2011-09-01
Crawford, K., " Time - Resolved Infrared Spectrophotometric Observations of IRIDIUM satellites and related Resident Space Objects", IAC-09-A6.1.17...Figure 10 for a geosynchronous (GEO) satellite . The figure shows three sets of multi-spectral signatures were collected at different times of the...provides a simple method to determine suitable observation conditions for the cluster of satellites . For instance, on Day 0, the times of the
Tidal analysis of Met rocket wind data
NASA Technical Reports Server (NTRS)
Bedinger, J. F.; Constantinides, E.
1976-01-01
A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.
Emerging biomedical applications of time-resolved fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.
1994-07-01
Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.
Muthu, Pravin; Lutz, Stefan
2016-04-05
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time-resolved transillumination and optical tomography
NASA Astrophysics Data System (ADS)
de Haller, Emmanuel B.
1996-01-01
In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann
2009-02-01
Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
Time-resolved SERS for characterizing extracellular vesicles
NASA Astrophysics Data System (ADS)
Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo
2017-02-01
The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.
Wang, Huiyong; Yu, Shenjiang; Campiglia, Andres D
2009-02-15
A unique method for screening polycyclic aromatic hydrocarbons in drinking water samples is reported. Water samples (500 microl) are mixed and centrifuged with 950 microl of a commercial solution of 20 nm gold nanoparticles for pollutants extraction. The precipitate is treated with 2 microl of 1-pentanethiol and 48 microl of n-octane, and the supernatant is then analyzed via laser-excited time-resolved Shpol'skii spectroscopy. Fifteen priority pollutants are directly determined at liquid helium temperature (4.2 K) with the aid of a cryogenic fiber-optic probe. Unambiguous pollutant determination is carried out via spectral and lifetime analysis. Limits of detection are at the parts-per-trillion level. Analytical recoveries are similar to those obtained via high-performance liquid chromatography. The simplicity of the experimental procedure, use of microliters of organic solvent, short analysis time, selectivity, and excellent analytical figures of merit demonstrate the advantages of this environmentally friendly approach for routine analysis of numerous samples.
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
Konorov, Stanislav O; Turner, Robin F B; Blades, Michael W
2007-05-01
Efficient time-resolved coherent anti-Stokes Raman scattering (CARS) of atmospheric nitrogen and ethanol trapped in a nanoporous silica aerogel matrix is demonstrated. Silica aerogel hosts are attractive for analytical CARS spectroscopy due to their high porosity/low density, low refractive index, and low scattering cross-section. Differences between the resonant and nonresonant parts of the nonlinear optical susceptibilities lead to much longer relaxation times for analytes compared to the matrix. Time-resolved CARS can then be used to obtain a nearly background-free measurement at characteristic vibrations of the analyte. These results demonstrate the potential of this approach for rapid, sensitive, background-free analyses of analytes entrapped in the aerogel pores, which may be advantageous for some environmental, chemical, and biological sensing applications.
Application of spectroscopy and super-resolution microscopy: Excited state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Ujjal
Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10 -9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such asmore » lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.« less
Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors
2016-03-31
resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3 Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically
Green's functions in equilibrium and nonequilibrium from real-time bold-line Monte Carlo
NASA Astrophysics Data System (ADS)
Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.
2014-03-01
Green's functions for the Anderson impurity model are obtained within a numerically exact formalism. We investigate the limits of analytical continuation for equilibrium systems, and show that with real time methods even sharp high-energy features can be reliably resolved. Continuing to an Anderson impurity in a junction, we evaluate two-time correlation functions, spectral properties, and transport properties, showing how the correspondence between the spectral function and the differential conductance breaks down when nonequilibrium effects are taken into account. Finally, a long-standing dispute regarding this model has involved the voltage splitting of the Kondo peak, an effect which was predicted over a decade ago by approximate analytical methods but never successfully confirmed by numerics. We settle the issue by demonstrating in an unbiased manner that this splitting indeed occurs. Yad Hanadiv-Rothschild Foundation, TG-DMR120085, TG-DMR130036, NSF CHE-1213247, NSF DMR 1006282, DOE ER 46932.
NASA Astrophysics Data System (ADS)
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-01
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-14
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements
NASA Astrophysics Data System (ADS)
Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans
2001-05-01
Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.
An analytic approach to resolving problems in medical ethics.
Candee, D; Puka, B
1984-01-01
Education in ethics among practising professionals should provide a systematic procedure for resolving moral problems. A method for such decision-making is outlined using the two classical orientations in moral philosophy, teleology and deontology. Teleological views such as utilitarianism resolve moral dilemmas by calculating the excess of good over harm expected to be produced by each feasible alternative for action. The deontological view focuses on rights, duties, and principles of justice. Both methods are used to resolve the 1971 Johns Hopkins case of a baby born with Down's syndrome and duodenal atresia. PMID:6234395
Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.
2010-01-01
Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147
Recording 2-D Nutation NQR Spectra by Random Sampling Method
Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw
2010-01-01
The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121
Sahu, Kalyanasis; Nandi, Nilanjana; Dolai, Suman; Bera, Avisek
2018-06-05
Emission spectrum of a fluorophore undergoing excited state proton transfer (ESPT) often exhibits two distinct bands each representing emissions from protonated and deprotonated forms. The relative contribution of the two bands, best represented by an emission intensity ratio (R) (intensity maximum of the protonated band / intensity maximum of the deprotonated band), is an important parameter which usually denotes feasibility or promptness of the ESPT process. However, the use of ratio is only limited to the interpretation of steady-state fluorescence spectra. Here, for the first time, we exploit the time-dependence of the ratio (R(t)), calculated from time-resolved emission spectra (TRES) at different times, to analyze ESPT dynamics. TRES at different times were fitted with a sum of two lognormal-functions representing each peaks and then, the peak intensity ratio, R(t) was calculated and further fitted with an analytical function. Recently, a time-resolved area-normalized emission spectra (TRANES)-based analysis was presented where the decay of protonated emission or the rise of deprotonated emission intensity conveniently accounts for the ESPT dynamics. We show that these two methods are equivalent but the new method provides more insights on the nature of the ESPT process.
Li, Guixin; Nan, Hongyan; Zheng, Xingwang
2009-07-01
A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).
Quantitative analysis of time-resolved microwave conductivity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, Obadiah G.; Moore, David T.; Li, Zhen
Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less
Quantitative analysis of time-resolved microwave conductivity data
Reid, Obadiah G.; Moore, David T.; Li, Zhen; ...
2017-11-10
Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less
Measuring Link-Resolver Success: Comparing 360 Link with a Local Implementation of WebBridge
ERIC Educational Resources Information Center
Herrera, Gail
2011-01-01
This study reviewed link resolver success comparing 360 Link and a local implementation of WebBridge. Two methods were used: (1) comparing article-level access and (2) examining technical issues for 384 randomly sampled OpenURLs. Google Analytics was used to collect user-generated OpenURLs. For both methods, 360 Link out-performed the local…
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L
2004-01-01
This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.
Asadollahi, Aziz; Khazanovich, Lev
2018-04-11
The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.
DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization.
Reile, Indrek; Aspers, Ruud L E G; Tyburn, Jean-Max; Kempf, James G; Feiters, Martin C; Rutjes, Floris P J T; Tessari, Marco
2017-07-24
DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir
2015-04-01
In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations. Copyright © 2014 Elsevier B.V. All rights reserved.
Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich
2016-09-01
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
Coherent imaging at the diffraction limit
Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas
2014-01-01
X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects. PMID:25177990
Coherent imaging at the diffraction limit.
Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas
2014-09-01
X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects.
NASA Astrophysics Data System (ADS)
Przyjalgowski, Milosz A.; Ryder, Alan G.; Feely, Martin; Glynn, Thomas J.
2005-06-01
Hydrocarbon-bearing fluid inclusions (HCFI) are microscopic cavities within rocks that are filled with petroleum oil, the composition of which may not have changed since the trapping event. Thus, the composition of that entrapped oil can provide information about the formation and evolution of the oil reservoir. This type of information is important to the petroleum production and exploration industries. Crude oil fluorescence originates from the presence of cyclic aromatic compounds and the nature of the emission is governed by the chemical composition of the oil. Fluorescence based methods are widely used for analysis of crude oil because they offer robust, non-contact and non-destructive measurement options. The goal of our group is the development of a non-destructive analytical method for HCFI using time-resolved fluorescence methods. In broad terms, crude oil fluorescence behavior is governed by the concentration of quenching species and the distribution of fluorophores. For the intensity averaged fluorescence lifetime, the best correlations have been found between polar or alkane concentrations, but these are not suitable for robust, quantitative analysis. We have recently started to investigate another approach for characterizing oils by looking at Time-resolved Emission Spectra (TRES). TRES are constructed from intensities sampled at discrete times during the fluorescence decay of the sample. In this study, TRES, from a series of 10 crude oils from the Middle East, have been measured at discrete time gates (0.5 ns, 1 ns, 2 ns, 4 ns) over the 450-700 nm wavelength range. The spectral changes in TRES, such as time gate dependent Stokes' shift and spectral broadening, are analyzed in the context of energy transfer rates. In this work, the efficacy of using TRES for fingerprinting individual oils and HCFI is also demonstrated.
Wilson, Walter B.; Alfarhani, Bassam; Moore, Anthony F. T.; Bisson, Cristina; Wise, Stephen A.; Campiglia, Andres D.
2016-01-01
This article presents an alternative approach for the analysis of high molecular weight – polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2 K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 μg L−1 (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples. PMID:26653471
Wang, Xiaogang; Qi, Meiling; Fu, Ruonong
2014-12-05
Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Transient-state kinetic approach to mechanisms of enzymatic catalysis.
Fisher, Harvey F
2005-03-01
Transient-state kinetics by its inherent nature can potentially provide more directly observed detailed resolution of discrete events in the mechanistic time courses of enzyme-catalyzed reactions than its more widely used steady-state counterpart. The use of the transient-state approach, however, has been severely limited by the lack of any theoretically sound and applicable basis of interpreting the virtual cornucopia of time and signal-dependent phenomena that it provides. This Account describes the basic kinetic behavior of the transient state, critically examines some currently used analytic methods, discusses the application of a new and more soundly based "resolved component transient-state time-course method" to the L-glutamate-dehydrogenase reaction, and establishes new approaches for the analysis of both single- and multiple-step substituted transient-state kinetic isotope effects.
Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review.
Buckley, Kevin; Ryder, Alan G
2017-06-01
The production of active pharmaceutical ingredients (APIs) is currently undergoing its biggest transformation in a century. The changes are based on the rapid and dramatic introduction of protein- and macromolecule-based drugs (collectively known as biopharmaceuticals) and can be traced back to the huge investment in biomedical science (in particular in genomics and proteomics) that has been ongoing since the 1970s. Biopharmaceuticals (or biologics) are manufactured using biological-expression systems (such as mammalian, bacterial, insect cells, etc.) and have spawned a large (>€35 billion sales annually in Europe) and growing biopharmaceutical industry (BioPharma). The structural and chemical complexity of biologics, combined with the intricacy of cell-based manufacturing, imposes a huge analytical burden to correctly characterize and quantify both processes (upstream) and products (downstream). In small molecule manufacturing, advances in analytical and computational methods have been extensively exploited to generate process analytical technologies (PAT) that are now used for routine process control, leading to more efficient processes and safer medicines. In the analytical domain, biologic manufacturing is considerably behind and there is both a huge scope and need to produce relevant PAT tools with which to better control processes, and better characterize product macromolecules. Raman spectroscopy, a vibrational spectroscopy with a number of useful properties (nondestructive, non-contact, robustness) has significant potential advantages in BioPharma. Key among them are intrinsically high molecular specificity, the ability to measure in water, the requirement for minimal (or no) sample pre-treatment, the flexibility of sampling configurations, and suitability for automation. Here, we review and discuss a representative selection of the more important Raman applications in BioPharma (with particular emphasis on mammalian cell culture). The review shows that the properties of Raman have been successfully exploited to deliver unique and useful analytical solutions, particularly for online process monitoring. However, it also shows that its inherent susceptibility to fluorescence interference and the weakness of the Raman effect mean that it can never be a panacea. In particular, Raman-based methods are intrinsically limited by the chemical complexity and wide analyte-concentration-profiles of cell culture media/bioprocessing broths which limit their use for quantitative analysis. Nevertheless, with appropriate foreknowledge of these limitations and good experimental design, robust analytical methods can be produced. In addition, new technological developments such as time-resolved detectors, advanced lasers, and plasmonics offer potential of new Raman-based methods to resolve existing limitations and/or provide new analytical insights.
Zhang, Qi; Qu, Qiaoyu; Chen, Shanshan; Liu, Xiaowei; Li, Peiwu
2017-09-15
A rapid and quantitative time-resolved fluorescent immunochromatographic assay (TRFICA) for detecting carbofuran residues in agro-products was reported in this paper. This assay was developed based on double-label immunoprobes, one of which was a carbofuran-specific antibody coupled with europium microbeads for the test (T) line signal while the other was mouse IgG coupled with europium microbeads for the control (C) line signal. Quantitative relationships between carbofuran concentrations and T/C ratios were established to determine the analyte concentration. To increase assay accuracy, four standard curves were established for the agro-products (green bean, cabbage, apple, and pear). The limits of detection (LODs) ranged from 0.04 to 0.76mgL -1 . The spiked recoveries of carbofuran in the agro-products were in the range of 81-103%, which was in good agreement with a standard HPLC method. Therefore, we provided a new and reliable method for determination of N-methylcarbamate pesticide carbofuran residues in agro-products including vegetables and fruits. Copyright © 2017. Published by Elsevier Ltd.
Spectral simulations of an axisymmetric force-free pulsar magnetosphere
NASA Astrophysics Data System (ADS)
Cao, Gang; Zhang, Li; Sun, Sineng
2016-02-01
A pseudo-spectral method with an absorbing outer boundary is used to solve a set of time-dependent force-free equations. In this method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergence-free state of the magnetic field is enforced analytically by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be reproduced well by our pseudo-spectral code. Further, the method is used to present a time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well and the spin-down luminosity obtained in the steady state is in good agreement with the value given by Spitkovsky.
Time-resolved fluorescence spectroscopy for chemical sensors
NASA Astrophysics Data System (ADS)
Draxler, Sonja; Lippitsch, Max E.
1996-07-01
A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.
NASA Astrophysics Data System (ADS)
Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž
2015-03-01
The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.
Analytical model of coincidence resolving time in TOF-PET
NASA Astrophysics Data System (ADS)
Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.
2016-06-01
The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.
Ovanesyan, Zaven; Mimun, L. Christopher; Kumar, Gangadharan Ajith; Yust, Brian G.; Dannangoda, Chamath; Martirosyan, Karen S.; Sardar, Dhiraj K.
2015-01-01
Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519
Depth-resolved monitoring of analytes diffusion in ocular tissues
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Ghosn, Mohamad G.; Tuchin, Valery V.
2007-02-01
Optical coherence tomography (OCT) is a noninvasive imaging technique with high in-depth resolution. We employed OCT technique for monitoring and quantification of analyte and drug diffusion in cornea and sclera of rabbit eyes in vitro. Different analytes and drugs such as metronidazole, dexamethasone, ciprofloxacin, mannitol, and glucose solution were studied and whose permeability coefficients were calculated. Drug diffusion monitoring was performed as a function of time and as a function of depth. Obtained results suggest that OCT technique might be used for analyte diffusion studies in connective and epithelial tissues.
NASA Astrophysics Data System (ADS)
Echard, J.-P.; Cotte, M.; Dooryhee, E.; Bertrand, L.
2008-07-01
Though ancient violins and other stringed instruments are often revered for the beauty of their varnishes, the varnishing techniques are not much known. In particular, very few detailed varnish analyses have been published so far. Since 2002, a research program at the Musée de la musique (Paris) is dedicated to a detailed description of varnishes on famous ancient musical instruments using a series of novel analytical methods. For the first time, results are presented on the study of the varnish from a late 16th century Venetian lute, using synchrotron micro-analytical methods. Identification of both organic and inorganic compounds distributed within the individual layers of a varnish microsample has been performed using spatially resolved synchrotron Fourier transform infrared microscopy. The univocal identification of the mineral phases is obtained through synchrotron powder X-ray diffraction. The materials identified may be of utmost importance to understand the varnishing process and its similarities with some painting techniques. In particular, the proteinaceous binding medium and the calcium sulfate components (bassanite and anhydrite) that have been identified in the lower layers of the varnish microsample could be related, to a certain extent, to the ground materials of earlier Italian paintings.
2017-01-01
Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, εD(t), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors. PMID:28709377
Spatially resolved thermal desorption/ionization coupled with mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S
2013-02-26
A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms themore » gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.« less
Wilson, Walter B; Campiglia, Andres D
2011-09-28
We present an accurate method for the determination of isomers of high-molecular weight polycyclic aromatic hydrocarbons co-eluted in HPLC fractions. The feasibility of this approach is demonstrated with two isomers of molecular weight 302 with identical mass fragmentation patterns, namely dibenzo[a,i]pyrene and naphtho[2,3-a]pyrene. Qualitative and quantitative analysis is carried out via laser-excited time-resolved Shpol'skii spectroscopy at liquid helium temperature. Unambiguous identification of co-eluted isomers is based on their characteristic 4.2 K line-narrowed spectra in n-octane as well as their fluorescence lifetimes. Pre-concentration of HPLC fractions prior to spectroscopic analysis is performed with the aid of gold nanoparticles via an environmentally friendly procedure. In addition to the two co-eluted isomers, the analytical figures of merit of the entire procedure were evaluated with dibenzo[a,l]pyrene, dibenzo[a,h]pyrene and dibenzo[a,e]pyrene. The analytical recoveries from drinking water samples varied between 98.2±5.5 (dibenzo[a,l]pyrene) and 102.7±3.2% (dibenzo[a,i]pyrene). The limits of detection ranged from 51.1 ng L(-1) (naphtho[2,3-a]pyrene) to 154 ng L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its HPLC compatibility makes this approach an attractive alternative for the analysis of co-eluted isomers with identical mass spectra. Copyright © 2011 Elsevier B.V. All rights reserved.
Wei, Liping; Yan, Wenrong; Ho, Derek
2017-12-04
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.
Yan, Wenrong; Ho, Derek
2017-01-01
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568
Mattle, Eveline; Weiger, Markus; Schmidig, Daniel; Boesiger, Peter; Fey, Michael
2009-06-01
Hair care for humans is a major world industry with specialised tools, chemicals and techniques. Studying the effect of hair care products has become a considerable field of research, and besides mechanical and optical testing numerous advanced analytical techniques have been employed in this area. In the present work, another means of studying the properties of hair is added by demonstrating the feasibility of magnetic resonance imaging (MRI) of the human hair. Established dedicated nuclear magnetic resonance microscopy hardware (solenoidal radiofrequency microcoils and planar field gradients) and methods (constant time imaging) were adapted to the specific needs of hair MRI. Images were produced at a spatial resolution high enough to resolve the inner structure of the hair, showing contrast between cortex and medulla. Quantitative evaluation of a scan series with different echo times provided a T*(2) value of 2.6 ms for the cortex and a water content of about 90% for hairs saturated with water. The demonstration of the feasibility of hair MRI potentially adds a new tool to the large variety of analytical methods used nowadays in the development of hair care products.
Shakleya, Diaa M.
2011-01-01
A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5–5,000 pg/mg for cocaine and benzoylecgonine (BE), 25–5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50–5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250–5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were ≥92%, intra- and inter-day and total assay imprecision were ≤14% RSD and extraction efficiencies were ≥67.2% with ≤83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain. PMID:19229524
NASA Astrophysics Data System (ADS)
Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.
2006-02-01
This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.
Relativistic electron kinetic effects on laser diagnostics in burning plasmas
NASA Astrophysics Data System (ADS)
Mirnov, V. V.; Den Hartog, D. J.
2018-02-01
Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giron, Nicholas H.; Celina, Mathew C.
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
Giron, Nicholas H.; Celina, Mathew C.
2017-05-19
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P.; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T.; Mozayani, Ashraf
2013-01-01
Liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic “Spice/K2” cannabinoids and cathinone “bath salt” designer drugs. The extract was applied to LC–TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC–TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149
Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T; Mozayani, Ashraf
2013-01-01
Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic "Spice/K2" cannabinoids and cathinone "bath salt" designer drugs. The extract was applied to LC-TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC-TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework.
2014-09-01
of the BRDF for the Body and Panel. In order to provide a continuously updated baseline, the Photometry Model application is performed using a...brightness to its predicted brightness. The brightness predictions can be obtained using any analytical model chosen by the user. The inference for a...the analytical model as possible; and to mitigate the effect of bias that could be introduced by the choice of analytical model . It considers that a
NASA Astrophysics Data System (ADS)
Ghosn, Mohamad G.; Tuchin, Valery V.; Larin, Kirill V.
2009-02-01
Aside from other ocular drug delivery methods, topical application and follow up drug diffusion through the cornea and sclera of the eye remain the favored method, as they impose the least pain and discomfort to the patient. However, this delivery route suffers from the low permeability of epithelial tissues and drug washout, thus reducing the effectiveness of the drug and ability to reach its target in effective concentrations. In order to better understand the behavioral characteristics of diffusion in ocular tissue, a method for noninvasive imaging of drug diffusion is needed. Due to its high resolution and depth-resolved imaging capabilities, optical coherence tomography (OCT) has been utilized in quantifying the molecular transport of different drugs and analytes in vitro in the sclera and the cornea. Diffusion of Metronidazole (0.5%), Dexamethasone (0.2%), Ciprofloxacin (0.3%), Mannitol (20%), and glucose solution (20%) in rabbit sclera and cornea were examined. Their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods as function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) × 10-6 cm/s in cornea (n=4) and (6.18 +/- 1.08) × 10-6 cm/s in sclera (n=5). We also demonstrate the capability of OCT technique for depth-resolved monitoring and quantifying of glucose diffusion in different layers of the sclera. We found that the glucose diffusion rate is not uniform throughout the tissue and is increased from approximately (2.39 +/- 0.73) × 10-6 cm/s at the epithelial side to (8.63 +/- 0.27) × 10-6 cm/s close to the endothelial side of the sclera. In addition, discrepancy in the permeability rates of glucose solutions with different concentrations was observed. Such diffusion studies could enhance our knowledge and potentially pave the way for advancements of therapeutic and diagnostic techniques in the treatment of ocular diseases.
A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.
Ghosn, Mohamad G; Tuchin, Valery V; Larin, Kirill V
2007-06-01
Noninvasive functional imaging, monitoring, and quantification of analytes transport in epithelial ocular tissues are extremely important for therapy and diagnostics of many eye diseases. In this study the authors investigated the capability of optical coherence tomography (OCT) for noninvasive monitoring and quantification of diffusion of different analytes in sclera and cornea of rabbit eyes. A portable time-domain OCT system with wavelength of 1310 +/- 15 nm, output power of 3.5 mW, and resolution of 25 mum was used in this study. Diffusion of different analytes was monitored and quantified in rabbit cornea and sclera of whole eyeballs. Diffusion of water, metronidazole (0.5%), dexamethasone (0.2%), ciprofloxacin (0.3%), mannitol (20%), and glucose solution (20%) were examined, and their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods. Permeability coefficients were calculated as a function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) x 10(-6) cm/s in cornea and (6.18 +/- 1.08) x 10(-6) cm/s in sclera. The permeability coefficient of drugs with small concentrations (where water was the major solvent) was found to be in the range of that of water in the same tissue type, whereas permeability coefficients of higher concentrated solutions varied significantly. Results suggest that the OCT technique might be a powerful tool for noninvasive diffusion studies of different analytes in ocular tissues. However, additional methods of OCT signal acquisition and processing are required to study the diffusion of agents of small concentrations.
Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide
2015-06-22
The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ashraf-Khorassani, M; Yan, Q; Akin, A; Riley, F; Aurigemma, C; Taylor, L T
2015-10-30
Method development for normal phase flash liquid chromatography traditionally employs preliminary screening using thin layer chromatography (TLC) with conventional solvents on bare silica. Extension to green flash chromatography via correlation of TLC migration results, with conventional polar/nonpolar liquid mixtures, and packed column supercritical fluid chromatography (SFC) retention times, via gradient elution on bare silica with a suite of carbon dioxide mobile phase modifiers, is reported. Feasibility of TLC/SFC correlation is individually described for eight ternary mixtures for a total of 24 neutral analytes. The experimental criteria for TLC/SFC correlation was assumed to be as follows: SFC/UV/MS retention (tR) increases among each of the three resolved mixture components; while, TLC migration (Rf) decreases among the same resolved mixture components. Successful correlation of TLC to SFC was observed for most of the polar organic solvents tested, with the best results observed via SFC on bare silica with methanol as the CO2 modifier and TLC on bare silica with a methanol/dichloromethane mixture. Copyright © 2015 Elsevier B.V. All rights reserved.
Alvarez-Fernández, Ana; Orera, Irene; Abadía, Javier; Abadía, Anunciación
2007-01-01
A high-performance liquid chromatography-electrospray ionization/mass spectrometry (time of flight) method has been developed for the simultaneous determination of synthetic Fe(III)-chelates used as fertilizers. Analytes included the seven major Fe(III)-chelates used in agriculture, Fe(III)-EDTA, Fe(III)-DTPA, Fe(III)-HEDTA, Fe(III)-CDTA, Fe(III)-o,oEDDHA, Fe(III)-o,pEDDHA, and Fe(III)-EDDHMA, and the method was validated using isotope labeled (57)Fe(III)-chelates as internal standards. Calibration curves had R values in the range 0.9962-0.9997. Limits of detection and quantification were in the ranges 3-164 and 14-945 pmol, respectively. Analyte concentrations could be determined between the limits of quantification and 25 muM (racemic and meso Fe(III)-o,oEDDHA and Fe(III)-EDDHMA) or 50 muM (Fe(III)-EDTA, Fe(III)-HEDTA, Fe(III)-DTPA, Fe(III)-CDTA and Fe(III)-o,pEDDHA). The average intraday repeatability values were approximately 0.5 and 5% for retention time and peak area, respectively, whereas the interday repeatability values were approximately 0.7 and 8% for retention time and peak area, respectively. The method was validated using four different agricultural matrices, including nutrient solution, irrigation water, soil solution, and plant xylem exudates, spiked with Fe(III)-chelate standards and their stable isotope-labeled corresponding chelates. Analyte recoveries found were in the ranges 92-101% (nutrient solution), 89-102% (irrigation water), 82-100% (soil solution), and 70-111% (plant xylem exudates). Recoveries depended on the analyte, with Fe(III)-EDTA and Fe(III)-DTPA showing the lowest recoveries (average values of 87 and 88%, respectively, for all agricultural matrices used), whereas for other analytes recoveries were between 91 and 101%. The method was also used to determine the real concentrations of Fe(III)-chelates in commercial fertilizers. Furthermore, the method is also capable of resolving two more synthetic Fe(III)-chelates, Fe(III)-EDDHSA and Fe(III)-EDDCHA, whose exact quantification is not currently possible because of lack of commercial standards.
Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.
2017-01-01
Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285
The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.
Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick
2018-02-06
The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.
Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.
Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V
2017-09-01
We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.
User-based representation of time-resolved multimodal public transportation networks.
Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia
2016-07-01
Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.
User-based representation of time-resolved multimodal public transportation networks
Alessandretti, Laura; Gauvin, Laetitia
2016-01-01
Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments. PMID:27493773
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-01-18
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.
NASA Astrophysics Data System (ADS)
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-03-01
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.
A discussion on validity of the diffusion theory by Monte Carlo method
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Li, Hui; Xie, Shusen
2008-12-01
Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.
Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions
NASA Astrophysics Data System (ADS)
Ufimtcev, E. M.
2017-11-01
The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.
An implicit time-marching method for studying unsteady flow with massive separation
NASA Technical Reports Server (NTRS)
Osswald, G. A.; Ghia, K. N.; Chia, U.
1985-01-01
A fully implicit time-marching method is developed such that all spatial derivatives are approximated using central differences, but no use is made of any artificial dissipation. The numerical method solves the discretized equations using Alternating Direction Implicit-Block Gaussian Elimination technique. The method is implemented in the unsteady analysis, which solves the incompressible Navier-Stokes equations in terms of vorticity and stream function in generalized orthogonal coordinates. A clustered conformal C-grid is employed, and every effort is made to resolve the various length scales in the flow problem. The metric discontinuity at the branch-cut is treated appropriately using analytic continuation. Introduction of the BGE reordering permits implicit treatment of the branch cut in the numerical method. The vorticity singularity at the cusped trailing edge is also appropriately treated. This accurate and efficient implicit method is used to study flow at Re = 1000, past a 12-percent thick symmetric Joukowski airfoil at high angle of attack 30 and 53 deg.
Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup
NASA Astrophysics Data System (ADS)
Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.
2014-11-01
We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.
NASA Astrophysics Data System (ADS)
Clark, D. C.; Spencer, E. A.; Gollapalli, R.; Kerrigan, B.
2016-12-01
A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. We have designed and developed a new Time Domain Impedance Probe (TDIP) capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 100 microseconds, which yields much higher spatial resolution than a frequency sweep method. This method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the new instrument was flown at 08:45 EST on March 1 2016 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility (Flight time was around 20 minutes). Here we analyze the data from the sounding rocket experiment, using an adaptive system identification technique to compare the measured data with analytical formulas obtained from a theoretical consideration of the time domain response. The analytical formula is calibrated to a plasma fluid finite difference time domain (PFFDTD) numerical computation before using it to analyze the rocket data from 85 km to 170 km on both upleg and downleg. Our results show that the technique works as advertised, but several issues including payload charging and signal rectification remains to be resolved. A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. We have designed and developed a new Time Domain Impedance Probe (TDIP) capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 100 microseconds, which yields much higher spatial resolution than a frequency sweep method. This method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the new instrument was flown at 08:45 EST on March 1 2016 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility (Flight time was around 20 minutes). Here we analyze the data from the sounding rocket experiment, using an adaptive system identification technique to compare the measured data with analytical formulas obtained from a theoretical consideration of the time domain response. The analytical formula is calibrated to a plasma fluid finite difference time domain (PFFDTD) numerical computation before using it to analyze the rocket data from 85 km to 170 km on both upleg and downleg. Our results show that the technique works as advertised, but several issues including payload charging and signal rectification remains to be resolved.
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
Lu, Ching-Hua; Kalmar, Bernadett; Malaspina, Andrea; Greensmith, Linda; Petzold, Axel
2011-02-15
Neurofilament (Nf) aggregates are a common pathological feature of neurodegenerative disorders. Although Nf levels have been investigated as a potential disease biomarker, Nf aggregates may mask Nf epitopes, preventing accurate quantification by immunoassay. Using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis, we developed a method to disrupt Nf aggregates, allowing optimal immunoassay performance. Phosphorylated (NfH(SMI35)) and hyperphosphorylated (NfH(SMI34)) Nf levels in plasma from 120-day SOD1(G93A) mice were quantified using an in-house ELISA modified for use with small volumes. Different pre-analytical methods were tested for their ability to solubilize Nf aggregates and immunoblotting was used for qualitative analysis. A 'hook effect' was observed for serially diluted plasma samples quantified using an ELISA originally developed for CSF samples. Immunoblotting confirmed the existence of high molecular-weight NfH aggregates in plasma and the resolving effect of timed urea on these aggregates. Thermostatic (pre-thawing) and chemical (calcium chelators, urea) pre-analytical processing of samples had variable success in disrupting NfH aggregates. Timed urea-calcium chelator incubation yielded the most consistent plasma NfH levels. A one hour sample pre-incubation with 0.5M urea in Barbitone-EDTA buffer at room temperature resolved the "hook effect" without compromising the ELISA. In SOD1(G93A) mice, median levels of NfH(SMI34) were over 10-fold and NfH(SMI35) levels 5-fold greater than controls. NfH aggregates can be solubilised and the "hook effect" abolished by a one-hour sample pre-incubation in a urea-calcium chelator-enriched buffer. This method is applicable for quantification of NfH phosphoforms in experimental and disease settings where Nf aggregate formation occurs. © 2010 Elsevier B.V. All rights reserved.
Difference structures from time-resolved small-angle and wide-angle x-ray scattering
NASA Astrophysics Data System (ADS)
Nepal, Prakash; Saldin, D. K.
2018-05-01
Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.
CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics
Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek
2014-01-01
Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460
Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
Ali, Mohammad A; Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E
2016-11-04
Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of ≈16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of ≈1.5 nm. Hence, a long exciton diffusion length is not required for real-time sensing in the solid state. Rather the diffusion behavior of the analyte and the strength of the binding interaction between the analyte and the polymer play first-order roles in the fluorescence quenching process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Overview of the Analysis of Trace Organics in Water.
ERIC Educational Resources Information Center
Trussell, Albert R.; Umphres, Mark D.
1978-01-01
Summarized are current analytical techniques used to classify, isolate, resolve, identify, and quantify organic compounds present in drinking water. A variety of methods are described, then drawbacks and advantages are listed, and research needs and future trends are noted. (CS)
On one solution of Volterra integral equations of second kind
NASA Astrophysics Data System (ADS)
Myrhorod, V.; Hvozdeva, I.
2016-10-01
A solution of Volterra integral equations of the second kind with separable and difference kernels based on solutions of corresponding equations linking the kernel and resolvent is suggested. On the basis of a discrete functions class, the equations linking the kernel and resolvent are obtained and the methods of their analytical solutions are proposed. A mathematical model of the gas-turbine engine state modification processes in the form of Volterra integral equation of the second kind with separable kernel is offered.
Wannet, W J; Hermans, J H; van Der Drift, C; Op Den Camp, H J
2000-02-01
A convenient and sensitive method was developed to separate and detect various types of carbohydrates (polyols, mono- and disaccharides, and phosphorylated sugars) simultaneously using high-performance liquid chromatography (HPLC). The method consists of a chromatographic separation on a CarboPac PA1 anion-exchange analytical column followed by pulsed amperometric detection. In a single run (43 min) 13 carbohydrates were readily resolved. Calibration plots were linear over the ranges of 5-25 microM to 1. 0-1.5 mM. The reliable and fast analysis technique, avoiding derivatization steps and long run times, was used to determine the levels of carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. Moreover, the method was used to study the trehalose phosphorylase reaction.
Kim, Dohyeong; Galeano, M. Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn
2008-01-01
Background Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels < 10 μg/dL highlights the need for improved exposure prevention interventions. Objectives Geographic information system–based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. Methods We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. Results The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. Conclusions This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities. PMID:19079729
Visualizing dispersive features in 2D image via minimum gradient method
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yu; Wang, Yan; Shen, Zhi -Xun
Here, we developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative applicationmore » to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.« less
Visualizing dispersive features in 2D image via minimum gradient method
He, Yu; Wang, Yan; Shen, Zhi -Xun
2017-07-24
Here, we developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative applicationmore » to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.« less
NASA Astrophysics Data System (ADS)
Roehl, Jan Hendrik; Oberrath, Jens
2016-09-01
``Active plasma resonance spectroscopy'' (APRS) is a widely used diagnostic method to measure plasma parameter like electron density. Measurements with APRS probes in plasmas of a few Pa typically show a broadening of the spectrum due to kinetic effects. To analyze the broadening a general kinetic model in electrostatic approximation based on functional analytic methods has been presented [ 1 ] . One of the main results is, that the system response function Y(ω) is given in terms of the matrix elements of the resolvent of the dynamic operator evaluated for values on the imaginary axis. To determine the response function of a specific probe the resolvent has to be approximated by a huge matrix which is given by a banded block structure. Due to this structure a block based LU decomposition can be implemented. It leads to a solution of Y(ω) which is given only by products of matrices of the inner block size. This LU decomposition allows to analyze the influence of kinetic effects on the broadening and saves memory and calculation time. Gratitude is expressed to the internal funding of Leuphana University.
Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review.
Rubert, Josep; Zachariasova, Milena; Hajslova, Jana
2015-01-01
Food authenticity becomes a necessity for global food policies, since food placed in the market without fail has to be authentic. It has always been a challenge, since in the past minor components, called also markers, have been mainly monitored by chromatographic methods in order to authenticate the food. Nevertheless, nowadays, advanced analytical methods have allowed food fingerprints to be achieved. At the same time they have been also combined with chemometrics, which uses statistical methods in order to verify food and to provide maximum information by analysing chemical data. These sophisticated methods based on different separation techniques or stand alone have been recently coupled to high-resolution mass spectrometry (HRMS) in order to verify the authenticity of food. The new generation of HRMS detectors have experienced significant advances in resolving power, sensitivity, robustness, extended dynamic range, easier mass calibration and tandem mass capabilities, making HRMS more attractive and useful to the food metabolomics community, therefore becoming a reliable tool for food authenticity. The purpose of this review is to summarise and describe the most recent metabolomics approaches in the area of food metabolomics, and to discuss the strengths and drawbacks of the HRMS analytical platforms combined with chemometrics.
Fast and Efficient Stochastic Optimization for Analytic Continuation
Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...
2016-09-28
In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less
Implicit Multibody Penalty-BasedDistributed Contact.
Xu, Hongyi; Zhao, Yili; Barbic, Jernej
2014-09-01
The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.
Effetto black drop e istanti dei contatti nel transito di Venere sul Sole
NASA Astrophysics Data System (ADS)
di Giovanni, Giovanni
2005-04-01
Digital measurements of the chords common to the Sun and Venus during the transit of 8 June 2004 are reported. The time of the four contacts of the planet with the solar limb are calculated resolving the relative equations for entry and exit phases. The solutions were obtained with least square methods applied to experimental data with analytical functions used by different Authors during the Sun's eclipses. The well-known black drop effect was observed during the third contact. Atmospheric turbulence and optical effects interfere making timings uncertain by at least one second. There is also a comment about the numerical values and the estimate of the experimental errors. The observations were made by four high school students.
ERIC Educational Resources Information Center
Quach, Hao T.; Steeper, Robert L.; Griffin, William G.
2004-01-01
A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…
Tensions in Distributed Leadership
ERIC Educational Resources Information Center
Ho, Jeanne; Ng, David
2017-01-01
Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…
Bao, Yuanwu; Chen, Ceng; Newburg, David S.
2012-01-01
Defining the biologic roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon HPLC with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights allowing 11 peaks to be fully resolved and quantified by monitoring mass to charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/mL (R2 > 0.998). Precision (CV) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation. PMID:23068043
Psonis, Nikolaos; Antoniou, Aglaia; Karameta, Emmanouela; Leaché, Adam D; Kotsakiozi, Panayiota; Darriba, Diego; Kozlov, Alexey; Stamatakis, Alexandros; Poursanidis, Dimitris; Kukushkin, Oleg; Jablonski, Daniel; Crnobrnja-Isailović, Jelka; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos
2018-08-01
The Balkan Peninsula constitutes a biodiversity hotspot with high levels of species richness and endemism. The complex geological history of the Balkans in conjunction with the climate evolution are hypothesized as the main drivers generating this biodiversity. We investigated the phylogeography, historical demography, and population structure of closely related wall-lizard species from the Balkan Peninsula and southeastern Europe to better understand diversification processes of species with limited dispersal ability, from Late Miocene to the Holocene. We used several analytical methods integrating genome-wide SNPs (ddRADseq), microsatellites, mitochondrial and nuclear DNA data, as well as species distribution modelling. Phylogenomic analysis resulted in a completely resolved species level phylogeny, population level analyses confirmed the existence of at least two cryptic evolutionary lineages and extensive within species genetic structuring. Divergence time estimations indicated that the Messinian Salinity Crisis played a key role in shaping patterns of species divergence, whereas intraspecific genetic structuring was mainly driven by Pliocene tectonic events and Quaternary climatic oscillations. The present work highlights the effectiveness of utilizing multiple methods and data types coupled with extensive geographic sampling to uncover the evolutionary processes that shaped the species over space and time. Copyright © 2018 Elsevier Inc. All rights reserved.
Bioanalytical procedures for monitoring in utero drug exposure
Gray, Teresa
2009-01-01
Drug use by pregnant women has been extensively associated with adverse mental, physical, and psychological outcomes in their exposed children. This manuscript reviews bioanalytical methods for in utero drug exposure monitoring for common drugs of abuse in urine, hair, oral fluid, blood, sweat, meconium, amniotic fluid, umbilical cord tissue, nails, and vernix caseosa; neonatal matrices are particularly emphasized. Advantages and limitations of testing different maternal and neonatal biological specimens including ease and invasiveness of collection, and detection time frames, sensitivities, and specificities are described, and specific references for available analytical methods included. Future research involves identifying metabolites unique to fetal drug metabolism to improve detection rates of in utero drug exposure and determining relationships between the amount, frequency, and timing of drug exposure and drug concentrations in infant biological fluids and tissues. Accurate bioanalytical procedures are vital to defining the scope of and resolving this important public health problem. PMID:17370066
Eckard, Anahita D; Dupont, David R; Young, Johnie K
2018-01-01
N -lined glycosylation is one of the critical quality attributes (CQA) for biotherapeutics impacting the safety and activity of drug product. Changes in pattern and level of glycosylation can significantly alter the intrinsic properties of the product and, therefore, have to be monitored throughout its lifecycle. Therefore fast, precise, and unbiased N -glycan mapping assay is desired. To ensure these qualities, using analytical methods that evaluate completeness of deglycosylation is necessary. For quantification of deglycosylation yield, methods such as reduced liquid chromatography-mass spectrometry (LC-MS) and reduced capillary gel electrophoresis (CGE) have been commonly used. Here we present development of two additional methods to evaluate deglycosylation yield: one based on LC using reverse phase (RP) column and one based on reduced sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE gel) with offline software (GelAnalyzer). With the advent of rapid deglycosylation workflows in the market for N -glycan profiling replacing overnight incubation, we have aimed to quantify the level of deglycosylation in a selected rapid deglycosylation workflow. Our results have shown well resolved peaks of glycosylated and deglycosylated protein species with RP-LC method allowing simple quantification of deglycosylation yield of protein with high confidence. Additionally a good correlation, ≥0.94, was found between deglycosylation yields estimated by RP-LC method and that of reduced SDS-PAGE gel method with offline software. Evaluation of rapid deglycosylation protocol from GlycanAssure™ HyPerformance assay kit performed on fetuin and RNase B has shown complete deglycosylation within the recommended protocol time when evaluated with these techniques. Using this kit, N -glycans from NIST mAb were prepared in 1.4 hr and analyzed by hydrophilic interaction chromatography (HILIC) ultrahigh performance LC (UHPLC) equipped with a fluorescence detector (FLD). 37 peaks were resolved with good resolution. Excellent sample preparation repeatability was found with relative standard deviation (RSD) of <5% for peaks with >0.5% relative area.
Picosecond time-resolved measurements of dense plasma line shifts
Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; ...
2017-06-13
Picosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p–1s 2 transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He α complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing red shift for electron densities of 1 to 5 × 10 23 cm –3. Furthermore, the measured line shifts are broadly consistent with a generalized analytic line-shift model based on calculations of a self-consistent field ion sphere model.
Picosecond time-resolved measurements of dense plasma line shifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.
Picosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p–1s 2 transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He α complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing red shift for electron densities of 1 to 5 × 10 23 cm –3. Furthermore, the measured line shifts are broadly consistent with a generalized analytic line-shift model based on calculations of a self-consistent field ion sphere model.
Resolved-particle simulation by the Physalis method: Enhancements and new capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierakowski, Adam J., E-mail: sierakowski@jhu.edu; Prosperetti, Andrea; Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede
2016-03-15
We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrativemore » simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.« less
An inexpensive technique for the time resolved laser induced plasma spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Rizwan, E-mail: rizwan.ahmed@ncp.edu.pk; Ahmed, Nasar; Iqbal, J.
We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved informationmore » about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.« less
A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium
NASA Astrophysics Data System (ADS)
Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.
2010-12-01
We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.
NASA Astrophysics Data System (ADS)
Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick
2012-04-01
We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.
Finite element modeling of light propagation in fruit under illumination of continuous-wave beam
USDA-ARS?s Scientific Manuscript database
Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...
NASA Astrophysics Data System (ADS)
Miyazaki, Jun
2013-10-01
We present an analytical method for quantifying exciton hopping in an energetically disordered system with quenching sites. The method is subsequently used to provide a quantitative understanding of exciton hopping in a quantum dot (QD) array. Several statistical quantities that characterize the dynamics (survival probability, average number of distinct sites visited, average hopping distance, and average hopping rate in the initial stage) are obtained experimentally by measuring time-resolved fluorescence intensities at various temperatures. The time evolution of these quantities suggests in a quantitative way that at low temperature an exciton tends to be trapped at a local low-energy site, while at room temperature, exciton hopping occurs repeatedly, leading to a large hopping distance. This method will serve to facilitate highly efficient optoelectronic devices using QDs such as photovoltaic cells and light-emitting diodes, since exciton hopping is considered to strongly influence their operational parameters. The presence of a dark QD (quenching site) that exhibits fast decay is also quantified.
The role of analytical chemistry in Niger Delta petroleum exploration: a review.
Akinlua, Akinsehinwa
2012-06-12
Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.
Seventh international conference on time-resolved vibrational spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, R.B.; Martinez, M.A.D.; Shreve, A.
1997-04-01
The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities formore » time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.« less
Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.
Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A
2015-12-01
Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Liu, Min; Peng, Qing-Qing; Chen, Yu-Feng; Tang, Qian; Feng, Qing
2015-06-01
A novel space-resolved solid phase microextraction (SR-SPME) technique was developed to facilitate simultaneously analyte monitoring within heterogeneous samples. Graphene (G) and graphene oxide (GO) were coated separately to the segmented fibers which were successfully used for the solid-phase microextraction of two contaminants with dramatically different volatility: 2,4,6-trichloroanisole (TCA) and dibutyl phthalate (DBP). The space-resolved fiber showed good precision (5.4%, 6.8%), low detection limits (0.3ng/L, 0.3ng/L), and wide linearity (1.0-250.0ng/L, 1.0-250.0ng/L) under the optimized conditions for TCA and DBP, respectively. The method was applied to simultaneous analysis of the two contaminates with satisfactory recoveries, which were 96.96% and 98.20% for wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Time-resolved fluorescence spectroscopy of human brain tumors
NASA Astrophysics Data System (ADS)
Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.
2002-05-01
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.
NASA Astrophysics Data System (ADS)
Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi
This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.
Resolution of plasma sample mix-ups through comparison of patient antibody patterns to E. coli.
Vetter, Beatrice N; Orlowski, Vanessa; Schüpbach, Jörg; Böni, Jürg; Rühe, Bettina; Huder, Jon B
2015-12-01
Accidental sample mix-ups and the need for their swift resolution is a challenge faced by every analytical laboratory. To this end, we developed a simple immunoblot-based method, making use of a patient's characteristic plasma antibody profile to Escherichia coli (E. coli) proteins. Nitrocellulose strips of size-separated proteins from E. coli whole-cell lysates were incubated with patient plasma and visualised with an enzyme-coupled secondary antibody and substrate. Plasma samples of 20 random patients as well as five longitudinal samples of three patients were analysed for antibody band patterns, to evaluate uniqueness and consistency over time, respectively. For sample mix-ups, antibody band patterns of questionable samples were compared with samples of known identity. Comparison of anti-E. coli antibody patterns of 20 random patients showed a unique antibody profile for each patient. Antibody profiles remained consistent over time, as shown for three patients over several years. Three example cases demonstrate the use of this methodology in mis-labelling or -pipetting incidences. Our simple method for resolving plasma sample mix-ups between non-related individuals can be performed with basic laboratory equipment and thus can easily be adopted by analytical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances
NASA Astrophysics Data System (ADS)
Shafer, M.; Majestic, B.; Schauer, J.
2007-12-01
Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.
Kittell, David E; Mares, Jesus O; Son, Steven F
2015-04-01
Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.
Time of flight imaging through scattering environments (Conference Presentation)
NASA Astrophysics Data System (ADS)
Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas
2017-02-01
Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.
Sub-microsecond-resolution probe microscopy
Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah
2014-04-01
Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.
Beyramysoltan, Samira; Abdollahi, Hamid; Rajkó, Róbert
2014-05-27
Analytical self-modeling curve resolution (SMCR) methods resolve data sets to a range of feasible solutions using only non-negative constraints. The Lawton-Sylvestre method was the first direct method to analyze a two-component system. It was generalized as a Borgen plot for determining the feasible regions in three-component systems. It seems that a geometrical view is required for considering curve resolution methods, because the complicated (only algebraic) conceptions caused a stop in the general study of Borgen's work for 20 years. Rajkó and István revised and elucidated the principles of existing theory in SMCR methods and subsequently introduced computational geometry tools for developing an algorithm to draw Borgen plots in three-component systems. These developments are theoretical inventions and the formulations are not always able to be given in close form or regularized formalism, especially for geometric descriptions, that is why several algorithms should have been developed and provided for even the theoretical deductions and determinations. In this study, analytical SMCR methods are revised and described using simple concepts. The details of a drawing algorithm for a developmental type of Borgen plot are given. Additionally, for the first time in the literature, equality and unimodality constraints are successfully implemented in the Lawton-Sylvestre method. To this end, a new state-of-the-art procedure is proposed to impose equality constraint in Borgen plots. Two- and three-component HPLC-DAD data set were simulated and analyzed by the new analytical curve resolution methods with and without additional constraints. Detailed descriptions and explanations are given based on the obtained abstract spaces. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...
Consensus time and conformity in the adaptive voter model
NASA Astrophysics Data System (ADS)
Rogers, Tim; Gross, Thilo
2013-09-01
The adaptive voter model is a paradigmatic model in the study of opinion formation. Here we propose an extension for this model, in which conflicts are resolved by obtaining another opinion, and analytically study the time required for consensus to emerge. Our results shed light on the rich phenomenology of both the original and extended adaptive voter models, including a dynamical phase transition in the scaling behavior of the mean time to consensus.
Teitelbaum, Aaron M.; Flaker, Alicia M.; Kharasch, Evan D.
2016-01-01
A stereoselective analytical method was developed and validated for the quantification of bupropion, and principle metabolites hydroxybupropion, erythrohydrobupropion and threohydrobupropion in human plasma. Separation of individual enantiomers (R)-bupropion, (S)-bupropion, (R,R)-hydroxybupropion, (S,S-hydroxybupropion), (1S,2S)-threohydrobupropion, (1R,2R)-threohydrobupropion, (1R,2S)-erythrohydrobupropion, and (1S,2R)-erythrohydrobupropion was achieved utilizing an α1-acid glycoprotein column within a 12-minute run time. Chromatograph separation was significantly influenced by mobile phase pH and variability between columns. Analytes were quantified by positive ion electrospray tandem mass spectrometry following plasma protein precipitation with 20% trichloroacetic acid. Identification of erythrohydrobupropion enantiomer peaks and threohydrobupropion enantiomer peaks was achieved by sodium borohydride reduction of enantiopure (R)- and (S)-bupropion. Initial assay validation and sensitivity determination was on AB Sciex 3200, 4000 QTRAP, and 6500 mass spectrometers. Accuracy and precision were within 15% for each analyte. The assay was fully validated over analyte-specific concentrations using an AB Sciex 3200 mass spectrometer. Intra- and inter-assay precision and accuracy were within 12% for each analyte. The limits of quantification for bupropion (R and S), hydroxybupropion (R,R and S,S), threohydrobupropion (1S,2S and 1R,2R), and erythrohydrobupropion (1R,2S and 1S,2R) were 0.5, 2, 1, and 1 ng/mL, respectively. All analytes were stable following freeze thaw cycles at −80°C and while stored at 4°C in the instrument autosampler. This method was applicable to clinical pharmacokinetic investigations of bupropion in patients. This is the first chromatographic method to resolve erythrohydrobupropion and threohydrobupropion enantiomers, and the first stereoselective LC-MS/MS assay to quantify bupropion, and principle metabolites hydroxybupropion, erythrohydrobupropion, and threohydrobupropion in human plasma. PMID:26963497
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.; Balke, N.; Kalinin, S. V.
2010-09-01
Electrochemical insertion-deintercalation reactions are typically associated with significant change in molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration, and electrochemical impedance spectroscopy. This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10-nm level using electromechanical detection.
Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.
Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J
2014-10-01
A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruby, J. J.; Pak, A., E-mail: pak5@llnl.gov; Field, J. E.
2016-07-15
A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. This method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimatedmore » that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. By inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. This technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ∼13 μm/ns and ∼14°, respectively.« less
Ruby, J. J.; Pak, A.; Field, J. E.; ...
2016-07-01
A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. Our method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimatedmore » that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. Furthermore, by inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. Our technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ~13 μm/ns and ~14°, respectively.« less
Nahorniak, Michelle L; Booksh, Karl S
2006-12-01
A field portable, single exposure excitation-emission matrix (EEM) fluorometer has been constructed and used in conjunction with parallel factor analysis (PARAFAC) to determine the sub part per billion (ppb) concentrations of several aqueous polycyclic aromatic hydrocarbons (PAHs), such as benzo(k)fluoranthene and benzo(a)pyrene, in various matrices including aqueous motor oil extract and asphalt leachate. Multiway methods like PARAFAC are essential to resolve the analyte signature from the ubiquitous background in environmental samples. With multiway data and PARAFAC analysis it is shown that reliable concentration determinations can be achieved with minimal standards in spite of the large convoluting fluorescence background signal. Thus, rapid fieldable EEM analyses may prove to be a good screening method for tracking pollutants and prioritizing sampling and analysis by more complete but time consuming and labor intensive EPA methods.
Grasso, Giuseppe; Calcagno, Marzia; Rapisarda, Alessandro; D'Agata, Roberta; Spoto, Giuseppe
2017-06-01
The analytical methods that are usually applied to determine the compositions of inks from ancient manuscripts usually focus on inorganic components, as in the case of iron gall ink. In this work, we describe the use of atmospheric pressure/matrix-assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of the organic carbonaceous components of inks used in handwritten parts of ancient books for the first time. Large polycyclic aromatic hydrocarbons (L-PAH) were identified in situ in the ink of XVII century handwritten documents. We prove that it is possible to apply MALDI-MS as a suitable microdestructive diagnostic tool for analyzing samples in air at atmospheric pressure, thus simplifying investigations of the organic components of artistic and archaeological objects. The interpretation of the experimental MS results was supported by independent Raman spectroscopic investigations. Graphical abstract Atmospheric pressure/MALDI mass spectrometry detects in situ polycyclic aromatic hydrocarbons in the carbonaceous ink of XVII century manuscripts.
On information loss in AdS 3/CFT 2
Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; ...
2016-05-18
We discuss information loss from black hole physics in AdS 3, focusing on two sharp signatures infecting CFT 2 correlators at large central charge c: ‘forbidden singularities’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change themore » behavior of correlators at times t ~S BH, the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1/c expansion of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states that should correspond to classical solutions in AdS 3. Lastly, our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS 3.« less
A New Instantaneous Frequency Measure Based on The Stockwell Transform
NASA Astrophysics Data System (ADS)
yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.
2011-12-01
We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R.A., Lauzon, M.L. and Frayne, R. "General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly", IEEE Transactions on Signal Processing, 1:281-90 (2010).
Resolvent-based modeling of passive scalar dynamics in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Dawson, Scott; Saxton-Fox, Theresa; McKeon, Beverley
2017-11-01
The resolvent formulation of the Navier-Stokes equations expresses the system state as the output of a linear (resolvent) operator acting upon a nonlinear forcing. Previous studies have demonstrated that a low-rank approximation of this linear operator predicts many known features of incompressible wall-bounded turbulence. In this work, this resolvent model for wall-bounded turbulence is extended to include a passive scalar field. This formulation allows for a number of additional simplifications that reduce model complexity. Firstly, it is shown that the effect of changing scalar diffusivity can be approximated through a transformation of spatial wavenumbers and temporal frequencies. Secondly, passive scalar dynamics may be studied through the low-rank approximation of a passive scalar resolvent operator, which is decoupled from velocity response modes. Thirdly, this passive scalar resolvent operator is amenable to approximation by semi-analytic methods. We investigate the extent to which this resulting hierarchy of models can describe and predict passive scalar dynamics and statistics in wall-bounded turbulence. The support of AFOSR under Grant Numbers FA9550-16-1-0232 and FA9550-16-1-0361 is gratefully acknowledged.
Kafka, K R P; Austin, D R; Li, H; Yi, A Y; Cheng, J; Chowdhury, E A
2015-07-27
Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.
Locatelli, Marcello; Cifelli, Roberta; Di Legge, Cristina; Barbacane, Renato Carmine; Costa, Nicola; Fresta, Massimo; Celia, Christian; Capolupo, Carlo; Di Marzio, Luisa
2015-04-03
This paper reports the validation of a quantitative high performance liquid chromatography-photodiode array (HPLC-PDA) method for the simultaneous analysis, in mouse plasma, of eperisone hydrochloride and paracetamol by protein precipitation using zinc sulphate-methanol-acetonitrile. The analytes were resolved on a Gemini C18 column (4.6 mm × 250 mm; 5 μm particle size) using a gradient elution mode with a run time of 15 min, comprising re-equilibration, at 60°C (± 1°C). The method was validated over the concentration range from 0.5 to 25 μg/mL for eperisone hydrochloride and paracetamol, in mouse plasma. Ciprofloxacin was used as Internal Standard. Results from assay validations show that the method is selective, sensitive and robust. The limit of quantification of the method was 0.5 μg/mL for eperisone hydrochloride and paracetamol, and matrix-matched standard curves showed a good linearity, up to 25 μg/mL with correlation coefficients (r(2))≥ 0.9891. In the entire analytical range the intra and inter-day precision (RSD%) values were ≤ 1.15% and ≤ 1.46% for eperisone hydrochloride, and ≤ 0.35% and ≤ 1.65% for paracetamol. For both analytes the intra and inter-day trueness (bias%) values ranged, respectively, from -5.33% to 4.00% and from -11.4% to -4.00%. The method was successfully tested in pharmacokinetic studies after oral administration in mouse. Furthermore, the application of this method results in a significant reduction in terms of animal number, dosage, and improvement in speed, rate of analysis, and quality of pharmacokinetic parameters related to serial blood sampling. Copyright © 2015 Elsevier B.V. All rights reserved.
A New Approach to Time-Resolved 3D-PTV
NASA Astrophysics Data System (ADS)
Boomsma, Aaron; Troolin, Dan; Bjorkquist, Dan; TSI Inc Team
2017-11-01
Volumetric three-component velocimetry via particle tracking is a powerful alternative to TomoPIV. It has been thoroughly documented that compared to TomoPIV, particle tracking velocimetry (PTV) methods (whether 2D or 3D) better resolve regions of high velocity gradient, identify fewer ghost particles, and are less computationally demanding, which results in shorter processing times. Recently, 3D-PTV has seen renewed interest in the PIV community with the availability of time-resolved data. Of course, advances in hardware are partly to thank for that availability-higher speed cameras, more effective memory management, and higher speed lasers. But in software, algorithms that utilize time resolved data to improve 3D particle reconstruction and particle tracking are also under development and advancing (e.g. shake-the-box, neighbor tracking reconstruction, etc.). .In the current study, we present a new 3D-PTV method that incorporates time-resolved data. We detail the method, its performance in terms of particle identification and reconstruction error and their relation to varying seeding densities, as well as computational performance.
Juenke, JoEtta M; Brown, Paul I; Urry, Francis M; Johnson-Davis, Kamisha L; McMillin, Gwendolyn A
2013-08-23
Most antipsychotic drugs that are commonly prescribed in the USA are monitored by liquid and gas chromatographic methods. Method performance has been improved using ultra high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). A rapid and simple procedure for monitoring haloperidol, thiothixene, fluphenazine, and perphenazine is described here. Antipsychotic drug concentrations in serum and plasma were determined by LCMS/MS (Waters Acquity UPLC TQD). The instrument is operated with an ESI interface, in multiple reaction monitoring (MRM), and positive ion mode. The resolution of both quadrupoles was maintained at unit mass with a peak width at half height of 0.7amu. Data analysis was performed using the Waters Quanlynx software. Serum or plasma samples were thawed at room temperature and a 100μL aliquot was placed in a tube. Then 300μL of precipitating reagent (acetonitrile-methanol [50:50, volume: volume]) containing the internal standard (0.12ng/μL Imipramine-D3) was added to each tube. The samples were vortexed and centrifuged. The supernatant was transferred to an autosampler vial and 8μL was injected into the UPLC-MS/MS. Utilizing a Waters Acquity UPLC HSS T3 1.8μm, 2.1×50mm column at 25ºC, the analytes were separated using a timed, linear gradient of acetonitrile and water, each having 0.1% formic acid added. The column is eluted into the LC-MS/MS to detect imipramine D3 at transition 284.25>89.10, haloperidol at 376.18>165.06, thiothixene at 444.27>139.24, fluphenazine at 438.27>171.11, and perphenazine at 404.19>143.07. Secondary transitions for each analyte are also monitored for imipramine D3 at 284.25>193.10, haloperidol at 376.18>122.97, thiothixene at 444.27>97.93, fluphenazine at 438.27>143.08, and perphenazine at 404.19>171.11. The run-time is 1.8min per injection with baseline resolved chromatographic separation. The analytical measurement range was 0.2 to 12.0ng/mL for fluphenazine and perphenazine, and was 1 to 60.0ng/mL for haloperidol and thiothixene. Intra-assay and inter-assay imprecisions (CV) were less than 15% at two concentrations for each analyte. By utilizing a LC-MS/MS method we combined two previously established analytical assays into one, yielding a 75% time-savings on set-up, and a significantly shortened analytical run-time. These changes reduced the turn-around time for analysis and eliminated interference issues resulting in fewer injections and increased column lifetime. Copyright © 2013 Elsevier B.V. All rights reserved.
Strano-Rossi, Sabina; Odoardi, Sara; Castrignanò, Erika; Serpelloni, Giovanni; Chiarotti, Marcello
2015-03-15
The paper describes a liquid chromatography/high resolution mass spectrometry LC/HRMS method for the simultaneous identification and quantification of stimulants (ephedrines, caffeine, anorectic drugs such as phentermine, phendimetrazine, phenmetrazine, fenfluramine, benfluorex, mephentermine, fencanfamine, sibutramine) and PDE5I (sildenafil, vardenafil and tadalafil) in food supplements using a benchtop Orbitrap mass spectrometer. The mass detector, with a nominal resolving power of 100,000 (FWHM at m/z 200), operated in full scan mode in ESI positive ionization mode. Analytes were identified by retention times, accurate masses and correspondence of experimental and calculated isotopic patterns. The limits of detection (LOD) obtained varied from 1 to 25 ng g(-1) and limits of quantification (LOQ) were 50 ng g(-1) for all compounds. The method was linear for all the analytes in the ranges from 50 to 2000 ng g(-1), giving correlation coefficients>0.99. Accuracy (intended as %E) and repeatability (% CV) were always lower than 15%. The method was applied to the analysis of 36 dietary supplements, revealing the presence of ephedrine and/or pseudoephedrine in four of them, caffeine in eight of them and sildenafil in four of them. In one case, ephedrine was not reported on the label of the dietary supplement, as well as for caffeine in other two cases. A further confirmation of the analytes identity in positive samples was obtained through in-source fragmentation and comparison of the obtained fragments and their relative abundances with those from certified standards. As the acquisition mode is full scan, it would be also possible to re-process a previously acquired datafile for the investigation of untargeted analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Methods for determination of low-molecular weight carbonyl compounds in the ambient atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vairavamurthy, A.; Roberts, J.M.; Newman, L.
1991-01-01
Determination of carbonyl compounds in the ambient atmosphere is receiving increasing attention because of the critical role these compounds play in tropospheric organic chemistry. Currently, field measurements are very limited mainly because of the analytical challenges posed by trace concentrations and interferences arising from atmospheric copollutants. We review here the methods for used for determination of carbonyl compounds, from an atmospheric chemistry perspective, emphasizing the principles, advantages, and limitations. Since a large number of varied types of methods have been used specifically for determination of formaldehyde, it is considered separately from other carbonyls. It is clear that despite more thanmore » a decade of work, many problems related to sampling, interferences, and artifacts have not been resolved. Because of the increasing demand for time-series measurements in field studies, and automated method for continuous sampling and analysis of carbonyls is very much required. The widely used liquid chromatographic method based on 2,4-dinitrophenylhydrazine derivatization appears unsuitable for this purpose because of the lengthy collection times required to achieve sub-ppbv detection limits. Important issues to be considered in the development of a suitable field method and potential approaches are discussed. 155 refs., 19 figs., 5 tabs.« less
NASA Technical Reports Server (NTRS)
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Liang, Zhidan
Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A novel MSI-based platform is developed by interfacing with microdialysis sample collection and is applied to the study of in vivo neuropeptide degradation profiles in an off-line 'real-time' fashion. This unique platform provides novel insights into neuropeptide inactivation/elimination process, which is an essential step to understand peptidergic signaling pathway. In addition to neuropeptides, this platform has been further modified to study secreted neurotransmitters, and small molecule metabolites that might interact with neuropeptides in crustacean for the first time. This work not only reports improvements upon neuropeptides identification and quantitation by developing improved analytical strategies, but also provides important evidence for the potential roles of several neuropeptides in regulating food intake and circadian rhythm behaviors. Novel platform that integrates MALDI-MSI with microdialysis in exploring neurochemical changes in dynamic biological events is also presented, which could be potentially applied to many other systems in future research. Collectively this dissertation research develops new analytical methods and improves our fundamental understanding of neuropeptide signaling.
Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo
2016-01-01
In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences.
Analytical three-point Dixon method: With applications for spiral water-fat imaging.
Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G
2016-02-01
The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Montcel, Bruno; Chabrier, Renée; Poulet, Patrick
2006-12-01
Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.
Montcel, Bruno; Chabrier, Renée; Poulet, Patrick
2006-12-11
Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.
Jafari, Mohammad T; Riahi, Farhad
2014-05-23
The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.
2015-11-01
A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.
Improved analytical techniques of sulfur isotopic composition in nanomole quantities by MC-ICP-MS.
Yu, Tsai-Luen; Wang, Bo-Shian; Shen, Chuan-Chou; Wang, Pei-Ling; Yang, Tsanyao Frank; Burr, George S; Chen, Yue-Gau
2017-10-02
We propose an improved method for precise sulfur isotopic measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in conjunction with a membrane desolvation nebulization system. The problems of sulfur loss through the membrane desolvation apparatus are carefully quantified and resolved. The method overcomes low intrinsic sulfur transmission through the instrument, which was initially 1% when operating at a desolvation temperature of 160 °C. Sulfur loss through the membrane desolvation apparatus was resolved by doping with sodium. A Na/S ratio of 2 mol mol -1 produced sulfur transmissions with 98% recovery. Samples of 3 nmol (100 ng) sulfur achieved an external precision of ±0.18‰ (2 SD) for δ 34 S and ±0.10‰ (2 SD) for Δ 33 S (uppercase delta expresses the extent of mass-independent isotopic fractionation). Measurements made on certified reference materials and in-house standards demonstrate analytical accuracy and reproducibility. We applied the method to examine microbial-induced sulfur transformation in marine sediment pore waters from the sulfate-methane transition zone. The technique is quite versatile, and can be applied to a range of materials, including natural waters and minerals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dallal, Ahmed H.
Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V
2015-01-05
We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...
2016-08-22
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg
2016-01-01
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823
Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M
2015-07-09
Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.
Madry, Milena M; Spycher, Barbara S; Kupper, Jacqueline; Fuerst, Anton; Baumgartner, Markus R; Kraemer, Thomas; Naegeli, Hanspeter
2016-06-01
Compared to blood or urine, drugs can be detected for much longer periods in the long hair of horses. The aim of this study was to establish and validate a highly sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of frequently prescribed opioids, sedatives and non-steroidal anti-inflammatory agents in the mane and tail hair of horses. Based on an average growth rate of about 2 cm per month, times of administration reported by horse owners or veterinary physicians were related to drug localizations in hair. Hair samples were collected from ten horses that received drug treatments and analyzed in segments of 2, 4 or 6 cm in length. Hair segments were decontaminated, cut into fragments and methanol-extracted under sonication. The extracts were analyzed by LC-MS/MS for 13 commonly used drugs using the validated procedure. Deuterated analogs were included as internal standards. Analytes were detected in hair samples with a length of up to 70 cm. Fourteen out of 16 hair samples were positive for at least one of the tested drugs. Segmentation allowed for time-resolved monitoring of periods of 1 to 3 months of drug administration. Concentrations in dark hair reached a maximum of 4.0 pg/mg for butorphanol, 6.0 pg/mg for tramadol, 1.4 pg/mg for morphine, 1.8 pg/mg for detomidine, 1.2 pg/mg for acepromazine, 39 pg/mg for flunixin, 5.0 pg/mg for firocoxib, and 3'600 pg/mg for phenylbutazone. Only trace amounts of meloxicam were detected. Drug detection correlated well with the reported period of medical treatment. No analytes were detected in the light-colored mane and tail hair samples from one horse despite preceding administrations of acepromazine and phenylbutazone. This study describes a sensitive and selective technique suitable for the validated detection and quantification of frequently prescribed veterinary drugs in horse hair. The segmental method can be applied for time-resolved long-term retrospective drug monitoring, for example in prepurchase examinations of horses as drug detection in hair can prove preceding medical treatments.
Biological tissue imaging with a position and time sensitive pixelated detector.
Jungmann, Julia H; Smith, Donald F; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A
2012-10-01
We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512 × 512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to biomolecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiologic concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740 × 740 nm(2) on the sample surface) and a spatial resolving power of 6 μm with a microscope mode laser field of view of 100-335 μm. Automated, large-area imaging is demonstrated and the Timepix' potential for fast, large-area image acquisition is highlighted.
Theory and Circuit Model for Lossy Coaxial Transmission Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genoni, T. C.; Anderson, C. N.; Clark, R. E.
2017-04-01
The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Frisch, Uriel
2017-04-01
The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.
Improvements in brain activation detection using time-resolved diffuse optical means
NASA Astrophysics Data System (ADS)
Montcel, Bruno; Chabrier, Renee; Poulet, Patrick
2005-08-01
An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-11-19
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-01-01
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535
Sample processing approach for detection of ricin in surface samples.
Kane, Staci; Shah, Sanjiv; Erler, Anne Marie; Alfaro, Teneile
2017-12-01
With several ricin contamination incidents reported over the past decade, rapid and accurate methods are needed for environmental sample analysis, especially after decontamination. A sample processing method was developed for common surface sampling devices to improve the limit of detection and avoid false negative/positive results for ricin analysis. Potential assay interferents from the sample matrix (bleach residue, sample material, wetting buffer), including reference dust, were tested using a Time-Resolved Fluorescence (TRF) immunoassay. Test results suggested that the sample matrix did not cause the elevated background fluorescence sometimes observed when analyzing post-bleach decontamination samples from ricin incidents. Furthermore, sample particulates (80mg/mL Arizona Test Dust) did not enhance background fluorescence or interfere with ricin detection by TRF. These results suggested that high background fluorescence in this immunoassay could be due to labeled antibody quality and/or quantity issues. Centrifugal ultrafiltration devices were evaluated for ricin concentration as a part of sample processing. Up to 30-fold concentration of ricin was observed by the devices, which serve to remove soluble interferents and could function as the front-end sample processing step to other ricin analytical methods. The procedure has the potential to be used with a broader range of environmental sample types and with other potential interferences and to be followed by other ricin analytical methods, although additional verification studies would be required. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, A N; Turchin, I V
2013-12-31
The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resultingmore » field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.
Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less
Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; ...
2017-11-22
Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less
NASA Astrophysics Data System (ADS)
Kopacz, Monika; Jacob, Daniel J.; Henze, Daven K.; Heald, Colette L.; Streets, David G.; Zhang, Qiang
2009-02-01
We apply the adjoint of an atmospheric chemical transport model (GEOS-Chem CTM) to constrain Asian sources of carbon monoxide (CO) with 2° × 2.5° spatial resolution using Measurement of Pollution in the Troposphere (MOPITT) satellite observations of CO columns in February-April 2001. Results are compared to the more common analytical method for solving the same Bayesian inverse problem and applied to the same data set. The analytical method is more exact but because of computational limitations it can only constrain emissions over coarse regions. We find that the correction factors to the a priori CO emission inventory from the adjoint inversion are generally consistent with those of the analytical inversion when averaged over the large regions of the latter. The adjoint solution reveals fine-scale variability (cities, political boundaries) that the analytical inversion cannot resolve, for example, in the Indian subcontinent or between Korea and Japan, and some of that variability is of opposite sign which points to large aggregation errors in the analytical solution. Upward correction factors to Chinese emissions from the prior inventory are largest in central and eastern China, consistent with a recent bottom-up revision of that inventory, although the revised inventory also sees the need for upward corrections in southern China where the adjoint and analytical inversions call for downward correction. Correction factors for biomass burning emissions derived from the adjoint and analytical inversions are consistent with a recent bottom-up inventory on the basis of MODIS satellite fire data.
Qiu, Jiaqi; Ha, Gwanghui; Jing, Chunguang; Baryshev, Sergey V; Reed, Bryan W; Lau, June W; Zhu, Yimei
2016-02-01
A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source (e.g. thermionic, Schottky, or field-emission source), a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are externally driven by a radiofrequency (RF) source synchronized through a delay line. With no laser pumping the sample, the problem of the pump laser induced residual heating/damaging the sample is eliminated. As many RF-driven processes can be cycled indefinitely, sampling rates of 1-50GHz become accessible. Such a GHz stroboscopic TEM would open up a new paradigm for in situ and in operando experiments to study samples externally driven electromagnetically. Complementary to the lower (MHz) repetition rates experiments enabled by laser photocathode TEM, new experiments in the multi-GHz regime will be enabled by the proposed RF design. Because TEM is also a platform for various analytical methods, there are infinite application opportunities in energy and electronics to resolve charge (electronic and ionic) transport, and magnetic, plasmonic and excitonic dynamics in advanced functional materials. In addition, because the beam duty-cycle can be as high as ~10(-1) (or 10%), detection can be accomplished by commercially available detectors. In this article, we report an optimal design of the EMMP. The optimal design was found using an analytical generalized matrix approach in the thin lens approximation along with detailed beam dynamics taking actual realistic dc beam parameters in a TEM operating at 200keV. Copyright © 2015 Elsevier B.V. All rights reserved.
Tucker, Jalie A.; Roth, David L.; Huang, Jin; Scott Crawford, M.; Simpson, Cathy A.
2012-01-01
Objective: Most problem drinkers do not seek help, and many recover on their own. A randomized controlled trial evaluated whether supportive interactive voice response (IVR) self-monitoring facilitated such “natural” resolutions. Based on behavioral economics, effects on drinking outcomes were hypothesized to vary with drinkers’ baseline “time horizons,” reflecting preferences among commodities of different value available over different delays and with their IVR utilization. Method: Recently resolved untreated problem drinkers were randomized to a 24-week IVR self-monitoring program (n = 87) or an assessment-only control condition (n = 98). Baseline interviews assessed outcome predictors including behavioral economic measures of reward preferences (delay discounting, pre-resolution monetary allocation to alcohol vs. savings). Six-month outcomes were categorized as resolved abstinent, resolved nonabstinent, unresolved, or missing. Complier average causal effect (CACE) models examined IVR self-monitoring effects. Results: IVR self-monitoring compliers (≥70% scheduled calls completed) were older and had greater pre-resolution drinking control and lower discounting than noncompliers (<70%). A CACE model interaction showed that observed compliers in the IVR group with shorter time horizons (expressed by greater pre-resolution spending on alcohol than savings) were more likely to attain moderation than abstinent resolutions compared with predicted compliers in the control group with shorter time horizons and with all noncompliers. Intention-to-treat analytical models revealed no IVR-related effects. More balanced spending on savings versus alcohol predicted moderation in both approaches. Conclusions: IVR interventions should consider factors affecting IVR utilization and drinking outcomes, including person-specific behavioral economic variables. CACE models provide tools to evaluate interventions involving extended participation. PMID:22630807
A G-quadruplex-selective luminescent iridium(III) complex and its application by long lifetime.
Lin, Sheng; Lu, Lihua; Liu, Jin-Biao; Liu, Chenfu; Kang, Tian-Shu; Yang, Chao; Leung, Chung-Hang; Ma, Dik-Lung
2017-05-01
The G-quadruplex motif has been widely used for the construction of analytical detection platforms due to its rich structural polymorphism and flexibility. Luminescent assays are often limited due to the interference from endogenous fluorophores in biological samples. To address this challenge, a novel long lifetime iridium(III) complex 1 was synthesized and used to construct a G-quadruplex-based assay for detecting prostate specific antigen (PSA) in aqueous solution. PSA is a common biomarker in serum and used as a model for demonstration in this work. The PSA assay has achieved a detection limit of 40.8pg·mL -1 , and shows high selectivity towards PSA over other proteins. Additionally, the assay could function in diluted human serum by using time-resolved luminescent spectroscopy, with good linearity from 1 to 10ng·mL -1 of PSA, which is adequate to detect the PSA levels for physiological (<4ng·mL -1 ) and clinical (4-10ng·mL -1 ) applications. The assay was successfully constructed. As revealed from time-resolved method, the long lifetime property of iridium(III) complex 1 plays an important role in distinguishing phosphorescence signals from short-life auto-fluorescence of human serum. Luminescent transition metal complexes offer several advantages over other widely used organic fluorophores, such as long phosphorescence lifetime, large Stokes shift and modular syntheses. In addition, the assay could work effectively in diluted human serum using time-resolved luminescent spectroscopy, it therefore could be potentially developed to monitor PSA in biological samples. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong
2018-04-01
Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.
Linearization of the longitudinal phase space without higher harmonic field
NASA Astrophysics Data System (ADS)
Zeitler, Benno; Floettmann, Klaus; Grüner, Florian
2015-12-01
Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
Molecular counting of membrane receptor subunits with single-molecule localization microscopy
NASA Astrophysics Data System (ADS)
Krüger, Carmen; Fricke, Franziska; Karathanasis, Christos; Dietz, Marina S.; Malkusch, Sebastian; Hummer, Gerhard; Heilemann, Mike
2017-02-01
We report on quantitative single-molecule localization microscopy, a method that next to super-resolved images of cellular structures provides information on protein copy numbers in protein clusters. This approach is based on the analysis of blinking cycles of single fluorophores, and on a model-free description of the distribution of the number of blinking events. We describe the experimental and analytical procedures, present cellular data of plasma membrane proteins and discuss the applicability of this method.
Model verification of large structural systems
NASA Technical Reports Server (NTRS)
Lee, L. T.; Hasselman, T. K.
1977-01-01
A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.
Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi
2017-05-15
This paper introduces a novel approach to overcome the solvent interference in corona discharge-ion mobility spectrometry (CD-IMS) based on the time-resolved signals of the solvent and the analyte. To that end, a short Teflon tube was filled with a low amount of squalene or OV-1, which was prepared and located between the injection port and the entrance of the CD-IMS cell. Through this procedure, a sufficient delay (~5s) was obtained between the introduction of the solvent and the analyte into the reaction region of IMS. This resulted in removing the proton by solvent molecules, as well as increasing the effective collision during the analyte ionization, thereby providing an analysis with more sensitivity, accuracy, and precision. To show the column efficiency, ethion and diazinon (organophosphorus pesticides) were selected as the test compounds and their solutions were analyzed by the proposed method. The amount of sorbent, carrier gas flow rate, and the sorbent temperature affecting the sorbent efficiency were optimized by employing the response surface methodology and the central composite design. The proposed method was exhaustively validated in terms of sensitivity, linearity, and repeatability. In particular, the feasibility of direct injection was successfully verified by the satisfactory results, as compared with those achieved without the prior column. The methodology used in this study is very simple and inexpensive, which can overcome the solvent interference when a solution is directly injected into the CD-IMS. Copyright © 2017 Elsevier B.V. All rights reserved.
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analytic Reflected Lightcurves for Exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-04-01
The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.
Detector response function of an energy-resolved CdTe single photon counting detector.
Liu, Xin; Lee, Hyoung Koo
2014-01-01
While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV
Liu, Yijin; Shamsi, Shahab A
2014-09-19
Cyclodextrins (CDs) are most commonly used chiral selectors in capillary electrophoresis (CE). Although the use of neutral CDs and its derivatives have shown to resolve plethora of charged enantiomers, they cannot resolve neutral enantiomers. The use of ionic liquids (ILs) surfactants forming successful complex with CDs present itself an opportunity to resolve neutral enantiomers. In this work, the effect of IL head groups and their complexation ability with heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) was studied for the separation of neutral enantiomers by CE. First, cationic IL type surfactants with different chiral head groups were synthesized. Physicochemical properties such as critical micelle concentration were determined by surface tension, whereas aggregation and polarity were determined by fluorescence spectroscopy. The complexation ability of ILs with TM-β-CD was characterized in the gas phase by CE-mass spectrometry. The influence of the type of ILs head group and its concentration on chiral resolution, resolution per unit time and selectivity were investigated for four structurally diverse neutral compounds. The binding constants of the neutral analytes to the IL-CD complex were estimated by y-reciprocal method. The hydrophobicity of the side chain of the IL head group displayed significant effect on the binding constants and enantioseparations. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan
Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less
Entering an era of dynamic structural biology….
Orville, Allen M
2018-05-31
A recent paper in BMC Biology presents a general method for mix-and-inject serial crystallography, to facilitate the visualization of enzyme intermediates via time-resolved serial femtosecond crystallography (tr-SFX). They apply their method to resolve in near atomic detail the cleavage and inactivation of the antibiotic ceftriaxone by a β-lactamase enzyme from Mycobacterium tuberculosis. Their work demonstrates the general applicability of time-resolved crystallography, from which dynamic structures, at atomic resolution, can be obtained.See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0524-5 .
Phonon Mapping in Flowing Equilibrium
NASA Astrophysics Data System (ADS)
Ruff, J. P. C.
2015-03-01
When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.
Marchand, Jérémy; Martineau, Estelle; Guitton, Yann; Dervilly-Pinel, Gaud; Giraudeau, Patrick
2017-02-01
Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR. Currently, much work is aimed at drastically boosting the NMR sensitivity thanks to hyperpolarisation techniques, which have been used in combination with fast acquisition methods and could greatly expand the application potential of NMR metabolomics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Air pollution source identification
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1975-01-01
The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.
Diallo, A; Keller, S; Shi, Y; Raitses, Y; Mazouffre, S
2015-03-01
Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF.
An Analytical Finite-Strain Parameterization for Texture Evolution in Deformed Olivine Polycrystals
NASA Astrophysics Data System (ADS)
Ribe, N. M.; Castelnau, O.
2017-12-01
Current methods for calculating the evolution of flow-induced seismic anisotropy in the upper mantle describe crystal preferred orientation (CPO) using ensembles of 103-104 individual grains, and are too computationally expensive to be used in three-dimensional time-dependent convection models. We propose a much faster method based on the hypothesis that CPO of olivine polycrystals is a unique function of the finite strain. Our goal is then to determine how the CPO depends on the ratios r12 and r23 of the axes of the finite strain ellipsoid and on the two independent ratios p12 and p23 of the strengths (critical resolved shear stresses) of the three independent slip systems of olivine. To do this, we introduce a new analytical representation of olivine CPO in terms of three `structured basis functions' (SBFs) Fs(g, r12, r23) (s = 1, 2, 3), where g is the set of three Eulerian angles that describe the orientation of a crystal lattice relative to an external reference frame. Each SBF represents the virtual CPO that would be produced by the action of only one of the slip systems of olivine, and can be determined analytically to within an unknown time-dependent amplitude. The amplitudes are then determined by fitting the SBFs to the predictions of the second-order self-consistent (SOSC) model of Ponte-Castaneda (2002). To implement the SBF representation, we express the orientation distribution function (ODF) f(g) of the polycrystal approximately as a linear superposition of SBFs with weighting coefficients Cs. Substituting the superposition into the general evolution equation for the ODF and minimizing the residual error, we find that the weighting coefficients Cs(t) satisfy coupled evolution equations of the form αisCs + βisCs + γs = 0 where the coefficients αis, βis and γs can be calculated in advance from the expressions for the SBFs. These equations are solved numerically for different values of p12 and p23, yielding numerical values of Cs(r12, r23, p12, p23) that can be fit using simple analytical functions. Our new parameterization allows CPO to be calculated some 107 times faster than full self-consistent methods such as SOSC.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
Label-free probing of genes by time-domain terahertz sensing.
Haring Bolivar, P; Brucherseifer, M; Nagel, M; Kurz, H; Bosserhoff, A; Büttner, R
2002-11-07
A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a freespace analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.
NASA Astrophysics Data System (ADS)
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
A time-resolved Langmuir double-probe method for the investigation of pulsed magnetron discharges
NASA Astrophysics Data System (ADS)
Welzel, Th.; Dunger, Th.; Kupfer, H.; Richter, F.
2004-12-01
Langmuir probes are important means for the characterization of plasma discharges. For measurements in plasmas used for the deposition of thin films, the Langmuir double probe is especially suited. With the increasing popularity of pulsed deposition discharges, there is also an increasing need for time-resolved characterization methods. For Langmuir probes, several single-probe approaches to time-resolved measurements are reported but very few for the double probe. We present a time-resolved Langmuir double-probe technique, which is applied to a pulsed magnetron discharge at several 100 kHz used for MgO deposition. The investigations show that a proper treatment of the current measurement is necessary to obtain reliable results. In doing so, a characteristic time dependence of the charge-carrier density during the "pulse on" time containing maximum values of almost 2•1011cm-3 was found. This characteristic time dependence varies with the pulse frequency and the duty cycle. A similar time dependence of the electron temperature is only observed when the probe is placed near the magnesium target.
Godoy-Caballero, María del Pilar; Culzoni, María Julia; Galeano-Díaz, Teresa; Acedo-Valenzuela, María Isabel
2013-02-06
This paper presents the development of a non-aqueous capillary electrophoresis method coupled to UV detection combined with multivariate curve resolution-alternating least-squares (MCR-ALS) to carry out the resolution and quantitation of a mixture of six phenolic acids in virgin olive oil samples. p-Coumaric, caffeic, ferulic, 3,4-dihydroxyphenylacetic, vanillic and 4-hydroxyphenilacetic acids have been the analytes under study. All of them present different absorption spectra and overlapped time profiles with the olive oil matrix interferences and between them. The modeling strategy involves the building of a single MCR-ALS model composed of matrices augmented in the temporal mode, namely spectra remain invariant while time profiles may change from sample to sample. So MCR-ALS was used to cope with the coeluting interferences, on accounting the second order advantage inherent to this algorithm which, in addition, is able to handle data sets deviating from trilinearity, like the data herein analyzed. The method was firstly applied to resolve standard mixtures of the analytes randomly prepared in 1-propanol and, secondly, in real virgin olive oil samples, getting recovery values near to 100% in all cases. The importance and novelty of this methodology relies on the combination of non-aqueous capillary electrophoresis second-order data and MCR-ALS algorithm which allows performing the resolution of these compounds simplifying the previous sample pretreatment stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison between different techniques applied to quartz CPO determination in granitoid mylonites
NASA Astrophysics Data System (ADS)
Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Wenk, Hans-Rudolph; Pezzino, Antonino; Goswami, Shalini; Mamtani, Manish
2016-04-01
Since the second half of the last century, several techniques have been adopted to resolve the crystallographic preferred orientation (CPO) of major minerals constituting crustal and mantle rocks. To this aim, many efforts have been made to increase the accuracy of such analytical devices as well as to progressively reduce the time needed to perform microstructural analysis. It is worth noting that many of these microstructural studies deal with quartz CPO because of the wide occurrence of this mineral phase in crustal rocks as well as its quite simple chemical composition. In the present work, four different techniques were applied to define CPOs of dynamically recrystallized quartz domains from naturally deformed rocks collected from a ductile crustal scale shear zone in order to compare their advantages and limitation. The selected Alpine shear zone is located in the Aspromonte Massif (Calabrian Peloritani Orogen, southern Italy) representing granitoid lithotypes. The adopted methods span from "classical" universal stage (US), to image analysis technique (CIP), electron back-scattered diffraction (EBSD), and time of flight neutron diffraction (TOF). When compared, bulk texture pole figures obtained by means of these different techniques show a good correlation. Advances in analytical techniques used for microstructural investigations are outlined by discussing results of quartz CPO that are presented in this study.
Analytical representation of dynamical quantities in G W from a matrix resolvent
NASA Astrophysics Data System (ADS)
Gesenhues, J.; Nabok, D.; Rohlfing, M.; Draxl, C.
2017-12-01
The power of the G W formalism is, to a large extent, based on the explicit treatment of dynamical correlations in the self-energy. This dynamics is taken into account by calculating the energy dependence of the screened Coulomb interaction W , followed by a convolution with the Green's function G . In order to obtain the energy dependence of W the prevalent methods are plasmon-pole models and numerical integration techniques. In this paper, we discuss an alternative approach, in which the energy-dependent screening is calculated by determining the resolvent, which is set up from a matrix representation of the dielectric function. On the one hand, this refrains from a numerical energy convolution and allows one to actually write down the energy dependence of W explicitly (like in the plasmon-pole models). On the other hand, the method is at least as accurate as the numerical approaches due to its multipole nature. We discuss the theoretical setup in some detail, give insight into the computational aspects, and present results for Si, C, GaAs, and LiF. Finally, we argue that the analytic representability is not only useful for educational purposes but may also be of avail for the development of theory that goes beyond G W .
The RATIO method for time-resolved Laue crystallography
Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya
2009-01-01
A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334
NASA Astrophysics Data System (ADS)
Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro
2004-01-01
Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.
Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the methodmore » is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A
2017-02-14
Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.
Główka, Franciszek; Karaźniewicz, Marta
2007-08-01
A stereospecific CE method was elaborated for the quantification of ibuprofen enantiomers and their major phase I metabolites: 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen in plasma and urine. Optimal temperature and pH of BGE were established to obtain complete separation of eight ibuprofen chiral compounds and (+)-S indobufen, applied as an internal standard, during one analytical run. After isolation from biological matrices using SPE on an octadecyl stationary phase, the analytes were separated and resolved up to 10 min in a silica capillary filled with BGE, consisting of heptakis 2,3,6-tri-O-methyl-beta-CD in triethanolamine-phosphate buffer, pH 5.0. Complete enantioseparation of the all analytes confirmed specificity of the method. The calibration curves were linear in the range of 0.1-25.0 mg/L for IBP enantiomers and their chiral metabolites in 0.5 mL of plasma and 1.0-200.0 mg/L in 0.05 mL of urine. Following SPE procedure, recovery of the chiral analytes from the two media was in the ranges of 82-87%, 90-95% and 70-76% for ibuprofen, 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen enantiomers, respectively. The validated method was successfully applied in pharmacokinetic investigations of IBP enantiomers as well as free chiral metabolites in reference to the genetic polymorphism of CYP450 2C isoenzymes.
Revelsky, A I; Samokhin, A S; Virus, E D; Rodchenkov, G M; Revelsky, I A
2011-04-01
The method of high sensitive gas chromatographic/time-of-flight mass-spectrometric (GC/TOF-MS) analysis of steroids was developed. Low-resolution TOF-MS instrument (with fast spectral acquisition rate) was used. This method is based on the formation of the silyl derivatives of steroids; exchange of the reagent mixture (pyridine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)) for tert-butylmethylether; offline large sample volume injection of this solution based on sorption concentration of the respective derivatives from the vapour-gas mixture flow formed from the solution and inert gas flows; and entire analytes solvent-free concentrate transfer into the injector of the gas chromatograph. Detection limits for 100 µl sample solution volume were 0.5-2 pg/µl (depending on the component). Application of TOF-MS model 'TruTOF' (Leco, St Joseph, MO, USA) coupled with gas chromatograph and ChromaTOF software (Leco, St Joseph, MO, USA) allowed extraction of the full mass spectra and resolving coeluted peaks. Due to use of the proposed method (10 µl sample aliquot) and GC/TOF-MS, two times more steroid-like compounds were registered in the urine extract in comparison with the injection of 1 µl of the same sample solution. Copyright © 2010 John Wiley & Sons, Ltd.
Cook, Robert L; Kelso, Natalie E; Brumback, Babette A; Chen, Xinguang
2016-01-01
As persons with HIV are living longer, there is a growing need to investigate factors associated with chronic disease, rate of disease progression and survivorship. Many risk factors for this high-risk population change over time, such as participation in treatment, alcohol consumption and drug abuse. Longitudinal datasets are increasingly available, particularly clinical data that contain multiple observations of health exposures and outcomes over time. Several analytic options are available for assessment of longitudinal data; however, it can be challenging to choose the appropriate analytic method for specific combinations of research questions and types of data. The purpose of this review is to help researchers choose the appropriate methods to analyze longitudinal data, using alcohol consumption as an example of a time-varying exposure variable. When selecting the optimal analytic method, one must consider aspects of exposure (e.g. timing, pattern, and amount) and outcome (fixed or time-varying), while also addressing minimizing bias. In this article, we will describe several analytic approaches for longitudinal data, including developmental trajectory analysis, generalized estimating equations, and mixed effect models. For each analytic strategy, we describe appropriate situations to use the method and provide an example that demonstrates the use of the method. Clinical data related to alcohol consumption and HIV are used to illustrate these methods.
Time-resolved vibrational spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.
2009-05-14
This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation ofmore » reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less
Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures.
Dass, Rupashree; Grudzia Ż, Katarzyna; Ishikawa, Takao; Nowakowski, Michał; Dȩbowska, Renata; Kazimierczuk, Krzysztof
2017-01-01
The biological toolbox is full of techniques developed originally for analytical chemistry. Among them, spectroscopic experiments are very important source of atomic-level structural information. Nuclear magnetic resonance (NMR) spectroscopy, although very advanced in chemical and biophysical applications, has been used in microbiology only in a limited manner. So far, mostly one-dimensional 1 H experiments have been reported in studies of bacterial metabolism monitored in situ . However, low spectral resolution and limited information on molecular topology limits the usability of these methods. These problems are particularly evident in the case of complex mixtures, where spectral peaks originating from many compounds overlap and make the interpretation of changes in a spectrum difficult or even impossible. Often a suite of two-dimensional (2D) NMR experiments is used to improve resolution and extract structural information from internuclear correlations. However, for dynamically changing sample, like bacterial culture, the time-consuming sampling of so-called indirect time dimensions in 2D experiments is inefficient. Here, we propose the technique known from analytical chemistry and structural biology of proteins, i.e., time-resolved non-uniform sampling. The method allows application of 2D (and multi-D) experiments in the case of quickly varying samples. The indirect dimension here is sparsely sampled resulting in significant reduction of experimental time. Compared to conventional approach based on a series of 1D measurements, this method provides extraordinary resolution and is a real-time approach to process monitoring. In this study, we demonstrate the usability of the method on a sample of Escherichia coli culture affected by ampicillin and on a sample of Propionibacterium acnes , an acne causing bacterium, mixed with a dose of face tonic, which is a complicated, multi-component mixture providing complex NMR spectrum. Through our experiments we determine the exact concentration and time at which the anti-bacterial agents affect the bacterial metabolism. We show, that it is worth to extend the NMR toolbox for microbiology by including techniques of 2D z-TOCSY, for total "fingerprinting" of a sample and 2D 13 C-edited HSQC to monitor changes in concentration of metabolites in selected metabolic pathways.
RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.; Culligan, B.
2008-08-27
The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared tomore » NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.« less
Diffraction and microscopy with attosecond electron pulse trains
NASA Astrophysics Data System (ADS)
Morimoto, Yuya; Baum, Peter
2018-03-01
Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.
An HPLC method for determination of azadirachtin residues in bovine muscle.
Gai, María Nella; Álvarez, Christian; Venegas, Raúl; Morales, Javier
2011-04-01
A high-performance liquid chromatography (HPLC) method for the determination of azadirachtin (A and B) residues in bovine muscle has been developed. Azadirachtin is a neutral triterpene and chemotherapeutic agent effective in controlling some pest flies in horses, stables, horns and fruit. The actual HPLC method uses an isocratic elution and UV detection. Liquid-liquid extraction and solid-phase purification was used for the clean-up of the biological matrix. The chromatographic determination of these components is achieved using a C18 analytical column with water-acetonitrile mixture (27.5:72.5, v/v) as mobile phase, 1 mL/min as flow rate, 45 °C column temperature and UV detector at 215 nm. The azadirachtin peaks are well resolved and free of interference from matrix components. The extraction and analytical method developed in this work allows the quantitation of azadirachtin with precision and accuracy, establishing a lower limit of quantitation of azadirachtin, extracted from the biological matrix.
Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi
2008-09-01
Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, L.; Auvergne, M.; Toublanc, D.; Rowe, J.; Kuschnig, R.; Matthews, J.
2006-06-01
Context: .Fitting photometry algorithms can be very effective provided that an accurate model of the instrumental point spread function (PSF) is available. When high-precision time-resolved photometry is required, however, the use of point-source star images as empirical PSF models can be unsatisfactory, due to the limits in their spatial resolution. Theoretically-derived models, on the other hand, are limited by the unavoidable assumption of simplifying hypothesis, while the use of analytical approximations is restricted to regularly-shaped PSFs. Aims: .This work investigates an innovative technique for space-based fitting photometry, based on the reconstruction of an empirical but properly-resolved PSF. The aim is the exploitation of arbitrary star images, including those produced under intentional defocus. The cases of both MOST and COROT, the first space telescopes dedicated to time-resolved stellar photometry, are considered in the evaluation of the effectiveness and performances of the proposed methodology. Methods: .PSF reconstruction is based on a set of star images, periodically acquired and presenting relative subpixel displacements due to motion of the acquisition system, in this case the jitter of the satellite attitude. Higher resolution is achieved through the solution of the inverse problem. The approach can be regarded as a special application of super-resolution techniques, though a specialised procedure is proposed to better meet the PSF determination problem specificities. The application of such a model to fitting photometry is illustrated by numerical simulations for COROT and on a complete set of observations from MOST. Results: .We verify that, in both scenarios, significantly better resolved PSFs can be estimated, leading to corresponding improvements in photometric results. For COROT, indeed, subpixel reconstruction enabled the successful use of fitting algorithms despite its rather complex PSF profile, which could hardly be modeled otherwise. For MOST, whose direct-imaging PSF is closer to the ordinary, comparison to other models or photometry techniques were carried out and confirmed the potential of PSF reconstruction in real observational conditions.
High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500
Shvartsburg, Alexandre A.; Seim, Tom A.; Danielson, William F.; Norheim, Randy; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.
2013-01-01
As the resolution of analytical methods improves, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~ 400 – 500 is achievable using He/N2 or H2/N2 gas mixtures. PMID:23345059
High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvartsburg, Alexandre A.; Seim, Thomas A.; Danielson, William F.
2013-01-20
As the resolution of analytical methods improve, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~more » 400 - 500 is achievable using He/N2 or H2/N2 gas mixtures.« less
Gillet, Ludovic C.; Navarro, Pedro; Tate, Stephen; Röst, Hannes; Selevsek, Nathalie; Reiter, Lukas; Bonner, Ron; Aebersold, Ruedi
2012-01-01
Most proteomic studies use liquid chromatography coupled to tandem mass spectrometry to identify and quantify the peptides generated by the proteolysis of a biological sample. However, with the current methods it remains challenging to rapidly, consistently, reproducibly, accurately, and sensitively detect and quantify large fractions of proteomes across multiple samples. Here we present a new strategy that systematically queries sample sets for the presence and quantity of essentially any protein of interest. It consists of using the information available in fragment ion spectral libraries to mine the complete fragment ion maps generated using a data-independent acquisition method. For this study, the data were acquired on a fast, high resolution quadrupole-quadrupole time-of-flight (TOF) instrument by repeatedly cycling through 32 consecutive 25-Da precursor isolation windows (swaths). This SWATH MS acquisition setup generates, in a single sample injection, time-resolved fragment ion spectra for all the analytes detectable within the 400–1200 m/z precursor range and the user-defined retention time window. We show that suitable combinations of fragment ions extracted from these data sets are sufficiently specific to confidently identify query peptides over a dynamic range of 4 orders of magnitude, even if the precursors of the queried peptides are not detectable in the survey scans. We also show that queried peptides are quantified with a consistency and accuracy comparable with that of selected reaction monitoring, the gold standard proteomic quantification method. Moreover, targeted data extraction enables ad libitum quantification refinement and dynamic extension of protein probing by iterative re-mining of the once-and-forever acquired data sets. This combination of unbiased, broad range precursor ion fragmentation and targeted data extraction alleviates most constraints of present proteomic methods and should be equally applicable to the comprehensive analysis of other classes of analytes, beyond proteomics. PMID:22261725
Non-Intrusive, Time-Resolved Hall Thruster Near-Field Electron Temperature Measurements
2011-08-01
With the growing interest in Hall thruster technology, comes the need to fully characterize the plasma dynamics that determine performance. Of...instabilities characteristic of Hall thruster behavior, time resolved techniques must be developed. This study presents a non-intrusive method of
Novel laser gain and time-resolved FTIR studies of photochemistry
NASA Technical Reports Server (NTRS)
Leone, Stephen R.
1990-01-01
Several techniques are discussed which can be used to explore laboratory photochemical processes and kinetics relevant to planetary atmospheres; these include time-resolved laser gain-versus-absorption spectroscopy and time-resolved Fourier transform infrared (FTIR) emission studies. The laser gain-versus-absorption method employed tunable diode and F-center lasers to determine the yields of excited photofragments and their kinetics. The time-resolved FTIR technique synchronizes the sweep of a commercial FTIR with a pulsed source of light to obtain emission spectra of novel transient species in the infrared. These methods are presently being employed to investigate molecular photodissociation, the yields of excited states of fragments, their subsequent reaction kinetics, Doppler velocity distributions, and velocity-changing collisions of translationally fast atoms. Such techniques may be employed in future investigations of planetary atmospheres, for example to study polycyclic aromatic hydrocarbons related to cometary emissions, to analyze acetylene decomposition products and reactions, and to determine spectral features in the near infrared and infrared wavelength regions for planetary molecules and clusters.
Analytic reflected light curves for exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-07-01
The disc-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motions coupled with an inhomogeneous albedo map. We have previously derived analytic reflected light curves for spherical harmonic albedo maps in the special case of a synchronously rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard). In this paper, we present analytic reflected light curves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_ l^m-maps). In particular, we use Wigner D-matrices to express an harmonic light curve for an arbitrary viewing geometry as a non-linear combination of harmonic light curves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected light curves, as well as fast calculation of light curves for mapping exoplanets based on time-resolved photometry. To these ends, we make available Exoplanet Analytic Reflected Lightcurves, a simple open-source code that allows rapid computation of reflected light curves.
Shellie, Robert; Marriott, Philip; Morrison, Paul
2004-09-01
The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.
Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen
Shvartsburg, Alexandre A.; Smith, Richard D.
2011-01-01
The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 90% H2. Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H2 fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times, at least. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes. PMID:22074292
Neutze, Richard
2014-07-17
X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.
Analytical pyrolysis mass spectrometry: new vistas opened by temperature-resolved in-source PYMS
NASA Astrophysics Data System (ADS)
Boon, Jaap J.
1992-09-01
Analytical pyrolysis mass spectrometry (PYMS) is introduced and its applications to the analysis of synthetic polymers, biopolymers, biomacromolecular systems and geomacromolecules are critically reviewed. Analytical pyrolysis inside the ionisation chamber of a mass spectrometer, i.e. in-source PYMS, gives a complete inventory of the pyrolysis products evolved from a solid sample. The temperature-resolved nature of the experiment gives a good insight into the temperature dependence of the volatilisation and pyrolytic dissociation processes. Chemical ionisation techniques appear to be especially suitable for the analysis of oligomeric fragments released in early stages of the pyrolysis of polymer systems. Large oligomeric fragments were observed for linear polymers such as cellulose (pentadecamer), polyhydroxyoctanoic acid (tridecamer) and polyhydroxybutyric acid (heneicosamer). New in-source PYMS data are presented on artists' paints, the plant polysaccharides cellulose and xyloglucan, several microbial polyhydroxyalkanoates, wood and enzyme-digested wood, biodegraded roots and a fossil cuticle of Miocene age. On-line and off-line pyrolysis chromatography mass spectrometric approaches are also discussed. New data presented on high temperature gas chromatography--mass spectrometry of deuterio-reduced permethylated pyrolysates of cellulose lead to a better understanding of polysaccharide dissociation mechanisms. Pyrolysis as an on-line sample pretreatment method for organic macromolecules in combination with MS techniques is a very challenging field of mass spectrometry. Pyrolytic dissociation and desorption is not at all a chaotic process but proceeds according to very specific mechanisms.
Model of lidar range-Doppler signatures of solid rocket fuel plumes
NASA Astrophysics Data System (ADS)
Bankman, Isaac N.; Giles, John W.; Chan, Stephen C.; Reed, Robert A.
2004-09-01
The analysis of particles produced by solid rocket motor fuels relates to two types of studies: the effect of these particles on the Earth's ozone layer, and the dynamic flight behavior of solid fuel boosters used by the NASA Space Shuttle. Since laser backscatter depends on the particle size and concentration, a lidar system can be used to analyze the particle distributions inside a solid rocket plume in flight. We present an analytical model that simulates the lidar returns from solid rocket plumes including effects of beam profile, spot size, polarization and sensing geometry. The backscatter and extinction coefficients of alumina particles are computed with the T-matrix method that can address non-spherical particles. The outputs of the model include time-resolved return pulses and range-Doppler signatures. Presented examples illustrate the effects of sensing geometry.
Combustion of bulk titanium in oxygen
NASA Technical Reports Server (NTRS)
Clark, A. F.; Moulder, J. C.; Runyan, C. C.
1975-01-01
The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.
NASA Astrophysics Data System (ADS)
Kleine-Boymann, Matthias; Rohnke, Marcus; Henss, Anja; Peppler, Klaus; Sann, Joachim; Janek, Juergen
2014-08-01
The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.
Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography
Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.
2015-01-01
Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598
Response Surface Methods For Spatially-Resolved Optical Measurement Techniques
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.
2003-01-01
Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vairavamurthy, A.; Roberts, J.M.; Newman, L.
1991-06-01
Carbonyl compounds are both primary (directly emitted) and secondary (formed in situ) atmospheric species, which play a major role in tropospheric photochemistry. Because of trace concentrations (parts-per-billion and lower), ambient air measurements of carbonyls pose serious analytical problems. Generally, chromatographic approaches combined with chemical derivatization have been used to enhance sensitivity and selectivity in analysis. Currently, the liquid chromatographic method coupled to 2,4-dinitrophenylhydrazine derivatization (DNPH-LC) is in widespread use. Interferences arising from similar compounds are greatly minimized by chromatographic separation; however, those in the air sampling step, especially with ozone, continue to be problematic and remain to be resolved. Wemore » discuss here the different sampling techniques used for time-integrated collection of carbonyls in the DNPH-LC methods. Emphasis is placed on addressing: (1) the principles, advantages, and limitations of sampling techniques; (2) problems associated with reagent blank and sampling instrument; and (3) effects of atmospheric co-pollutants, especially ozone. 58 refs., 8 figs., 3 tabs.« less
Reconciling statistical and systems science approaches to public health.
Ip, Edward H; Rahmandad, Hazhir; Shoham, David A; Hammond, Ross; Huang, Terry T-K; Wang, Youfa; Mabry, Patricia L
2013-10-01
Although systems science has emerged as a set of innovative approaches to study complex phenomena, many topically focused researchers including clinicians and scientists working in public health are somewhat befuddled by this methodology that at times appears to be radically different from analytic methods, such as statistical modeling, to which the researchers are accustomed. There also appears to be conflicts between complex systems approaches and traditional statistical methodologies, both in terms of their underlying strategies and the languages they use. We argue that the conflicts are resolvable, and the sooner the better for the field. In this article, we show how statistical and systems science approaches can be reconciled, and how together they can advance solutions to complex problems. We do this by comparing the methods within a theoretical framework based on the work of population biologist Richard Levins. We present different types of models as representing different tradeoffs among the four desiderata of generality, realism, fit, and precision.
Reconciling Statistical and Systems Science Approaches to Public Health
Ip, Edward H.; Rahmandad, Hazhir; Shoham, David A.; Hammond, Ross; Huang, Terry T.-K.; Wang, Youfa; Mabry, Patricia L.
2016-01-01
Although systems science has emerged as a set of innovative approaches to study complex phenomena, many topically focused researchers including clinicians and scientists working in public health are somewhat befuddled by this methodology that at times appears to be radically different from analytic methods, such as statistical modeling, to which the researchers are accustomed. There also appears to be conflicts between complex systems approaches and traditional statistical methodologies, both in terms of their underlying strategies and the languages they use. We argue that the conflicts are resolvable, and the sooner the better for the field. In this article, we show how statistical and systems science approaches can be reconciled, and how together they can advance solutions to complex problems. We do this by comparing the methods within a theoretical framework based on the work of population biologist Richard Levins. We present different types of models as representing different tradeoffs among the four desiderata of generality, realism, fit, and precision. PMID:24084395
Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul
2017-01-01
Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448
Analytic computation of average energy of neutrons inducing fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Alexander Rich
2016-08-12
The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. B.; Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn; Dai, H. H.
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings aremore » considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.« less
Eigenvector centrality is a metric of elastomer modulus, heterogeneity, and damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Jr., Paul Michael; Welch, Cynthia F.
Here, we present an application of eigenvector centrality to encode the connectivity of polymer networks resolved at the micro- and meso-scopic length scales. This method captures the relative importance of different nodes within the network structure and provides a route toward the development of a statistical mechanics model that correlates connectivity with mechanical response. This scheme may be informed by analytical and semi-analytical models for the network structure, or through direct experimental examination. It may be used to predict the reduction in mechanical performance for heterogeneous materials subjected to specific modes of damage. Here, we develop the method and demonstratemore » that it leads to the prediction of established trends in elastomers. We also apply the model to the case of a self-healing polymer network reported in the literature, extracting insight about the fraction of bonds broken and re-formed during strain and recovery.« less
Eigenvector centrality is a metric of elastomer modulus, heterogeneity, and damage
Welch, Jr., Paul Michael; Welch, Cynthia F.
2017-04-27
Here, we present an application of eigenvector centrality to encode the connectivity of polymer networks resolved at the micro- and meso-scopic length scales. This method captures the relative importance of different nodes within the network structure and provides a route toward the development of a statistical mechanics model that correlates connectivity with mechanical response. This scheme may be informed by analytical and semi-analytical models for the network structure, or through direct experimental examination. It may be used to predict the reduction in mechanical performance for heterogeneous materials subjected to specific modes of damage. Here, we develop the method and demonstratemore » that it leads to the prediction of established trends in elastomers. We also apply the model to the case of a self-healing polymer network reported in the literature, extracting insight about the fraction of bonds broken and re-formed during strain and recovery.« less
NASA Astrophysics Data System (ADS)
Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan
Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.
Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes
NASA Astrophysics Data System (ADS)
Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan
2018-04-01
Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.
Kumar, Sandeep; Lather, Viney; Pandita, Deepti
2016-04-15
Resveratrol and quercetin are well-known polyphenolic compounds present in common foods, which have demonstrated enormous potential in the treatment of a wide variety of diseases. Owing to their exciting synergistic potential and combination delivery applications, we developed a simple and rapid RP-HPLC method based on isosbestic point detection. The separation was carried out on phenomenex Synergi 4μ Hydro-RP 80A column using methanol: acetonitrile (ACN): 0.1% phosphoric acid (60:10:30) as mobile phase. The method was able to quantify nanograms of analytes simultaneously on a single wavelength (269 nm), making it highly sensitive, rapid as well as economical. Additionally, forced degradation studies of resveratrol and quercetin were established and the method's applicability was evaluated on PLGA nanoparticles and human plasma. The analytes peaks were found to be well resolved in the presence of degradation products and excipients. The simplicity of the developed method potentializes its suitability for routine in vitro and in vivo analysis of resveratrol and quercetin. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Givianrad, M. H.; Saber-Tehrani, M.; Aberoomand-Azar, P.; Mohagheghian, M.
2011-03-01
The applicability of H-point standard additions method (HPSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim is verified by UV-vis spectrophotometry. The results show that the H-point standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. The results of applying the H-point standard additions method showed that the two drugs could be determined simultaneously with the concentration ratios of sulfamethoxazole to trimethoprim varying from 1:18 to 16:1 in the mixed samples. Also, the limits of detections were 0.58 and 0.37 μmol L -1 for sulfamethoxazole and trimethoprim, respectively. In addition the means of the calculated RSD (%) were 1.63 and 2.01 for SMX and TMP, respectively in synthetic mixtures. The proposed method has been successfully applied to the simultaneous determination of sulfamethoxazole and trimethoprim in some synthetic, pharmaceutical formulation and biological fluid samples.
Givianrad, M H; Saber-Tehrani, M; Aberoomand-Azar, P; Mohagheghian, M
2011-03-01
The applicability of H-point standard additions method (HPSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim is verified by UV-vis spectrophotometry. The results show that the H-point standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. The results of applying the H-point standard additions method showed that the two drugs could be determined simultaneously with the concentration ratios of sulfamethoxazole to trimethoprim varying from 1:18 to 16:1 in the mixed samples. Also, the limits of detections were 0.58 and 0.37 μmol L(-1) for sulfamethoxazole and trimethoprim, respectively. In addition the means of the calculated RSD (%) were 1.63 and 2.01 for SMX and TMP, respectively in synthetic mixtures. The proposed method has been successfully applied to the simultaneous determination of sulfamethoxazole and trimethoprim in some synthetic, pharmaceutical formulation and biological fluid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Sato, Kae; Sato, Kiichi; Okubo, Akira; Yamazaki, Sunao
2005-01-01
A capillary electrophoresis method was developed for the analysis of oligosaccharides combined with derivatization with 2-aminobenzoic acid. Glycosaminoglycan delta-disaccharides were effectively resolved on a fused-silica capillary tube using 150 mM borate, pH 8.5, as a running electrolyte solution. This analytical method was applied to the identification of glycosaminoglycan in combination with enzymatic digestion. The separation of N-glycans or glucose-oligomers was performed with a phosphate buffer containing polyethylene glycol or borate as an electrolyte solution. This method is expected to be useful in the determination of oligosaccharide structures in a glycoprotein.
Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides
Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.
2016-01-01
In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301
Beck, R A; Anes, J M; Savini, L M; Mateer, R A
2000-06-09
The concentration dependent reaction of sulfite with 57Co-labeled hydroxocobalamin (OH57CoCbl) to produce a sulfitocobalamin (SO(3)57CoCbl) adduct served as a quantification strategy for foodborne sulfite residues freely extracted into pH 5.2, 0.05 M acetate buffer. SO(3)57CoCbl was then resolved using SP-Sephadex C-25 gel chromatography and its radiometric detection allowed calculation of a standard logit plot from which unknown sulfite concentrations could be determined. The sulfite detection range was 6.0 nM-0.3 pM with respective relative standard deviations of 4.4-29.4% for 50-microl samples. Individual incidences of foodborne sulfite intolerances provoked by L-cysteine or sulfite additive use in bakery products, which remained undetected using conventional sulfite analytical methods, underscored the quantitative value of the method. The analytical significance and occurrences of detectable sulfides coexisting with foodborne sulfite residues was also addressed.
NASA Astrophysics Data System (ADS)
Al-Qudaimi, Abdullah; Kumar, Amit
2018-05-01
Recently, Abdullah and Najib (International Journal of Sustainable Energy 35(4): 360-377, 2016) proposed an intuitionistic fuzzy analytic hierarchy process to deal with uncertainty in decision-making and applied it to establish preference in the sustainable energy planning decision-making of Malaysia. This work may attract the researchers of other countries to choose energy technology for their countries. However, after a deep study of the published paper (International Journal of Sustainable Energy 35(4): 362-377, 2016), it is noticed that the expression used by Abdullah and Najib in Step 6 of their proposed method for evaluating the intuitionistic fuzzy entropy of each aggregate of each row of intuitionistic fuzzy matrix is not valid. Therefore, it is not genuine to use the method proposed by Abdullah and Najib for solving real-life problems. The aim of this paper was to suggest the required necessary modifications for resolving the flaws of the Abdullah and Najib method.
Nelson, Rohan; Howden, Mark; Hayman, Peter
2013-07-30
This paper explores heuristic methods with potential to place the analytical power of real options analysis into the hands of natural resource managers. The complexity of real options analysis has led to patchy or ephemeral adoption even by corporate managers familiar with the financial-market origins of valuation methods. Intuitively accessible methods for estimating the value of real options have begun to evolve, but their evaluation has mostly been limited to researcher-driven applications. In this paper we work closely with Bush Heritage Australia to evaluate the potential of real options analysis to support the intuitive judgement of conservation estate managers in covenanting land with uncertain future conservation value due to climate change. The results show that modified decision trees have potential to estimate the option value of covenanting individual properties while time and ongoing research resolves their future conservation value. Complementing this, Luehrman's option space has potential to assist managers with limited budgets to increase the portfolio value of multiple properties with different conservation attributes. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Photoluminescence-Based Field Method for Detection of Traces of Explosives
Menzel, E. Roland; Menzel, Laird W.; Schwierking, Jake R.
2004-01-01
We report a photoluminescence-based field method for detecting traces of explosives. In its standard version, the method utilizes a commercially available color spot test kit for treating explosive traces on filter paper after swabbing. The colored products are fluorescent under illumination with a laser that operates on three C-size flashlight batteries and delivers light at 532 nm. In the fluorescence detection mode, by visual inspection, the typical sensitivity gain is a factor of 100. The method is applicable to a wide variety of explosives. In its time-resolved version, intended for in situ work, explosives are tagged with europium complexes. Instrumentation-wise, the time-resolved detection, again visual, can be accomplished in facile fashion. The europium luminescence excitation utilizes a laser operating at 355 nm. We demonstrate the feasibility of CdSe quantum dot sensitization of europium luminescence for time-resolved purposes. This would allow the use of the above 532 nm laser. PMID:15349512
Ellis, Shane R; Soltwisch, Jens; Heeren, Ron M A
2014-05-01
In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage (E(V)), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11–16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.
NASA Astrophysics Data System (ADS)
Clerc, F.; Njiki-Menga, G.-H.; Witschger, O.
2013-04-01
Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a quantitative estimation of the airborne particles released at the source when the task is performed. Beyond obtained results, this exploratory study indicates that the analysis of the results requires specific experience in statistics.
NASA Astrophysics Data System (ADS)
Hoeke, R. K.; Reyns, J.; O'Grady, J.; Becker, J. M.; Merrifield, M. A.; Roelvink, J. A.
2016-02-01
Oceanic islands are widely perceived as vulnerable to sea level rise and are characterized by steep nearshore topography and fringing reefs. In such settings, near shore dynamics and (non-tidal) water level variability tends to be dominated by wind-wave processes. These processes are highly sensitive to reef morphology and roughness and to regional wave climate. Thus sea level extremes tend to be highly localized and their likelihood can be expected to change in the future (beyond simple extrapolation of sea level rise scenarios): e.g. sea level rise may increase the effective mean depth of reef crests and flats and ocean acidification and/or increased temperatures may lead to changes in reef structure. The problem is sufficiently complex that analytic or numerical approaches are necessary to estimate current hazards and explore potential future changes. In this study, we evaluate the capacity of several analytic/empirical approaches and phase-averaged and phase-resolved numerical models at sites in the insular tropical Pacific. We consider their ability to predict time-averaged wave setup and instantaneous water level exceedance probability (or dynamic wave run-up) as well as computational cost; where possible, we compare the model results with in situ observations from a number of previous studies. Preliminary results indicate analytic approaches are by far the most computationally efficient, but tend to perform poorly when alongshore straight and parallel morphology cannot be assumed. Phase-averaged models tend to perform well with respect to wave setup in such situations, but are unable to predict processes related to individual waves or wave groups, such as infragravity motions or wave run-up. Phase-resolved models tend to perform best, but come at high computational cost, an important consideration when exploring possible future scenarios. A new approach of combining an unstructured computational grid with a quasi-phase averaged approach (i.e. only phase resolving motions below a frequency cutoff) shows promise as a good compromise between computational efficiency and resolving processes such as wave runup and overtopping in more complex bathymetric situations.
Li, Xiaowen; Shen, Baohua; Jiang, Zheng; Huang, Yi; Zhuo, Xianyi
2013-08-09
A novel analytical toxicology method has been developed for the analysis of drugs of abuse in human urine by using a high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometer (LTQ-Orbitrap-MS). This method allows for the detection of different drugs of abuse, including amphetamines, cocaine, opiate alkaloids, cannabinoids, hallucinogens and their metabolites. After solid-phase extraction with Oasis HLB cartridges, spiked urine samples were analysed by HPLC/LTQ-Orbitrap-MS using an electrospray interface in positive ionisation mode, with resolving power of 30,000 full width at half maximum (FWHM). Gradient elution off of a Hypersil Gold PFP column (50mm×2.1mm) allowed to resolve 65 target compounds and 3 internal standards in a total chromatographic run time of 20min. Validation of this method consisted of confirmation of identity, selectivity, linearity, limit of detection (LOD), lowest limits of quantification (LLOQ), accuracy, precision, extraction recovery and matrix effect. The regression coefficients (r(2)) for the calibration curves (LLOQ - 100ng/mL) in the study were ≥0.99. The LODs for 65 validated compounds were better than 5ng/ml except for 4 compounds. The relative standard deviation (RSD), which was used to estimate repeatability at three concentrations, was always less than 15%. The recovery of extraction and matrix effects were above 50 and 70%, respectively. Mass accuracy was always better than 2ppm, corresponding to a maximum mass error of 0.8 millimass units (mmu). The accurate masses of characteristic fragments were obtained by collisional experiments for a more reliable identification of the analytes. Automated data analysis and reporting were performed using ToxID software with an exact mass database. This procedure was then successfully applied to analyse drugs of abuse in a real urine sample from subject who was assumed to be drug addict. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Äijälä, Mikko; Heikkinen, Liine; Fröhlich, Roman; Canonaco, Francesco; Prévôt, André S. H.; Junninen, Heikki; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael
2017-03-01
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statistics-based data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k-means+ + , for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral similarity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.
Analytical approach for the fractional differential equations by using the extended tanh method
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Yildirim, Ayse
2018-07-01
In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.
An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1996-01-01
A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.
Profile fitting in crowded astronomical images
NASA Astrophysics Data System (ADS)
Manish, Raja
Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.
Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films
Castillero, Pedro; Roales, Javier; Lopes-Costa, Tânia; Sánchez-Valencia, Juan R.; Barranco, Angel; González-Elipe, Agustín R.; Pedrosa, José M.
2016-01-01
Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV–vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation–deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film. PMID:28025570
McGuffey, James E.; Wei, Binnian; Bernert, John T.; Morrow, John C.; Xia, Baoyun; Wang, Lanqing; Blount, Benjamin C.
2014-01-01
Tobacco use is a major contributor to premature morbidity and mortality. The measurement of nicotine and its metabolites in urine is a valuable tool for evaluating nicotine exposure and for nicotine metabolic profiling—i.e., metabolite ratios. In addition, the minor tobacco alkaloids—anabasine and anatabine—can be useful for monitoring compliance in smoking cessation programs that use nicotine replacement therapy. Because of an increasing demand for the measurement of urinary nicotine metabolites, we developed a rapid, low-cost method that uses isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously quantifying nicotine, six nicotine metabolites, and two minor tobacco alkaloids in smokers' urine. This method enzymatically hydrolyzes conjugated nicotine (primarily glucuronides) and its metabolites. We then use acetone pretreatment to precipitate matrix components (endogenous proteins, salts, phospholipids, and exogenous enzyme) that may interfere with LC-MS/MS analysis. Subsequently, analytes (nicotine, cotinine, hydroxycotinine, norcotinine, nornicotine, cotinine N-oxide, nicotine 1′-N-oxide, anatabine, and anabasine) are chromatographically resolved within a cycle time of 13.5 minutes. The optimized assay produces linear responses across the analyte concentrations typically found in urine collected from daily smokers. Because matrix ion suppression may influence accuracy, we include a discussion of conventions employed in this procedure to minimize matrix interferences. Simplicity, low cost, low maintenance combined with high mean metabolite recovery (76–99%), specificity, accuracy (0–10% bias) and reproducibility (2–9% C.V.) make this method ideal for large high through-put studies. PMID:25013964
Ogulei, David; Hopke, Philip K; Ferro, Andrea R; Jaques, Peter A
2007-02-01
A factor analytic model has been applied to resolve and apportion particles based on submicron particle size distributions downwind of a United States-Canada bridge in Buffalo, NY. The sites chosen for this study were located at gradually increasing distances downwind of the bridge complex. Seven independent factors were resolved, including four factors that were common to all of the five sites considered. The common factors were generally characterized by the existence of two or more number and surface area modes. The seven factors resolved were identified as follows: fresh tail-pipe diesel exhaust, local/street diesel traffic, aged/evolved diesel particles, spark-ignition gasoline emissions, background urban emissions, heavy-duty diesel agglomerates, and secondary/transported material. Submicron (<0.5 microm) and ultrafine (<0.1 microm) particle emissions downwind of the bridge were dominated by commercial diesel truck emissions. Thus, this study obtained size distinction between fresh versus aged vehicle exhaust and spark-ignition versus diesel emissions based on the measured high time-resolution particle number concentrations. Because this study mainly used particles <300 nm in diameter, some sources that would usually exhibit number modes >100 nm were not resolved. Also, the resolved profiles suggested that the major number mode for fresh tailpipe diesel exhaust might exist below the detection limit of the spectrometer used. The average particle number contributions from the resolved factors were highest closest to the bridge.
Galli, V; Barbas, C
2004-09-10
A method has been developed for the analysis of a cough syrup containing dextromethorphan, guaifenesin, benzoic acid, saccharin and other components. Forced degradation was also studied to demonstrate that the method could be employed during a stability study of the syrup. Final conditions were phosphate buffer (25 mM, pH 2.8) with triethylamine (TEA)-acetonitrile (75:25, v/v). In such conditions, all the actives, excipients and degradation products were baseline resolved in less than 14 min, and different wavelengths were used for the different analytes and related compounds.
NASA Astrophysics Data System (ADS)
Czachor, Andrzej
2016-02-01
In this paper we consider the assembly of weakly interacting identical particles, where the occupation of single-particle energy-levels at thermal equilibrium is governed by statistics. The analytic form of the inter-energy-level jump matrix is derived and analytic solution of the related eigen-problem is given. It allows one to demonstrate the nature of decline in time of the energy emission (fluorescence, recombination) of such many-level system after excitation in a relatively simple and unifying way - as a multi-exponential de-excitation. For the system of L energy levels the number of the de-excitation lifetimes is L-1. The lifetimes depend on the energy level spectrum as a whole. Two- and three-level systems are considered in detail. The impact of the energy level degeneracy on the lifetimes is discussed.
Concept of proton radiography using energy resolved dose measurement.
Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming
2016-08-21
Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.
Radiation accumulation of F{sub 2} color centers in LiF crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisitsyna, L. A.
2016-01-15
The paper presents the results of the research of the F{sub 2} centers accumulation dose dependences in the LiF crystals, the kinetics of absorption relaxation initiated by exposure to a single electron pulse in the band maxima of different electron centers obtained by time-resolved spectrometry with nanosecond resolution. An analytical description of the F{sub 2} center accumulation in an absorbed dose range ≤10{sup 3} Gy is provided.
Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.
2001-01-01
A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M
2014-01-01
Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.
Time-resolved brightness measurements by streaking
NASA Astrophysics Data System (ADS)
Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.
2018-03-01
Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.
NASA Astrophysics Data System (ADS)
Li, Jiangui; Wang, Junhua; Zhigang, Zhao; Yan, Weili
2012-04-01
In this paper, analytical analysis of the permanent magnet vernier (PMV) is presented. The key is to analytically solve the governing Laplacian/quasi-Poissonian field equations in the motor regions. By using the time-stepping finite element method, the analytical method is verified. Hence, the performances of the PMV machine are quantitatively compared with that of the analytical results. The analytical results agree well with the finite element method results. Finally, the experimental results are given to further show the validity of the analysis.
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang
2016-07-01
Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.
Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
NASA Astrophysics Data System (ADS)
Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
NASA Astrophysics Data System (ADS)
Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.
2016-12-01
The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.
Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio
2016-04-01
A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.
Yang, P; Niu, K; Wu, Y; Struffert, T; Doerfler, A; Holter, P; Aagaard-Kienitz, B; Strother, C; Chen, G-H
2017-04-01
The assessment of collaterals and clot burden in patients with acute ischemic stroke provides important information about treatment options and clinical outcome. Time-resolved C-arm conebeam CT angiography has the potential to provide accurate and reliable evaluations of collaterals and clot burden in the angiographic suite. Experience with this technique is extremely limited, and feasibility studies are needed to validate this technique. Our purpose was to present such a feasibility study. Ten C-arm conebeam CT perfusion datasets from 10 subjects with acute ischemic stroke acquired before endovascular treatment were retrospectively processed to generate time-resolved conebeam CTA. From time-resolved conebeam CTA, 2 experienced readers evaluated the clot burden and collateral flow in consensus by using previously reported scoring systems and assessed the clinical value of this novel imaging technique independently. Interobserver agreement was analyzed by using the intraclass correlation analysis method. Clot burden and collateral flow can be assessed by using the commonly accepted scoring systems for all eligible cases. Additional clinical information (eg, the quantitative dynamic information of collateral flow) can be obtained from this new imaging technique. Two readers agreed that time-revolved C-arm conebeam CTA is the preferred method for evaluating the clot burden and collateral flow compared with other conventional imaging methods. Comprehensive evaluations of clot burden and collateral flow are feasible by using time-resolved C-arm conebeam CTA data acquired in the angiography suite. This technique further enriches the imaging tools in the angiography suite to enable a "one-stop- shop" imaging workflow for patients with acute ischemic stroke. © 2017 by American Journal of Neuroradiology.
Exactly energy conserving semi-implicit particle in cell formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be
We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less
Safari, Leila; Patrick, Jon D
2018-06-01
This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.
1988-03-01
methods that can resolve the various compounds are required. This chapter specifically focuses on analytical and sampling metho - dology used to determine...Salmonella typhimurium TA1538. Cancer Res. 35:2461-2468. Huy, N. D., R. Belleau, and P. E. Roy. 1975. Toxicity of marijuana and tobacco smoking in the... Medicine Division (HSHA-IPM) Fort Sam Houston, TX 78234 Commander U.S. Army Materiel Command ATTN: AMSCG 5001 Eisenhower Avenue Alexandria, VA 22333
Persistence of uranium emission in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHaye, N. L.; Harilal, S. S., E-mail: hari@purdue.edu; Diwakar, P. K.
2014-04-28
Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement andmore » persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.« less
Direct optical sensors: principles and selected applications.
Gauglitz, Guenter
2005-01-01
In the field of bio and chemosensors a large number of detection principles has been published within the last decade. These detection principles are based either on the observation of fluorescence-labelled systems or on direct optical detection in the heterogeneous phase. Direct optical detection can be measured by remission (absorption of reflected radiation, opt(r)odes), by measuring micro-refractivity, or measuring interference. In the last case either Mach-Zehnder interferometers or measurement of changes in the physical thickness of the layer (measuring micro-reflectivity) caused, e.g., by swelling effects in polymers (due to interaction with analytes) or in bioassays (due to affinity reactions) also play an important role. Here, an overview of methods of microrefractometric and microreflectometric principles is given and benefits and drawbacks of the various approaches are demonstrated using samples from the chemo and biosensor field. The quality of sensors does not just depend on transduction principles but on the total sensor system defined by this transduction, the sensitive layer, data acquisition electronics, and evaluation software. The intention of this article is, therefore, to demonstrate the essentials of the interaction of these parts within the system, and the focus is on optical sensing using planar transducers, because fibre optical sensors have been reviewed in this journal only recently. Lack of selectivity of chemosensors can be compensated either by the use of sensor arrays or by evaluating time-resolved measurements of analyte/sensitive layer interaction. In both cases chemometrics enables the quantification of analyte mixtures. These data-processing methods have also been successfully applied to antibody/antigen interactions even using cross-reactive antibodies. Because miniaturisation and parallelisation are essential approaches in recent years, some aspects and current trends, especially for bio-applications, will be discussed. Miniaturisation is especially well covered in the literature.
NASA Astrophysics Data System (ADS)
Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.
2013-03-01
Time-domain near-infrared spectroscopy (TD-NIRS) offers the ability to measure the absolute baseline optical properties of a tissue. Specifically, for brain imaging, the robust assessment of cerebral blood volume and oxygenation based on measurement of cerebral hemoglobin concentrations is essential for reliable cross-sectional and longitudinal studies. In adult heads, these baseline measurements are complicated by the presence of thick extra-cerebral tissue (scalp, skull, CSF). A simple semi-infinite homogeneous model of the head has proven to have limited use because of the large errors it introduces in the recovered brain absorption. Analytical solutions for layered media have shown improved performance on Monte-Carlo simulated data and layered phantom experiments, but their validity on real adult head data has never been demonstrated. With the advance of fast Monte Carlo approaches based on GPU computation, numerical methods to solve the radiative transfer equation become viable alternatives to analytical solutions of the diffusion equation. Monte Carlo approaches provide the additional advantage to be adaptable to any geometry, in particular more realistic head models. The goals of the present study were twofold: (1) to implement a fast and flexible Monte Carlo-based fitting routine to retrieve the brain optical properties; (2) to characterize the performances of this fitting method on realistic adult head data. We generated time-resolved data at various locations over the head, and fitted them with different models of light propagation: the homogeneous analytical model, and Monte Carlo simulations for three head models: a two-layer slab, the true subject's anatomy, and that of a generic atlas head. We found that the homogeneous model introduced a median 20 to 25% error on the recovered brain absorption, with large variations over the range of true optical properties. The two-layer slab model only improved moderately the results over the homogeneous one. On the other hand, using a generic atlas head registered to the subject's head surface decreased the error by a factor of 2. When the information is available, using the true subject anatomy offers the best performance.
NASA Astrophysics Data System (ADS)
Sochi, Taha
2016-09-01
Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.
NASA Astrophysics Data System (ADS)
Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald
2013-03-01
Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.
The time resolved SBS and SRS research in heavy water and its application in CARS
NASA Astrophysics Data System (ADS)
Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting
2018-05-01
We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.
Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies
NASA Astrophysics Data System (ADS)
Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung
2015-09-01
We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.
Zhao, Jing; Jin, Yan; Shin, Yujin; Jeong, Kyung Min; Lee, Jeongmi
2016-03-01
Here we describe a simple and sensitive analytical method for the enantioselective quantification of fluoxetine in mouse serum using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The sample preparation method included a simple deproteinization with acetonitrile in 50 μL of serum, followed by derivatization of the extracts in 50 μL of 2 mM 1R-(-)-menthyl chloroformate at 45ºC for 55 min. These conditions were statistically optimized through response surface methodology using a central composite design. Under the optimized conditions, neither racemization nor kinetic resolution occurred. The derivatized diastereomers were readily resolved on a conventional sub-2 μm C18 column under a simple gradient elution of aqueous methanol containing 0.1% formic acid. The established method was validated and found to be linear, precise, and accurate over the concentration range of 5.0-1000.0 ng/mL for both R and S enantiomers (r(2) > 0.993). Stability tests of the prepared samples at three different concentration levels showed that the R- and S-fluoxetine derivatives were relatively stable for 48 h. No significant matrix effects were observed. Last, the developed method was successfully used for enantiomeric analysis of real serum samples collected at a number of time points from mice administered with racemic fluoxetine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A minimally-resolved immersed boundary model for reaction-diffusion problems
NASA Astrophysics Data System (ADS)
Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar
2013-12-01
We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.
An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV
NASA Astrophysics Data System (ADS)
Lynch, K. P.; Scarano, F.
2015-03-01
The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time correlation coefficient demonstrates the increased velocity field accuracy of SMTE compared with MART.
NASA Astrophysics Data System (ADS)
Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan
2018-03-01
For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied experimentally.
NASA Technical Reports Server (NTRS)
Lueck, Dale E.; Captain, Janine E.; Gibson, Tracy L.; Peterson, Barbara V.; Berger, Cristina M.; Levine, Lanfang
2008-01-01
The RESOLVE project requires an analytical system to identify and quantitate the volatiles released from a lunar drill core sample as it is crushed and heated to 150 C. The expected gases and their range of concentrations were used to assess Gas Chromatography (GC) and Mass Spectrometry (MS), along with specific analyzers for use on this potential lunar lander. The ability of these systems to accurately quantitate water and hydrogen in an unknown matrix led to the selection of a small MEMS commercial process GC for use in this project. The modification, development and testing of this instrument for the specific needs of the project is covered.
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; ...
2016-06-15
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in realmore » time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).« less
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai
2016-01-01
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments). PMID:27302087
Motor Oil Classification Based on Time-Resolved Fluorescence
Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong
2014-01-01
A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439
NASA Astrophysics Data System (ADS)
Ginzburg, Irina; Vikhansky, Alexander
2018-05-01
The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.
[Automated analyzer of enzyme immunoassay].
Osawa, S
1995-09-01
Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.
Rodrigo, Daniel; Tittl, Andreas; Ait-Bouziad, Nadine; John-Herpin, Aurelian; Limaj, Odeta; Kelly, Christopher; Yoo, Daehan; Wittenberg, Nathan J; Oh, Sang-Hyun; Lashuel, Hilal A; Altug, Hatice
2018-06-04
A multitude of biological processes are enabled by complex interactions between lipid membranes and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent biomolecular species and track their individual time evolution without invasive labels. Here, we present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in heterogeneous biological samples with high sensitivity. Our technology leverages a multi-resonant metasurface to simultaneously enhance the different vibrational fingerprints of multiple biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and methylene bands, our sensor resolves the interactions of lipid membranes with different polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications.
High dynamic range bio-molecular ion microscopy with the Timepix detector.
Jungmann, Julia H; MacAleese, Luke; Visser, Jan; Vrakking, Marc J J; Heeren, Ron M A
2011-10-15
Highly parallel, active pixel detectors enable novel detection capabilities for large biomolecules in time-of-flight (TOF) based mass spectrometry imaging (MSI). In this work, a 512 × 512 pixel, bare Timepix assembly combined with chevron microchannel plates (MCP) captures time-resolved images of several m/z species in a single measurement. Mass-resolved ion images from Timepix measurements of peptide and protein standards demonstrate the capability to return both mass-spectral and localization information of biologically relevant analytes from matrix-assisted laser desorption ionization (MALDI) on a commercial ion microscope. The use of a MCP-Timepix assembly delivers an increased dynamic range of several orders of magnitude. The Timepix returns defined mass spectra already at subsaturation MCP gains, which prolongs the MCP lifetime and allows the gain to be optimized for image quality. The Timepix peak resolution is only limited by the resolution of the in-pixel measurement clock. Oligomers of the protein ubiquitin were measured up to 78 kDa. © 2011 American Chemical Society
Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna
2012-05-01
Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.
Guo, Liang; Monahan, Daniele M; Fleming, Graham
2016-08-08
Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.
Iwata, Koichi; Terazima, Masahide; Masuhara, Hiroshi
2018-02-01
Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017. Published by Elsevier B.V.
Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen
2016-07-14
Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.
Task analysis exemplified: the process of resolving unfinished business.
Greenberg, L S; Foerster, F S
1996-06-01
The steps of a task-analytic research program designed to identify the in-session performances involved in resolving lingering bad feelings toward a significant other are described. A rational-empirical methodology of repeatedly cycling between rational conjecture and empirical observations is demonstrated as a method of developing an intervention manual and the components of client processes of resolution. A refined model of the change process developed by these procedures is validated by comparing 11 successful and 11 unsuccessful performances. Four performance components-intense expression of feeling, expression of need, shift in representation of other, and self-validation or understanding of the other-were found to discriminate between resolution and nonresolution performances. These components were measured on 4 process measures: the Structural Analysis of Social Behavior, the Experiencing Scale, the Client's Emotional Arousal Scale, and a need scale.
Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan
2015-04-01
Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay.
NASA Astrophysics Data System (ADS)
Woskov, P. P.; Sundaram, S. K.
2002-11-01
A radiometric method for resolving emissivity epsilon and temperature T in thermal emission measurements is presented. Thermal radiation from a viewed source is split by a beamsplitter between a radiometer and a mirror aligned to return a part of the thermal radiation back to the source. The ratio of the thermal signal with and without a return reflection provides a measurement of the emissivity without need of any other probing sources. The analytical expressions that establish this relationship are derived taking into account waveguide/optic losses and sources between the radiometer and viewed sample. The method is then applied to thermal measurements of several refractory materials at temperatures up to 1150 degC. A 137 GHz radiometer is used to measure the emissivity and temperature of an alumina brick, an Inconel 690 plate, and two grades of silicon carbide. Reasonable temperature agreement is achieved with an independent thermocouple measurement. However, when the emissivity approaches zero, as in the case of the Inconel plate, radiometric temperature determinations are inaccurate, though an emissivity near zero is correctly measured. This method is expected to be of considerable value to noncontact thermal analysis applications of materials.
NASA Astrophysics Data System (ADS)
Wang, Y. B.; Zhu, X. W.; Dai, H. H.
2016-08-01
Though widely used in modelling nano- and micro- structures, Eringen's differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.
Activating analytic thinking enhances the value given to individualizing moral foundations.
Yilmaz, Onurcan; Saribay, S Adil
2017-08-01
Two central debates within Moral Foundations Theory concern (1) which moral foundations are core and (2) how conflict between ideological camps stemming from valuing different moral foundations can be resolved. Previous studies have attempted to answer the first question by imposing cognitive load on participants to direct them toward intuitive and automatic thought. However, this method has limitations and has produced mixed findings. In the present research, in two experiments, instead of directing participants toward intuitive thought, we tested the effects of activating high-effort, analytic thought on participants' moral foundations. In both experiments, analytic thought activation caused participants to value individualizing foundations greater than the control condition. This effect was not qualified by participants' political orientation. No effect was observed on binding foundations. The results are consistent with the idea that upholding individualizing foundations requires mental effort and may provide the basis for reconciliation between different ideological camps. Copyright © 2017 Elsevier B.V. All rights reserved.
Electroosmotically Driven Liquid Flows in Complex Micro-Geometries
NASA Astrophysics Data System (ADS)
Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali
1999-11-01
Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez
2015-11-01
Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.
Asadpour-Zeynali, Karim; Maryam Sajjadi, S; Taherzadeh, Fatemeh; Rahmanian, Reza
2014-04-05
Bilinear least square (BLLS) method is one of the most suitable algorithms for second-order calibration. Original BLLS method is not applicable to the second order pH-spectral data when an analyte has more than one spectroscopically active species. Bilinear least square-residual bilinearization (BLLS-RBL) was developed to achieve the second order advantage for analysis of complex mixtures. Although the modified method is useful, the pure profiles cannot be obtained and only the linear combination will be obtained. Moreover, for prediction of analyte in an unknown sample, the original algorithm of RBL may diverge; instead of converging to the desired analyte concentrations. Therefore, Gauss Newton-RLB algorithm should be used, which is not as simple as original protocol. Also, the analyte concentration can be predicted on the basis of each of the equilibrating species of the component of interest that are not exactly the same. The aim of the present work is to tackle the non-uniqueness problem in the second order calibration of monoprotic acid mixtures and divergence of RBL. Each pH-absorbance matrix was pretreated by subtraction of the first spectrum from other spectra in the data set to produce full rank array that is called variation matrix. Then variation matrices were analyzed uniquely by original BLLS-RBL that is more parsimonious than its modified counterpart. The proposed method was performed on the simulated as well as the analysis of real data. Sunset yellow and Carmosine as monoprotic acids were determined in candy sample in the presence of unknown interference by this method. Copyright © 2013 Elsevier B.V. All rights reserved.
Advanced analytical electron microscopy for alkali-ion batteries
Qian, Danna; Ma, Cheng; Meng, Ying Shirley; ...
2015-06-26
Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less
["Long-branch Attraction" artifact in phylogenetic reconstruction].
Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping
2007-06-01
Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.
Salehi, Sohrab; Steif, Adi; Roth, Andrew; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P
2017-03-01
Next-generation sequencing (NGS) of bulk tumour tissue can identify constituent cell populations in cancers and measure their abundance. This requires computational deconvolution of allelic counts from somatic mutations, which may be incapable of fully resolving the underlying population structure. Single cell sequencing (SCS) is a more direct method, although its replacement of NGS is impeded by technical noise and sampling limitations. We propose ddClone, which analytically integrates NGS and SCS data, leveraging their complementary attributes through joint statistical inference. We show on real and simulated datasets that ddClone produces more accurate results than can be achieved by either method alone.
Mechanistic characterization of chloride interferences in electrothermal atomization systems
Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.
1988-01-01
A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.
A methodology to enhance electromagnetic compatibility in joint military operations
NASA Astrophysics Data System (ADS)
Buckellew, William R.
The development and validation of an improved methodology to identify, characterize, and prioritize potential joint EMI (electromagnetic interference) interactions and identify and develop solutions to reduce the effects of the interference are discussed. The methodology identifies potential EMI problems using results from field operations, historical data bases, and analytical modeling. Operational expertise, engineering analysis, and testing are used to characterize and prioritize the potential EMI problems. Results can be used to resolve potential EMI during the development and acquisition of new systems and to develop engineering fixes and operational workarounds for systems already employed. The analytic modeling portion of the methodology is a predictive process that uses progressive refinement of the analysis and the operational electronic environment to eliminate noninterfering equipment pairs, defer further analysis on pairs lacking operational significance, and resolve the remaining EMI problems. Tests are conducted on equipment pairs to ensure that the analytical models provide a realistic description of the predicted interference.
Review of Thawing Time Prediction Models Depending on Process Conditions and Product Characteristics
Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna
2016-01-01
Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387
Bade, Richard; Bijlsma, Lubertus; Sancho, Juan V; Hernández, Felix
2015-07-01
There has been great interest in environmental analytical chemistry in developing screening methods based on liquid chromatography-high resolution mass spectrometry (LC-HRMS) for emerging contaminants. Using HRMS, compound identification relies on the high mass resolving power and mass accuracy attainable by these analyzers. When dealing with wide-scope screening, retention time prediction can be a complementary tool for the identification of compounds, and can also reduce tedious data processing when several peaks appear in the extracted ion chromatograms. There are many in silico, Quantitative Structure-Retention Relationship methods available for the prediction of retention time for LC. However, most of these methods use commercial software to predict retention time based on various molecular descriptors. This paper explores the applicability and makes a critical discussion on a far simpler and cheaper approach to predict retention times by using LogKow. The predictor was based on a database of 595 compounds, their respective LogKow values and a chromatographic run time of 18min. Approximately 95% of the compounds were found within 4.0min of their actual retention times, and 70% within 2.0min. A predictor based purely on pesticides was also made, enabling 80% of these compounds to be found within 2.0min of their actual retention times. To demonstrate the utility of the predictors, they were successfully used as an additional tool in the identification of 30 commonly found emerging contaminants in water. Furthermore, a comparison was made by using different mass extraction windows to minimize the number of false positives obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Višňák, Jakub; Steudtner, Robin; Kassahun, Andrea; Hoth, Nils
2017-09-01
Natural waters' uranium level monitoring is of great importance for health and environmental protection. One possible detection method is the Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which offers the possibility to distinguish different uranium species. The analytical identification of aqueous uranium species in natural water samples is of distinct importance since individual species differ significantly in sorption properties and mobility in the environment. Samples originate from former uranium mine sites and have been provided by Wismut GmbH, Germany. They have been characterized by total elemental concentrations and TRLFS spectra. Uranium in the samples is supposed to be in form of uranyl(VI) complexes mostly with carbonate (CO32- ) and bicarbonate (HCO3- ) and to lesser extend with sulphate (SO42- ), arsenate (AsO43- ), hydroxo (OH- ), nitrate (NO3- ) and other ligands. Presence of alkaline earth metal dications (M = Ca2+ , Mg2+ , Sr2+ ) will cause most of uranyl to prefer ternary complex species, e.g. Mn(UO2)(CO3)32n-4 (n ɛ {1; 2}). From species quenching the luminescence, Cl- and Fe2+ should be mentioned. Measurement has been done under cryogenic conditions to increase the luminescence signal. Data analysis has been based on Singular Value Decomposition and monoexponential fit of corresponding loadings (for separate TRLFS spectra, the "Factor analysis of Time Series" (FATS) method) and Parallel Factor Analysis (PARAFAC, all data analysed simultaneously). From individual component spectra, excitation energies T00, uranyl symmetric mode vibrational frequencies ωgs and excitation driven U-Oyl bond elongation ΔR have been determined and compared with quasirelativistic (TD)DFT/B3LYP theoretical predictions to cross -check experimental data interpretation. Note to the reader: Several errors have been produced in the initial version of this article. This new version published on 23 October 2017 contains all the corrections.
Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko
2017-07-10
This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.
NASA Astrophysics Data System (ADS)
Huber, R.; Podlesak, D.; Dattelbaum, D.; Firestone, M.; Gustavsen, R.; Jensen, B.; Ringstrand, B.; Watkins, E.; Bagge-Hansen, M.; Hodgin, R.; Lauderbach, L.; Willey, T.; van Buuren, T.; Graber, T.; Rigg, P.; Sinclair, N.; Seifert, S.
2017-06-01
High explosive (HE) detonations produce an assortment of gases (CO, CO2, N2) and solid carbon products (nanodiamond, graphite). The evolution of solid carbon particles, within the chemical reaction zone, help to propel the detonation wave forward. Due to the violent nature and short reaction times during HE detonations, experimental observation are limited. Through time-resolved small angle x-ray scattering (TRSAXS) we are able to observed nanocarbon formation on nanosecond time scales. This TRSAXS setup is the first of its kind in the United States at Argonne National Laboratory at the Advanced Photon Source in the Dynamic Compression Sector. From the empirical and analytical analysis of the x-ray scattering of an in-line detonation we are able to temporally follow morphology and size. Two detonation geometries were studied for the HE Comp B-3 (40% TNT/60% RDX), producing steady and overdriven conditions. Steady wave particle evolution plateaued by 2 microseconds, where overdriven condition particle size decreases at the collision of the two shock fronts then plateaus. Post detonation soot is also analyzed to confirm size and shape of nanocarbon formation from Comp B-3 detonations. LA-UR-17-21443.
Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y
2012-01-01
A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.
Abdollahpour, Assem; Heydari, Rouhollah; Shamsipur, Mojtaba
2017-07-01
Two chiral stationary phases (CSPs) based on crystalline degradation products (CDPs) of vancomycin by using different synthetic methods were prepared and compared. Crystalline degradation products of vancomycin were produced by hydrolytic loss of ammonia from vancomycin molecules. Performances of two chiral columns prepared with these degradation products were investigated using several acidic and basic drugs as model analytes. Retention and resolution of these analytes on the prepared columns, as two main parameters, in enantioseparation were studied. The results demonstrated that the stationary phase preparation procedure has a significant effect on the column performance. The resolving powers of prepared columns for enantiomers resolution were changed with the variation in vancomycin-CDP coverage on the silica support. Elemental analysis was used to monitor the surface coverage of silica support by vancomycin-CDP. The results showed that both columns can be successfully applied to chiral separation studies.
Electrical controllable spin pump based on a zigzag silicene nanoribbon junction.
Zhang, Lin; Tong, Peiqing
2017-12-13
We propose a possible electrical controllable spin pump based on a zigzag silicene nanoribbon ferromagnetic junction by applying two time-dependent perpendicular electric fields. By using the Keldysh Green's function method, we derive the analytic expression of the spin-resolved current at the adiabatic approximation and demonstrate that two asymmetric spin up and spin down currents can be pumped out in the device without an external bias. The pumped currents mainly come from the interplay between the photon-assisted spin pump effect and the electrically-modulated energy band structure of the tunneling junction. The spin valve phenomena are not only related to the energy gap opened by two perpendicular staggered potentials, but also dependent on the system parameters such as the pumping frequency, the pumping phase difference, the spin-orbit coupling and the Fermi level, which can be tuned by the electrical methods. The proposed device can also be used to produce a pure spin current and a 100% polarized spin current through the photon-assisted pumping process. Our investigations may provide an electrical manipulation of spin-polarized electrons in graphene-like pumping devices.
Rapid time-resolved diffraction studies of protein structures using synchrotron radiation
NASA Astrophysics Data System (ADS)
Bartunik, Hans D.; Bartunik, Lesley J.
1992-07-01
The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.
ERIC Educational Resources Information Center
Pardue, Harry L.; Woo, Jannie
1984-01-01
Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)
Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.
Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik
2016-01-01
Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.
Smith, Joseph P; Smith, Frank C; Booksh, Karl S
2018-03-01
Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe analysis. To our knowledge, this is the first report of MCR-ALS with Raman imaging used for the investigation of both lunar and other types of meteorites. We have demonstrated the use of multivariate analysis methods, namely MCR-ALS, with Raman imaging to investigate heterogeneous lunar meteorites. Our analytical methodology can be used to elucidate the chemical, molecular, and structural characteristics of phases in a host of complex, heterogeneous geological, geochemical, and extraterrestrial materials.
Method of multiplexed analysis using ion mobility spectrometer
Belov, Mikhail E [Richland, WA; Smith, Richard D [Richland, WA
2009-06-02
A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.
Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.
Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D
2011-06-01
Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.
NASA Astrophysics Data System (ADS)
Zeng, Huihui
2017-10-01
For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, I. L.; Egaas, B.; Mansfield, L. M.
2015-01-15
Fiber-fed time-resolved photoluminescence is demonstrated as a tool for immediate process feedback after deposition of the absorber layer for CuIn{sub x}Ga{sub 1-x}Se{sub 2} and Cu{sub 2}ZnSnSe{sub 4} photovoltaic devices. The technique uses a simplified configuration compared to typical laboratory time-resolved photoluminescence in the delivery of the exciting beam, signal collection, and electronic components. Correlation of instrument output with completed device efficiency is demonstrated over a large sample set. The extraction of the instrument figure of merit, depending on both the initial luminescence intensity and its time decay, is explained and justified. Limitations in the prediction of device efficiency by thismore » method, including surface effect, are demonstrated and discussed.« less
A variational approach to parameter estimation in ordinary differential equations.
Kaschek, Daniel; Timmer, Jens
2012-08-14
Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.
Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, B.; Yee, H. C.
2001-01-01
Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.
NASA Astrophysics Data System (ADS)
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-01
This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-01
This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-20
Here, this report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy ismore » dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along < c > is found to be slightly higher than that along < a >, with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.« less
Alignment of time-resolved data from high throughput experiments.
Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank
2016-12-01
To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach provides a nonlinear alignment of two sequences that neither need to have equi-distant time points nor measurements at identical time points. The proposed method is evaluated with artificial as well as real data. The software is available as an R package tra (Time-Resolved data Alignment) which is freely available at: http://public.ostfalia.de/klawonn/tra.zip .
NASA Technical Reports Server (NTRS)
DeChant, Lawrence Justin
1998-01-01
In spite of rapid advances in both scalar and parallel computational tools, the large number of variables involved in both design and inverse problems make the use of sophisticated fluid flow models impractical, With this restriction, it is concluded that an important family of methods for mathematical/computational development are reduced or approximate fluid flow models. In this study a combined perturbation/numerical modeling methodology is developed which provides a rigorously derived family of solutions. The mathematical model is computationally more efficient than classical boundary layer but provides important two-dimensional information not available using quasi-1-d approaches. An additional strength of the current methodology is its ability to locally predict static pressure fields in a manner analogous to more sophisticated parabolized Navier Stokes (PNS) formulations. To resolve singular behavior, the model utilizes classical analytical solution techniques. Hence, analytical methods have been combined with efficient numerical methods to yield an efficient hybrid fluid flow model. In particular, the main objective of this research has been to develop a system of analytical and numerical ejector/mixer nozzle models, which require minimal empirical input. A computer code, DREA Differential Reduced Ejector/mixer Analysis has been developed with the ability to run sufficiently fast so that it may be used either as a subroutine or called by an design optimization routine. Models are of direct use to the High Speed Civil Transport Program (a joint government/industry project seeking to develop an economically.viable U.S. commercial supersonic transport vehicle) and are currently being adopted by both NASA and industry. Experimental validation of these models is provided by comparison to results obtained from open literature and Limited Exclusive Right Distribution (LERD) sources, as well as dedicated experiments performed at Texas A&M. These experiments have been performed using a hydraulic/gas flow analog. Results of comparisons of DREA computations with experimental data, which include entrainment, thrust, and local profile information, are overall good. Computational time studies indicate that DREA provides considerably more information at a lower computational cost than contemporary ejector nozzle design models. Finally. physical limitations of the method, deviations from experimental data, potential improvements and alternative formulations are described. This report represents closure to the NASA Graduate Researchers Program. Versions of the DREA code and a user's guide may be obtained from the NASA Lewis Research Center.
NASA Astrophysics Data System (ADS)
Zabeti, S.; Fikri, M.; Schulz, C.
2017-11-01
Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
Analytical model for atomic resonant attosecond transient absorption
NASA Astrophysics Data System (ADS)
Cariker, C.; Kjellson, T.; Lindroth, E.; Argenti, L.
2017-04-01
Recent advancements in ultrafast laser technology have made it possible to probe electron dynamics in highly excited atomic states that autoionize on a femtosecond timescale, thus giving insight into the dynamics of Auger decay and its interference with the continuum. These experiments provide a stringent test for time-resolved analytical models of autoionization. Here we present a finite-pulse, multi-photon perturbative model which is used in conjunction with ab-initio structure calculations to predict the attosecond transient absorption spectrum (ATAS) of an atom above the ionization threshold. We apply this model to compute the ATAS of argon in the vicinity of the 3s-1 4 p resonance as a function of the time delay between an extreme ultraviolet (XUV) and an infrared (IR) pulse, as well as of the angle between their polarization. We show that by modulating the parameters of the IR pulse it is possible to control the dipolar coupling between neighboring states and hence the lineshape of the 3s-1 4 p resonance. NSF Grant No. 1607588.
Development of a Competitive Time-Resolved Fluoroimmunoassay for Paclitaxel.
Cui, Qian; Tanaka, Hiroyuki; Shoyama, Yukihiro; Ye, Hao-Ting; Li, Fang; Tian, En-Wei; Wu, Ying-Song; Chao, Zhi
2018-05-01
Paclitaxel (Tax) is a diterpene alkaloid isolated from Taxus species and has proved clinically effective in treating a number of malignancies. Current quantitative analytical methods for Tax such as high-performance liquid chromatography (HPLC) often involve complicated sample preparation procedures with low recovery rates. To establish a rapid and sensitive time-resolved fluoroimmunoassay (TRFIA) for measuring Tax in Taxus materials with convenient sample preparation and a high recovery rate. Rabbit anti-mouse IgG was coated onto a 96-well microplate, which was then incubated with standard solutions of Tax and anti-Tax monoclonal antibody 3A3. A Eu 3+ -labelled conjugate of Tax and human serum albumin was used as the tracer. The luminescent system was enhanced with a solution containing 2-naphthoyltrifluoroacetone. The established TRFIA showed a linear response within the Tax concentration range of 3.2 to 80 ng/mL, with a limit of detection of 1.4 ng/mL. The intra- and inter-assay coefficient of variation of the assay was 9.6% and 9.7%, respectively, with an average recovery rate from spiked samples of 108.5%. Tax contents in Taxus samples were determined using both the established TRFIA system and a previously established enzyme-linked immunosorbent (ELISA), and the results of two assays were well correlated. This TRFIA system shows a high sensitivity, precision and accuracy for detection of Tax. This assay, which is convenient and less time-consuming, allows rapid analysis of Tax and provides another option for Tax measurement for quality control of Taxus materials and products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Time-resolved spectroscopy using a chopper wheel as a fast shutter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shicong; Wendt, Amy E.; Boffard, John B.
Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less
Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion
NASA Astrophysics Data System (ADS)
Krumm, F.; Vogel, W.
2018-04-01
In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.
Forcisi, Sara; Moritz, Franco; Kanawati, Basem; Tziotis, Dimitrios; Lehmann, Rainer; Schmitt-Kopplin, Philippe
2013-05-31
The present review gives an introduction into the concept of metabolomics and provides an overview of the analytical tools applied in non-targeted metabolomics with a focus on liquid chromatography (LC). LC is a powerful analytical tool in the study of complex sample matrices. A further development and configuration employing Ultra-High Pressure Liquid Chromatography (UHPLC) is optimized to provide the largest known liquid chromatographic resolution and peak capacity. Reasonably UHPLC plays an important role in separation and consequent metabolite identification of complex molecular mixtures such as bio-fluids. The most sensitive detectors for these purposes are mass spectrometers. Almost any mass analyzer can be optimized to identify and quantify small pre-defined sets of targets; however, the number of analytes in metabolomics is far greater. Optimized protocols for quantification of large sets of targets may be rendered inapplicable. Results on small target set analyses on different sample matrices are easily comparable with each other. In non-targeted metabolomics there is almost no analytical method which is applicable to all different matrices due to limitations pertaining to mass analyzers and chromatographic tools. The specifications of the most important interfaces and mass analyzers are discussed. We additionally provide an exemplary application in order to demonstrate the level of complexity which remains intractable up to date. The potential of coupling a high field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ICR-FT/MS), the mass analyzer with the largest known mass resolving power, to UHPLC is given with an example of one human pre-treated plasma sample. This experimental example illustrates one way of overcoming the necessity of faster scanning rates in the coupling with UHPLC. The experiment enabled the extraction of thousands of features (analytical signals). A small subset of this compositional space could be mapped into a mass difference network whose topology shows specificity toward putative metabolite classes and retention time. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri
2014-03-01
We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.
Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry.
Lento, Cristina; Wilson, Derek J
2017-05-21
Many important chemical and biochemical phenomena proceed on sub-second time scales before entering equilibrium. In this mini-review, we explore the history and recent advancements of time-resolved mass spectrometry (TRMS) for the characterization of millisecond time-scale chemical reactions and biochemical processes. TRMS allows for the simultaneous tracking of multiple reactants, intermediates and products with no chromophoric species required, high sensitivity and temporal resolution. The method has most recently been used for the characterization of several short-lived reaction intermediates in rapid chemical reactions. Most of the reactions that occur in living organisms are accelerated by enzymes, with pre-steady state kinetics only attainable using time-resolved methods. TRMS has been increasingly used to monitor the conversion of substrates to products and the resulting changes to the enzyme during catalytic turnover. Early events in protein folding systems have also been elucidated, along with the characterization of dynamics and transient secondary structures in intrinsically disordered proteins. In this review, we will highlight representative examples where TRMS has been applied to study these phenomena.
A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS.
Lou, Xianwen; de Waal, Bas F M; Milroy, Lech-Gustav; van Dongen, Joost L J
2015-05-01
In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re-dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried-droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures. Copyright © 2015 John Wiley & Sons, Ltd.
Puszka, Agathe; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Derouard, Jacques; Dinten, Jean-Marc
2013-01-01
We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry. PMID:23577292
Size separation of analytes using monomeric surfactants
Yeung, Edward S.; Wei, Wei
2005-04-12
A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutmacher, R.; Crawford, R.
This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel.
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42 - 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
Asgharzadeh, Hafez; Borazjani, Iman
2016-01-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42 – 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future. PMID:28042172
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for non-linear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form a preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42-74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal and full Jacobian, respectivley, when the stretching factor was increased. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
Temporal variations in Global Seismic Stations ambient noise power levels
Ringler, A.T.; Gee, L.S.; Hutt, C.R.; McNamara, D.E.
2010-01-01
Recent concerns about time-dependent response changes in broadband seismometers have motivated the need for methods to monitor sensor health at Global Seismographic Network (GSN) stations. We present two new methods for monitoring temporal changes in data quality and instrument response transfer functions that are independent of Earth seismic velocity and attenuation models by comparing power levels against different baseline values. Our methods can resolve changes in both horizontal and vertical components in a broad range of periods (∼0.05 to 1,000 seconds) in near real time. In this report, we compare our methods with existing techniques and demonstrate how to resolve instrument response changes in long-period data (>100 seconds) as well as in the microseism bands (5 to 20 seconds).
Dodds, James N; May, Jody C; McLean, John A
2017-11-21
Here we examine the relationship among resolving power (R p ), resolution (R pp ), and collision cross section (CCS) for compounds analyzed in previous ion mobility (IM) experiments representing a wide variety of instrument platforms and IM techniques. Our previous work indicated these three variables effectively describe and predict separation efficiency for drift tube ion mobility spectrometry experiments. In this work, we seek to determine if our previous findings are a general reflection of IM behavior that can be applied to various instrument platforms and mobility techniques. Results suggest IM distributions are well characterized by a Gaussian model and separation efficiency can be predicted on the basis of the empirical difference in the gas-phase CCS and a CCS-based resolving power definition (CCS/ΔCCS). Notably traveling wave (TWIMS) was found to operate at resolutions substantially higher than a single-peak resolving power suggested. When a CCS-based R p definition was utilized, TWIMS was found to operate at a resolving power between 40 and 50, confirming the previous observations by Giles and co-workers. After the separation axis (and corresponding resolving power) is converted to cross section space, it is possible to effectively predict separation behavior for all mobility techniques evaluated (i.e., uniform field, trapped ion mobility, traveling wave, cyclic, and overtone instruments) using the equations described in this work. Finally, we are able to establish for the first time that the current state-of-the-art ion mobility separations benchmark at a CCS-based resolving power of >300 that is sufficient to differentiate analyte ions with CCS differences as small as 0.5%.
NASA Astrophysics Data System (ADS)
Mehta, Kalpesh; Hasnain, Ali; Zhou, Xiaowei; Luo, Jianwen; Penney, Trevor B.; Chen, Nanguang
2017-04-01
Diffuse optical spectroscopy (DOS) and imaging methods have been widely applied to noninvasive detection of brain activity. We have designed and implemented a low cost, portable, real-time one-channel time-resolved DOS system for neuroscience studies. Phantom experiments were carried out to test the performance of the system. We further conducted preliminary human experiments and demonstrated that enhanced sensitivity in detecting neural activity in the cortex could be achieved by the use of late arriving photons.
Short-time quantum dynamics of sharp boundaries potentials
NASA Astrophysics Data System (ADS)
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
van Ditmarsch, Dave; Xavier, João B
2011-06-17
Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600) and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of maximum specific growth rates, which were determined with a precision of ~5.4%. Growth curve synchronization allows integration of rich time-resolved data with endpoint measurements to produce time-resolved quantitative measurements. Such data can be valuable to unveil the dynamic regulation of virulence in P. aeruginosa. More generally, growth curve synchronization can be applied to many biological systems thus helping to overcome a key obstacle in dynamic regulation: the scarceness of quantitative time-resolved data.
Quantitative mass imaging of single biological macromolecules.
Young, Gavin; Hundt, Nikolas; Cole, Daniel; Fineberg, Adam; Andrecka, Joanna; Tyler, Andrew; Olerinyova, Anna; Ansari, Ayla; Marklund, Erik G; Collier, Miranda P; Chandler, Shane A; Tkachenko, Olga; Allen, Joel; Crispin, Max; Billington, Neil; Takagi, Yasuharu; Sellers, James R; Eichmann, Cédric; Selenko, Philipp; Frey, Lukas; Riek, Roland; Galpin, Martin R; Struwe, Weston B; Benesch, Justin L P; Kukura, Philipp
2018-04-27
The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da
2016-11-01
In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.
Paleari, R; Arcelloni, C; Paroni, R; Fermo, I; Mosca, A
1989-03-01
We compared the performance of two highly resolving methods, chromatofocusing (CRF) and isoelectric focusing in immobilized pH gradients (IPGF), for the separation of human hemoglobin variants. Lysates containing 13 different hemoglobins, including variants of clinical and geographical importance, and four electrophoretically "silent" variants (Hb Brockton, Hb Cheverly, Hb Köln, and Hb Waco) were analyzed. Both techniques showed a good intrarun precision (CV = 0.87% for CRF, 0.27% for IPGF) and high and similar resolving power (0.010 pH units, with the pH gradients used in this work). The use of an ultranarrow IPGF range (pH 7.15-7.35; pH gradient = 0.019 pH/cm) allowed the resolution between Hb Brockton, Hb Köln, and Hb A. In some cases (Hb D-Los Angeles, Hb F, Hb Waco), the variants were separated from Hb A in different orders, depending on which technique was used, probably because of the different analytical principles of the two methods. As a second-level test, both procedures are informative for characterization of human hemoglobin variants.
NASA Astrophysics Data System (ADS)
Castiglione, Steven Louis
As scientific research trends towards trace levels and smaller architectures, the analytical chemist is often faced with the challenge of quantitating said species in a variety of matricies. The challenge is heightened when the analytes prove to be potentially toxic or possess physical or chemical properties that make traditional analytical methods problematic. In such cases, the successful development of an acceptable quantitative method plays a critical role in the ability to further develop the species under study. This is particularly true for pharmaceutical impurities and nanoparticles (NP). The first portion of the research focuses on the development of a part-per-billion level HPLC method for a substituted phenazine-class pharmaceutical impurity. The development of this method was required due to the need for a rapid methodology to quantitatively determine levels of a potentially toxic phenazine moiety in order to ensure patient safety. As the synthetic pathway for the active ingredient was continuously refined to produce progressively lower amounts of the phenazine impurity, the approach for increasingly sensitive quantitative methods was required. The approaches evolved across four discrete methods, each employing a unique scheme for analyte detection. All developed methods were evaluated with regards to accuracy, precision and linear adherence as well as ancillary benefits and detriments -- e.g., one method in this evolution demonstrated the ability to resolve and detect other species from the phenazine class. The second portion of the research focuses on the development of an HPLC method for the quantitative determination of NP size distributions. The current methodology for the determination of NP sizes employs tunneling electron microscopy (TEM), which requires sample drying without particle size alteration and which, in many cases, may prove infeasible due to cost or availability. The feasibility of an HPLC method for NP size characterizations evolved across three methods, each employing a different approach for size resolution. These methods were evaluated primarily for sensitivity, which proved to be a substantial hurdle to further development, but does not appear to deter future research efforts.
Gradient design for liquid chromatography using multi-scale optimization.
López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C
2018-01-26
In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.
2016-01-01
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264
A second-order multi-reference perturbation method for molecular vibrations
NASA Astrophysics Data System (ADS)
Mizukami, Wataru; Tew, David P.
2013-11-01
We present a general multi-reference framework for treating strong correlation in vibrational structure theory, which we denote the vibrational active space self-consistent field (VASSCF) approach. Active configurations can be selected according to excitation level or the degrees of freedom involved, or both. We introduce a novel state-specific second-order multi-configurational perturbation correction that accounts for the remaining weak correlation between the vibrational modes. The resulting VASPT2 method is capable of accurately and efficiently treating strong correlation in the form of large anharmonic couplings, at the same time as correctly resolving resonances between states. These methods have been implemented in our new dynamics package DYNAMOL, which can currently treat up to four-body Hamiltonian coupling terms. We present a pilot application of the VASPT2 method to the trans isomer of formic acid. We have constructed a new analytic potential that reproduces frozen core CCSD(T)(F12*)/cc-pVDZ-F12 energies to within 0.25% RMSD over the energy range 0-15 000 cm-1. The computed VASPT2 fundamental transition energies are accurate to within 9 cm-1 RMSD from experimental values, which is close to the accuracy one can expect from a CCSD(T) potential energy surface.
NASA Astrophysics Data System (ADS)
Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.
1989-05-01
High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.
Hayashi, Ryusuke; Watanabe, Osamu; Yokoyama, Hiroki; Nishida, Shin'ya
2017-06-01
Characterization of the functional relationship between sensory inputs and neuronal or observers' perceptual responses is one of the fundamental goals of systems neuroscience and psychophysics. Conventional methods, such as reverse correlation and spike-triggered data analyses are limited in their ability to resolve complex and inherently nonlinear neuronal/perceptual processes because these methods require input stimuli to be Gaussian with a zero mean. Recent studies have shown that analyses based on a generalized linear model (GLM) do not require such specific input characteristics and have advantages over conventional methods. GLM, however, relies on iterative optimization algorithms and its calculation costs become very expensive when estimating the nonlinear parameters of a large-scale system using large volumes of data. In this paper, we introduce a new analytical method for identifying a nonlinear system without relying on iterative calculations and yet also not requiring any specific stimulus distribution. We demonstrate the results of numerical simulations, showing that our noniterative method is as accurate as GLM in estimating nonlinear parameters in many cases and outperforms conventional, spike-triggered data analyses. As an example of the application of our method to actual psychophysical data, we investigated how different spatiotemporal frequency channels interact in assessments of motion direction. The nonlinear interaction estimated by our method was consistent with findings from previous vision studies and supports the validity of our method for nonlinear system identification.
Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M
2006-08-01
To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.
NASA Astrophysics Data System (ADS)
Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.
2018-03-01
In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.
Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments
NASA Astrophysics Data System (ADS)
Bluteau, Cynthia E.; Ivey, Gregory N.; Donis, Daphne; McGinnis, Daniel F.
2018-03-01
In aquatic systems, the eddy correlation method (ECM) provides vertical flux measurements near the sediment-water interface. The ECM independently measures the turbulent vertical velocities w' and the turbulent tracer concentration c' at a high sampling rate (> 1 Hz) to obtain the vertical flux w'c'¯ from their time-averaged covariance. This method requires identifying and resolving all the flow-dependent time (and length) scales contributing to w'c'¯. With increasingly energetic flows, we demonstrate that the ECM's current technology precludes resolving the smallest flux-contributing scales. To avoid these difficulties, we show that for passive tracers such as dissolved oxygen, w'c'¯ can be measured from estimates of two scalar quantities: the rate of turbulent kinetic energy dissipation ɛ and the rate of tracer variance dissipation χc. Applying this approach to both laboratory and field observations demonstrates that w'c'¯ is well resolved by the new method and can provide flux estimates in more energetic flows where the ECM cannot be used.
Trajectories of depressive symptoms over two years postpartum among overweight or obese women
Lee, Chien-Ti; Stroo, Marissa; Fuemmeler, Bernard; Malhotra, Rahul; Østbye, Truls
2014-01-01
Background Although depressive symptoms are common postpartum, few studies have followed women beyond 12 months postpartum to investigate changes in the number and severity of these symptoms over time, especially in overweight and obese women. Using two complementary analytical methods, this study aims to identify trajectories of depressive symptoms over two years postpartum among overweight or obese mothers, and assess the demographic, socio-economic , and health covariates for these trajectories. Methods Using longitudinal data from two behavioral intervention studies (KAN-DO and AMP; N = 844), we used latent growth modeling to identify the overall trajectory of depressive symptoms and how it was related to key covariates. Next, we used latent class growth analysis to assess the heterogeneity in the depressive symptom trajectories over time, and thereby, identify subgroups of women with distinct trajectories. Findings The overall trajectory of depressive symptoms over two years postpartum was relatively stable in our sample. However, the presence of three distinct latent class trajectories [stable-low (82.5%), decreasing symptoms (7.3%) and increasing symptoms (10.2%)], identified based on trajectory shape and mean depressive symptom score, supported heterogeneity in depressive symptom trajectories over time. Lower maternal education was related to a higher symptom score, and poorer subjective health status at baseline predicted inclusion in the increasing symptoms trajectory. Conclusions In some overweight or obese mothers postpartum depressive symptoms do not resolve quickly. Practitioners should be aware of this phenomenon and continue to screen for depression for longer periods of time postpartum. PMID:25213748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge Jr, William P.; Choi, Jae-Soon
By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how themore » catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic reduction catalysts, oxidation catalysts, and particulate filters. The objective is to promote broader use and development of intracatalyst analytical methods, and thereby expand the insights resulting from this detailed perspective for advancing automotive catalyst technologies.« less
NASA Astrophysics Data System (ADS)
Brookman, T. H.; Whittaker, T. E.; King, P. L.; Horton, T. W.
2011-12-01
Stable isotope dendroclimatology is a burgeoning field in palaeoclimate science due to its unique potential to contribute (sub)annually resolved climate records, over millennial timescales, to the terrestrial palaeoclimate record. Until recently the time intensive methods precluded long-term climate reconstructions. Advances in continuous-flow mass spectrometry and isolation methods for α-cellulose (ideal for palaeoclimate studies as, unlike other wood components, it retains its initial isotopic composition) have made long-term, calendar dated palaeoclimate reconstructions a viable proposition. The Modified Brendel (mBrendel) α-cellulose extraction method is a fast, cost-effective way of preparing whole-wood samples for stable oxygen and carbon isotope analysis. However, resinous woods often yield incompletely processed α-cellulose using the standard mBrendel approach. As climate signals may be recorded by small (<1%) isotopic shifts it is important to investigate if incomplete processing affects the accuracy and precision of tree-ring isotopic records. In an effort to address this methodological issue, we investigated three highly resinous woods: kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii). Samples of each species were treated with 16 iterations of the mBrendel, varying reaction temperature, time and reagent volumes. Products were investigated using microscopic and bulk transmission Fourier Transform infrared spectroscopy (FITR) to reveal variations in the level of processing; poorly-digested fibres display a peak at 1520cm-1 suggesting residual lignin and a peak at ~1600cm-1 in some samples suggests retained resin. Despite the different levels of purity, replicate analyses of samples processed by high temperature digestion yielded consistent δ18O within and between experiments. All α-cellulose samples were 5-7% enriched compared to the whole-wood, suggesting that even incomplete processing at high temperature can provide acceptable δ18O analytical external precision. For kauri, short, lower temperature extractions produced α-cellulose with δ18O consistently ~1% lower than longer, higher temperature kauri experiments. These findings suggest that temperature and time are significant variables that influence the analytical precision of α-cellulose stable isotope analysis and that resinous hardwoods (e.g. kauri) may require longer and/or hotter digestions than softwoods. The effects of mBrendel variants on the carbon isotope ratio precision of α-cellulose extracts will also be presented. Our findings indicate that the standard mBrendel α-cellulose extraction method may not fully remove lignins and resins depending on the type of wood being analysed. Residual impurities can decrease analytical precision and accuracy. Fortunately, FTIR analysis prior to isotopic analysis is a relatively fast and cost effective way to determine α-cellulose extract purity, ultimately improving the data quality, accuracy and utility of tree-ring based stable isotopic climate records.
Panne, U; Knöller, A; Kotzick, R; Niessner, R
2000-02-01
A fiber optical sensor system for the determination of polycyclic aromatic hydrocarbons (PAH) on aerosols by laser-induced, time-resolved fluorescence is combined with a thermodesorption device. The sensor system is based on an aerosol flow cell, which is fibre-optically coupled to a pulsed nitrogen laser for excitation and the detection system. Time-resolved fluorescence emission spectra are detected by a monochromator equipped with a photomultiplier and a fast digital storage oscilloscope. The analytical figures of merit of the thermodenuder are reported for benzo[a]pyrene, benzo[b]fluoranthene, and benzo[ghi]-perylene on ultrafine soot and NaCl aerosols. By thermodesorption of the PAH, problems due to quenching of the PAH fluorescence by the bulk aerosol material or excimer formation on the aerosol surface were avoided. For the PAH under study, the sensitivity was improved considerably and detection limits between 110 and 850 ng m(-3) were attained, while a response time of 2-3 min was achieved with the thermodenuder. A calibration for PAH on ultrafine soot and NaCl aerosols was established independent of the aerosol substrate.
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle.
Ruf, Alexander; d'Hendecourt, Louis L S; Schmitt-Kopplin, Philippe
2018-06-01
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M
2014-12-01
Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc.
Determination of atmospheric organosulfates using HILIC chromatography with MS detection
NASA Astrophysics Data System (ADS)
Hettiyadura, A. P. S.; Stone, E. A.; Kundu, S.; Baker, Z.; Geddes, E.; Richards, K.; Humphry, T.
2015-06-01
Measurements of organosulfates in ambient aerosols provide insight to the extent of secondary organic aerosol (SOA) formation from mixtures of biogenic gases and anthropogenic pollutants. Organosulfates have, however, proved analytically challenging to quantify, due to lack of authentic standards and the complex sample matrix in which organosulfates are observed. This study presents a sensitive and accurate new analytical method for the quantification of organosulfates based upon ultra-performance liquid chromatography (UPLC) with negative electrospray ionization mass spectrometry (MS) with the aid of synthesized organosulfate standards. The separation is based upon hydrophilic interaction liquid chromatography (HILIC) with an amide stationary phase that provides excellent retention of carboxy-organosulfates and isoprene-derived organosulfates. The method is validated using six model compounds: methyl sulfate, ethyl sulfate, benzyl sulfate, hydroxyacetone sulfate, lactic acid sulfate and glycolic acid sulfate. A straightforward protocol for synthesis of highly pure organosulfate potassium salts for use as quantification standards is presented. This method is used to evaluate the efficiency and precision of two methods of ambient PM2.5 sample extraction. Spike recoveries averaged 98 ± 8% for extraction by ultra-sonication and 98 ± 10% for extraction by rotary shaking. Ultra-sonication was determined to be a better method due to its higher precision compared to rotary shaking. Analysis of ambient PM2.5 samples collected on 10-11 July 2013 in Centreville, AL, USA during the Southeast Atmosphere Study (SAS) confirms the presence of hydroxyacetone sulfate in ambient aerosol for the first time. Lactic acid sulfate was the most abundant compound measured (9.6-19 ng m-3), followed by glycolic acid sulfate (8-14 ng m-3) and hydroxyacetone sulfate (2.7-5.8 ng m-3). Trace amounts of methyl sulfate were detected, while ethyl sulfate and benzyl sulfate were not. Application of this HILIC separation method to ambient aerosol samples further demonstrates its utility in resolving additional biogenic organosulfates.
NASA Astrophysics Data System (ADS)
Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.
2014-12-01
The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.
NASA Astrophysics Data System (ADS)
Carraro, F.; Valiani, A.; Caleffi, V.
2018-03-01
Within the framework of the de Saint Venant equations coupled with the Exner equation for morphodynamic evolution, this work presents a new efficient implementation of the Dumbser-Osher-Toro (DOT) scheme for non-conservative problems. The DOT path-conservative scheme is a robust upwind method based on a complete Riemann solver, but it has the drawback of requiring expensive numerical computations. Indeed, to compute the non-linear time evolution in each time step, the DOT scheme requires numerical computation of the flux matrix eigenstructure (the totality of eigenvalues and eigenvectors) several times at each cell edge. In this work, an analytical and compact formulation of the eigenstructure for the de Saint Venant-Exner (dSVE) model is introduced and tested in terms of numerical efficiency and stability. Using the original DOT and PRICE-C (a very efficient FORCE-type method) as reference methods, we present a convergence analysis (error against CPU time) to study the performance of the DOT method with our new analytical implementation of eigenstructure calculations (A-DOT). In particular, the numerical performance of the three methods is tested in three test cases: a movable bed Riemann problem with analytical solution; a problem with smooth analytical solution; a test in which the water flow is characterised by subcritical and supercritical regions. For a given target error, the A-DOT method is always the most efficient choice. Finally, two experimental data sets and different transport formulae are considered to test the A-DOT model in more practical case studies.
NASA Astrophysics Data System (ADS)
Ding, Xiao-Li; Nieto, Juan J.
2017-11-01
In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.
Rodriguez-Mozaz, Sara; de Alda, Maria J López; Barceló, Damià
2006-04-15
This work describes the application of an optical biosensor (RIver ANALyser, RIANA) to the simultaneous analysis of three relevant environmental organic pollutants, namely, the pesticides atrazine and isoproturon and the estrogen estrone, in real water samples. This biosensor is based on an indirect inhibition immunoassay which takes place at a chemically modified optical transducer chip. The spatially resolved modification of the transducer surface allows the simultaneous determination of selected target analytes by means of "total internal reflection fluorescence" (TIRF). The performance of the immunosensor method developed was evaluated against a well accepted traditional method based on solid-phase extraction followed by liquid chromatography-mass spectrometry (LC-MS). The chromatographic method was superior in terms of linearity, sensitivity and accuracy, and the biosensor method in terms of repeatability, speed, cost and automation. The application of both methods in parallel to determine the occurrence and removal of atrazine, isoproturon and estrone throughout the treatment process (sand filtration, ozonation, activated carbon filtration and chlorination) in a waterworks showed an overestimation of results in the case of the biosensor, which was partially attributed to matrix and cross-reactivity effects, in spite of the addition of ovalbumin to the sample to minimize matrix interferences. Based on the comparative performance of both techniques, the biosensor emerges as a suitable tool for fast, simple and automated screening of water pollutants without sample pretreatment. To the author's knowledge, this is the first description of the application of the biosensor RIANA in the multi-analyte configuration to the regular monitoring of pollutants in a waterworks.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.
2017-09-01
In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.
Blom, H; Gösch, M
2004-04-01
The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue 1). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g.chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue 11). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.
Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J
2011-02-20
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.
Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.
2011-01-01
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water.
Yan, Boyin; Liu, Zhiquan; Huang, Rui; Xu, Yongpeng; Liu, Dongmei; Lin, Tsair-Fuh; Cui, Fuyi
2017-10-17
There is a serious dispute on the existence of β-N-methylamino-l-alanine (BMAA) in water, which is a neurotoxin that may cause amyotrophic lateral sclerosis/Parkinson's disease (ALS/PDC) and Alzheimer' disease. It is believed that a reliable and sensitive analytical method for the determination of BMAA is urgently required to resolve this dispute. In the present study, the solid phase extraction (SPE) procedure and the analytical method for dissolved BMAA in water were investigated and optimized. The results showed both derivatized and underivatized methods were qualified for the measurement of BMAA and its isomer in natural water, and the limit of detection and the precision of the two methods were comparable. Cartridge characteristics and SPE conditions could greatly affect the SPE performance, and the competition of natural organic matter is the primary factor causing the low recovery of BMAA, which was reduced from approximately 90% in pure water to 38.11% in natural water. The optimized SPE method for BMAA was a combination of rinsed SPE cartridges, controlled loading/elution rates and elution solution, evaporation at 55 °C, reconstitution of a solution mixture, and filtration by polyvinylidene fluoride membrane. This optimized method achieved > 88% recovery of BMAA in both algal solution and river water. The developed method can provide an efficient way to evaluate the actual concentration levels of BMAA in actual water environments and drinking water systems.
Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng
2013-08-21
Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.
Nanomaterials Work at NASA-Johnson Space Center
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram
2005-01-01
Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.
Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy
NASA Technical Reports Server (NTRS)
Szmacinski, Henryk
2003-01-01
Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.
Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E
2016-05-01
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).
Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources
Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.
2016-01-01
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147
Algorithms and software for U-Pb geochronology by LA-ICPMS
NASA Astrophysics Data System (ADS)
McLean, Noah M.; Bowring, James F.; Gehrels, George
2016-07-01
The past 15 years have produced numerous innovations in geochronology, including experimental methods, instrumentation, and software that are revolutionizing the acquisition and application of geochronological data. For example, exciting advances are being driven by Laser-Ablation ICP Mass Spectrometry (LA-ICPMS), which allows for rapid determination of U-Th-Pb ages with 10s of micrometer-scale spatial resolution. This method has become the most commonly applied tool for dating zircons, constraining a host of geological problems. The LA-ICPMS community is now faced with archiving these data with associated analytical results and, more importantly, ensuring that data meet the highest standards for precision and accuracy and that interlaboratory biases are minimized. However, there is little consensus with regard to analytical strategies and data reduction protocols for LA-ICPMS geochronology. The result is systematic interlaboratory bias and both underestimation and overestimation of uncertainties on calculated dates that, in turn, decrease the value of data in repositories such as EarthChem, which archives data and analytical results from participating laboratories. We present free open-source software that implements new algorithms for evaluating and resolving many of these discrepancies. This solution is the result of a collaborative effort to extend the U-Pb_Redux software for the ID-TIMS community to the LA-ICPMS community. Now named ET_Redux, our new software automates the analytical and scientific workflows of data acquisition, statistical filtering, data analysis and interpretation, publication, community-based archiving, and the compilation and comparison of data from different laboratories to support collaborative science.
ANALYTICAL METHOD READINESS FOR THE CONTAMINANT CANDIDATE LIST
The Contaminant Candidate List (CCL), which was promulgated in March 1998, includes 50 chemical and 10 microbiological contaminants/contaminant groups. At the time of promulgation, analytical methods were available for 6 inorganic and 28 organic contaminants. Since then, 4 anal...
Kinoshita, Kohnosuke; Jingu, Shigeji; Yamaguchi, Jun-ichi
2013-01-15
A bioanalytical method for determining endogenous d-serine levels in the mouse brain using a surrogate analyte and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. [2,3,3-(2)H]D-serine and [(15)N]D-serine were used as a surrogate analyte and an internal standard, respectively. The surrogate analyte was spiked into brain homogenate to yield calibration standards and quality control (QC) samples. Both endogenous and surrogate analytes were extracted using protein precipitation followed by solid phase extraction. Enantiomeric separation was achieved on a chiral crown ether column with an analysis time of only 6 min without any derivatization. The column eluent was introduced into an electrospray interface of a triple-quadrupole mass spectrometer. The calibration range was 1.00 to 300 nmol/g, and the method showed acceptable accuracy and precision at all QC concentration levels from a validation point of view. In addition, the brain d-serine levels of normal mice determined using this method were the same as those obtained by a standard addition method, which is time-consuming but is often used for the accurate measurement of endogenous substances. Thus, this surrogate analyte method should be applicable to the measurement of d-serine levels as a potential biomarker for monitoring certain effects of drug candidates on the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.
New analytic results for speciation times in neutral models.
Gernhard, Tanja
2008-05-01
In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.
NASA Astrophysics Data System (ADS)
Nevin, A.; Cesaratto, A.; D'Andrea, C.; Valentini, Gianluca; Comelli, D.
2013-05-01
We present the non-invasive study of historical and modern Zn- and Cd-based pigments with time-resolved fluorescence spectroscopy, fluorescence multispectral imaging and fluorescence lifetime imaging (FLIM). Zinc oxide and Zinc sulphide are semiconductors which have been used as white pigments in paintings, and the luminescence of these pigments from trapped states is strongly dependent on the presence of impurities and crystal defects. Cadmium sulphoselenide pigments vary in hue from yellow to deep red based on their composition, and are another class of semiconductor pigments which emit both in the visible and the near infrared. The Fluorescence lifetime of historical and modern pigments has been measured using both an Optical Multichannel Analyser (OMA) coupled with a Nd:YAG nslaser, and a streak camera coupled with a ps-laser for spectrally-resolved fluorescence lifetime measurements. For Znbased pigments we have also employed Fluorescence Lifetime Imaging (FLIM) for the measurement of luminescence. A case study of FLIM applied to the analysis of the painting by Vincent Van Gogh on paper - "Les Bretonnes et le pardon de Pont-Aven" (1888) is presented. Through the integration of complementary, portable and non-invasive spectroscopic techniques, new insights into the optical properties of Zn- and Cd-based pigments have been gained which will inform future analysis of late 19th] and early 20th C. paintings.
MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications
Medina, Isabel; Cappiello, Achille; Careri, Maria
2018-01-01
Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017. PMID:29850370
Peraman, R.; Bhadraya, K.; Reddy, Y. Padmanabha; Reddy, C. Surayaprakash; Lokesh, T.
2015-01-01
By considering the current regulatory requirement for an analytical method development, a reversed phase high performance liquid chromatographic method for routine analysis of etofenamate in dosage form has been optimized using analytical quality by design approach. Unlike routine approach, the present study was initiated with understanding of quality target product profile, analytical target profile and risk assessment for method variables that affect the method response. A liquid chromatography system equipped with a C18 column (250×4.6 mm, 5 μ), a binary pump and photodiode array detector were used in this work. The experiments were conducted based on plan by central composite design, which could save time, reagents and other resources. Sigma Tech software was used to plan and analyses the experimental observations and obtain quadratic process model. The process model was used for predictive solution for retention time. The predicted data from contour diagram for retention time were verified actually and it satisfied with actual experimental data. The optimized method was achieved at 1.2 ml/min flow rate of using mobile phase composition of methanol and 0.2% triethylamine in water at 85:15, % v/v, pH adjusted to 6.5. The method was validated and verified for targeted method performances, robustness and system suitability during method transfer. PMID:26997704
Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan
2005-07-10
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.
Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryo-EM
Chen, Bo; Kaledhonkar, Sandip; Sun, Ming; Shen, Bingxin; Lu, Zonghuan; Barnard, David; Lu, Toh-Ming; Gonzalez, Ruben L.; Frank, Joachim
2015-01-01
Ribosomal subunit association is a key checkpoint in translation initiation, but its structural dynamics are poorly understood. Here, we used a recently developed mixing-spraying, time-resolved, cryogenic electron microscopy (cryo-EM) method to study ribosomal subunit association in the sub-second time range. We have improved this method and increased the cryo-EM data yield by tenfold. Pre-equilibrium states of the association reaction were captured by reacting the mixture of ribosomal subunits for 60 ms and 140 ms. We also identified three distinct ribosome conformations in the associated ribosomes. The observed proportions of these conformations are the same in these two time points, suggesting that ribosomes equilibrate among the three conformations within less than 60 ms upon formation. Our results demonstrate that the mixing-spraying method can capture multiple states of macromolecules during a sub-second reaction. Other fast processes, such as translation initiation, decoding and ribosome recycling, are amenable to study with this method. PMID:26004440
Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania
2015-04-15
In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.
Mass spectrometry-compatible silver staining of histones resolved on acetic acid-urea-Triton PAGE.
Pramod, Khare Satyajeet; Bharat, Khade; Sanjay, Gupta
2009-05-01
Acetic acid-Urea-Triton (AUT) PAGE is commonly used method to separate histone variants and their post-translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT-PAGE has been reported, the method is time-consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose 'SDS-Silver' method for rapid, sensitive and mass spectrometry-compatible staining of histones resolved on AUT-PAGE.
Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam
2009-01-01
This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.
Fast time-resolved aerosol collector: proof of concept
NASA Astrophysics Data System (ADS)
Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.
2010-10-01
Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.
Fast time-resolved aerosol collector: proof of concept
NASA Astrophysics Data System (ADS)
Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.
2010-06-01
Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.
Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.; ...
2017-02-20
Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less
Zambrano, Eduardo; Šulc, Miroslav; Vaníček, Jiří
2013-08-07
Time-resolved electronic spectra can be obtained as the Fourier transform of a special type of time correlation function known as fidelity amplitude, which, in turn, can be evaluated approximately and efficiently with the dephasing representation. Here we improve both the accuracy of this approximation-with an amplitude correction derived from the phase-space propagator-and its efficiency-with an improved cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. We demonstrate the advantages of the new methodology by computing dispersed time-resolved stimulated emission spectra in the harmonic potential, pyrazine, and the NCO molecule. In contrast, we show that in strongly chaotic systems such as the quartic oscillator the original dephasing representation is more appropriate than either the cellular or prefactor-corrected methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.
Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less
Spatial capture–recapture with partial identity: An application to camera traps
Augustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R.
2018-01-01
Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities—one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Mohamed, Heba M.
2016-01-01
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.
10 CFR 26.137 - Quality assurance and quality control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... validation of analytical procedures. Quality assurance procedures must be designed, implemented, and reviewed... resolving any technical, methodological, or administrative errors in the licensee testing facility's testing...
10 CFR 26.137 - Quality assurance and quality control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... validation of analytical procedures. Quality assurance procedures must be designed, implemented, and reviewed... resolving any technical, methodological, or administrative errors in the licensee testing facility's testing...
10 CFR 26.137 - Quality assurance and quality control.
Code of Federal Regulations, 2011 CFR
2011-01-01
... validation of analytical procedures. Quality assurance procedures must be designed, implemented, and reviewed... resolving any technical, methodological, or administrative errors in the licensee testing facility's testing...
10 CFR 26.137 - Quality assurance and quality control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... validation of analytical procedures. Quality assurance procedures must be designed, implemented, and reviewed... resolving any technical, methodological, or administrative errors in the licensee testing facility's testing...
10 CFR 26.137 - Quality assurance and quality control.
Code of Federal Regulations, 2014 CFR
2014-01-01
... validation of analytical procedures. Quality assurance procedures must be designed, implemented, and reviewed... resolving any technical, methodological, or administrative errors in the licensee testing facility's testing...
Martin, Jeffrey D.; Norman, Julia E.; Sandstrom, Mark W.; Rose, Claire E.
2017-09-06
U.S. Geological Survey monitoring programs extensively used two analytical methods, gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, to measure pesticides in filtered water samples during 1992–2012. In October 2012, the monitoring programs began using direct aqueous-injection liquid chromatography tandem mass spectrometry as a new analytical method for pesticides. The change in analytical methods, however, has the potential to inadvertently introduce bias in analysis of datasets that span the change.A field study was designed to document performance of the new method in a variety of stream-water matrices and to quantify any potential changes in measurement bias or variability that could be attributed to changes in analytical methods. The goals of the field study were to (1) summarize performance (bias and variability of pesticide recovery) of the new method in a variety of stream-water matrices; (2) compare performance of the new method in laboratory blank water (laboratory reagent spikes) to that in a variety of stream-water matrices; (3) compare performance (analytical recovery) of the new method to that of the old methods in a variety of stream-water matrices; (4) compare pesticide detections and concentrations measured by the new method to those of the old methods in a variety of stream-water matrices; (5) compare contamination measured by field blank water samples in old and new methods; (6) summarize the variability of pesticide detections and concentrations measured by the new method in field duplicate water samples; and (7) identify matrix characteristics of environmental water samples that adversely influence the performance of the new method. Stream-water samples and a variety of field quality-control samples were collected at 48 sites in the U.S. Geological Survey monitoring networks during June–September 2012. Stream sites were located across the United States and included sites in agricultural and urban land-use settings, as well as sites on major rivers.The results of the field study identified several challenges for the analysis and interpretation of data analyzed by both old and new methods, particularly when data span the change in methods and are combined for analysis of temporal trends in water quality. The main challenges identified are large (greater than 30 percent), statistically significant differences in analytical recovery, detection capability, and (or) measured concentrations for selected pesticides. These challenges are documented and discussed, but specific guidance or statistical methods to resolve these differences in methods are beyond the scope of the report. The results of the field study indicate that the implications of the change in analytical methods must be assessed individually for each pesticide and method.Understanding the possible causes of the systematic differences in concentrations between methods that remain after recovery adjustment might be necessary to determine how to account for the differences in data analysis. Because recoveries for each method are independently determined from separate reference standards and spiking solutions, the differences might be due to an error in one of the reference standards or solutions or some other basic aspect of standard procedure in the analytical process. Further investigation of the possible causes is needed, which will lead to specific decisions on how to compensate for these differences in concentrations in data analysis. In the event that further investigations do not provide insight into the causes of systematic differences in concentrations between methods, the authors recommend continuing to collect and analyze paired environmental water samples by both old and new methods. This effort should be targeted to seasons, sites, and expected concentrations to supplement those concentrations already assessed and to compare the ongoing analytical recovery of old and new methods to those observed in the summer and fall of 2012.
Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y.; Alley, Marcus T.; Lustig, Michael; Pauly, John M.; Vasanawala, Shreyas S.
2015-01-01
Background Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. Objective To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography method for depicting abdominal arterial anatomy in young children. Materials and methods With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast enhanced MR angiography studies. An radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Results Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9–5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Conclusion Free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries for pediatric contrast enhanced MR angiography. PMID:26040509
Time-resolved diffusion tomographic imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)
1998-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko
2017-07-28
High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.
Resolving hyporheic and groundwater components of streambed water flux
Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.
2012-01-01
Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.
Analysis of multicrystal pump–probe data sets. I. Expressions for the RATIO model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Bertrand; Coppens, Philip
2014-08-30
The RATIO method in time-resolved crystallography [Coppenset al.(2009).J. Synchrotron Rad.16, 226–230] was developed for use with Laue pump–probe diffraction data to avoid complex corrections due to wavelength dependence of the intensities. The application of the RATIO method in processing/analysis prior to structure refinement requires an appropriate ratio model for modeling the light response. The assessment of the accuracy of pump–probe time-resolved structure refinements based on the observed ratios was discussed in a previous paper. In the current paper, a detailed ratio model is discussed, taking into account both geometric and thermal light-induced changes.
Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O.P.; Singh, Bhupinder
2016-01-01
The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett–Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm with Rf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50–800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. PMID:26912808
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki
2011-05-15
Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine (DNPH) is one of the most widely used analytical methods. In this article, we highlight recent advances using DNPH provided by our studies over past seven years. DNPH reacts with carbonyls to form corresponding stable 2,4-DNPhydrazone derivatives (DNPhydrazones). This method may result in analytical error because DNPhydrazones have both E- and Z-stereoisomers caused by the CN double bond. Purified aldehyde-2,4-DNPhydrazone demonstrated only the E-isomer, but under UV irradiation and the addition of acid, both E- and Z-isomers were seen. In order to resolve the isometric problem, a method for transforming the CN double bond of carbonyl-2,4-DNPhydrazone into a C-N single bond, by reductive amination using 2-picoline borane, has been developed. The amination reactions of C1-C10 aldehyde DNPhydrazones are completely converted into the reduced forms and can be analyzed with high-performance liquid chromatography. As a new application using DNPH derivatization, the simultaneous measurement of carbonyls with carboxylic acids or ozone is described in this review. Copyright © 2010 Elsevier B.V. All rights reserved.
Bhatta, R S; Kumar, D; Chhonker, Y S; Jain, G K
2011-09-01
A sensitive and selective liquid chromatography/tandem mass spectrometric method was developed for simultaneous determination of E- and Z-guggulsterone isomers (antihyperlipidemic drug) in rabbit plasma. Both the isomers were resolved on a Symmetry-Shield C(18) (5 µm, 4.6 × 150 mm) column, using gradient elution comprising a mobile phase of methanol, 0.5% v/v formic acid and acetonitrile. With dexamethasone as internal standard, plasma samples were extracted by an automated solid-phase extraction method using C(18) cartridges. Detection was performed by electrospray ionization in multiple reaction monitoring (MRM) in positive mode. The calibration curve was linear over the concentration range of 1.56-200 ng/mL (r(2) ≥ 0.998) for both analytes. The intra-day and inter-day accuracy and precision were within -0.96 to 4.12 (%bias) and 2.73 to 8.00 (%RSD) respectively. The analytes were stable after three freeze-thaw cycles. The method was successfully applied to study steriospecific pharmacokinetics of E- and Z-guggulsterone in NZ rabbit. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William
2015-01-01
Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).
The statistical theory of the fracture of fragile bodies. Part 2: The integral equation method
NASA Technical Reports Server (NTRS)
Kittl, P.
1984-01-01
It is demonstrated how with the aid of a bending test, the Weibull fracture risk function can be determined - without postulating its analytical form - by resolving an integral equation. The respective solutions for rectangular and circular section beams are given. In the first case the function is expressed as an algorithm and in the second, in the form of series. Taking into account that the cumulative fracture probability appearing in the solution to the integral equation must be continuous and monotonically increasing, any case of fabrication or selection of samples can be treated.
Characterization and Application of Isolated Attosecond Pulses
NASA Astrophysics Data System (ADS)
Wei, Hui
Isolated attosecond pulse (IAP) is a tool of probing electronic dynamics occurring in atoms, molecules, clusters and solids, since the time scale of electronic motion is on the order of attoseconds. The generation, characterization and applications of IAPs has become one of the fast frontiers of laser experiments. This dissertation focuses on several aspects of attosecond physics. First, we study the driving wavelength scaling of the yield of high-order harmonic generation (HHG) by applying the quantum orbit theory. The unfavorable scaling law especially for the short quantum orbit is of great importance to attoseond pulse generation toward hundreds of eVs or keV photon energy region by mid-infrared (mid-IR) lasers. Second, we investigate the accuracy of the current frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG-CRAB) and phase retrieval by omega oscillation filtering (PROOF) methods for IAP characterization by simulating the experimental data by theoretical calculation. This calibration is critical but has not been carefully carried out before. We also present an improved method, namely the swPROOF which is more universal and robust than the original PROOF method. Third, we investigate the controversial topic of photoionization time delay. We find the limitation of the FROG-CRAB method which has been used to extract the photoionization time delay between the 2s and 2p channels in neon. The time delay retrieval is sensitive to the attochirp of the XUV pulse, which may lead to discrepancies between experiment and theory. A new fitting method is proposed in order to overcome the limitations of FROG-CRAB. Finally, IAPs are used to probe the dynamic of electron correlation in helium atom by means of attosecond transient absorption spectroscopy. The agreement between the measurement and our analytical model verifies the observation of time-dependent build up of the 2s2p Fano resonance.
Yang, Tzuhsiung; Berry, John F
2018-06-04
The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.
NASA Astrophysics Data System (ADS)
Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.
2010-12-01
Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.
NASA Astrophysics Data System (ADS)
Ribera, Javier; Tahboub, Khalid; Delp, Edward J.
2015-03-01
Video surveillance systems are widely deployed for public safety. Real-time monitoring and alerting are some of the key requirements for building an intelligent video surveillance system. Real-life settings introduce many challenges that can impact the performance of real-time video analytics. Video analytics are desired to be resilient to adverse and changing scenarios. In this paper we present various approaches to characterize the uncertainty of a classifier and incorporate crowdsourcing at the times when the method is uncertain about making a particular decision. Incorporating crowdsourcing when a real-time video analytic method is uncertain about making a particular decision is known as online active learning from crowds. We evaluate our proposed approach by testing a method we developed previously for crowd flow estimation. We present three different approaches to characterize the uncertainty of the classifier in the automatic crowd flow estimation method and test them by introducing video quality degradations. Criteria to aggregate crowdsourcing results are also proposed and evaluated. An experimental evaluation is conducted using a publicly available dataset.
Semi-analytic valuation of stock loans with finite maturity
NASA Astrophysics Data System (ADS)
Lu, Xiaoping; Putri, Endah R. M.
2015-10-01
In this paper we study stock loans of finite maturity with different dividend distributions semi-analytically using the analytical approximation method in Zhu (2006). Stock loan partial differential equations (PDEs) are established under Black-Scholes framework. Laplace transform method is used to solve the PDEs. Optimal exit price and stock loan value are obtained in Laplace space. Values in the original time space are recovered by numerical Laplace inversion. To demonstrate the efficiency and accuracy of our semi-analytic method several examples are presented, the results are compared with those calculated using existing methods. We also present a calculation of fair service fee charged by the lender for different loan parameters.
New analytical spiral tube assembly for separation of proteins by counter-current chromatography.
Ma, Xiaofeng; Ito, Yoichiro
2015-07-31
A new spiral column assembly for analytical separation by counter-current chromatography is described. The column is made from a plastic spiral tube support which has 12 interwoven spiral grooves. The PTFE tubing of 1.6mm ID was first flattened by extruding through a narrow slit and inserted into the grooves to make 5 spiral layers with about 60ml capacity. The performance of the spiral column assembly was tested with separation of three stable protein samples including cytochrome C, myoglobin and lysozyme in a polymer phase system composed of polyethylene glycol 1000 and dibasic potassium phosphate each at 12.5% (w/w) in water. At 2ml/min, three protein samples were well resolved in 1h. The separation time may be further shortened by application of higher revolution speed and flow rate by improving the strength of the spiral tube support in the future. Published by Elsevier B.V.
Kwak, Youngbin; Payne, John W; Cohen, Andrew L; Huettel, Scott A
2015-01-01
Adolescence is often viewed as a time of irrational, risky decision-making - despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics.
Kwak, Youngbin; Payne, John W.; Cohen, Andrew L.; Huettel, Scott A.
2015-01-01
Adolescence is often viewed as a time of irrational, risky decision-making – despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics. PMID:26388664
Analytical mesoscale modeling of aeolian sand transport
NASA Astrophysics Data System (ADS)
Lämmel, Marc; Kroy, Klaus
2017-11-01
The mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical simulations resolving individual grain trajectories. The predicted height-resolved sand flux and other important characteristics of the aeolian transport layer agree remarkably well with a comprehensive compilation of field and wind-tunnel data, suggesting that the model robustly captures the essential mesoscale physics. By comparing the predicted saturation length with field data for the minimum sand-dune size, we elucidate the importance of intermittent turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this most enigmatic emergent aeolian scale.
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
2017-10-16
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Mehl, Benjamin T; Martin, R Scott
2018-01-07
The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.
NASA Astrophysics Data System (ADS)
Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu
2016-01-01
We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.
NASA Astrophysics Data System (ADS)
Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi
1995-05-01
A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.
NASA Astrophysics Data System (ADS)
Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.
2010-12-01
Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.
Streaming Swarm of Nano Space Probes for Modern Analytical Methods Applied to Planetary Science
NASA Astrophysics Data System (ADS)
Vizi, P. G.; Horvath, A. F.; Berczi, Sz.
2017-11-01
Streaming swarms gives possibilities to collect data from big fields in one time. The whole streaming fleet possible to behave like one big organization and can be realized as a planetary mission solution with stream type analytical methods.
Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy
NASA Astrophysics Data System (ADS)
Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.
2002-04-01
Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.
Prasad, Thatipamula R; Joseph, Siji; Kole, Prashant; Kumar, Anoop; Subramanian, Murali; Rajagopalan, Sudha; Kr, Prabhakar
2017-11-01
Objective of the current work was to develop a 'green chemistry' compliant selective and sensitive supercritical fluid chromatography-tandem mass spectrometry method for simultaneous estimation of risperidone (RIS) and its chiral metabolites in rat plasma. Methodology & results: Agilent 1260 Infinity analytical supercritical fluid chromatography system resolved RIS and its chiral metabolites within runtime of 6 min using a gradient chromatography method. Using a simple protein precipitation sample preparation followed by mass spectrometric detection achieved a sensitivity of 0.92 nM (lower limit of quantification). With linearity over four log units (0.91-7500 nM), the method was found to be selective, accurate, precise and robust. The method was validated and was successfully applied for simultaneous estimation of RIS and 9-hydroxyrisperidone metabolites (R & S individually) after intravenous and per oral administration to rats.
Kaufmann, Anton
2010-07-30
Elemental compositions (ECs) can be elucidated by evaluating the high-resolution mass spectra of unknown or suspected unfragmented analyte ions. Classical approaches utilize the exact mass of the monoisotopic peak (M + 0) and the relative abundance of isotope peaks (M + 1 and M + 2). The availability of high-resolution instruments like the Orbitrap currently permits mass resolutions up to 100,000 full width at half maximum. This not only allows the determination of relative isotopic abundances (RIAs), but also the extraction of other diagnostic information from the spectra, such as fully resolved signals originating from (34)S isotopes and fully or partially resolved signals related to (15)N isotopes (isotopic fine structure). Fully and partially resolved peaks can be evaluated by visual inspection of the measured peak profiles. This approach is shown to be capable of correctly discarding many of the EC candidates which were proposed by commercial EC calculating algorithms. Using this intuitive strategy significantly extends the upper mass range for the successful elucidation of ECs. Copyright 2010 John Wiley & Sons, Ltd.
A convergent series expansion for hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Harabetian, E.
1985-01-01
The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.
Lindgren, Annie R; Anderson, Frank E
2018-01-01
Historically, deep-level relationships within the molluscan class Cephalopoda (squids, cuttlefishes, octopods and their relatives) have remained elusive due in part to the considerable morphological diversity of extant taxa, a limited fossil record for species that lack a calcareous shell and difficulties in sampling open ocean taxa. Many conflicts identified by morphologists in the early 1900s remain unresolved today in spite of advances in morphological, molecular and analytical methods. In this study we assess the utility of transcriptome data for resolving cephalopod phylogeny, with special focus on the orders of Decapodiformes (open-eye squids, bobtail squids, cuttlefishes and relatives). To do so, we took new and previously published transcriptome data and used a unique cephalopod core ortholog set to generate a dataset that was subjected to an array of filtering and analytical methods to assess the impacts of: taxon sampling, ortholog number, compositional and rate heterogeneity and incongruence across loci. Analyses indicated that datasets that maximized taxonomic coverage but included fewer orthologs were less stable than datasets that sacrificed taxon sampling to increase the number of orthologs. Clades recovered irrespective of dataset, filtering or analytical method included Octopodiformes (Vampyroteuthis infernalis + octopods), Decapodiformes (squids, cuttlefishes and their relatives), and orders Oegopsida (open-eyed squids) and Myopsida (e.g., loliginid squids). Ordinal-level relationships within Decapodiformes were the most susceptible to dataset perturbation, further emphasizing the challenges associated with uncovering relationships at deep nodes in the cephalopod tree of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Exact test-based approach for equivalence test with parameter margin.
Cassie Dong, Xiaoyu; Bian, Yuanyuan; Tsong, Yi; Wang, Tianhua
2017-01-01
The equivalence test has a wide range of applications in pharmaceutical statistics which we need to test for the similarity between two groups. In recent years, the equivalence test has been used in assessing the analytical similarity between a proposed biosimilar product and a reference product. More specifically, the mean values of the two products for a given quality attribute are compared against an equivalence margin in the form of ±f × σ R , where ± f × σ R is a function of the reference variability. In practice, this margin is unknown and is estimated from the sample as ±f × S R . If we use this estimated margin with the classic t-test statistic on the equivalence test for the means, both Type I and Type II error rates may inflate. To resolve this issue, we develop an exact-based test method and compare this method with other proposed methods, such as the Wald test, the constrained Wald test, and the Generalized Pivotal Quantity (GPQ) in terms of Type I error rate and power. Application of those methods on data analysis is also provided in this paper. This work focuses on the development and discussion of the general statistical methodology and is not limited to the application of analytical similarity.
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
NASA Astrophysics Data System (ADS)
Vijayakumar, Ganesh; Sprague, Michael
2017-11-01
Demonstrating expected convergence rates with spatial- and temporal-grid refinement is the ``gold standard'' of code and algorithm verification. However, the lack of analytical solutions and generating manufactured solutions presents challenges for verifying codes for complex systems. The application of the method of manufactured solutions (MMS) for verification for coupled multi-physics phenomena like fluid-structure interaction (FSI) has only seen recent investigation. While many FSI algorithms for aeroelastic phenomena have focused on boundary-resolved CFD simulations, the actuator-line representation of the structure is widely used for FSI simulations in wind-energy research. In this work, we demonstrate the verification of an FSI algorithm using MMS for actuator-line CFD simulations with a simplified structural model. We use a manufactured solution for the fluid velocity field and the displacement of the SMD system. We demonstrate the convergence of both the fluid and structural solver to second-order accuracy with grid and time-step refinement. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M
2007-01-01
The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.
Earth recovery mode analysis for a Martian sample return mission
NASA Technical Reports Server (NTRS)
Green, J. P.
1978-01-01
The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.
USDA-ARS?s Scientific Manuscript database
Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...
Ultrafast time-resolved spectroscopy of lead halide perovskite films
NASA Astrophysics Data System (ADS)
Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore
2015-09-01
Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.
NASA Astrophysics Data System (ADS)
Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou
2015-03-01
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.
On resolving the 180 deg ambiguity for a temporal sequence of vector magnetograms
NASA Astrophysics Data System (ADS)
Cheung, M. C.
2008-05-01
The solar coronal magnetic field evolves in response to the underlying photospheric driving. To study this connection by means of data-driven modeling, an accurate knowledge of the evolution of the photospheric vector field is essential. While there is a large body of work on attempts to resolve the 180 deg ambiguity in the component of the magnetic field transverse to the line of sight, most of these methods are applicable only to individual frames. With the imminent launch of the Solar Dynamics Observatory, it is especially timely for us to develop possible automated methods to resolve the ambiguity for temporal sequences of magnetograms. We present here the temporal acute angle method, which makes use of preceding disambiguated magnetograms as reference solutions for resolving the ambiguity in subsequent frames. To find the strengths and weaknesses of this method, we have carried out tests (1) on idealized magnetogram sequences involving simple rotating, shearing and straining flows and (2) on a synthetic magnetogram sequence from a 3D radiative MHD simulation of an buoyant magnetic flux tube emerging through granular convection. A metric for automatically picking out regions where the method is likely to fail is also presented.
A critical assessment of antipsychotic drug monitoring.
Waraska, J; Nagle, J D
1987-06-01
Analytic problems associated with monitoring antipsychotic drug levels have largely been resolved. Despite the establishment of target values for some drugs, the clinical utility of such levels remains to be determined.
Mirmohseni, A; Abdollahi, H; Rostamizadeh, K
2007-02-28
Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 microg mL(-1) for ethanol and 7.01-28.07 microg mL(-1) for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.
Time-resolved rhodopsin activation currents in a unicellular expression system.
Sullivan, J M; Shukla, P
1999-01-01
The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions. PMID:10465746
Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy
Chai, Changhoon; Takhistov, Paul
2010-01-01
The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560
NASA Astrophysics Data System (ADS)
Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de
2018-03-01
This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.
Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W
2017-11-10
Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods
NASA Astrophysics Data System (ADS)
S Saha, Ray
2016-04-01
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.
The National Shipbuilding Research Program. Environmental Studies and Testing (Phase V)
2000-11-20
development of an analytical procedure for toxic organic compounds, including TBT ( tributyltin ), whose turnaround time would be in the order of minutes...Cost of the Subtask was $20,000. Subtask #33 - Turnaround Analytical Method for TBT This Subtask performed a preliminary investigation leading to the...34Quick TBT Analytical Method" that will yield reliable results in 15 minutes, a veritable breakthrough in sampling technology. The Subtask was managed by
NASA Astrophysics Data System (ADS)
Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam
2012-08-01
Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.
Zhang, Zhaowei; Tang, Xiaoqian; Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia
2015-01-01
Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.
Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia
2015-01-01
Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring. PMID:25874803
Towards higher stability of resonant absorption measurements in pulsed plasmas.
Britun, Nikolay; Michiels, Matthieu; Snyders, Rony
2015-12-01
Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.
Detection of bacterial endospores by means of ultrafast coherent Raman spectroscopy
NASA Astrophysics Data System (ADS)
Pestov, Dmitry Sergeyevich
This work is devoted to formulation and development of a laser spectroscopic technique for rapid detection of biohazards, such as Bacillus anthracis spores. Coherent anti-Stokes Raman scattering (CARS) is used as an underlying process for active retrieval of species-specific characteristics of an analyte. Vibrational modes of constituent molecules are Raman-excited by a pair of ultrashort, femtosecond laser pulses, and then probed through inelastic scattering of a third, time-delayed laser field. We first employ the already known time-resolved CARS technique. We apply it to the spectroscopy of easy-to-handle methanol-water mixtures, and then continue building our expertise on solutions of dipicolinic acid (DPA) and its salts, which happen to be marker molecules for bacterial spores. Various acquisition schemes are evaluated, and the preference is given to multi-channel frequency-resolved detection, when the whole CARS spectrum is recorded as a function of the probe pulse delay. We demonstrate a simple detection algorithm that manages to differentiate DPA solution from common interferents. We investigate experimentally the advantages and disadvantages of near-resonant probing of the excited molecular coherence, and finally observe the indicative backscattered CARS signal from DPA and NaDPA powders. The possibility of selective Raman excitation via pulse shaping of the preparation pulses is also demonstrated. The analysis of time-resolved CARS experiments on powders and B. subtilis spores, a harmless surrogate for B. anthracis, facilitates the formulation of a new approach, where we take full advantage of the multi-channel frequency-resolved acquisition and spectrally discriminate the Raman-resonant CARS signal from the background due to other instantaneous four-wave mixing (FWM) processes. Using narrowband probing, we decrease the magnitude of the nonresonant FWM, which is further suppressed by the timing of the laser pulses. The devised technique, referred to as hybrid CARS, leads to a single-shot detection of as few as 104 bacterial spores, bringing CARS spectroscopy to the forefront of potential candidates for real-time biohazard detection. It also gives promise to many other applications of CARS, hindered so far by the presence of the overwhelming nonresonant FWM background, mentioned above.
PFOS and PFOS: Analytics | Science Inventory | US EPA
This presentation describes the drivers for development of Method 537, the extraction and analytical procedure, performance data, holding time data as well as detection limits. The purpose of this presentation is to provide an overview of EPA drinking water Method 537 to the U.S. EPA Drinking Water Workshop participants.
NASA Astrophysics Data System (ADS)
Brookman, Tom; Whittaker, Thomas
2012-09-01
Stable isotope dendroclimatology using α-cellulose has unique potential to deliver multimillennial-scale, sub-annually resolved, terrestrial climate records. However, lengthy processing and analytical methods often preclude such reconstructions. Variants of the Brendel extraction method have reduced these limitations, providing fast, easy methods of isolating α-cellulose in some species. Here, we investigate application of Standard Brendel (SBrendel) variants to resinous soft-woods by treating samples of kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii), varying reaction vessel, temperature, boiling time and reagent volume. Numerous samples were visibly `under-processed' and Fourier Transform infrared spectroscopic (FTIR) investigation showed absorption peaks at 1520 cm-1 and ˜1600 cm-1 in those fibers suggesting residual lignin and retained resin respectively. Replicate analyses of all samples processed at high temperature yielded consistent δ13C and δ18O despite color and spectral variations. Spectra and isotopic data revealed that α-cellulose δ13C can be altered during processing, most likely due to chemical contamination from insufficient acetone removal, but is not systematically affected by methodological variation. Reagent amount, temperature and extraction time all influence δ18O, however, and our results demonstrate that different species may require different processing methods. FTIR prior to isotopic analysis is a fast and cost effective way to determine α-cellulose extract purity. Furthermore, a systematic isotopic test such as we present here can also determine sensitivity of isotopic values to methodological variables. Without these tests, isotopic variability introduced by the method could obscure or `create' climatic signals within a data set.
Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...
2014-12-22
The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragan, Eric D; Goodall, John R
2014-01-01
Provenance tools can help capture and represent the history of analytic processes. In addition to supporting analytic performance, provenance tools can be used to support memory of the process and communication of the steps to others. Objective evaluation methods are needed to evaluate how well provenance tools support analyst s memory and communication of analytic processes. In this paper, we present several methods for the evaluation of process memory, and we discuss the advantages and limitations of each. We discuss methods for determining a baseline process for comparison, and we describe various methods that can be used to elicit processmore » recall, step ordering, and time estimations. Additionally, we discuss methods for conducting quantitative and qualitative analyses of process memory. By organizing possible memory evaluation methods and providing a meta-analysis of the potential benefits and drawbacks of different approaches, this paper can inform study design and encourage objective evaluation of process memory and communication.« less
Myocardial strains from 3D displacement encoded magnetic resonance imaging
2012-01-01
Background The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. Methods We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. Results The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Conclusions Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts. PMID:22533791
The stopped-drop method: a novel setup for containment-free and time-resolved measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiener, Andreas; Seifert, Soenke; Magerl, Andreas
2016-03-01
A novel setup for containment-free time-resolved experiments at a free-hanging drop is reported. Within a dead-time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small-angle X-ray scattering study on the formation mechanism of EDTA-stabilized CdS both at a synchrotron and a laboratory X-ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.
Kinetic damping in the spectra of the spherical impedance probe
NASA Astrophysics Data System (ADS)
Oberrath, J.
2018-04-01
The impedance probe is a measurement device to measure plasma parameters, such as electron density. It consists of one electrode connected to a network analyzer via a coaxial cable and is immersed into a plasma. A bias potential superposed with an alternating potential is applied to the electrode and the response of the plasma is measured. Its dynamical interaction with the plasma in an electrostatic, kinetic description can be modeled in an abstract notation based on functional analytic methods. These methods provide the opportunity to derive a general solution, which is given as the response function of the probe–plasma system. It is defined by the matrix elements of the resolvent of an appropriate dynamical operator. Based on the general solution, a residual damping for vanishing pressure can be predicted and can only be explained by kinetic effects. In this paper, an explicit response function of the spherical impedance probe is derived. Therefore, the resolvent is determined by its algebraic representation based on an expansion in orthogonal basis functions. This allows one to compute an approximated response function and its corresponding spectra. These spectra show additional damping due to kinetic effects and are in good agreement with former kinetically determined spectra.
Mondal, Nagendra Nath
2009-01-01
This study presents Monte Carlo Simulation (MCS) results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF) PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu2SiO5: Ce in short LSO), Barium Fluoride (BaF2) and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr3) scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF2 and LaBr3, although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work) method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom. PMID:20098551
Transient radical pairs studied by time-resolved EPR.
Bittl, Robert; Weber, Stefan
2005-02-25
Photogenerated short-lived radical pairs (RP) are common in biological photoprocesses such as photosynthesis and enzymatic DNA repair. They can be favorably probed by time-resolved electron paramagnetic resonance (EPR) methods with adequate time resolution. Two EPR techniques have proven to be particularly useful to extract information on the working states of photoinduced biological processes that is only difficult or sometimes even impossible to obtain by other types of spectroscopy. Firstly, transient EPR yields crucial information on the chemical nature and the geometry of the individual RP halves in a doublet-spin pair generated by a short laser pulse. This time-resolved method is applicable in all magnetic field/microwave frequency regimes that are used for continuous-wave EPR, and is nowadays routinely utilized with a time resolution reaching about 10 ns. Secondly, a pulsed EPR method named out-of-phase electron spin echo envelope modulation (OOP-ESEEM) is increasingly becoming popular. By this pulsed technique, the mutual spin-spin interaction between the RP halves in a doublet-spin pair manifests itself as an echo modulation detected as a function of the microwave-pulse spacing of a two-pulse echo sequence subsequent to a laser pulse. From the dipolar coupling, the distance between the radicals is readily derived. Since the spin-spin interaction parameters are typically not observable by transient EPR, the two techniques complement each other favorably. Both EPR methods have recently been applied to a variety of light-induced RPs in photobiology. This review summarizes the results obtained from such studies in the fields of plant and bacterial photosynthesis and DNA repair mediated by the enzyme DNA photolyase.
NASA Astrophysics Data System (ADS)
Liu, D.; Fu, X.; Liu, X.
2016-12-01
In nature, granular materials exist widely in water bodies. Understanding the fundamentals of solid-liquid two-phase flow, such as turbulent sediment-laden flow, is of importance for a wide range of applications. A coupling method combining computational fluid dynamics (CFD) and discrete element method (DEM) is now widely used for modeling such flows. In this method, when particles are significantly larger than the CFD cells, the fluid field around each particle should be fully resolved. On the other hand, the "unresolved" model is designed for the situation where particles are significantly smaller than the mesh cells. Using "unresolved" model, large amount of particles can be simulated simultaneously. However, there is a gap between these two situations when the size of DEM particles and CFD cell is in the same order of magnitude. In this work, the most commonly used void fraction models are tested with numerical sedimentation experiments. The range of applicability for each model is presented. Based on this, a new void fraction model, i.e., a modified version of "tri-linear" model, is proposed. Particular attention is paid to the smooth function of void fraction in order to avoid numerical instability. The results show good agreement with the experimental data and analytical solution for both single-particle motion and also group-particle motion, indicating great potential of the new void fraction model.
Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M
2014-01-01
Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(–) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(–) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. Chirality 26:817–824, 2014. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc. PMID:25298066
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.
2007-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.
2006-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
A predictive software tool for optimal timing in contrast enhanced carotid MR angiography
NASA Astrophysics Data System (ADS)
Moghaddam, Abbas N.; Balawi, Tariq; Habibi, Reza; Panknin, Christoph; Laub, Gerhard; Ruehm, Stefan; Finn, J. Paul
2008-03-01
A clear understanding of the first pass dynamics of contrast agents in the vascular system is crucial in synchronizing data acquisition of 3D MR angiography (MRA) with arrival of the contrast bolus in the vessels of interest. We implemented a computational model to simulate contrast dynamics in the vessels using the theory of linear time-invariant systems. The algorithm calculates a patient-specific impulse response for the contrast concentration from time-resolved images following a small test bolus injection. This is performed for a specific region of interest and through deconvolution of the intensity curve using the long division method. Since high spatial resolution 3D MRA is not time-resolved, the method was validated on time-resolved arterial contrast enhancement in Multi Slice CT angiography. For 20 patients, the timing of the contrast enhancement of the main bolus was predicted by our algorithm from the response to the test bolus, and then for each case the predicted time of maximum intensity was compared to the corresponding time in the actual scan which resulted in an acceptable agreement. Furthermore, as a qualitative validation, the algorithm's predictions of the timing of the carotid MRA in 20 patients with high quality MRA were correlated with the actual timing of those studies. We conclude that the above algorithm can be used as a practical clinical tool to eliminate guesswork and to replace empiric formulae by a priori computation of patient-specific timing of data acquisition for MR angiography.
In vivo measurement of aerodynamic weight support in freely flying birds
NASA Astrophysics Data System (ADS)
Lentink, David; Haselsteiner, Andreas; Ingersoll, Rivers
2014-11-01
Birds dynamically change the shape of their wing during the stroke to support their body weight aerodynamically. The wing is partially folded during the upstroke, which suggests that the upstroke of birds might not actively contribute to aerodynamic force production. This hypothesis is supported by the significant mass difference between the large pectoralis muscle that powers the down-stroke and the much smaller supracoracoideus that drives the upstroke. Previous works used indirect or incomplete techniques to measure the total force generated by bird wings ranging from muscle force, airflow, wing surface pressure, to detailed kinematics measurements coupled with bird mass-distribution models to derive net force through second derivatives. We have validated a new method that measures aerodynamic force in vivo time-resolved directly in freely flying birds which can resolve this question. The validation of the method, using independent force measurements on a quadcopter with pulsating thrust, show the aerodynamic force and impulse are measured within 2% accuracy and time-resolved. We demonstrate results for quad-copters and birds of similar weight and size. The method is scalable and can be applied to both engineered and natural flyers across taxa. The first author invented the method, the second and third authors validated the method and present results for quadcopters and birds.
The High-Resolution Wave-Propagation Method Applied to Meso- and Micro-Scale Flows
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2012-01-01
The high-resolution wave-propagation method for computing the nonhydrostatic atmospheric flows on meso- and micro-scales is described. The design and implementation of the Riemann solver used for computing the Godunov fluxes is discussed in detail. The method uses a flux-based wave decomposition in which the flux differences are written directly as the linear combination of the right eigenvectors of the hyperbolic system. The two advantages of the technique are: 1) the need for an explicit definition of the Roe matrix is eliminated and, 2) the inclusion of source term due to gravity does not result in discretization errors. The resulting flow solver is conservative and able to resolve regions of large gradients without introducing dispersion errors. The methodology is validated against exact analytical solutions and benchmark cases for non-hydrostatic atmospheric flows.
Yehia, Ali M; Mohamed, Heba M
2016-01-05
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Tao; Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y; Alley, Marcus T; Lustig, Michael; Pauly, John M; Vasanawala, Shreyas S
2015-10-01
Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children.
High-performance time-resolved fluorescence by direct waveform recording.
Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D
2010-10-01
We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.
A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity between species to form clusters of species that vary together. High time-resolution (30 min) PM2.5 sampling was condu...
On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo
2017-06-01
We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, ofmore » the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.« less
NASA Astrophysics Data System (ADS)
Leroux, Romain; Chatellier, Ludovic; David, Laurent
2018-01-01
This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.
Verification of a magnetic island in gyro-kinetics by comparison with analytic theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzoso, D., E-mail: david.zarzoso-fernandez@polytechnique.org; Casson, F. J.; Poli, E.
A rotating magnetic island is imposed in the gyrokinetic code GKW, when finite differences are used for the radial direction, in order to develop the predictions of analytic tearing mode theory and understand its limitations. The implementation is verified against analytics in sheared slab geometry with three numerical tests that are suggested as benchmark cases for every code that imposes a magnetic island. The convergence requirements to properly resolve physics around the island separatrix are investigated. In the slab geometry, at low magnetic shear, binormal flows inside the island can drive Kelvin-Helmholtz instabilities which prevent the formation of the steadymore » state for which the analytic theory is formulated.« less
Schroeder, Indra
2015-01-01
Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656
NASA Astrophysics Data System (ADS)
Goldstein, Janna; Veitch, John; Sesana, Alberto; Vecchio, Alberto
2018-04-01
Super-massive black hole binaries are expected to produce a gravitational wave (GW) signal in the nano-Hertz frequency band which may be detected by pulsar timing arrays (PTAs) in the coming years. The signal is composed of both stochastic and individually resolvable components. Here we develop a generic Bayesian method for the analysis of resolvable sources based on the construction of `null-streams' which cancel the part of the signal held in common for each pulsar (the Earth-term). For an array of N pulsars there are N - 2 independent null-streams that cancel the GW signal from a particular sky location. This method is applied to the localisation of quasi-circular binaries undergoing adiabatic inspiral. We carry out a systematic investigation of the scaling of the localisation accuracy with signal strength and number of pulsars in the PTA. Additionally, we find that source sky localisation with the International PTA data release one is vastly superior than what is achieved by its constituent regional PTAs.
Choice of data types in time resolved fluorescence enhanced diffuse optical tomography.
Riley, Jason; Hassan, Moinuddin; Chernomordik, Victor; Gandjbakhche, Amir
2007-12-01
In this paper we examine possible data types for time resolved fluorescence enhanced diffuse optical tomography (FDOT). FDOT is a particular case of diffuse optical tomography, where our goal is to analyze fluorophores deeply embedded in a turbid medium. We focus on the relative robustness of the different sets of data types to noise. We use an analytical model to generate the expected temporal point spread function (TPSF) and generate the data types from this. Varying levels of noise are applied to the TPSF before generating the data types. We show that local data types are more robust to noise than global data types, and should provide enhanced information to the inverse problem. We go on to show that with a simple reconstruction algorithm, depth and lifetime (the parameters of interest) of the fluorophore are better reconstructed using the local data types. Further we show that the relationship between depth and lifetime is better preserved for the local data types, suggesting they are in some way not only more robust, but also self-regularizing. We conclude that while the local data types may be more expensive to generate in the general case, they do offer clear advantages over the standard global data types.
Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor
NASA Astrophysics Data System (ADS)
Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan
2018-07-01
We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).
An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.
Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L
2014-12-15
Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.
Techniques for Forecasting Air Passenger Traffic
NASA Technical Reports Server (NTRS)
Taneja, N.
1972-01-01
The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less