental frequencies that are indicators of Pc waves, diurnal and semi-diurnal periodicity and earth-free oscillations can be identified. These results will be used in determination of low frequency trend structure of magnetosphere and ionosphere. Further investigation of remaining relatively low magnitude frequencies, all Pi and Pc can be identified by using time and frequency domain techniques such as wavelet analysis. This study is supported by the joint TUBITAK 115E915 and joint TUBITAK114E092 and AS CR 14/001 projects.
García Iglesias, Daniel; Roqueñi Gutiérrez, Nieves; De Cos, Francisco Javier; Calvo, David
2018-01-01
Background: Fragmentation and delayed potentials in the QRS signal of patients have been postulated as risk markers for Sudden Cardiac Death (SCD). The analysis of the high-frequency spectral content may be useful for quantification. Methods: Forty-two consecutive patients with prior history of SCD or malignant arrhythmias (patients) where compared with 120 healthy individuals (controls). The QRS complexes were extracted with a modified Pan-Tompkins algorithm and processed with the Continuous Wavelet Transform to analyze the high-frequency content (85–130 Hz). Results: Overall, the power of the high-frequency content was higher in patients compared with controls (170.9 vs. 47.3 103nV2Hz−1; p = 0.007), with a prolonged time to reach the maximal power (68.9 vs. 64.8 ms; p = 0.002). An analysis of the signal intensity (instantaneous average of cumulative power), revealed a distinct function between patients and controls. The total intensity was higher in patients compared with controls (137.1 vs. 39 103nV2Hz−1s−1; p = 0.001) and the time to reach the maximal intensity was also prolonged (88.7 vs. 82.1 ms; p < 0.001). Discussion: The high-frequency content of the QRS complexes was distinct between patients at risk of SCD and healthy controls. The wavelet transform is an efficient tool for spectral analysis of the QRS complexes that may contribute to stratification of risk. PMID:29439530
Intelligent technologies in process of highly-precise products manufacturing
NASA Astrophysics Data System (ADS)
Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.
2017-10-01
One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.
Full waveform inversion using a decomposed single frequency component from a spectrogram
NASA Astrophysics Data System (ADS)
Ha, Jiho; Kim, Seongpil; Koo, Namhyung; Kim, Young-Ju; Woo, Nam-Sub; Han, Sang-Mok; Chung, Wookeen; Shin, Sungryul; Shin, Changsoo; Lee, Jaejoon
2018-06-01
Although many full waveform inversion methods have been developed to construct velocity models of subsurface, various approaches have been presented to obtain an inversion result with long-wavelength features even though seismic data lacking low-frequency components were used. In this study, a new full waveform inversion algorithm was proposed to recover a long-wavelength velocity model that reflects the inherent characteristics of each frequency component of seismic data using a single-frequency component decomposed from the spectrogram. We utilized the wavelet transform method to obtain the spectrogram, and the decomposed signal from the spectrogram was used as transformed data. The Gauss-Newton method with the diagonal elements of an approximate Hessian matrix was used to update the model parameters at each iteration. Based on the results of time-frequency analysis in the spectrogram, numerical tests with some decomposed frequency components were performed using a modified SEG/EAGE salt dome (A-A‧) line to demonstrate the feasibility of the proposed inversion algorithm. This demonstrated that a reasonable inverted velocity model with long-wavelength structures can be obtained using a single frequency component. It was also confirmed that when strong noise occurs in part of the frequency band, it is feasible to obtain a long-wavelength velocity model from the noise data with a frequency component that is less affected by the noise. Finally, it was confirmed that the results obtained from the spectrogram inversion can be used as an initial velocity model in conventional inversion methods.
The joint time-frequency spectrogram structure of heptanes boilover noise
NASA Astrophysics Data System (ADS)
Xu, Qiang
2006-04-01
An experiment was conducted to study the noise characteristics in the boilover phenomena. The boilover occurs in the combustion of a liquid fuel floating on water. It will cause a sharp increase in burning rate and external radiation. Explosive burning of the fuel would cause potential safety consequence. Combustion noise accompanies the development of fire and displays different characteristics in typical period. These characteristics can be used to predict the start time of boilover. The acoustic signal in boilover procedure during the combustion of heptanes-water mixture is obtained in a set of experiments. Joint time-frequency analysis (JTFA) method is applied in the treatment of noise data. Several JTFA algorithms were used in the evaluation. These algorithms include Gabor, adaptive spectrogram, cone shape distribution, choi-williams distribution, Wigner-Ville Distribution, and Short Time Fourier Transform with different windows such as rectangular, Blackman, Hamming and Hanning. Time-frequency distribution patterns of the combustion noise are obtained, and they are compared with others from jet flow and small plastic bubble blow up.
Network Analyses for Space-Time High Frequency Wind Data
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Kanevski, Mikhail
2017-04-01
Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.
Theory, implementation and applications of nonstationary Gabor frames
Balazs, P.; Dörfler, M.; Jaillet, F.; Holighaus, N.; Velasco, G.
2011-01-01
Signal analysis with classical Gabor frames leads to a fixed time–frequency resolution over the whole time–frequency plane. To overcome the limitations imposed by this rigidity, we propose an extension of Gabor theory that leads to the construction of frames with time–frequency resolution changing over time or frequency. We describe the construction of the resulting nonstationary Gabor frames and give the explicit formula for the canonical dual frame for a particular case, the painless case. We show that wavelet transforms, constant-Q transforms and more general filter banks may be modeled in the framework of nonstationary Gabor frames. Further, we present the results in the finite-dimensional case, which provides a method for implementing the above-mentioned transforms with perfect reconstruction. Finally, we elaborate on two applications of nonstationary Gabor frames in audio signal processing, namely a method for automatic adaptation to transients and an algorithm for an invertible constant-Q transform. PMID:22267893
Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS).
Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M; Khan, Ajmal
2016-01-01
This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher's exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher's exact test, logistic regression, epidemiological statistics, and non-parametric tests. This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design.
Automated segmentation of linear time-frequency representations of marine-mammal sounds.
Dadouchi, Florian; Gervaise, Cedric; Ioana, Cornel; Huillery, Julien; Mars, Jérôme I
2013-09-01
Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman-Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman-Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms.
An operational modal analysis method in frequency and spatial domain
NASA Astrophysics Data System (ADS)
Wang, Tong; Zhang, Lingmi; Tamura, Yukio
2005-12-01
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.
Time-frequency analysis of human motion during rhythmic exercises.
Omkar, S N; Vyas, Khushi; Vikranth, H N
2011-01-01
Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.
The use of SESK as a trend parameter for localized bearing fault diagnosis in induction machines.
Saidi, Lotfi; Ben Ali, Jaouher; Benbouzid, Mohamed; Bechhoefer, Eric
2016-07-01
A critical work of bearing fault diagnosis is locating the optimum frequency band that contains faulty bearing signal, which is usually buried in the noise background. Now, envelope analysis is commonly used to obtain the bearing defect harmonics from the envelope signal spectrum analysis and has shown fine results in identifying incipient failures occurring in the different parts of a bearing. However, the main step in implementing envelope analysis is to determine a frequency band that contains faulty bearing signal component with the highest signal noise level. Conventionally, the choice of the band is made by manual spectrum comparison via identifying the resonance frequency where the largest change occurred. In this paper, we present a squared envelope based spectral kurtosis method to determine optimum envelope analysis parameters including the filtering band and center frequency through a short time Fourier transform. We have verified the potential of the spectral kurtosis diagnostic strategy in performance improvements for single-defect diagnosis using real laboratory-collected vibration data sets. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih
2013-04-01
In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.
An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram.
Barraco, R; Persano Adorno, D; Brai, M
2011-12-01
Most biomedical signals are non-stationary. The knowledge of their frequency content and temporal distribution is then useful in a clinical context. The wavelet analysis is appropriate to achieve this task. The present paper uses this method to reveal hidden characteristics and anomalies of the human a-wave, an important component of the electroretinogram since it is a measure of the functional integrity of the photoreceptors. We here analyse the time-frequency features of the a-wave both in normal subjects and in patients affected by Achromatopsia, a pathology disturbing the functionality of the cones. The results indicate the presence of two or three stable frequencies that, in the pathological case, shift toward lower values and change their times of occurrence. The present findings are a first step toward a deeper understanding of the features of the a-wave and possible applications to diagnostic procedures in order to recognise incipient photoreceptoral pathologies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Time-frequency analysis of backscattered signals from diffuse radar targets
NASA Astrophysics Data System (ADS)
Kenny, O. P.; Boashash, B.
1993-06-01
The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.
NASA Astrophysics Data System (ADS)
Lobzin, V. V.; Krasnoselskikh, V. V.; Musatenko, K.; Dudok de Wit, T.
2008-09-01
A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBi
Cho, Sanghee; Grazioso, Ron; Zhang, Nan; Aykac, Mehmet; Schmand, Matthias
2011-12-07
The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.
NASA Astrophysics Data System (ADS)
Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali
2017-07-01
The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-08
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.
Adaptive noise cancelling and time-frequency techniques for rail surface defect detection
NASA Astrophysics Data System (ADS)
Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.
2015-03-01
Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.
SSVEP recognition using common feature analysis in brain-computer interface.
Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2015-04-15
Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.
Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang
2018-02-20
We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.
A statistical package for computing time and frequency domain analysis
NASA Technical Reports Server (NTRS)
Brownlow, J.
1978-01-01
The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.
NASA Astrophysics Data System (ADS)
Dibike, Y. B.; Eum, H. I.; Prowse, T. D.
2017-12-01
Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.
Miyabara, Renata; Berg, Karsten; Kraemer, Jan F; Baltatu, Ovidiu C; Wessel, Niels; Campos, Luciana A
2017-01-01
Objective: The aim of this study was to identify the most sensitive heart rate and blood pressure variability (HRV and BPV) parameters from a given set of well-known methods for the quantification of cardiovascular autonomic function after several autonomic blockades. Methods: Cardiovascular sympathetic and parasympathetic functions were studied in freely moving rats following peripheral muscarinic (methylatropine), β1-adrenergic (metoprolol), muscarinic + β1-adrenergic, α1-adrenergic (prazosin), and ganglionic (hexamethonium) blockades. Time domain, frequency domain and symbolic dynamics measures for each of HRV and BPV were classified through paired Wilcoxon test for all autonomic drugs separately. In order to select those variables that have a high relevance to, and stable influence on our target measurements (HRV, BPV) we used Fisher's Method to combine the p -value of multiple tests. Results: This analysis led to the following best set of cardiovascular variability parameters: The mean normal beat-to-beat-interval/value (HRV/BPV: meanNN), the coefficient of variation (cvNN = standard deviation over meanNN) and the root mean square differences of successive (RMSSD) of the time domain analysis. In frequency domain analysis the very-low-frequency (VLF) component was selected. From symbolic dynamics Shannon entropy of the word distribution (FWSHANNON) as well as POLVAR3, the non-linear parameter to detect intermittently decreased variability, showed the best ability to discriminate between the different autonomic blockades. Conclusion: Throughout a complex comparative analysis of HRV and BPV measures altered by a set of autonomic drugs, we identified the most sensitive set of informative cardiovascular variability indexes able to pick up the modifications imposed by the autonomic challenges. These indexes may help to increase our understanding of cardiovascular sympathetic and parasympathetic functions in translational studies of experimental diseases.
Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
NASA Astrophysics Data System (ADS)
Hartmann, Timo; Tanner, Gregor; Xie, Gang; Chappell, David; Bajars, Janis
2016-09-01
Dynamical Energy Analysis (DEA) combined with the Discrete Flow Mapping technique (DFM) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. This has proven to enhance vibro-acoustic simulations considerably by making it possible to work directly on existing finite element meshes circumventing time-consuming and costly re-modelling strategies. In addition, DFM provides detailed spatial information about the vibrational energy distribution within a complex structure in the mid-to-high frequency range. We will present here progress in the development of the DEA method towards handling complex FEM-meshes including Rigid Body Elements. In addition, structure borne transmission paths due to spot welds are considered. We will present applications for a car floor structure.