Sample records for time-resolved fluorescence study

  1. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  2. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    PubMed

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian

    2017-05-01

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.

  4. Time-resolved fluorescence microscopy to study biologically related applications using sol-gel derived and cellular media

    NASA Astrophysics Data System (ADS)

    Toury, Marion; Chandler, Lin; Allison, Archie; Campbell, David; McLoskey, David; Holmes-Smith, A. Sheila; Hungerford, Graham

    2011-03-01

    Fluorescence microscopy provides a non-invasive means for visualising dynamic protein interactions. As well as allowing the calculation of kinetic processes via the use of time-resolved fluorescence, localisation of the protein within cells or model systems can be monitored. These fluorescence lifetime images (FLIM) have become the preferred technique for elucidating protein dynamics due to the fact that the fluorescence lifetime is an absolute measure, in the main independent of fluorophore concentration and intensity fluctuations caused by factors such as photobleaching. In this work we demonstrate the use of a time-resolved fluorescence microscopy, employing a high repetition rate laser excitation source applied to study the influence of a metal surface on fluorescence tagged protein and to elucidate viscosity using the fluorescence lifetime probe DASPMI. These were studied in a cellular environment (yeast) and in a model system based on a sol-gel derived material, in which silver nanostructures were formed in situ using irradiation from a semiconductor laser in CW mode incorporated on a compact time-resolved fluorescence microscope (HORIBA Scientific DeltaDiode and DynaMyc).

  5. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.

    PubMed

    Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi

    2007-03-22

    Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.

  6. Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2004-07-01

    Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.

  7. Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

  8. Garry Rumbles | NREL

    Science.gov Websites

    , colloidal quantum dots, and single-walled carbon nanotubes. Laser-based experiments (time-resolved fluorescence spectroscopy; time-resolved resonance Raman spectroscopy; laser-induced fluorescence spectroscopy ; time-resolved evanescent wave-induced fluorescence spectroscopy; picosecond coherent anti-Stokes Raman

  9. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  10. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    PubMed

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  11. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    PubMed Central

    Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  12. Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura

    2002-05-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.

  13. Application of spectroscopy and super-resolution microscopy: Excited state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Ujjal

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10 -9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such asmore » lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.« less

  14. Time-resolved and steady-state fluorescence studies of excited-state proton-transfer reactions of proflavine

    NASA Astrophysics Data System (ADS)

    De Silvestri, S.; Laporta, P.

    1984-01-01

    Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.

  15. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  16. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  17. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    PubMed

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  18. Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult's brain

    NASA Astrophysics Data System (ADS)

    Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam

    2012-08-01

    Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.

  19. In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy

    PubMed Central

    Marcu, Laura; Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Baker, J. Dennis; Freischlag, Julie A.; Fishbein, Michael C.

    2007-01-01

    Accumulation of numerous macrophages in the fibrous cap is a key identifying feature of plaque inflammation and vulnerability. This study investigates the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a potential tool for detection of macrophage foam cells in the intima of atherosclerotic plaques. Experiments were conducted in vivo on 14 New Zealand rabbits (6 control, 8 hypercholesterolemic) following aortotomy to expose the intimal luminal surface of the aorta. Tissue autofluorescence was induced with a nitrogen pulse laser (337 nm, 1 ns). Lesions were histologically classified by the percent of collagen or macrophage foam cells as well as thickness of the intima. Using parameters derived from the time-resolved fluorescence emission of plaques, we determined that intima rich in macrophage foam cells can be distinguished from intima rich in collagen with high sensitivity (>85%) and specificity (>95%). This study demonstrates, for the first time, that a time-resolved fluorescence-based technique can differentiate and demark macrophage content versus collagen content in vivo. Our results suggest that TR-LIFS technique can be used in clinical applications for identification of inflammatory cells important in plaque formation and rupture. PMID:16039283

  20. In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Marcu, Laura; Fang, Qiyin; Jo, Javier A; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C

    2005-08-01

    Accumulation of numerous macrophages in the fibrous cap is a key identifying feature of plaque inflammation and vulnerability. This study investigates the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a potential tool for detection of macrophage foam cells in the intima of atherosclerotic plaques. Experiments were conducted in vivo on 14 New Zealand rabbits (6 control, 8 hypercholesterolemic) following aortotomy to expose the intimal luminal surface of the aorta. Tissue autofluorescence was induced with a nitrogen pulse laser (337 nm, 1 ns). Lesions were histologically classified by the percent of collagen or macrophage foam cells as well as thickness of the intima. Using parameters derived from the time-resolved fluorescence emission of plaques, we determined that intima rich in macrophage foam cells can be distinguished from intima rich in collagen with high sensitivity (>85%) and specificity (>95%). This study demonstrates, for the first time, that a time-resolved fluorescence-based technique can differentiate and demark macrophage content versus collagen content in vivo. Our results suggest that TR-LIFS technique can be used in clinical applications for identification of inflammatory cells important in plaque formation and rupture.

  1. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    PubMed

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  2. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  3. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    NASA Astrophysics Data System (ADS)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  4. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: identification of chlorogenic acid as one of the major fluorophores and age-mediated changes.

    PubMed

    Morales, Fermín; Cartelat, Aurélie; Alvarez-Fernández, Ana; Moya, Ismael; Cerovic, Zoran G

    2005-12-14

    Synchrotron radiation and the time-correlated single-photon counting technique were used to investigate the spectral and time-resolved characteristics of blue-green fluorescence (BGF) of artichoke leaves. Leaves emitted BGF under ultraviolet (UV) excitation; the abaxial side was much more fluorescent than the adaxial side, and in both cases, the youngest leaves were much more fluorescent than the oldest ones. The BGF of artichoke leaves was dominated by the presence of hydroxycinnamic acids. A decrease in the percentage of BGF attributable to the very short kinetic component (from 42 to 20%), in the shape of the BGF excitation spectra, and chlorogenic acid concentrations indicate that there is a loss of hydroxycinnamic acid with leaf age. Studies on excitation, emission, and synchronized fluorescence spectra of leaves and trichomes and chlorogenic acid contents indicate that chlorogenic acid is one of the main blue-green fluorophores in artichoke leaves. Results of the present study indicate that 20-42% (i.e., the very short kinetic component) of the overall BGF is emitted by chlorogenic acid. Time-resolved BGF measurements could be a means to extract information on chlorogenic acid fluorescence from the overall leaf BGF.

  5. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  6. Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide-graphite oxide mesoporous composite

    NASA Astrophysics Data System (ADS)

    Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.

    2015-01-01

    Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.

  7. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    PubMed

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  8. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100more » when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.« less

  9. [Quenched fluorescein: a reference dye for instrument response function of TCSPC].

    PubMed

    Pan, Hai-feng; Ding, Jing-xin; Liang, Rong-rong; Tao, Zhan-dong; Liu, Meng-wei; Zhang, San-jun; Xu, Jian-hua

    2014-08-01

    Measuring the instrument response function (IRF) and fitting by reconvolution algorithms are routines to improve time resolution in fluorescence lifetime measurements. Iodide ions were successfully used to quench the fluorescence of fluorescein in this study. By systematically adding saturated NaI water solution in basic fluorescein solution, the lifetimes of fluorescein were reduced from 4 ns to 24 ps. The quenched lifetime of fluorescein obtained from the analysis of Time-Correlated Single Photon Counting (TCSPC) measurement agrees well with that from femtosecond frequency up-conversion measurement. In time resolved excitation spectra measurements, the IRF should be measured at various detection wavelengths providing scattring materials are used. This study could not only reduce the complexity of IRF measurement, but also avoid the existing color effect in system. This study should have wide applications in time resolved fluorescence spectroscopy and fluorescence lifetime imaging.

  10. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  11. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  12. Lifetime fluorescence spectroscopy for in situ investigation of osteogenic differentiation

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Elbarbary, Amir; Zuk, Patricia; De Ugarte, Daniel A.; Benhaim, Prosper; Kurt, Hamza; Hedrick, Marc H.; Ashjian, Peter

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) represents a potential tool for the in-situ characterization of bioengineered tissues. In this study, we evaluate the application of TR-LIFS to non-intrusive monitoring of matrix composition during osteogenetic differentiation. Human adipose-derived stem cells, harvested from 3 patients, were induced in osteogenic media for 3, 5, and 7 weeks. Samples were subsequently collected and probed for time-resolved fluorescence emission with a pulsed nitrogen laser. Fluorescence parameters, derived from both spectral- and time-domain, were used for sample characterization. The samples were further analyzed using Western blot analysis and computer-based densitometry. A significant change in the fluorescence parameters was detected for samples beyond 3 weeks of osteogenic differentiation. The spectroscopic observations: 1) show increase of collagen I when contrasted against the time-resolved fluorescence spectra of commercially available collagens; and 2) are in agreement with Western blot analysis that demonstrated significant increase in collagen I content between 3- vs. 5-weeks and 3- vs. 7-weeks and no changes for collagens III, IV, and V. Our results suggest that TR-LIFS can be used as a non-invasive means for the detection of specific collagens in maturing connective tissues.

  13. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can distinguish fibrous and calcified atherosclerotic plaque from normal artery. A minor effort of the study involves the high intensity effects on the optical properties of the dye, doxycycline (a particular photosensitizer of the tetracycline group) occurring during relaxation when excited at different laser intensities. This study has been performed by observing the fluorescence lifetimes and quantum yields of DOTC at different excitation intensities. The results obtained support the sequential excited state absorption model.

  14. Time-resolvable fluorescent conjugates for the detection of pathogens in environmental samples containing autofluorescent material

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Veal, Duncan; Piper, James A.

    2003-07-01

    Water is routinely monitored for environmental pathogens such a Cryptosporidium and Giardia using immunofluorescence microscopy (IFM). Autofluorescence can greatly diminish an operators capacity to resolve labeled pathogens from non-specific background. Naturally fluorescing components (autofluorophores) encountered in biological samples typically have fluorescent lifetimes (τ) of less than 100 nanoseconds and their emissions may be excluded through use of time-resolved fluorescence microscopy (TRFM). TRFM relies on the large differences in τ between autofluorescent molecules and long-lived lanthanide chelates. In TRFM, targets labeled with a time-resolvable fluorescent immunoconjugate are excited by an intense (UV) light pulse. A short delay is imposed to permit the decay of autofluorescence before capture of luminescence from the excited chelate using an image intensified CCD camera. In our experience, autofluorescence can be reduced to insignificant levels with a consequent 30-fold increase in target visibility using TRFM techniques. We report conjugation of a novel europium chelate to a monoclonal antibody specific for Giardia lamblia and use of the immunoconjugate for TRFM studies. Initial attempts to conjugate the same chelate to a monoclonal antibody directed against Cryptosporidium parvum led to poorly fluorescent constructs that were prone to denature and precipitate. We successfully conjugated BHHCT to anti-mouse polyvalent immunoglobulin and used this construct to overcome the difficulties in direct labeling of the anti-Cryptosporidium antibody. Both Giardia and Cryptosporidium were labeled using the anti-mouse protocol with a subsequent 20-fold and 6.6-fold suppression of autofluorescence respectively. A rapid protocol for conjugating and purifying the immunoconjugate was found and methods of quantifying the fluorescence to protein ratio determined. Performance of our TRFM was dependent on the quality and brightness of the immunoconjugate and optimization of the conjugation process is necessary to reap the full benefit of time-resolved techniques.

  15. Time-Resolved Measurements in Optoelectronic Microbioanalysis

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Kossakovski, Dmitri

    2003-01-01

    A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.

  16. Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2014-11-01

    Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.

  17. Drug/protein interactions studied by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gustavsson, Thomas; Markovitsi, Dimitra; Vayá, Ignacio; Bonancía, Paula; Jiménez, M. C.; Miranda, Miguel A.

    2014-09-01

    We report here on a recent time-resolved fluorescence study [1] of the interaction between flurbiprofen (FBP), a chiral non-steroidal anti-inflammatory drug, and human serum albumin (HSA), the main transport protein in the human body. We compare the results obtained for the drug-protein complex with those of various covalently linked flurbiprofentryptophan dyads having well-defined geometries. In all cases stereoselective dynamic fluorescence quenching is observed, varying greatly from one system to another. In addition, the fluorescence anisotropy decays also display a clear stereoselectivity. For the drug-protein complexes, this can be interpreted in terms of the protein microenvironment playing a significant role in the conformational relaxation of FBP, which is more restricted in the case of the (R)- enantiomer.

  18. Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP.

    PubMed

    Colletier, Jacques-Philippe; Sliwa, Michel; Gallat, François-Xavier; Sugahara, Michihiro; Guillon, Virginia; Schirò, Giorgio; Coquelle, Nicolas; Woodhouse, Joyce; Roux, Laure; Gotthard, Guillaume; Royant, Antoine; Uriarte, Lucas Martinez; Ruckebusch, Cyril; Joti, Yasumasa; Byrdin, Martin; Mizohata, Eiichi; Nango, Eriko; Tanaka, Tomoyuki; Tono, Kensuke; Yabashi, Makina; Adam, Virgile; Cammarata, Marco; Schlichting, Ilme; Bourgeois, Dominique; Weik, Martin

    2016-03-03

    Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.

  19. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  20. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    NASA Astrophysics Data System (ADS)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  1. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  2. Femtosecond Fluorescence Upconversion Study of a Naphthalimide-Bithiophene-Triphenylamine Push-Pull Dye in Solution.

    PubMed

    Maffeis, Valentin; Brisse, Romain; Labet, Vanessa; Jousselme, Bruno; Gustavsson, Thomas

    2018-06-13

    There is a high interest in the development of new push-pull dyes for the use in dye sensitized solar cells. The pronounced charge transfer character of the directly photoexcited state is in principle favorable for a charge injection. Here, we report a time-resolved fluorescence study of a triphenylamine-bithiophene-naphthalimide dye in four solvents of varying polarity using fluorescence upconversion. The recording of femtosecond time-resolved fluorescence spectra corrected for the group velocity dispersion allows for a detailed analysis discriminating between spectral shifts and total intensity decays. After photoexcitation, the directly populated state (S 1 /FC) evolves toward a relaxed charge transfer state (S 1 /CT). This S 1 /CT state is characterized by a lower radiative transition moment and a higher nonradiative quenching. The fast dynamic shift of the fluorescence band is well described by solvation dynamics in polar solvents, but less so in nonpolar solvents, hinting that the excited-state relaxation process occurs on a free energy surface whose topology is strongly governed by the solvent polarity. This study underlines the influence of the environment on the intramolecular charge transfer (ICT) process, and the necessity to analyze time-resolved data in detail when solvation and ICT occur simultaneously.

  3. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  4. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  5. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    PubMed

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  6. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    NASA Technical Reports Server (NTRS)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  7. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser the strong mineral fluorescence saturates the detector and Raman spectra are unattainable. This problem is overcome by using time resolved Raman where fluorescence is eliminated. [1]Frosch et al., Anal. Chem. 2007, 79, 1101-1108 [2]Bell, J.,ed, The Martian Surface: Composition, Mineralogy, and physical Properties, Cambridge University Press, 2008

  8. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments.

    PubMed

    Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M

    2000-02-25

    The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.

  9. Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen.

    PubMed

    Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph

    2012-06-08

    Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.

  10. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  11. Fluorescence Lifetime Techniques in Medical Applications

    PubMed Central

    Marcu, Laura

    2012-01-01

    This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730

  12. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.

    PubMed Central

    Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E

    2000-01-01

    We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979

  13. Detecting beta-amyloid aggregation from time-resolved emission spectra

    NASA Astrophysics Data System (ADS)

    Alghamdi, A.; Vyshemirsky, V.; Birch, D. J. S.; Rolinski, O. J.

    2018-04-01

    The aggregation of beta-amyloids is one of the key processes responsible for the development of Alzheimer’s disease. Early molecular-level detection of beta-amyloid oligomers may help in early diagnosis and in the development of new intervention therapies. Our previous studies on the changes in beta-amyloid’s single tyrosine intrinsic fluorescence response during aggregation demonstrated a four-exponential fluorescence intensity decay, and the ratio of the pre-exponential factors indicated the extent of the aggregation in the early stages of the process before the beta-sheets were formed. Here we present a complementary approach based on the time-resolved emission spectra (TRES) of amyloid’s tyrosine excited at 279 nm and fluorescence in the window 240-450 nm. TRES have been used to demonstrate sturctural changes occuring on the nanosecond time scale after excitation which has significant advantages over using steady-state spectra. We demonstrate this by resolving the fluorescent species and revealing that beta-amyloid’s monomers show very fast dielectric relaxation, and its oligomers display a substantial spectral shift due to dielectric relaxation, which gradually decreases when the oligomers become larger.

  14. The supercontinuum laser as a flexible source for quasi-steady state and time resolved fluorescence studies

    NASA Astrophysics Data System (ADS)

    Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond

    2010-02-01

    Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.

  15. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    PubMed

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the pharmaceutical setting, process analytical technology (PAT), and the life sciences.

  16. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  17. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies.

    PubMed

    Maurya, Neha; Maurya, Jitendra Kumar; Kumari, Meena; Khan, Abbul Bashar; Dohare, Ravins; Patel, Rajan

    2017-05-01

    Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.

  18. Quantitative, spectrally-resolved intraoperative fluorescence imaging

    PubMed Central

    Valdés, Pablo A.; Leblond, Frederic; Jacobs, Valerie L.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.

    2012-01-01

    Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field. PMID:23152935

  19. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Jingle; Zhang, X.-C.

    2009-12-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  20. Analysis of hydrocarbon-bearing fluid inclusions (HCFI) using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Przyjalgowski, Milosz A.; Ryder, Alan G.; Feely, Martin; Glynn, Thomas J.

    2005-06-01

    Hydrocarbon-bearing fluid inclusions (HCFI) are microscopic cavities within rocks that are filled with petroleum oil, the composition of which may not have changed since the trapping event. Thus, the composition of that entrapped oil can provide information about the formation and evolution of the oil reservoir. This type of information is important to the petroleum production and exploration industries. Crude oil fluorescence originates from the presence of cyclic aromatic compounds and the nature of the emission is governed by the chemical composition of the oil. Fluorescence based methods are widely used for analysis of crude oil because they offer robust, non-contact and non-destructive measurement options. The goal of our group is the development of a non-destructive analytical method for HCFI using time-resolved fluorescence methods. In broad terms, crude oil fluorescence behavior is governed by the concentration of quenching species and the distribution of fluorophores. For the intensity averaged fluorescence lifetime, the best correlations have been found between polar or alkane concentrations, but these are not suitable for robust, quantitative analysis. We have recently started to investigate another approach for characterizing oils by looking at Time-resolved Emission Spectra (TRES). TRES are constructed from intensities sampled at discrete times during the fluorescence decay of the sample. In this study, TRES, from a series of 10 crude oils from the Middle East, have been measured at discrete time gates (0.5 ns, 1 ns, 2 ns, 4 ns) over the 450-700 nm wavelength range. The spectral changes in TRES, such as time gate dependent Stokes' shift and spectral broadening, are analyzed in the context of energy transfer rates. In this work, the efficacy of using TRES for fingerprinting individual oils and HCFI is also demonstrated.

  1. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.

  2. Photophysical studies on the interaction of acridinedione dyes with universal protein denaturant: guanidine hydrochloride.

    PubMed

    Kumaran, R; Varalakshmi, T; Malar, E J Padma; Ramamurthy, P

    2010-09-01

    Photophysical studies of photoinduced electron transfer (PET) and non-PET based acridinedione dyes with guanidine hydrochloride (GuHCl) were carried out in water and methanol. Addition of GuHCl to photoinduced electron transfer (PET) based acridinedione dye (ADR 1) results in a fluorescence enhancement, whereas a non-PET based dye (ADR 2) shows no significant change in the fluorescence intensity and lifetime. Addition of GuHCl to ADR 1 dye in methanol results in single exponential decay behaviour, on the contrary a biexponential decay pattern was observed on the addition of GuHCl in water. Absorption and emission spectral studies of ADR 1 dye interaction with GuHCl reveals that the dye molecule is not in the protonated form in aqueous GuHCl solution, and the dye is confined to two distinguishable microenvironment in the aqueous phase. A large variation in the microenvironment around the dye molecule is created on the addition of GuHCl and this was ascertained by time-resolved area normalized emission spectroscopy (TRANES) and time-resolved emission spectroscopy (TRES). The dye molecule prefers to reside in the hydrophobic microenvironment, rather in the hydrophilic aqueous phase is well emphasized by time-resolved fluorescence lifetime studies. The mechanism of fluorescence enhancement of ADR 1 dye by GuHCl is attributed to the suppression of the PET process occurring through space.

  3. Two-site ionic labeling with pyranine: implications for structural dynamics studies of polymers and polypeptides by time-resolved fluorescence anisotropy.

    PubMed

    Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D

    2006-04-26

    Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.

  4. A multi-analytical investigation of semi-conductor pigments with time-resolved spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Nevin, A.; Cesaratto, A.; D'Andrea, C.; Valentini, Gianluca; Comelli, D.

    2013-05-01

    We present the non-invasive study of historical and modern Zn- and Cd-based pigments with time-resolved fluorescence spectroscopy, fluorescence multispectral imaging and fluorescence lifetime imaging (FLIM). Zinc oxide and Zinc sulphide are semiconductors which have been used as white pigments in paintings, and the luminescence of these pigments from trapped states is strongly dependent on the presence of impurities and crystal defects. Cadmium sulphoselenide pigments vary in hue from yellow to deep red based on their composition, and are another class of semiconductor pigments which emit both in the visible and the near infrared. The Fluorescence lifetime of historical and modern pigments has been measured using both an Optical Multichannel Analyser (OMA) coupled with a Nd:YAG nslaser, and a streak camera coupled with a ps-laser for spectrally-resolved fluorescence lifetime measurements. For Znbased pigments we have also employed Fluorescence Lifetime Imaging (FLIM) for the measurement of luminescence. A case study of FLIM applied to the analysis of the painting by Vincent Van Gogh on paper - "Les Bretonnes et le pardon de Pont-Aven" (1888) is presented. Through the integration of complementary, portable and non-invasive spectroscopic techniques, new insights into the optical properties of Zn- and Cd-based pigments have been gained which will inform future analysis of late 19th] and early 20th C. paintings.

  5. Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming

    2012-11-01

    The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.

  6. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  7. A flash-lamp based device for fluorescence detection and identification of individual pollen grains.

    PubMed

    Kiselev, Denis; Bonacina, Luigi; Wolf, Jean-Pierre

    2013-03-01

    We present a novel optical aerosol particle detector based on Xe flash lamp excitation and spectrally resolved fluorescence acquisition. We demonstrate its performances on three natural pollens acquiring in real-time scattering intensity at two wavelengths, sub-microsecond time-resolved scattering traces of the particles' passage in the focus, and UV-excited fluorescence spectra. We show that the device gives access to a rather specific detection of the bioaerosol particles.

  8. BHHST: An improved lanthanide chelate for time-resolved fluorescence applications

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Jin, Dayong; Piper, James

    2005-04-01

    The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.

  9. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  10. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma.

    PubMed

    Meier, Jeremy D; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D Gregory

    2010-06-01

    The objectives of this study were to 1) determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract, and 2) evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). Cross-sectional study. University-based medical center. Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700-picosecond pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared with the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than that of normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360 to approximately 660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7 +/- 0.06 ns [not significant] for normal and 1.3 +/- 0.06 ns for tumor, P = 0.0025) and the second-order Laguerre expansion coefficient (LEC-2) (i.e., at 460 nm: 0.135 +/- 0.001 for normal and 0.155 +/- 0.007 for tumor, P < 0.05). These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a noninvasive diagnostic technique for HNSCC. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  11. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma

    PubMed Central

    Meier, Jeremy D.; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D. Gregory

    2011-01-01

    OBJECTIVE 1) Determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract. 2) Evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cross-sectional study. SETTING University-based medical center. SUBJECTS AND METHODS Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700 ps pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared to the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. RESULTS Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than the normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360~660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7±0.06 ns for normal and 1.3±0.06 ns for tumor, P=0.0025), and the Laguerre coefficients, LEC-2 (i.e., at 460 nm: 0.135±0.001 for normal and 0.155±0.007 for tumor, P<0.05). CONCLUSION These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a non-invasive diagnostic technique for HNSCC. PMID:20493355

  12. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    NASA Astrophysics Data System (ADS)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  13. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    NASA Astrophysics Data System (ADS)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  14. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].

    PubMed

    Cheng, Ying; Ren, Mingming; Niu, Yanyan; Qiao, Jianhua; Aneba, S; Chorvat, D; Chorvatova, A

    2009-12-01

    The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.

  15. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  16. Multimodal imaging of vascular grafts using time-resolved fluorescence and ultrasound

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Griffiths, Leigh G.; Wong, Maelene L.; Humphrey, Sterling; Marcu, Laura

    2015-02-01

    The translation of engineered tissues into clinic requires robust monitoring of tissue development, both in vitro and in vivo. Traditional methods for the same are destructive, inefficient in time and cost and do not allow time-lapse measurements from the same sample or animal. This study reports on the ability of time-resolved fluorescence and ultrasound measurements for non-destructive characterization of explanted tissue engineered vascular grafts. Results show that TRFS and FLIm are able to assess alterations in luminal composition namely elastin, collagen and cellular (hyperplasia) content via changes in fluorescence lifetime values between normal and grafted tissue. These observations are complemented by structural changes observed in UBM pertaining to graft integration and intimal thickness over the grafted region. These results encourage the future application of a catheter-based technique that combines these imaging modalities for non-destructive characterization of vascular grafts in vivo.

  17. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.

    PubMed

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-09-19

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

  18. Thermal and Denaturation Studies of the Time-Resolved Fluorescence Decay of Human Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Silva, Norberto De Jesus

    Previous studies have shown that time-resolved fluorescence decay of various single tryptophan proteins is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. The thermal dependence of the lifetime distributions is consistent with the hypothesis that proteins fluctuate between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of the single tryptophan (Trp) residue of human superoxide dismutase (HSOD) over a wide range of temperatures and at different denaturant concentrations. First, it is demonstrated that the center of the lifetime distribution can characterize the average deactivation environment of the excited Trp-protein system. A qualitative model is introduced to explain the time-resolved fluorescence decay of HSOD in 80% glycerol over a wide range of temperatures. The dynamical model features isoenergetic conformational substates separated by a hierarchy of energy barriers. The HSOD system is also investigated as a function of denaturant concentration in aqueous solution. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width for the fully denatured form of HSOD is greater than that of the native form. This is consistent with the scenario that more conformational substates are being created upon denaturation of HSOD. HSOD is a dimeric protein and it was observed that the width of the lifetime distribution of HSOD at intermediate GdHCl concentrations increased with decreasing protein concentration. In addition, the secondary structure of HSOD at intermediate GdHCl concentration does not change with protein concentration. These results suggest that HSOD display structural microheterogeneity which is consistent with the hypothesis of conformational substates. Further analysis show that, during denaturation, the monomeric form of HSOD is an intermediate which displays native-like secondary structure and fluctuating tertiary structure; i.e., the monomeric form of HSOD is a molten globule.

  19. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    PubMed

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  20. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis

    PubMed Central

    Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura

    2011-01-01

    Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214

  1. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium

    NASA Astrophysics Data System (ADS)

    Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.

    2010-12-01

    We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.

  2. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  3. Site-specific structural dynamics of α-Synuclein revealed by time-resolved fluorescence spectroscopy: a review

    NASA Astrophysics Data System (ADS)

    Sahay, Shruti; Krishnamoorthy, G.; Maji, Samir K.

    2016-12-01

    Aggregation of α-Synuclein (α-Syn) into amyloid fibrils is known to be associated with the pathogenesis of Parkinson’s disease (PD). Several missense mutations of the α-Syn gene have been associated with rare, early onset familial forms of PD. Despite several studies done so far, the local/residue-level structure and dynamics of α-Syn in its soluble and aggregated fibril form and how these are affected by the familial PD associated mutations are still not clearly understood. Here, we review studies performed by our group as well as other research groups, where time-resolved fluorescence spectroscopy has been used to understand the site-specific structure and dynamics of α-Syn under physiological conditions as well as under conditions that alter the aggregation properties of the protein such as low pH, high temperature, presence of membrane mimics and familial PD associated mutations. These studies have provided important insights into the critical structural properties of α-Syn that may govern its aggregation. The review also highlights time-resolved fluorescence as a promising tool to study the critical conformational transitions associated with early oligomerization of α-Syn, which are otherwise not accessible using other commonly used techniques such as thioflavin T (ThT) binding assay.

  4. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  5. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  6. Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system

    NASA Astrophysics Data System (ADS)

    Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.

    2010-02-01

    Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.

  7. Quantization of bovine serum albumin by fluorescence enhancement effects and corresponding binding of macrocyclic host-protein assembly.

    PubMed

    Bardhan, Munmun; Misra, Tapas; Ganguly, Tapan

    2012-01-05

    The present paper reports the investigations on the spectroscopic behavior of the binary complexes of the dye aurintricarboxylic acid (ATA) with protein bovine serum albumin (BSA) and 18-crown 6 (CW) (ATA·BSA, ATA·CW) and the ternary complex ATA·CW·BSA by using UV-vis steady state and time resolved fluorescence spectroscopy. The primary aim of the work is to determine the protein (BSA) quantization by fluorescence enhancement method and investigate the 'enhancer' activity of crown ether (CW) on it to increase the resolution. Steady state and time resolved fluorescence measurements demonstrated how fluorescence intensity of ATA could be used for the determination of the protein BSA in aqueous solution. The binding of dye (probe/fluorescent medicinal molecule) with protein and the denaturing effect in the polar environment of acetonitrile of the dye protein complex act as drug binding as well as drug release activity. Apart from its basic research point of view, the present study also possesses significant importance and applications in the field of medicinal chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Time-resolved fluorescence study of exciplex formation in diastereomeric naproxen-pyrrolidine dyads.

    PubMed

    Khramtsova, Ekaterina A; Plyusnin, Viktor F; Magin, Ilya M; Kruppa, Alexander I; Polyakov, Nikolay E; Leshina, Tatyana V; Nuin, Edurne; Marin, M Luisa; Miranda, Miguel A

    2013-12-19

    The influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers. In addition, the quantum yields of exciplexes differed by a factor of 2 regardless of solvent polarity. This allows us to suggest a similar influence of the chiral centers on the local charge transfer resulting in exciplex and full charge separation that leads to ion-biradicals. A simplified scheme is proposed to estimate a set of rate constant values (k1-k5) for the elementary stages in each solvent system.

  9. Time-resolved fluorescence of thioredoxin single-tryptophan mutants: modeling experimental results with minimum perturbation mapping

    NASA Astrophysics Data System (ADS)

    Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.

    1994-08-01

    The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.

  10. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex.

    PubMed Central

    Marriott, G.; Heidecker, M.; Diamandis, E. P.; Yan-Marriott, Y.

    1994-01-01

    Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found. Through the coupling of SBMC to streptavidin,a plethora of biotin-based tracer molecules are available for immunocytochemical studies. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:7811952

  11. Development of a New Time-Resolved Laser-Induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2012-10-01

    We are developing a time-resolved laser-induced fluorescence (LIF) technique to interrogate the ion velocity distribution function (VDF) of EP thruster plumes down to the microsecond time scale. Better measurements of dynamic plasma processes will lead to improvements in simulation and prediction of thruster operation and erosion. We present the development of the new technique and results of initial tests. Signal-to-noise ratio (SNR) is often a challenge for LIF studies, and it is only more challenging for time-resolved measurements since a lock-in amplifier cannot be used with a long time constant. The new system uses laser modulation on the order of MHz, which enables the use of electronic filtering and phase-sensitive detection to improve SNR while preserving time-resolved information. Statistical averaging over many cycles to further improve SNR is done in the frequency domain. This technique can have significant advantages, including (1) larger spatial maps enabled by shorter data acquisition time and (2) the ability to average data without creating a phase reference by modifying the thruster operating condition with a periodic cutoff in discharge current, which can modify the ion velocity distribution.

  12. Fluorescence lifetime imaging of skin cancer

    NASA Astrophysics Data System (ADS)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  13. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  14. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    ERIC Educational Resources Information Center

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  15. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1

    USDA-ARS?s Scientific Manuscript database

    Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...

  16. Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less

  17. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  18. Excitation wavelength dependence of excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi

    2013-10-17

    Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.

  19. Internalization of aggregated photosensitizers by tumor cells: subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitations.

    PubMed

    Kelbauskas, L; Dietel, W

    2002-12-01

    Amphiphilic sensitizers self-associate in aqueous environments and form aggregated species that exhibit no or only negligible photodynamic activity. However, amphiphilic photosensitizers number among the most potent agents of photodynamic therapy. The processes by which these sensitizers are internalized into tumor cells have yet to be fully elucidated and thus remain the subject of debate. In this study the uptake of photosensitizer aggregates into tumor cells was examined directly using subcellular time-resolved fluorescence spectroscopy with a high temporal resolution (20-30 ps) and high sensitivity (time-correlated single-photon counting). The investigations were performed on selected sensitizers that exhibit short fluorescence decay times (< 50 ps) in aggregated form. Derivatives of pyropheophorbide-a ether and chlorin e6 with varying lipophilicity were used for the study. The characteristic fluorescence decay times and spectroscopic features of the sensitizer aggregates measured in aqueous solution also could be observed in A431 human endothelial carcinoma cells administered with these photosensitizers. This shows that tumor cells can internalize sensitizers in aggregated form. Uptake of aggregates and their monomerization inside cells were demonstrated directly for the first time by means of fluorescence lifetime imaging with a high temporal resolution. Internalization of the aggregates seems to be endocytosis mediated. The degree of their monomerization in tumor cells is strongly influenced by the lipophilicity of the compounds.

  20. Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain.

    PubMed

    Sahoo, Harekrushna; Roccatano, Danilo; Zacharias, Martin; Nau, Werner M

    2006-06-28

    Fluorescence resonance energy transfer (FRET) between tryptophan (Trp) as donor and 2,3-diazabicyclo[2.2.2]oct-2-ene (Dbo) as acceptor was studied by steady-state and time-resolved fluorescence spectroscopy. The unique feature of this FRET pair is its exceptionally short Förster radius (10 A), which allows one to recover distance distributions in very short structureless peptides. The technique was applied to Trp-(GlySer)n-Dbo-NH2 peptides with n = 0-10, for which the average probe/quencher distance ranged between 8.7 and 13.7 A experimentally (in propylene glycol, analysis according to wormlike chain model) and 8.6-10.2 A theoretically (for n = 0-6, GROMOS96 molecular dynamics simulations). The larger FRET efficiency in steady-state compared to time-resolved fluorescence experiments was attributed to a static quenching component, suggesting that a small but significant part (ca. 10%) of the conformations are already in van der Waals contact when excitation occurs.

  1. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.

    PubMed

    Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu

    2015-11-07

    Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.

  2. Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies.

    PubMed

    Bardhan, Munmun; Chowdhury, Joydeep; Ganguly, Tapan

    2011-01-10

    In this paper, the nature of the interactions between bovine serum albumin (BSA) and aurintricarboxylic acid (ATA) has been investigated by measuring steady state and time-resolved fluorescence, circular dichroism (CD), FT-IR and fluorescence anisotropy in protein environment under physiological conditions. From the analysis of the steady state and time-resolved fluorescence quenching of BSA in aqueous solution in presence of ATA it has been inferred that the nature of the quenching originates from the combined effect of static and dynamic modes. From the determination of the thermodynamic parameters obtained from temperature-dependent changes in K(b) (binding constant) it was apparent that the combined effect of hydrophobic association and electrostatic attraction is responsible for the interaction of ATA with BSA. The effect of ATA on the conformation of BSA has been examined by analyzing CD spectrum. Though the observed results demonstrate some conformational changes in BSA in presence of ATA but the secondary structure of BSA, predominantly of α-helix, is found to retain its identity. Molecular docking of ATA with BSA also indicates that ATA docks through hydrophobic interaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Depth-resolved fluorescence of biological tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  4. Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura

    2017-02-01

    Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.

  5. Development of LEDs-based microplate reader for bioanalytical assay measurements

    NASA Astrophysics Data System (ADS)

    Alaruri, Sami D.; Katzlinger, Michael; Schinwald, Bernhard; Kronberger, Georg; Atzler, Joseph

    2013-10-01

    The optical design for an LEDs-based microplate reader that can perform fluorescence intensity (top and bottom), absorbance, luminescence and time-resolved fluorescence measurements is described. The microplate reader is the first microplate reader in the marketplace that incorporates LEDs as excitation light sources. Absorbance measurements over the 0-3.5 optical density range for caffeine solution are presented. Additionally, fluorescence intensity readings collected at 535 and 625 nm from a green and a red RediPlateTM are reported. Furthermore, fluorescence decay lifetime measurements obtained for Eu (europium) and Sm (samarium) standard solutions using 370 nm excitation are presented. The microplate reader detection limits for the fluorescence intensity top, fluorescence intensity bottom, fluorescence polarization and time-resolved fluorescence modes are 1.5 fmol 100 µL-1 fluorescein (384-well plate), 25 fmol 100 µL-1 fluorescein (384-well plate), 5 mP at 10 nM fluorescein (black 384-well plate) and 30 amol 100 µL-1 europium solution (white 384-well plate), respectively.

  6. Time-resolved fluorescence observation of di-tyrosine formation in horseradish peroxidase upon ultrasound treatment leading to enzyme inactivation

    NASA Astrophysics Data System (ADS)

    Tsikrika, Konstantina; Lemos, M. Adília; Chu, Boon-Seang; Bremner, David H.; Hungerford, Graham

    2017-02-01

    The application of ultrasound to a solution can induce cavitional phenomena and generate high localised temperatures and pressures. These are dependent of the frequency used and have enabled ultrasound application in areas such as synthetic, green and food chemistry. High frequency (100 kHz to 1 MHz) in particular is promising in food chemistry as a means to inactivate enzymes, replacing the need to use periods of high temperature. A plant enzyme, horseradish peroxidase, was studied using time-resolved fluorescence techniques as a means to assess the effect of high frequency (378 kHz and 583 kHz) ultrasound treatment at equivalent acoustic powers. This uncovered the fluorescence emission from a newly formed species, attributed to the formation of di-tyrosine within the horseradish peroxidase structure caused by auto-oxidation, and linked to enzyme inactivation.

  7. New approaches to the analysis of complex samples using fluorescence lifetime techniques and organized media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertz, P.R.

    Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less

  8. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays.

    PubMed

    Marquez, Cesar; Huang, Fang; Nau, Werner M

    2004-03-01

    A new fluorescent host-guest system based on the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) into the cavity of the molecular container compound cucurbit[7]uril (CB7) has been designed which possesses an exceedingly long-lived emission (690 ns in aerated water). The large binding constant of (4 +/- 1) x 10(5) M(-1) along with the resistance of the CB7.DBO complex toward external fluorescence quenchers allow the use of CB7 as an enhancer in time-resolved fluorescence-based assays, e.g., to screen enzyme activity or inhibition by using DBO-labeled peptides as substrates. The response of CB7.DBO to different environmental conditions and possible quenchers are described.

  9. Time-Resolved Fluorescence of Water-Soluble Pyridinium Salt: Sensitive Detection of the Conformational Changes of Bovine Serum Albumin.

    PubMed

    Li, Lei; Yi, Hua; Jia, Menghui; Chang, Mengfang; Zhou, Zhongneng; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Chen, Jinquan; Xu, Jianhua

    2016-06-20

    In this paper, we report a pyridinium salt "turn-on" fluorescent probe, 4-[2-(4-Dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (p-DASPMI), and applied its time-resolved fluorescence (TRF) to monitor the protein conformational changes. Both the fluorescence lifetime and quantum yield (QY) of p-DASPMI were increased about two orders of magnitude after binding to the protein bovine serum albumin (BSA). The free p-DASPMI in solution presents an ultrashort fluorescence lifetime (12.4 ps), thus it does not interfere the detection of bound p-DASPMI which has nanosecond fluorescence lifetime. Decay-associated spectra (DAS) show that p-DASPMI molecules bind to subdomains IIA and IIIA of BSA. The TRF decay profiles of p-DASPMI can be described by multi-exponential decay function ([Formula: see text]), and the obtained parameters, such as lifetimes ([Formula: see text]), fractional amplitudes ([Formula: see text]), and fractional intensities ([Formula: see text]), may be used to deduce the conformational changes of BSA. The pH and Cu 2+ induced conformational changes of BSA were investigated through the TRF of p-DASPMI. The results show that the p-DASPMI is a candidate fluorescent probe in studying the conformational changes of proteins through TRF spectroscopy and microscopy in the visible range. © The Author(s) 2016.

  10. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    NASA Astrophysics Data System (ADS)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  11. Detection of colorectal cancer using time-resolved autofluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Kwek, Leong-Chuan; Chia, Teck-Chee; Lim, Chu-Sing; Tang, Choong-Leong; Ang, Wuan-Suan; Zhou, Miao-Chang; Loke, Po-Ling

    2006-04-01

    As we know Quantum mechanics is a mathematical theory that can describe the behavior of objects that are at microscopic level. Time-resolved autofluorescence spectrometer monitors events that occur during the lifetime of the excited state. This time ranges from a few picoseconds to hundreds of nanoseconds. That is an extremely important advance as it allows environmental parameters to be monitored in a spatially defined manner in the specimen under study. This technique is based on the application of Quantum Mechanics. This principle is applied in our project as we are trying to use different fluorescence spectra to detect biological molecules commonly found in cancerous colorectal tissue and thereby differentiate the cancerous and non-cancerous colorectal polyps more accurately and specifically. In this paper, we use Fluorescence Lifetime Spectrometer (Edinburgh Instruments FL920) to measure decay time of autofluorescence of colorectal cancerous and normal tissue sample. All specimens are from Department of Colorectal Surgery, Singapore General Hospital. The tissues are placed in the time-resolved autofluorescence instrument, which records and calculates the decay time of the autofluorescence in the tissue sample at the excitation and emission wavelengths pre-determined from a conventional spectrometer. By studying the decay time,τ, etc. for cancerous and normal tissue, we aim to present time-resolved autofluorescence as a feasible technique for earlier detection of malignant colorectal tissues. By using this concept, we try to contribute an algorithm even an application tool for real time early diagnosis of colorectal cancer for clinical services.

  12. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer.

    PubMed Central

    Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S

    2001-01-01

    We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432

  13. Time-resolved laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  14. Experimental and Theoretical Aspects of Excited State Electron Transfer and Related Phenomena: Conference Held in Honour of Zbigniew R. Grabowski in Pultusk, Poland on September 27-October 2, 1992

    DTIC Science & Technology

    1992-10-01

    DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology

  15. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    PubMed Central

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-01-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092

  16. Fluorescence lifetime spectroscopy for guided therapy of brain tumors.

    PubMed

    Butte, Pramod V; Mamelak, Adam N; Nuno, Miriam; Bannykh, Serguei I; Black, Keith L; Marcu, Laura

    2011-01-01

    This study evaluates the potential of time-resolved laser induced fluorescence spectroscopy (TR-LIFS) as intra-operative tool for the delineation of brain tumor from normal brain. Forty two patients undergoing glioma (WHO grade I-IV) surgery were enrolled in this study. A TR-LIFS prototype apparatus (gated detection, fast digitizer) was used to induce in-vivo fluorescence using a pulsed N2 laser (337 nm excitation, 0.7 ns pulse width) and to record the time-resolved spectrum (360-550 nm range, 10 nm interval). The sites of TR-LIFS measurement were validated by conventional histopathology (H&E staining). Parameters derived from the TR-LIFS data including intensity values and time-resolved intensity decay features (average fluorescence lifetime and Laguerre coefficients values) were used for tissue characterization and classification. 71 areas of tumor and normal brain were analyzed. Several parameters allowed for the differentiation of distinct tissue types. For example, normal cortex (N=35) and normal white matter (N=12) exhibit a longer-lasting fluorescence emission at 390 nm (τ390=2.12±0.10 ns) when compared with 460 nm (τ460=1.16±0.08 ns). High grade glioma (grades III and IV) samples (N=17) demonstrate emission peaks at 460 nm, with large variation at 390 nm while low grade glioma (I and II) samples (N=7) demonstrated a peak fluorescence emission at 460 nm. A linear discriminant algorithm allowed for the classification of low-grade gliomas with 100% sensitivity and 98% specificity. High-grade glioma demonstrated a high degree of heterogeneity thus reducing the discrimination accuracy of these tumors to 47% sensitivity and 94% specificity. Current findings demonstrate that TR-LIFS holds the potential to diagnose brain tumors intra-operatively and to provide a valuable tool for aiding the neurosurgeon-neuropathologist team in to rapidly distinguish between tumor and normal brain during surgery. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Fluorescence Dynamics in the Endoplasmic Reticulum of a Live Cell: Time-Resolved Confocal Microscopy.

    PubMed

    Ghosh, Shirsendu; Nandi, Somen; Ghosh, Catherine; Bhattacharyya, Kankan

    2016-09-19

    Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time (<τs >) of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spectral and time-resolved studies on ocular structures

    NASA Astrophysics Data System (ADS)

    Schweitzer, D.; Jentsch, S.; Schenke, S.; Hammer, M.; Biskup, C.; Gaillard, E.

    2007-07-01

    Measurements of endogeous fluorophores open the possibility for evaluation of metabolic state at the eye. For interpretation of 2-dimensional measurements of time-resolved auto fluorescence in 2 separate spectral ranges at the human eye, comparing measurements were performed on porcine eyes. Determining excitation and emission spectra, attention was drawn of proof of coenzymes NADH and FAD in isolated anatomical structures cornea, aqueous humor, lens, vitreous, neuronal retina, retinal pigment epithelium (RPE), choroid, and sclera. All these structures exhibit auto fluorescence, highest in lens. Excitation at 350 nm results in local fluorescence maxima at 460 nm, corresponding to NADH, in all structures. This short-wave excitation allows metabolic studies only at the anterior eye, because of the limited transmission of the ocular media. During excitation at 446 nm the existence of FAD is expressed by local fluorescence maxima at 530 nm. The composition fluorescence spectra allow no discrimination between single ocular structures. Approximating the dynamic fluorescence by a double exponential function, the shortest lifetimes were detected in RPE and neuronal retina. The histograms of mean lifetime t M cover each other on lens with cornea and also on sclera with choroid. Despite the lifetimes are close between RPE and neuronal retina, the relative contributions Q I are wide different. The gradient of trend lines in cluster diagrams of amplitudes α II vs. α I allows a discrimination of ocular structures.

  19. Glucose Sensing by Time-Resolved Fluorescence of Sol-Gel Immobilized Glucose Oxidase

    PubMed Central

    Esposito, Rosario; Ventura, Bartolomeo Della; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria

    2011-01-01

    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM. PMID:22163807

  20. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam

    2014-03-01

    It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.

  1. Site-Dependent Fluorescence Decay of Malachite Green Doped in Onion Cell

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Hiroki; Sekine, Masaya; Suzuki, Yuji; Hattori, Toshiaki

    1999-03-01

    Time-resolved fluorescence measurements of malachite green dye moleculesdoped in onion cells were carried out.The fluorescence decay time was dependent on the individual cell and on theposition of the dye in a cell, which reflect the microscopic dynamics of each boundsite.Upon cooling, the decay time increased and this increase was accelerated ataround the freezing point of the onion cell.

  2. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of PAH fluorescence. Preliminary results on stalagmite samples, lake sediments and soils will be reported. PAH content variations along the sample were compared with PAH concentration and with bulk OM content deduced from SSF records. The accuracy of the PAH fluorescence as source marker of fluxes will be discussed for each type of sample.

  3. Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  4. Nanowires formed by the co-assembly of a negatively charged low-molecular weight gelator and a zwitterionic polythiophene.

    PubMed

    Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M

    2010-06-21

    Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.

  5. On-line and in-situ detection of polycyclic aromatic hydrocarbons (PAH) on aerosols via thermodesorption and laser-induced fluorescence spectroscopy.

    PubMed

    Panne, U; Knöller, A; Kotzick, R; Niessner, R

    2000-02-01

    A fiber optical sensor system for the determination of polycyclic aromatic hydrocarbons (PAH) on aerosols by laser-induced, time-resolved fluorescence is combined with a thermodesorption device. The sensor system is based on an aerosol flow cell, which is fibre-optically coupled to a pulsed nitrogen laser for excitation and the detection system. Time-resolved fluorescence emission spectra are detected by a monochromator equipped with a photomultiplier and a fast digital storage oscilloscope. The analytical figures of merit of the thermodenuder are reported for benzo[a]pyrene, benzo[b]fluoranthene, and benzo[ghi]-perylene on ultrafine soot and NaCl aerosols. By thermodesorption of the PAH, problems due to quenching of the PAH fluorescence by the bulk aerosol material or excimer formation on the aerosol surface were avoided. For the PAH under study, the sensitivity was improved considerably and detection limits between 110 and 850 ng m(-3) were attained, while a response time of 2-3 min was achieved with the thermodenuder. A calibration for PAH on ultrafine soot and NaCl aerosols was established independent of the aerosol substrate.

  6. Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio.

    PubMed

    Connally, Russell; Veal, Duncan; Piper, James

    2004-01-01

    The ubiquity of naturally fluorescing components (autofluorophores) encountered in most biological samples hinders the detection and identification of labeled targets through fluorescence-based techniques. Time-resolved fluorescence (TRF) is a technique by which the effects of autofluorescence are reduced by using specific fluorescent labels with long fluorescence lifetimes (compared with autofluorophores) in conjunction with time-gated detection. A time-resolved fluorescence microscope (TRFM) is described that is based on a standard epifluorescence microscope modified by the addition of a pulsed excitation source and an image-intensified time-gateable CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flash lamp with rapid discharge characteristics was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, the flash output decayed with an approximate lifetime of 18 micros and the TRFM required a long-lived lanthanide chelate label to ensure that probe fluorescence was visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the waterborne parasite Giardia lamblia. For a 600-nm bandpass filter set and a gate delay of 60 micros, the TRFM provided an 11.3-fold improvement in the signal-to-noise ratio (S/N) of labeled Giardia over background. A smaller gain in an SNR of 9.69-fold was achieved with a 420-nm longpass filter set; however, the final contrast ratio between labeled cyst and background was higher (11.3 versus 8.5). Despite the decay characteristics of the light pulse, flash lamps have many practical advantages compared with optical chopper wheels and modulated lasers for applications in TRFM.

  7. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.

    PubMed

    Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min

    2017-08-15

    In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  9. Laser-induced dental caries and plaque diagnosis on patients by sensitive autofluorescence spectroscopy and time-gated video imaging: preliminary studies

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert

    1994-09-01

    The laser-induced in vivo autofluorescence of human teeth was investigated by means of time- resolved/time-gated fluorescence techniques. The aim of these studies was non-contact caries and plaque detection. Carious lesions and dental plaque fluoresce in the red spectral region. This autofluorescence seems to be based on porphyrin-producing bacteria. We report on preliminary studies on patients using a novel method of autofluorescence imaging. A special device was constructed for time-gated video imaging. Nanosecond laser pulses for fluorescence excitation were provided by a frequency-doubled, Q-switched Nd:YAG laser. Autofluorescence was detected in an appropriate nanosecond time window using a video camera with a time-gated image intensifier (minimal time gate: 5 ns). Laser-induced autofluorescence based on porphyrin-producing bacteria seems to be an appropriate tool for detecting dental lesions and for creating `caries-images' and `dental plaque' images.

  10. Multi-scale spectrally resolved quantitative fluorescence imaging system: towards neurosurgical guidance in glioma resection

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Thom, Maria; Miserocchi, Anna; McEvoy, Andrew W.; Desjardins, Adrien; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    In glioma resection surgery, the detection of tumour is often guided by using intraoperative fluorescence imaging notably with 5-ALA-PpIX, providing fluorescent contrast between normal brain tissue and the gliomas tissue to achieve improved tumour delineation and prolonged patient survival compared with the conventional white-light guided resection. However, the commercially available fluorescence imaging system relies on surgeon's eyes to visualise and distinguish the fluorescence signals, which unfortunately makes the resection subjective. In this study, we developed a novel multi-scale spectrally-resolved fluorescence imaging system and a computational model for quantification of PpIX concentration. The system consisted of a wide-field spectrally-resolved quantitative imaging device and a fluorescence endomicroscopic imaging system enabling optical biopsy. Ex vivo animal tissue experiments as well as human tumour sample studies demonstrated that the system was capable of specifically detecting the PpIX fluorescent signal and estimate the true concentration of PpIX in brain specimen.

  11. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  12. Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.

    PubMed

    Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M

    2010-05-01

    The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).

  13. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP.

    PubMed

    Masters, T A; Robinson, N A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment α 40 present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of α 40 to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both α 20 (quadrupolar) and α 40 transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  14. Conformational States of the Rapana thomasiana Hemocyanin and Its Substructures Studied by Dynamic Light Scattering and Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    Georgieva, Dessislava; Schwark, Daniel; Nikolov, Peter; Idakieva, Krassimira; Parvanova, Katja; Dierks, Karsten; Genov, Nicolay; Betzel, Christian

    2005-01-01

    Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another. PMID:15533921

  15. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  16. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  17. Depth-resolved fluorescence of human ectocervical tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-04-01

    The depth-resolved autofluorescence of normal and dysplastic human ectocervical tissue within 120um depth were investigated utilizing a portable confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of all ectocervical tissue samples, strong keratin fluorescence with the spectral characteristics similar to collagen was observed, which created serious interference in seeking the correlation between tissue fluorescence and tissue pathology. While from the underlying non-keratinizing epithelial layer, the measured NADH fluorescence induced by 355nm excitation and FAD fluorescence induced by 457nm excitation were strongly correlated to the tissue pathology. The ratios between NADH over FAD fluorescence increased statistically in the CIN epithelial relative to the normal and HPV epithelia, which indicated increased metabolic activity in precancerous tissue. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  18. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  19. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions.

    PubMed

    Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Baker, J Dennis; Dorafshar, Amir H; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C; Freischlag, Julie A; Marcu, Laura

    2006-01-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.

  20. Diagnosis of vulnerable atherosclerotic plaques by time-resolved fluorescence spectroscopy and ultrasound imaging.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Shung, K K; Sun, L; Marcu, L

    2006-01-01

    In this study, time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonography were applied to detect vulnerable (high-risk) atherosclerotic plaque. A total of 813 TR-LIFS measurements were taken from carotid plaques of 65 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified by histopathology as thin, fibrotic, calcified, low-inflamed, inflamed and necrotic lesions. Spectral and time-resolved parameters (normalized intensity values and Laguerre expansion coefficients) were extracted from the TR-LIFS data. Feature selection for classification was performed by either analysis of variance (ANOVA) or principal component analysis (PCA). A stepwise linear discriminant analysis algorithm was developed for detecting inflamed and necrotic lesion, representing the most vulnerable plaques. These vulnerable plaques were detected with high sensitivity (>80%) and specificity (>90%). Ultrasound (US) imaging was obtained in 4 carotid plaques in addition to TR-LIFS examination. Preliminary results indicate that US provides important structural information of the plaques that could be combined with the compositional information obtained by TR-LIFS, to obtain a more accurate diagnosis of vulnerable atherosclerotic plaque.

  1. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir; Reil, Todd; Qiao, Jianhua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2006-03-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.

  2. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions

    PubMed Central

    Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir H.; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2007-01-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability. PMID:16674179

  3. Interaction of the iron(II) cage complexes with proteins: protein fluorescence quenching study.

    PubMed

    Losytskyy, Mykhaylo Y; Kovalska, Vladyslava B; Varzatskii, Oleg A; Sergeev, Alexander M; Yarmoluk, Sergiy M; Voloshin, Yan Z

    2013-09-01

    Interaction of the iron(II) mono- and bis-clathrochelates with bovine serum albumin (BSA), β-lactoglobulin, lysozyme and insulin was studied by the steady-state and time-resolved fluorescent spectroscopies. These cage complexes do not make significant impact on fluorescent properties of β-lactoglobulin, lysozyme and insulin. At the same time, the monoclathrochelates strongly quench a fluorescence intensity of BSA and substantially decrease its excited state lifetime due to their binding to this protein. This occurs due to the excitation energy transfer from a tryptophan residue to a cage molecule or/and to the change of the tryptophan nearest environment caused by either clathrochelate binding or an alteration of the BSA conformation. The effect of the iron(II) bis-clathrochelate on BSA fluorescence is much weaker as compared to its monomacrobicyclic analogs as a result of an increase in its size.

  4. Optical spectroscopy for quantitative sensing in human pancreatic tissues

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann

    2011-07-01

    Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.

  5. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  6. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.

  7. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  8. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probemore » solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.« less

  9. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-01

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  10. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    NASA Astrophysics Data System (ADS)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  11. Silicon drift detectors as a tool for time-resolved fluorescence XAFS on low-concentrated samples in catalysis.

    PubMed

    Kappen, Peter; Tröger, Larc; Materlik, Gerhard; Reckleben, Christian; Hansen, Karsten; Grunwaldt, Jan-Dierk; Clausen, Bjerne S

    2002-07-01

    A silicon drift detector (SDD) was used for ex situ and time-resolved in situ fluorescence X-ray absorption fine structure (XAFS) on low-concentrated catalyst samples. For a single-element and a seven-element SDD the energy resolution and the peak-to-background ratio were verified at high count rates, sufficient for fluorescence XAFS. An experimental set-up including the seven-element SDD without any cooling and an in situ cell with gas supply and on-line gas analysis was developed. With this set-up the reduction and oxidation of a zeolite supported catalyst containing 0.3 wt% platinum was followed by fluorescence near-edge scans with a time resolution of 10 min each. From ex situ experiments on low-concentrated platinum- and gold-based catalysts fluorescence XAFS scans could be obtained with sufficient statistical quality for a quantitative analysis. Structural information on the gold and platinum particles could be extracted by both the Fourier transforms and the near-edge region of the XAFS spectra. Moreover, it was found that with the seven-element SDD concentrations of the element of interest as low as 100 ppm can be examined by fluorescence XAFS.

  12. Lateral microheterogeneity of diphenylhexatriene-labeled choline phospholipids in the erythrocyte ghost membrane as determined by time-resolved fluorescence spectroscopy.

    PubMed

    Prenner, E; Sommer, A; Maurer, N; Glatter, O; Gorges, R; Paltauf, F; Hermetter, A

    2000-04-01

    Choline phospholipids are the major constituents of the outer layer of the erythrocyte membrane. To investigate their lateral membrane organization we determined the fluorescence lifetime properties of diphenylhexatriene analogues of phosphatidylcholine, choline plasmalogen, (the respective enolether derivative), and sphingomyelin inserted into the outer layer of hemoglobin-free ghosts. Fluorescence lifetimes were recorded by time-resolved phase and modulation fluorometry and analyzed in terms of Continuous Lorentzian distributions. To assess the influence of membrane proteins on the fluorescence lifetime of the labeled lipids in the biomembrane, lipid vesicles were used as controls. In general, the lifetime distributions in the ghost membranes are broad compared to vesicles. Phosphatidylcholine and sphingomyelin exhibit very similar lifetime distributions in contrast to an increased plasmalogen lifetime heterogeneity in both systems. Orientational effects of side chain mobilities on the observed lifetimes can be excluded. Fluorescence anisotropies revealed identical values for all three labeled phospholipids in the biomembrane.

  13. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    NASA Astrophysics Data System (ADS)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  14. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    NASA Astrophysics Data System (ADS)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  15. Studies of bio-mimetic medium of ionic and non-ionic micelles by a simple charge transfer fluorescence probe N,N-dimethylaminonapthyl-(acrylo)-nitrile

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Paul, Bijan Kumar; Guchhait, N.

    2011-05-01

    In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.

  16. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.

    PubMed

    Kotresh, M G; Inamdar, L S; Shivkumar, M A; Adarsh, K S; Jagatap, B N; Mulimani, B G; Advirao, G M; Inamdar, S R

    2017-06-01

    In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (k q ) determined at different temperatures and the time-resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van 't Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  17. A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.

    PubMed

    Mandal, Paulami; Bardhan, Munmun; Ganguly, Tapan

    2010-05-03

    UV-vis, time-resolved fluorescence and circular dichroism spectroscopic investigations have been made to reveal the nature of the interactions between xanthene dye Rhodamine 6G and the well known protein hemoglobin. From the analysis of the steady-state and time-resolved fluorescence quenching of Rhodamine 6G in aqueous solutions in presence of hemoglobin, it is revealed that the quenching is static in nature. The primary binding pattern between Rhodamine and hemoglobin has been interpreted as combined effect of hydrophobic association and electrostatic interaction. The binding constants, number of binding sites and thermodynamic parameters at various pH of the environment have been computed. The binding average distance between the energy donor Rhodamine and acceptor hemoglobin has been determined from the Forster's theory. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system

    NASA Astrophysics Data System (ADS)

    Mo, Weirong; Rohrbach, Daniel; Sunar, Ulas

    2012-07-01

    We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.

  19. Phagocytosis: studies by optical tweezers and time-resolved microspectrofluorometry

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Sailer, Reinhard; Hendinger, Anita; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.

    1999-01-01

    Cellular uptake of transparent Latex particles by J774A.1 mouse macrophages has been studied: First, single beads were kept within an optical light trap and located in close vicinity to individual cells. Uptake of the beads was visualized, and intrinsic fluorescence was detected in the spectral range of 420 - 530 nm. Second, time-gated fluorescence spectra of single cells were recorded at pre- selected times during one hour after cellular uptake. A rapid increase of autofluorescence and a subsequent decrease to the level of control cells within about 10 min. was measured within a time gate of 0 - 5 ns after the exciting laser pulses, and attributed to the 'free' coenzyme NAD(P)H. In contrast, fluorescence increase of NAD(P)H bound to proteins (measured within time gates of 5 - 10 ns or 10 - 15 ns) was less pronounced, and the subsequent decrease occurred within a longer period (about one hour).

  20. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors.

  1. Diagnosis of meningioma by time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Pikul, Brian K.; Hever, Aviv; Yong, William H.; Black, Keith L.; Marcu, Laura

    2010-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  2. Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples

    NASA Astrophysics Data System (ADS)

    Peters, Sven; Hammer, Martin; Schweitzer, Dietrich

    2011-07-01

    Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).

  3. Encapsulation of labetalol, pseudoephedrine in β-cyclodextrin cavity: spectral and molecular modeling studies.

    PubMed

    Prabhu, A Antony Muthu; Rajendiran, N

    2012-11-01

    The absorption and fluorescence spectra of labetalol and pseudoephedrine have been studied in different polarities of solvents and β-cyclodextrin (β-CD). The inclusion complexation with β-CD is investigated by UV-visible, steady state and time resolved fluorescence spectra and PM3 method. In protic solvents, the normal emission originates from a locally excited state and the longer wavelength emission is due to intramolecular charge transfer (TICT). Labetalol forms a 1:2 complex and pseudoephedrine forms 1:1 complex with β-CD. Nanosecond time-resolved studies indicated that both molecules show triexponential decay. Thermodynamic parameters (ΔG, ΔH, ΔS) and HOMO, LUMO orbital investigations confirm the stability of the inclusion complex. The geometry of the most stable complex shows that the aromatic ring is deeply self included inside the β-CD cavity and intermolecular hydrogen bonds were established between host and guest molecules. This suggests that hydrophobic effect and hydrogen bond play an important role in the inclusion process.

  4. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light

    NASA Astrophysics Data System (ADS)

    Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar

    2009-05-01

    In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.

  5. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately

    PubMed Central

    2017-01-01

    Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, εD(t), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors. PMID:28709377

  6. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    NASA Astrophysics Data System (ADS)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  7. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  8. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory.

    PubMed

    Pan, Yong-Le; Hill, Steven C; Santarpia, Joshua L; Brinkley, Kelly; Sickler, Todd; Coleman, Mark; Williamson, Chatt; Gurton, Kris; Felton, Melvin; Pinnick, Ronald G; Baker, Neal; Eshbaugh, Jonathan; Hahn, Jerry; Smith, Emily; Alvarez, Ben; Prugh, Amber; Gardner, Warren

    2014-04-07

    A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.

  9. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    NASA Astrophysics Data System (ADS)

    Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.

    2000-06-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  10. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.

    PubMed

    Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H

    2016-12-29

    Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.

  11. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.

    PubMed

    Lamb, D C; Müller, B K; Bräuchle, C

    2005-10-01

    Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are methods that extract information about a sample from the influence of thermodynamic equilibrium fluctuations on the fluorescence intensity. This method allows dynamic information to be obtained from steady state equilibrium measurements and its popularity has dramatically increased in the last 10 years due to the development of high sensitivity detectors and its combination with confocal microscopy. Using time-correlated single-photon counting (TCSPC) detection and pulsed excitation, information over the duration of the excited state can be extracted and incorporated in the analysis. In this short review, we discuss new methodologies that have recently emerged which incorporated fluorescence lifetime information or TCSPC data in the FCS and FCCS analysis. Time-gated FCS discriminates between which photons are to be incorporated in the analysis dependent upon their arrival time after excitation. This allows for accurate FCS measurements in the presence of fluorescent background, determination of sample homogeneity, and the ability to distinguish between static and dynamic heterogeneities. A similar method, time-resolved FCS can be used to resolve the individual correlation functions from multiple fluorophores through the different fluorescence lifetimes. Pulsed interleaved excitation (PIE) encodes the excitation source into the TCSPC data. PIE can be used to perform dual-channel FCCS with a single detector and allows elimination of spectral cross-talk with dual-channel detection. For samples that undergo fluorescence resonance energy transfer (FRET), quantitative FCCS measurements can be performed in spite of the FRET and the static FRET efficiency can be determined.

  12. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    NASA Astrophysics Data System (ADS)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  13. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation.

    PubMed

    Iwata, Koichi; Terazima, Masahide; Masuhara, Hiroshi

    2018-02-01

    Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017. Published by Elsevier B.V.

  14. Time-resolved wide-field optically sectioned fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine

    2013-02-01

    We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.

  15. Direct detection of time-resolved Rabi oscillations in a single quantum dot via resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-03-01

    Optical Rabi oscillations are coherent population oscillations of a two-level system coupled by an electric dipole transition when driven by a strong nearly resonant optical field. In quantum dot structures, these measurements have typically been performed as a function of the total pulse area ∫Ω0(t)dt where the pulse area varies as a function of Rabi frequency. Here, we report direct detection of the time-resolved coherent transient response of the resonance fluorescence to measure the time evolution of the optical Rabi oscillations in a single charged InAs quantum dot. We extract a decoherence rate consistent with the limit from the excited state lifetime.

  16. A current-assisted CMOS photonic sampler with two taps for fluorescence lifetime sensing

    NASA Astrophysics Data System (ADS)

    Ingelberts, H.; Kuijk, M.

    2016-04-01

    Imaging based on fluorescence lifetime is becoming increasingly important in medical and biological applications. State-of- the-art fluorescence lifetime microscopes either use bulky and expensive gated image intensifiers coupled to a CCD or single-photon detectors in a slow scanning setup. Numerous attempts are being made to create compact, cost-effective all- CMOS imagers for fluorescence lifetime sensing. Single-photon avalanche diode (SPAD) imagers can have very good timing resolution and noise characteristics but have low detection efficiency. Another approach is to use CMOS imagers based on demodulation detectors. These imagers can be either very fast or very efficient but it remains a challenge to combine both characteristics. Recently we developed the current-assisted photonic sampler (CAPS) to tackle these problems and in this work, we present a new CAPS with two detection taps that can sample a fluorescence decay in two time windows. In the case of mono-exponential decays, two windows provide enough information to resolve the lifetime. We built an electro-optical setup to characterize the detector and use it for fluorescence lifetime measurements. It consists of a supercontinuum pulsed laser source, an optical system to focus light into the detector and picosecond timing electronics. We describe the structure and operation of the two-tap CAPS and provide basic characterization of the speed performance at multiple wavelengths in the visible and near-infrared spectrum. We also record fluorescence decays of different visible and NIR fluorescent dyes and provide different methods to resolve the fluorescence lifetime.

  17. Intermittent Fluorescence Oscillations in Lipid Droplets in a Live Normal and Lung Cancer Cell: Time-Resolved Confocal Microscopy.

    PubMed

    Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan

    2015-08-27

    Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.

  18. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    PubMed

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.

  19. Application of time-resolved fluorescence for direct and continuous probing of release from polymeric delivery vehicles.

    PubMed

    Viger, Mathieu L; Sheng, Wangzhong; McFearin, Cathryn L; Berezin, Mikhail Y; Almutairi, Adah

    2013-11-10

    Though accurately evaluating the kinetics of release is critical for validating newly designed therapeutic carriers for in vivo applications, few methods yet exist for release measurement in real time and without the need for any sample preparation. Many of the current approaches (e.g. chromatographic methods, absorption spectroscopy, or NMR spectroscopy) rely on isolation of the released material from the loaded vehicles, which require additional sample purification and can lead to loss of accuracy when probing fast kinetics of release. In this study we describe the use of time-resolved fluorescence for in situ monitoring of small molecule release kinetics from biodegradable polymeric drug delivery systems. This method relies on the observation that fluorescent reporters being released from polymeric drug delivery systems possess distinct excited-state lifetime components, reflecting their different environments in the particle suspensions, i.e., confined in the polymer matrices or free in the aqueous environment. These distinct lifetimes enable real-time quantitative mapping of the relative concentrations of dye in each population to obtain precise and accurate temporal information on the release profile of particular carrier/payload combinations. We found that fluorescence lifetime better distinguishes subtle differences in release profiles (e.g. differences associated with dye loading) than conventional steady-state fluorescence measurements, which represent the averaged dye behavior over the entire scan. Given the method's applicability to both hydrophobic and hydrophilic cargo, it could be employed to model the release of any drug-carrier combination. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Kinetics model for the wavelength-dependence of excited-state dynamics of hetero-FRET sensors

    NASA Astrophysics Data System (ADS)

    Schwarz, Jacob; Leighton, Ryan; Leopold, Hannah J.; Currie, Megan; Boersma, Arnold J.; Sheets, Erin D.; Heikal, Ahmed A.

    2017-08-01

    Foerster (or fluorescence) resonance energy transfer (FRET) is a powerful tool for investigating protein-protein interactions, in both living cells and in controlled environments. A typical hetero-FRET pair consists of a donor and acceptor tethered together with a linker. The corresponding energy transfer efficiency of a hetero-FRET pair probe depends upon the donor-acceptor distance, relative dipole orientation, and spectral overlap. Because of the sensitivity of the energy transfer efficiency on the donor-acceptor distance, FRET is often referred to as a "molecular ruler". Time-resolved fluorescence approach for measuring the excited-state lifetime of the donor and acceptor emissions is one of the most reliable approaches for quantitative assessment of the energy transfer efficiency in hetero-FRET pairs. In this contribution, we provide an analytical kinetics model that describes the excited-state depopulation of a FRET probe as a means to predicts the time-resolved fluorescence profile as a function of excitation and detection wavelengths. In addition, we used this developed kinetics model to simulate the time-dependence of the excited-state population of both the donor and acceptor. These results should serve as a guide for our ongoing studies of newly developed hetero-FRET sensors (mCerulean3-linker-mCitrine) that are designed specifically for in vivo studies of macromolecular crowding. The same model is applicable to other FRET pairs with the careful consideration of their steady-state spectroscopy and the experimental design for wavelength- dependence of the fluorescence lifetime measurements.

  1. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a significant reduction in size, weight, power, and overall complexity - making time resolved detection feasible for planetary applications. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection and combined Raman-LIBS capability.

  2. pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten

    2010-02-01

    Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.

  3. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe

    NASA Astrophysics Data System (ADS)

    Azab, Hassan A.; Khairy, Gasser M.; Kamel, Rasha M.

    2015-09-01

    This work describes the application of time resolved fluorescence in microtiter plates for investigating the interactions of europium-allyl-3-carboxycoumarin with pesticides chlorpyrifos, endosulfan and crotoxyphos. Stern-Volmer studies at different temperatures for chlorpyrifos and crotoxyphos shows dynamic and static quenching mechanisms respectively. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 6.53, 0.004, 3.72 μmol/L for chlorpyrifos, endosulfan, and crotoxyphos, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, mineral, and waste water).

  4. Single-molecule detection by two-photon excitation of fluorescence

    NASA Astrophysics Data System (ADS)

    Zander, Christoph; Brand, Leif; Eggeling, C.; Drexhage, Karl-Heinz; Seidel, Claus A. M.

    1997-05-01

    Using a mode-locked titanium: sapphire laser at 700 nm for two-photon excitation we studied fluorescence bursts from individual coumarin 120 molecules in water and triacetin. Fluorescence lifetimes and multichannel scaler traces have been measured simultaneously. Due to the fact that scattered excitation light as well as Raman scattered photons can be suppressed by a short-pass filter a very low background level was achieved. To identify the fluorophore by its characteristic fluorescence lifetime the time-resolved fluorescence signals were analyzed by a maximum likelihood estimator. The obtained average fluorescence lifetimes (tau) av equals 4.8 +/- 1.2 ns for coumarin 120 in water and (tau) av equals 3.3 +/- 0.6 for coumarin 120 in triacetin are in good agreement with results obtained from separate measurements at higher concentrations.

  5. Ultrafast fluorescence spectroscopy via upconversion applications to biophysics.

    PubMed

    Xu, Jianhua; Knutson, Jay R

    2008-01-01

    This chapter reviews basic concepts of nonlinear fluorescence upconversion, a technique whose temporal resolution is essentially limited only by the pulse width of the ultrafast laser. Design aspects for upconversion spectrophotofluorometers are discussed, and a recently developed system is described. We discuss applications in biophysics, particularly the measurement of time-resolved fluorescence spectra of proteins (with subpicosecond time resolution). Application of this technique to biophysical problems such as dynamics of tryptophan, peptides, proteins, and nucleic acids is reviewed.

  6. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    PubMed

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy.

    PubMed

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert

    2016-09-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Excited-state proton transfer dynamics of firefly's chromophore D-luciferin in DMSO-water binary mixture.

    PubMed

    Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni

    2014-12-04

    In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.

  9. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    PubMed

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore.

    PubMed

    Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-01-15

    Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.

  11. Multiwavelength FLIM: new applications and algorithms

    NASA Astrophysics Data System (ADS)

    Rück, A.; Strat, D.; Dolp, F.; von Einem, B.; von Arnim, C. A. F.

    2011-03-01

    The combination of time-resolved and spectral resolved techniques as achieved by SLIM (spectrally resolved fluorescence lifetime imaging) improves the analysis of complex situations, when different fluorophores have to be distinguished. This could be the case when endogenous fluorophores of living cells and tissues are observed to identify the redox state and oxidative metabolic changes of the mitochondria. Other examples are FRET (resonant energy transfer) measurements, when different donor/acceptor pairs are observed simultaneously. SLIM is working in the time domain employing excitation with short light pulses and detection of the fluorescence intensity decay in many cases with time-correlated single photon counting (TCSPC). Spectral resolved detection is achieved by a polychromator in the detection path and a 16-channel multianode photomultiplier tube with the appropriate routing electronics. Within this paper special attention will be focused on FRET measurements with respect to protein interactions in Alzheimers disease. Using global analysis as the phasor plot approach or integration of the kinetic equations taking into account the multidimensional datasets in every spectral channel we could demonstrate considerable improvement of our calculations.

  12. Portable, battery-operated, fluorescence field microscope for the developing world

    NASA Astrophysics Data System (ADS)

    Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca

    2010-02-01

    In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.

  13. Fluorescence of acridinic dyes in anionic surfactant solution

    NASA Astrophysics Data System (ADS)

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer ( τ1 = 16.4 ns), dimer ( τ2 = 7.1 ns), and a faster component ( τ3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  14. Fluorescence of acridinic dyes in anionic surfactant solution.

    PubMed

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer (tau1 = 16.4 ns), dimer (tau2 = 7.1 ns), and a faster component (tau3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  15. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots.

    PubMed

    Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua

    2015-12-15

    A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    USDA-ARS?s Scientific Manuscript database

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  17. Chain-Length-Dependent Exciton Dynamics in Linear Oligothiophenes Probed Using Ensemble and Single-Molecule Spectroscopy.

    PubMed

    Kim, Tae-Woo; Kim, Woojae; Park, Kyu Hyung; Kim, Pyosang; Cho, Jae-Won; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho

    2016-02-04

    Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.

  18. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation

    PubMed Central

    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.

    2013-01-01

    The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509

  19. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  1. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337nm, 700ps), and the intensity decay profiles were recorded in the 360-to550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390nm(lifetime=1.8±0.3ns) and 460nm(lifetime=0.8±0.1ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1ns) and reduced in high-grade glioma (N=9; lifetime=1.7±0.4ns). The emission characteristics at 460nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440to460nm; lifetime: 0.8to1.0ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens. PMID:20459282

  2. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Fang, Qiyin; Jo, Javier A; Yong, William H; Pikul, Brian K; Black, Keith L; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm; lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  3. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-03-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  4. Spectroscopic characterization of Venus at the single molecule level.

    PubMed

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  5. Study of thioflavin-T immobilized in porous silicon and the effect of different organic vapors on the fluorescence lifetime.

    PubMed

    Hutter, Tanya; Amdursky, Nadav; Gepshtein, Rinat; Elliott, Stephen R; Huppert, Dan

    2011-06-21

    Steady-state and time-resolved emission techniques have been employed to study the fluorescence properties of thioflavin-T (ThT) adsorbed on oxidized porous silicon (PSi) surfaces, with an average pore size of ∼10 nm. We found that the average fluorescence decay time of ThT, when it is adsorbed on the PSi surface, is rather long, τ(av) = 1.3 ns. We attribute this relatively long emission lifetime to the effect of the immobilization of ThT on the PSi surface, which inhibit the rotation of the aniline with respect to the benzothiazole moieties of ThT. We also measured the fluorescence properties of ThT in PSi samples in equilibrium with vapors of several liquids, such as methanol, acetonitrile, and water. We found that the fluorescence intensity drops by a factor of 10, and the average decay time, measured by a time-correlated single-photon counting technique, decreases by a factor of 3. We explain these results in terms of liquid condensation of the vapors in the PSi pores, which leads to partial dissolution of the ThT molecules in the liquid pools. © 2011 American Chemical Society

  6. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    NASA Astrophysics Data System (ADS)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  7. Ultrafast Fluorescence Spectroscopy via Upconversion: Applications to Biophysics

    PubMed Central

    Xu, Jianhua; Knutson, Jay R.

    2012-01-01

    This chapter reviews basic concepts of nonlinear fluorescence upconversion, a technique whose temporal resolution is essentially limited only by the pulse width of the ultrafast laser. Design aspects for upconversion spectrophotofluorometers are discussed, and a recently developed system is described. We discuss applications in biophysics, particularly the measurement of time-resolved fluorescence spectra of proteins (with subpicosecond time resolution). Application of this technique to biophysical problems such as dynamics of tryptophan, peptides, proteins, and nucleic acids is reviewed. PMID:19152860

  8. Interaction of Merocyanine 540 with serum albumins: photophysical and binding studies.

    PubMed

    Banerjee, Mousumi; Pal, Uttam; Subudhhi, Arijita; Chakrabarti, Abhijit; Basu, Samita

    2012-03-01

    Photophysical studies on binding interactions of a negatively charged anti-tumor photosensitizer, Merocyanine 540 (MC 540), with serum proteins, bovine serum albumin (BSA) and human serum albumin (HSA), have been performed using absorption and steady-state as well as time-resolved fluorescence techniques. Formation of ground state complex has been confirmed from the detailed studies of absorption spectra of MC 540 in presence of SAs producing isosbestic points. Binding between the proteins and MC 540, which perturbs the existing equilibrium between the fluorescent monomer and its non-fluorescent dimer, induces a remarkable enhancement in fluorescence anisotropy and intensity of MC 540 along with a red shift of its maximum. The binding stoichiometry of MC 540 and SAs are more than 1.0 which depicts that two types of complexes, i.e., 1:1 and 2:1 are formed with addition of varied concentration of protein. Both the steady-state and time-resolved fluorescence results show that in 2:1 complex one of the MC 540 molecules is exposed towards aqueous environment with a greater extent when bound with HSA compared to BSA due to the structural flexibility of that protein. Thermodynamic analyses using van't Hoff plot indicate that the binding between MC 540 and individual SA is an entropy-driven phenomenon. The probable hydrophobic binding site has been located by denaturation of proteins, micropolarity measurement and Förster resonance energy transfer and that is further supported by molecular docking studies. Changes in circular dichroism spectra of BSA in presence of MC 540 depict secondary structural changes of the protein. The induced-CD shows that BSA due to its rigid structure generates chirality in MC 540 much more efficiently compared to HSA. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Supramolecular delivery of photoactivatable fluorophores in developing embryos

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tang, Sicheng; Sansalone, Lorenzo; Thapaliya, Ek Raj; Baker, James D.; Raymo, Françisco M.

    2017-02-01

    The identification of noninvasive strategies to monitor dynamics within living organisms in real time is essential to elucidate the fundamental factors governing a diversity of biological processes. This study demonstrates that the supramolecular delivery of photoactivatable fluorophores in Drosophila melanogaster embryos allows the real-time tracking of translocating molecules. The designed photoactivatable fluorophores switch from an emissive reactant to an emissive product with spectrally-resolved fluorescence, under moderate blue-light irradiation conditions. These hydrophobic fluorescent probes can be encapsulated within supramolecular hosts and delivered to the cellular blastoderm of the embryos. Thus, the combination of supramolecular delivery and fluorescence photoactivation translates into a noninvasive method to monitor dynamics in vivo and can evolve into a general chemical tool to track motion in biological specimens.

  10. Novel flashlamp-based time-resolved fluorescence microscope reduces autofluorescence for 30-fold contrast enhancement in environmental samples

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Veal, Duncan; Piper, James A.

    2003-07-01

    The abundance of naturally fluorescing components (autofluorophors) encountered in environmentally sourced samples can greatly hinder the detection and identification of fluorescently labeled target using fluorescence microscopy. Time-resolved fluorescence microscopy (TRFM) is a technique that reduces the effects of autofluorescence through precisely controlled time delays. Lanthanide chelates have fluorescence lifetimes many orders of magnitude greater than typical autofluorophors, and persist in their luminescence long after autofluorescence has ceased. An intense short pulse of (UV) light is used to excite fluorescence in the sample and after a short delay period the longer persisting fluorescence from the chelate is captured with an image-intensified CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flashlamp with a short pulse duration was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, flash output decays with an approximate lifetime of 18μs and the TRFM requires a long-lived chelate to ensure probe fluorescence is still visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the water-borne parasite Giardia lamblia. Fluorescence lifetime of the construct was determined to be 339μs +/- 14μs and provided a 45-fold enhancement of labeled Giardia over background using a gate delay of 100μs. Despite the sub-optimal decay characteristics of the light pulse, flashlamps have many advantages compared to optical chopper wheels and modulated lasers. Their low cost, lack of vibration, ease of interface and small footprint are important factors to consider in TRFM design.

  11. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  12. Molecular Imaging for Breast Cancer Using Magnetic Resonance-Guided Positron Emission Mammography and Excitation-Resolved Near-Infrared Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu

    The aim of this work is to develop novel breast-specific molecular imaging techniques for management of breast cancer. In this dissertation, we describe two novel molecular imaging approaches for breast cancer management. In Part I, we introduce our multimodal molecular imaging approach for breast cancer therapy monitoring using magnetic resonance imaging and positron emission mammography (MR/PEM). We have focused on the therapy monitoring technique for aggressive cancer molecular subtypes, which is challenging due to time constraint. Breast cancer therapy planning relies on a fast and accurate monitoring of functional and anatomical change. We demonstrate a proof-of-concept of sequential dual-modal magnetic resonance and positron emission mammography (MR/PEM) for the cancer therapy monitoring. We have developed dedicated breast coils with breast compression mechanism equipped with MR-compatible PEM detector heads. We have designed a fiducial marker that allows straightforward image registration of data obtained from MRI and PEM. We propose an optimal multimodal imaging procedure for MR/PEM. In Part II, we have focused on the development of a novel intraoperative near-infrared fluorescence imaging system (NIRF) for image-guided breast cancer surgery. Conventional spectrally-resolved NIRF systems are unable to resolve various NIR fluorescence dyes for the following reasons. First, the fluorescence spectra of viable NIR fluorescence dyes are heavily overlapping. Second, conventional emission-resolved NIRF suffers from a trade-off between the fluence rate and the spectral resolution. Third, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We develop a wavelength-swept laser-based NIRF system that can resolve the excitation shift of various NIR fluorescence dyes without substantial loss of the fluence rate. A linear ratiometric model is employed to measure the relative shift of the excitation spectrum of a fluorescence dye.

  13. Application of Time-Resolved Spectroscopies to the Study of Energetic Materials - 1982

    DTIC Science & Technology

    1983-05-24

    fluores- cence intensity as a function of UV pulse energy, for individual laser shots. The lower curve shows the UV + probe induced fluorescence... intensity as a function of UV pulse energy, for individual laser shots. The lower curve shows the UV + probe Induced fluorescence, at 1 ns delay...locked Nd:YAG Laser Pulse ", Appl. Phys. Lett 26, 501-503 (1975). 97 43. A. J. Campillo, V. H. Kollman and S. L. Shapiro, " Intensity Dependence of

  14. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm.

    PubMed

    Wang, Chuji; Pan, Yong-Le; James, Deryck; Wetmore, Alan E; Redding, Brandon

    2014-04-11

    We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and future developments of this new aerosol analysis technique are also discussed. Published by Elsevier B.V.

  15. Cellular uptake of modified oligonucleotides: fluorescence approach

    NASA Astrophysics Data System (ADS)

    Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves

    2005-06-01

    Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.

  16. Mechanism of the reaction, CH4+O(1D2)→CH3+OH, studied by ultrafast and state-resolved photolysis/probe spectroscopy of the CH4ṡO3 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Miller, C. Cameron; van Zee, Roger D.; Stephenson, John C.

    2001-01-01

    The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4ṡO3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast≈0.2 ps, τinter≈0.5 ps and τslow≈5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the mechanism producing OH at a statistical rate would be characterized by a statistical prior. Dissociation of a CH4O* intermediate before complete energy randomization was identified as producing OH at the intermediate rate and was associated with a population distribution with more rovibrational energy than the slow mechanism. The third mechanism produces OH promptly with a cold rovibrational distribution, indicative of a collinear abstraction mechanism. After these identifications were made, it was possible to predict the fraction of signal associated with each mechanism at different probe wavelengths in the ultrafast experiment, and the predictions proved consistent with measured appearance signals. This model also reconciles data from a variety of previous experiments. While this model is the simplest that is consistent with the data, it is not definitive for several reasons. First, the appearance signals measured in these experiments probe simultaneously many OH(v,J,Ω,Λ) states, which would tend to obfuscate differences in the appearance rate of specific rovibrational states. Second, only about half of the OH(v,J,Ω,Λ) states populated by this reaction could be probed by laser-induced fluorescence through the OH A←X band with our apparatus. Third, the cluster environment might influence the dynamics compared to the free bimolecular reaction.

  17. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  18. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy

    PubMed Central

    Yong, William H.; Butte, Pramod V.; Pikul, Brian K.; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith L.; Marcu, Laura

    2010-01-01

    Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved “normal” brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511

  19. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  20. Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Thomas; Coto, Pedro B.; Serrano-Andres, Luis

    2009-07-21

    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

  1. Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method.

    PubMed

    Weigl, W; Milej, D; Gerega, A; Toczylowska, B; Kacprzak, M; Sawosz, P; Botwicz, M; Maniewski, R; Mayzner-Zawadzka, E; Liebert, A

    2014-01-15

    The aim of this study was to verify the usefulness of the time-resolved optical method utilizing diffusely reflected photons and fluorescence signals combined with intravenous injection of indocyanine green (ICG) in the assessment of brain perfusion in post-traumatic brain injury patients. The distributions of times of flight (DTOFs) of diffusely reflected photons were acquired together with the distributions of times of arrival (DTAs) of fluorescence photons. The data analysis methodology was based on the observation of delays between the signals of statistical moments (number of photons, mean time of flight and variance) of DTOFs and DTAs related to the inflow of ICG to the extra- and intracerebral tissue compartments. Eleven patients with brain hematoma, 15 patients with brain edema and a group of 9 healthy subjects were included in this study. Statistically significant differences between parameters obtained in healthy subjects and patients with brain hematoma and brain edema were observed. The best optical parameter to differentiate patients and control group was variance of the DTOFs or DTAs. Results of the study suggest that time-resolved optical monitoring of inflow of the ICG seems to be a promising tool for detecting cerebral perfusion insufficiencies in critically ill patients. © 2013 Elsevier Inc. All rights reserved.

  2. Investigation of excited-state relaxation processes of organic dyes by time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Przhonska, O.; Slominsky, Yu.; Kachkovsky, A.; Stahl, U.; Senoner, M.; Dähne, S.

    1996-04-01

    The results of the measurements of the fluorescence decay kinetics of the new series of polymethine dyes in liquid and solid polymeric media are reported. The effects of polymeric media on absorption-relaxation-emission processes are studied at wide excitation, emission and temperature regions.

  3. Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores

    NASA Astrophysics Data System (ADS)

    Schweitzer, D.; Klemm, M.; Quick, S.; Deutsch, L.; Jentsch, S.; Hammer, M.; Dawczynski, J.; Kloos, C. H.; Mueller, U. A.

    2011-07-01

    Measurements of time-resolved autofluorescence (FLIM) at the human ocular fundus of diabetic patients permit the detection of early pathologic alterations before signs of diabetic retinopathy are visible. The measurements were performed by the Jena Fluorescence Lifetime Laser Scanner Ophthalmoscope applying time-correlated single photon counting (TCSPC) in two spectral channels (K1: 490-560 nm, K2:560-700ps). The fluorescence was excited by 70 ps pulses (FWHM) at 448 nm. The decay of fluorescence intensity was triple-exponentially approximated. The frequency of amplitudes, lifetimes, and relative contributions was compared in fields of the same size and position in healthy subjects and in diabetic patients. The most sensitive parameter was the lifetime T2 in the short-wavelength channel, which corresponds to the neuronal retina. The changes in lifetime point to a loss of free NADH and an increased contribution of protein-bound NADH in the pre-stage of diabetic retinopathy.

  4. A Photoluminescence-Based Field Method for Detection of Traces of Explosives

    PubMed Central

    Menzel, E. Roland; Menzel, Laird W.; Schwierking, Jake R.

    2004-01-01

    We report a photoluminescence-based field method for detecting traces of explosives. In its standard version, the method utilizes a commercially available color spot test kit for treating explosive traces on filter paper after swabbing. The colored products are fluorescent under illumination with a laser that operates on three C-size flashlight batteries and delivers light at 532 nm. In the fluorescence detection mode, by visual inspection, the typical sensitivity gain is a factor of 100. The method is applicable to a wide variety of explosives. In its time-resolved version, intended for in situ work, explosives are tagged with europium complexes. Instrumentation-wise, the time-resolved detection, again visual, can be accomplished in facile fashion. The europium luminescence excitation utilizes a laser operating at 355 nm. We demonstrate the feasibility of CdSe quantum dot sensitization of europium luminescence for time-resolved purposes. This would allow the use of the above 532 nm laser. PMID:15349512

  5. Fluorescence lifetime of normal, benign, and malignant thyroid tissues

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana; Iwakura, Ricardo; Basilio, Fagne; Haleplian, Kaique; Ito, Amando; de Freitas, Luiz Carlos Conti; Bachmann, Luciano

    2015-06-01

    Fine-needle aspiration cytology is the standard technique to diagnose thyroid pathologies. However, this method results in a high percentage of inconclusive and false negatives. The use of time-resolved fluorescence techniques to detect biochemical composition and tissue structure alterations could help to develop a portable, minimally invasive, and nondestructive method to assist during surgical procedures. This study aimed to use fluorescence lifetimes to differentiate healthy and benign tissues from malignant thyroid tissue. The thyroid tissue was excited at 298-300 nm and the fluorescence decay registered at 340 and 450 nm. We observed fluorescence lifetimes at 340 nm emission of 0.80±0.26 and 3.94±0.47 ns for healthy tissue; 0.90±0.24 and 4.05±0.46 ns for benign lesions; and 1.21±0.14 and 4.63±0.25 ns for malignant lesions. For 450 nm emissions, we obtain lifetimes of 0.25±0.18 and 3.99±0.39 ns for healthy tissue, 0.24±0.17 and 4.20±0.48 ns for benign lesions, 0.33±0.32 and 4.55±0.55 ns for malignant lesions. Employing analysis of variance, we differentiate malignant lesions from benign and healthy tissues. In addition, we use quadratic discriminant analysis to distinguish malignant from benign and healthy tissues with an accuracy of 76.1%, sensitivity of 74.7%, and specificity of 83.3%. These results indicate that time-resolved fluorescence can assist medical evaluation of thyroid pathologies during surgeries.

  6. Polar plot representation of time-resolved fluorescence.

    PubMed

    Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M

    2014-01-01

    Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.

  7. Novel methods of time-resolved fluorescence data analysis for in-vivo tissue characterization: application to atherosclerosis.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2004-01-01

    This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.

  8. Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Papaioannou, Thanassis; Jo, Javier A.; Vaitha, Russel; Shastry, Kumar; Marcu, Laura

    2004-01-01

    We report the design and development of a compact optical fiber-based apparatus for in situ time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) of biological systems. The apparatus is modular, optically robust, and compatible with the clinical environment. It incorporates a dual output imaging spectrograph, a gated multichannel plate photomultiplier (MCP-PMT), an intensified charge-coupled-device (ICCD) camera, and a fast digitizer. It can accommodate various types of light sources and optical fiber probes for selective excitation and remote light delivery/collection as required by different applications. The apparatus allows direct recording of the entire fluorescence decay with high sensitivity (nM range fluorescein dye concentration with signal-to-noise ratio of 46) and with four decades dynamic range. It is capable of resolving a broad range of fluorescence lifetimes from hundreds of picoseconds (as low as 300 ps) using the MCP-PMT coupled to the digitizer to milliseconds using the ICCD. The data acquisition and analysis process is fully automated, enabling fast recording of fluorescence intensity decay across the entire emission spectrum (0.8 s per wavelength or ˜40 s for a 200 nm wavelength range at 5 nm increments). The spectral and temporal responses of the apparatus were calibrated and its performance was validated using fluorescence lifetime standard dyes (Rhodamin B, 9-cyanoanthracene, and rose Bengal) and tissue endogenous fluorophores (elastin, collagen, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide). Fluorescence decay lifetimes and emission spectra of all tested compounds measured with the current tr-LIFS apparatus were found in good agreement with the values reported in the literature. The design and performance of tr-LIFS apparatus have enabled in vivo studies of atherosclerotic plaques and brain tumors.

  9. Micelle-induced versatile sensing behavior of bispyrene-based fluorescent molecular sensor for picric acid and PYX explosives.

    PubMed

    Ding, Liping; Bai, Yumei; Cao, Yuan; Ren, Guijia; Blanchard, Gary J; Fang, Yu

    2014-07-08

    The effect of surfactant micelles on the photophysical properties of a cationic bispyrene fluorophore, Py-diIM-Py, was systemically examined. The results from series of measurements including UV-vis absorption, steady-state fluorescence emission, quantum yield, fluorescence lifetime, and time-resolved emission spectra reveal that the cationic fluorophore is only encapsulated by the anionic sodium dodecyl sulfate (SDS) surfactant micelles and not incorporated in the cationic dodecyltrimethylammonium bromide (DTAB) and neutral Triton X-100 (TX100) surfactant micelles. This different fluorophore location in the micellar solutions significantly influences its sensing behavior to various explosives. Fluorescence quenching studies reveal that the simple variation of micellar systems leads to significant changes in the sensitivity and selectivity of the fluorescent sensor to explosives. The sensor exhibits an on-off response to multiple explosives with the highest sensitivity to picric acid (PA) in the anionic SDS micelles. In the cationic DTAB micelles, it displays the highest on-off responses to PYX. Both the sensitivity and selectivity to PYX in the cationic micelles are enhanced compared with that to PA in the anionic micelles. However, the poor encapsulation in the neutral surfactant TX100 micelles leads to fluorescence instability of the fluorophore and fails to function as a sensor system. Time-resolved fluorescence decays in the presence of explosives reveal that the quenching mechanism of two micellar sensor systems to explosives is static in nature. The present work demonstrates that the electrostatic interaction between the cationic fluorophore and differently charged micelles plays a determinative role in adjusting its distribution in micellar solutions, which further influences the sensing behavior of the obtained micellar sensor systems.

  10. Design and synthesis of the BODIPY-BSA complex for biological applications.

    PubMed

    Vedamalai, Mani; Gupta, Iti

    2018-02-01

    A quinoxaline-functionalized styryl-BODIPY derivative (S1) was synthesized by microwave-assisted Knoevenagel condensation. It exhibited fluorescence enhancement upon micro-encapsulation into the hydrophobic cavity of bovine serum albumin (BSA). The S1-BSA complex was characterized systematically using ultraviolet (UV)-visible absorption, fluorescence emission, kinetics, circular dichroism and time-resolved lifetime measurements. The binding nature of BSA towards S1 was strong, and was found to be stable over a period of days. The studies showed that the S1-BSA complex could be used as a new biomaterial for fluorescence-based high-throughput assay for kinase enzymes. Copyright © 2017 John Wiley & Sons, Ltd.

  11. A lanthanide-based chemosensor for bioavailable Fe3+ using a fluorescent siderophore: an assay displacement approach.

    PubMed

    Orcutt, Karen M; Jones, W Scott; McDonald, Andrea; Schrock, David; Wallace, Karl J

    2010-01-01

    The measurement of trace analytes in aqueous systems has become increasingly important for understanding ocean primary productivity. In oceanography, iron (Fe) is a key element in regulating ocean productivity, microplankton assemblages and has been identified as a causative element in the development of some harmful algal blooms. The chemosenor developed in this study is based on an indicator displacement approach that utilizes time-resolved fluorescence and fluorescence resonance energy transfer as the sensing mechanism to achieve detection of Fe3+ ions as low as 5 nM. This novel approach holds promise for the development of photoactive chemosensors for ocean deployment.

  12. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides.

    PubMed

    Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David

    2011-01-01

    Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  13. Hydrogen-bonding dynamics of free flavins in benzene and FAD in electron-transferring flavoprotein upon excitation.

    PubMed

    Sato, Kyousuke; Nishina, Yasuzou; Shiga, Kiyoshi; Tanaka, Fumio

    2003-01-01

    The dynamic natures of two hydrogen-bonding model systems, riboflavin tetrabutylate (RFTB)-trichloroacetic acid (TCA) and RFTB-phenol in benzene, and of electron-transferring flavoprotein (ETF) from pig kidney upon excitation of flavins was investigated by means of steady state and time-resolved fluorescence spectroscopy. In both model systems fluorescence intensities of RFTB decreased as TCA or phenol was added. The spectral characteristics of ETF under steady state excitation were quite similar to those of the RFTB-TCA system, but not to those of the RFTB-phenol system. The observed fluorescence decay curves of ETF fit well with the calculated decay curves with two lifetime components, as in the model systems. Averaged lifetime was 0.9 ns. The time-resolved fluorescence spectrum of ETF shifted toward longer wavelength with time after pulsed excitation, which was also observed in the RFTB-TCA system. In the RFTB-phenol system the emission spectrum did not shift at all with time. These results reveal that the dynamic nature of ETF can be ascribed to aliphatic hydrogen-bonding(s) of the isoalloxazine ring with surrounding amino acid(s). From the fluorescence characteristics of ETF in comparison with the model systems, human ETF and other flavoproteins, it was suggested that ETF from pig kidney does not contain Tyr-16 in the beta subunit, unlike human ETF.

  14. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  15. Fluorescence lifetime in cardiovascular diagnostics

    NASA Astrophysics Data System (ADS)

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.

  16. Fluorescence lifetime in cardiovascular diagnostics.

    PubMed

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.

  17. Fluorescence spectroscopy and imaging for noninvasive diagnostics: applications to early cancer detection in the lung

    NASA Astrophysics Data System (ADS)

    Mycek, Mary-Ann; Urayama, Paul; Zhong, Wei; Sloboda, Roger D.; Dragnev, Konstantin H.; Dmitrovsky, Ethan

    2003-10-01

    Tissue fluorescence spectroscopy and imaging are being investigated as potential methods for non-invasive detection of pre-neoplastic change in the lung and other organ systems. A substantial contribution to tissue fluorescence is known to arise from endogenous cellular fluorophores. Using steady-state and time-resolved fluorescence spectroscopy and imaging, we characterized the endogenous fluorescence properties of immortalized and carcinogen-transformed human bronchial epithelial cells. Non-invasive sensing of endogenous molecular biomarkers associated with human bronchial pre-neoplasia will be discussed.

  18. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    NASA Astrophysics Data System (ADS)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  19. Photo-multiplier Tube Based Hybrid MRI and Frequency Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Lin, Y; Ghijsen, M T; Gao, H; Liu, N; Nalcioglu, O; Gulsen, G

    2014-01-01

    Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube (PMT) is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, Indocyanine Green (ICG) and 3-3′ Diethylthiatricarbocyanine Iodide (DTTCI), which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized. PMID:21753235

  20. A fluorescence lifetime spectroscopy study of matrix metalloproteinases -2 and -9 in human atherosclerotic plaque

    PubMed Central

    Phipps, Jennifer E.; Hatami, Nisa; Galis, Zorina S.; Baker, J. Dennis; Fishbein, Michael C.; Marcu, Laura

    2011-01-01

    Matrix metalloproteinase (MMP) -2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. PMID:21770037

  1. Ultrafast photodimerization dynamics in α-cyano-4-hydroxycinnamic and sinapinic acid crystals

    NASA Astrophysics Data System (ADS)

    Hoyer, Theo; Tuszynski, Wilfried; Lienau, Christoph

    2007-07-01

    We report a sub-picosecond time-resolved fluorescence spectroscopic study of different cinnamic acid crystals, model systems for solid-state photodimerization reactions. For α-cyano-4-hydroxycinnamic acid (α-CHC), we identify the emission spectra of both monomers and dimers, allowing us to directly probe the photoinduced dynamics of both species. The dimerization occurs on a timescale of 10 ps and results in a long-lived dimer product, stable for hours. For sinapinic acid, we find an extremely fast, sub-picosecond dimerization reaction and a short-lived dimer. This first sub-picosecond time-resolved dimerization study in cinnamic acid crystals provides a new basis for relating their structural properties and microscopic reaction dynamics.

  2. ESIPT and photodissociation of 3-hydroxychromone in solution: photoinduced processes studied by static and time-resolved UV/Vis, fluorescence, and IR spectroscopy.

    PubMed

    Chevalier, Katharina; Grün, Anneken; Stamm, Anke; Schmitt, Yvonne; Gerhards, Markus; Diller, Rolf

    2013-11-07

    The spectral properties of fluorescence sensors such as 3-hydroxychromone (3-HC) and its derivatives are sensitive to interaction with the surrounding medium as well as to substitution. 3-HC is a prototype system for other derivatives because it is the basic unit of all flavonoides undergoing ESIPT and is not perturbed by a substituent. In this study, the elementary processes and intermediate states in the photocycle of 3-HC as well as its anion were identified and characterized by the use of static and femtosecond time-resolved spectroscopy in different solvents (methylcyclohexane, acetonitrile, ethanol, and water at different pH). Electronic absorption and fluorescence spectra and lifetimes of the intermediate states were obtained for the normal, tautomer and anionic excited state, while mid-IR vibrational spectra yielded structural information on ground and excited states of 3-HC. A high sensitivity on hydrogen-bonding perturbations was observed, leading to photoinduced anion formation in water, while in organic solvents, different processes are suggested, including slow picosecond ESIPT and contribution of the trans-structure excited state or a different stable solvation state with different direction of OH. The formation of the latter could be favored by the lack of a substituent increasing contact points for specific solute-solvent interactions at the hydroxyl group compared to substituted derivatives. The effect of substituents has to be considered for the design of future fluorescence sensors based on 3-HC.

  3. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  4. Heterogenous fluorescence decay of (4→6)-and (4→8)-linked dimers of (+)-catechin and (-) epicatechin as a result of rotational isomerism.

    Treesearch

    Wolfgang R. Bergmann; Mary D. Barkley; Richard W. Hemingway; Wayne Mattice

    1987-01-01

    The time-resolved fluorescence of (+)-catechin and ( -)-epicatechin decays as a single exponential. In contrast dimers formed from (+)-catechin and (-)-epicatechin have more complex decays unless rotation about the interflavan bond is constrained by the introduction of a new ring. The fluorescence decay in unconstrained dimers is adequately described by the sum of two...

  5. Detection of melanomas by digital imaging of spectrally resolved UV light-induced autofluorescence of human skin

    NASA Astrophysics Data System (ADS)

    Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Redzinski, J.; Raczynska, A. M.; Telega, K.

    2001-07-01

    We studied spectral and spatial distributions of the intensity of the ultraviolet light-excited fluorescence of human skin. Our studied performed in situ in 162 patients with malignant and non-malignant skin lesions resulted in a new method of detecting melanomas in situ using digital imaging of the spectrally resolved fluorescence. With our diagnostic algorithm we could successfully detect 88.5% of the cases of melanoma in the group of patients subject to examinations with the fluorescence method. A patent application for the method has been submitted to the Patent Office in Warsaw.

  6. Identifying Fossil Biosignatures and Minerals in Mars Analog Materials Using Time-Resolved Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shkolyar, S.; Farmer, J.; Alerstam, E.; Maruyama, Y.; Blacksberg, J.

    2013-12-01

    Mars sample return has been identified as a top priority in the planetary science decadal survey. A Mars sample selection and caching mission would be the likely first step in this endeavor. Such a mission would aim to select and prioritize for return to Earth aqueously formed geological samples present at a selected site on Mars, based upon their potential for biosignature capture and preservation. If evidence of past life exists and is found, it is likely to come via the identification of fossilized carbonaceous matter of biological origin (kerogen) found in the selected samples analyzed in laboratories after return to Earth. Raman spectroscopy is considered one of the primary techniques for analyzing materials in situ and selecting the most promising samples for Earth return. We have previously performed a pilot study to better understand the complexities of identifying kerogen using Raman spectroscopy. For the study, we examined a variety of Mars analog materials representing a broad range of mineral compositions and kerogen maturities. The study revealed that kerogen identification in many of the most promising lithologies is often impeded by background fluorescence that originates from long (>10 ns to ms) and short (<1 ns) lifetime fluorophores in both the mineral matrixes and preserved organic matter in the samples. This work explores the potential for time-gated Raman spectroscopy to enable clear kerogen and mineral identifications in such samples. The JPL time-resolved Raman system uses time gating to reduce background fluorescence. It uses a custom-built SPAD (single photon avalanche diode) detector, featuring a 1-ns time-gate, and electronically variable gate delay. Results for a range of fluorescent samples show that the JPL system reduces fluorescence, allowing the identification of both kerogen and mineral components more successfully than with conventional Raman systems. In some of the most challenging samples, the detection of organic matter is hindered by a combination of short lifetime fluorescence and weak Raman scattering coming from preserved kerogen grains. Fluorescence Lifetime Imaging Microscopy (FLIM) measurements were also performed to characterize the lifetimes of both components in the samples and to inform future system improvements such as shorter time gating. Here, we will discuss the results, along with identified challenges to the consistent and reliable in situ identification of kerogen in samples on Mars.

  7. Fluorescent biological aerosol particles: Concentrations, emissions, and exposures in a northern California residence.

    PubMed

    Tian, Y; Liu, Y; Misztal, P K; Xiong, J; Arata, C M; Goldstein, A H; Nazaroff, W W

    2018-04-06

    Residences represent an important site for bioaerosol exposure. We studied bioaerosol concentrations, emissions, and exposures in a single-family residence in northern California with 2 occupants using real-time instrumentation during 2 monitoring campaigns (8 weeks during August-October 2016 and 5 weeks during January-March 2017). Time- and size-resolved fluorescent biological aerosol particles (FBAP) and total airborne particles were measured in real time in the kitchen using an ultraviolet aerodynamic particle sizer (UVAPS). Time-resolved occupancy status, household activity data, air-change rates, and spatial distribution of size-resolved particles were also determined throughout the house. Occupant activities strongly influenced indoor FBAP levels. Indoor FBAP concentrations were an order of magnitude higher when the house was occupied than when the house was vacant. Applying an integral material-balance approach, geometric mean of total FBAP emissions from human activities observed to perturb indoor levels were in the range of 10-50 million particles per event. During the summer and winter campaigns, occupants spent an average of 10 and 8.5 hours per day, respectively, awake and at home. During these hours, the geometric mean daily-averaged FBAP exposure concentration (1-10 μm diameter) was similar for each subject at 40 particles/L for summer and 29 particles/L for winter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Time-resolved confocal fluorescence microscopy: novel technical features and applications for FLIM, FRET and FCS using a sophisticated data acquisition concept in TCSPC

    NASA Astrophysics Data System (ADS)

    Koberling, Felix; Krämer, Benedikt; Kapusta, Peter; Patting, Matthias; Wahl, Michael; Erdmann, Rainer

    2007-05-01

    In recent years time-resolved fluorescence measurement and analysis techniques became a standard in single molecule microscopy. However, considering the equipment and experimental implementation they are typically still an add-on and offer only limited possibilities to study the mutual dependencies with common intensity and spectral information. In contrast, we are using a specially designed instrument with an unrestricted photon data acquisition approach which allows to store spatial, temporal, spectral and intensity information in a generalized format preserving the full experimental information. This format allows us not only to easily study dependencies between various fluorescence parameters but also to use, for example, the photon arrival time for sorting and weighting the detected photons to improve the significance in common FCS and FRET analysis schemes. The power of this approach will be demonstrated for different techniques: In FCS experiments the concentration determination accuracy can be easily improved by a simple time-gated photon analysis to suppress the fast decaying background signal. A more detailed analysis of the arrival times allows even to separate FCS curves for species which differ in their fluorescence lifetime but, for example, cannot be distinguished spectrally. In multichromophoric systems like a photonic wire which undergoes unidirectional multistep FRET the lifetime information complements significantly the intensity based analysis and helps to assign the respective FRET partners. Moreover, together with pulsed excitation the time-correlated analysis enables directly to take advantage of alternating multi-colour laser excitation. This pulsed interleaved excitation (PIE) can be used to identify and rule out inactive FRET molecules which cause interfering artefacts in standard FRET efficiency analysis. We used a piezo scanner based confocal microscope with compact picosecond diode lasers as excitation sources. The timing performance can be significantly increased by using new SPAD detectors which enable, in conjunction with new TCSPC electronics, an overall IRF width of less than 120 ps maintaining single molecule sensitivity.

  9. Single-label kinase and phosphatase assays for tyrosine phosphorylation using nanosecond time-resolved fluorescence detection.

    PubMed

    Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-12-26

    The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.

  10. Parallel confocal detection of single biomolecules using diffractive optics and integrated detector units.

    PubMed

    Blom, H; Gösch, M

    2004-04-01

    The past few years we have witnessed a tremendous surge of interest in so-called array-based miniaturised analytical systems due to their value as extremely powerful tools for high-throughput sequence analysis, drug discovery and development, and diagnostic tests in medicine (see articles in Issue 1). Terminologies that have been used to describe these array-based bioscience systems include (but are not limited to): DNA-chip, microarrays, microchip, biochip, DNA-microarrays and genome chip. Potential technological benefits of introducing these miniaturised analytical systems include improved accuracy, multiplexing, lower sample and reagent consumption, disposability, and decreased analysis times, just to mention a few examples. Among the many alternative principles of detection-analysis (e.g.chemiluminescence, electroluminescence and conductivity), fluorescence-based techniques are widely used, examples being fluorescence resonance energy transfer, fluorescence quenching, fluorescence polarisation, time-resolved fluorescence, and fluorescence fluctuation spectroscopy (see articles in Issue 11). Time-dependent fluctuations of fluorescent biomolecules with different molecular properties, like molecular weight, translational and rotational diffusion time, colour and lifetime, potentially provide all the kinetic and thermodynamic information required in analysing complex interactions. In this mini-review article, we present recent extensions aimed to implement parallel laser excitation and parallel fluorescence detection that can lead to even further increase in throughput in miniaturised array-based analytical systems. We also report on developments and characterisations of multiplexing extension that allow multifocal laser excitation together with matched parallel fluorescence detection for parallel confocal dynamical fluorescence fluctuation studies at the single biomolecule level.

  11. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  12. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    NASA Astrophysics Data System (ADS)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on microsecond time scale.

  14. Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolić, M.; Newton, J.; Sukenik, C. I.

    2015-01-14

    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. Wemore » also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.« less

  15. A study of the time-resolved fluorescence spectrum and red edge effect of ANF in a room-temperature ionic liquid.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-06-15

    In a recent article, we have analyzed using molecular dynamics simulations the steady-state red edge effect (REE) observed by Samanta and co-workers when the fluorescent probe 2-amino-7-nitrofluorene (ANF) is photoexcited at different wavelengths in 1-butyl-3-methylimidazolium ([BMIM+]) hexafluorophosphate ([PF6-]). In this letter, we predict the time- and wavelength-dependent emission spectra of ANF in the same ionic solvent. From the analysis of our simulated data, we are able to derive an approximate time scale for reorganization of the solvent around the solute probe. The effect that slow varying local liquid environments have on the overall time-dependent signal is also discussed.

  16. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  17. Interaction of recombinant human epidermal growth factor with phospholipid vesicles. A steady-state and time-resolved fluorescence study of the bis-tryptophan sequence (Trp49-Trp50).

    PubMed

    Li De La Sierra, I M; Vincent, M; Padron, G; Gallay, J

    1992-01-01

    The interaction of recombinant human epidermal growth factor with small unilamellar phospholipid vesicles was studied by steady-state and time-resolved fluorescence of the bis-tryptophan sequence (Trp49-Trp50). Steady-state anisotropy measurements demonstrate that strong binding occurred with small unilamellar vesicles made up of acidic phospholipids at acidic pH only (pH < or = 4.7). An apparent stoichiometry for 1,2-dimyristoyl-sn-phosphoglycerol of about 12 phospholipid molecules per molecule of human epidermal growth factor was estimated. The binding appears to be more efficient at temperatures above the gel to liquid-crystalline phase transition. The conformation and the environment of the Trp-Trp sequence are not greatly modified after binding, as judged from the invariance of the excited state lifetime distribution and from that of the fast processes affecting the anisotropy decay. This suggests that the Trp-Trp sequence is not embedded within the bilayer, in contrast to the situation in surfactant micelles (Mayo et al. 1987; Kohda and Inigaki 1992).

  18. Rapid detection of trace amounts of surfactants using nanoparticles in fluorometric assays

    NASA Astrophysics Data System (ADS)

    Härmä, Harri; Laakso, Susana; Pihlasalo, Sari; Hänninen, Pekka; Faure, Bertrand; Rana, Subhasis; Bergström, Lennart

    2010-01-01

    Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM.Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM. Electronic supplementary information (ESI) available: Experimental details and Fig. S1 and S2. See DOI: 10.1039/b9nr00172g

  19. High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.

    2012-05-01

    The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.

  20. Time-resolved fluorescence and FCS studies of dye-doped DNA

    NASA Astrophysics Data System (ADS)

    Nicolaou, N.; Marsh, R. J.; Blacker, T.; Armoogum, D. A.; Bain, A. J.

    2009-08-01

    Fluorescence lifetime, anisotropy and intensity dependent single molecule fluorescence correlation spectroscopy (I-FCS) are used to investigate the mechanism of fluorescence saturation in a free and nucleotide bound fluorophore (NR6104) in an antioxidising ascorbate buffer. Nucleotide attachment does not appreciably affect the fluorescence lifetime of the probe and there is a decrease in the rate of intersystem crossing relative to that of triplet state deactivation. The triplet state fraction is seen to plateau at 72% (G-attached) and 80% (free fluorophore) in agreement with these observations. Measurements of translational diffusion times show no intensity dependence for excitation intensities between 1 and 105kW cm-2 and photobleaching is therefore negligible. The dominant mechanism of fluorescence saturation is thus triplet state formation. I-FCS measurements for Rhodamine 6G in water were compared with those in the ascorbate buffer. In water the triplet fraction was saturated at considerably higher powers (45% at ca. 1.5 × 103kW cm-2) than in the ascorbate buffer (55%ca. 1 1kW cm-2)

  1. The Origin of Fluorescence from Graphene Oxide

    PubMed Central

    Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G.

    2012-01-01

    Time-resolved fluorescence measurements of graphene oxide in water show multiexponential decay kinetics ranging from 1 ps to 2 ns. Electron-hole recombination from the bottom of the conduction band and nearby localized states to wide-range valance band is suggested as origin of the fluorescence. Excitation wavelength dependence of the fluorescence was caused by relative intensity changes of few emission species. By introducing the molecular orbital concept, the dominant fluorescence was found to originate from the electronic transitions among/between the non-oxidized carbon regions and the boundary of oxidized carbon atom regions, where all three kinds of functionalized groups C-O, C = O and O = C-OH were participating. In the visible spectral range, the ultrafast fluorescence of graphene oxide was observed for the first time. PMID:23145316

  2. Evanescent field microscopy techniques for studying dynamics at the surface of living cells

    NASA Astrophysics Data System (ADS)

    Sund, Susan E.

    This thesis presents two distinct optical microscopy techniques for applications in cell biophysics: (a)the extension to living cells of an established technique, total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) for the first time in imaging mode; and (b)the novel development of polarized total internal reflection fluorescence (p- TIRF) to study membrane orientation in living cells. Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about the relevant chemical kinetic rates in vivo. TIR/FRAP, an established technique which can measure reversible biomolecular kinetic rates at surfaces, is extended here to measure kinetic parameters of microinjected rhodamine actin at the cytofacial surface of the plasma membrane of living cultured smooth muscle cells. For the first time, spatial imaging (with a CCD camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging allows production of spatially resolved images of kinetic data, and calculation of correlation distances, cell-wide gradients, and kinetic parameter dependence on initial fluorescence intensity. In living cells, membrane curvature occurs both in easily imaged large scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method, p-TIRF, is introduced here to visualize such regions. The method is based on fluorescence of the oriented membrane probe diI- C18-(3) (diI) excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane. A theoretical background of the technique and experimental verifications are presented in samples of protein solutions, model lipid bilayers, and living cells. Sequential digital images of the polarized TIR fluorescence ratios show spatially-resolved time- course maps of membrane orientations on diI labeled macrophages from which low visibility membrane structures can be identified and quantified. The TIR images are sharpened and contrast-enhanced by deconvoluting them with an experimentally-measured point spread function.

  3. Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana

    2010-01-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.

  4. Fluorescence lifetime in cardiovascular diagnostics

    PubMed Central

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications. PMID:20210432

  5. Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment. PMID:23940626

  6. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady statemore » fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi-component melts.« less

  7. Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy.

    PubMed

    Greiner, Vanille J; Egelé, Caroline; Oncul, Sule; Ronzon, Frédéric; Manin, Catherine; Klymchenko, Andrey; Mély, Yves

    2010-08-01

    Hepatitis B surface antigen (HBsAg) particles, produced in the yeast Hansenula polymorpha, are 20 nm particles, composed of S surface viral proteins and host-derived lipids. Since the detailed structure of these particles is still missing, we further characterized them by fluorescence techniques. Fluorescence correlation spectroscopy indicated that the particles are mainly monomeric, with about 70 S proteins per particle. The S proteins were characterized through the intrinsic fluorescence of their thirteen Trp residues. Fluorescence quenching and time-resolved fluorescence experiments suggest the presence of both low emissive embedded Trp residues and more emissive Trp residues at the surface of the HBsAg particles. The low emission of the embedded Trp residues is consistent with their close proximity in alpha-helices. Furthermore, S proteins exhibit restricted movement, as expected from their tight association with lipids. The lipid organization of the particles was studied using viscosity-sensitive DPH-based probes and environment sensitive 3-hydroxyflavone probes, and compared to lipid vesicles and low density lipoproteins (LDLs), taken as models. Like LDLs, the HBsAg particles were found to be composed of an ordered rigid lipid interface, probably organized as a phospholipid monolayer, and a more hydrophobic and fluid inner core, likely composed of triglycerides and free fatty acids. However, the lipid core of HBsAg particles was substantially more polar than the LDL one, probably due to its larger content in proteins and its lower content in sterols. Based on our data, we propose a structural model for HBsAg particles where the S proteins deeply penetrate into the lipid core. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  8. Time-resolved fluorescence spectroscopy for chemical sensors

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  9. Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers.

    PubMed

    Benesch, Johan; Hungerford, Graham; Suhling, Klaus; Tregidgo, Carolyn; Mano, João F; Reis, Rui L

    2007-08-15

    The study of protein adsorption and any associated conformational changes on interaction with biomaterials is of great importance in the area of implants and tissue constructs. This study aimed to evaluate some fluorescent techniques to probe protein conformation on a selection of biodegradable polymers currently under investigation for biomedical applications. Because of the fluorescence emanating from the polymers, the use of monitoring intrinsic protein fluorescence was precluded. A highly solvatochromic fluorescent dye, Nile red, and a well-known protein label, fluorescein isothiocyanate, were employed to study the adsorption of serum albumin to polycaprolactone and to some extent also to two starch-containing polymer blends (SPCL and SEVA-C). A variety of fluorescence techniques, steady state, time resolved, and imaging were employed. Nile red was found to leach from the protein, while fluorescein isothiocyanate proved useful in elucidating a conformational change in the protein and the observation of protein aggregates adsorbed to the polymer surface. These effects were seen by making use of the phenomenon of energy migration between the fluorescent tags to monitor interprobe distance and the use of fluorescence lifetime imaging to ascertain the surface packing of the protein on polymer.

  10. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  11. Time-resolved ion velocity distribution in a cylindrical Hall thruster: heterodyne-based experiment and modeling.

    PubMed

    Diallo, A; Keller, S; Shi, Y; Raitses, Y; Mazouffre, S

    2015-03-01

    Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF.

  12. Förster resonance energy transfer (FRET)-based picosecond lifetime reference for instrument response evaluation

    NASA Astrophysics Data System (ADS)

    Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.

    2009-09-01

    Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.

  13. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L

    2008-11-21

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps.

  14. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  15. A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and -9 in human atherosclerotic plaque.

    PubMed

    Phipps, Jennifer E; Hatami, Nisa; Galis, Zorina S; Baker, J Dennis; Fishbein, Michael C; Marcu, Laura

    2011-09-01

    Matrix metalloproteinase (MMP)-2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  17. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.

    PubMed

    Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph

    2016-08-04

    Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift.

  18. Free-radical sensing by using naphthalimide based mesoporous silica (MCM-41) nanoparticles: A combined fluorescence and cellular imaging study

    NASA Astrophysics Data System (ADS)

    Jha, Gaurav; Roy, Subhasis; Sahu, Prabhat Kumar; Banerjee, Somnath; Anoop, N.; Rahaman, Abdur; Sarkar, Moloy

    2018-01-01

    Keeping in mind the advantages of material-based systems over simple molecule-based systems, we have designed and developed three inorganic-organic hybrid systems by anchoring 1,8-naphthalimide derivatives to mesoporous silica nanoparticles for detection of free radicals. Prior to photophysical study, systems are characterized by spectroscopic, microscopic and thermo-gravimetric techniques. Steady state and time-resolved fluorescence studies demonstrate that the hydrazine based system is senstive towards detection of various free radicals. Cellular imaging study reveals cell permeability and toxicity study demonstrates the non-toxic nature of the material. These studies have suggested that present system has the potential to be used in various biological applications.

  19. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.

    PubMed

    Banerjee, Chiranjib; Kundu, Niloy; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-08-15

    In this article we have reported the fluorescence resonance energy transfer (FRET) study in our earlier characterized surface active ionic liquids (SAILs)-containing microemulsion, i.e., N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P13][Tf2N])/[CTA][AOT]/isopropyl myristate ([IPM]) and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N3111][Tf2N])/[CTA][AOT]/[IPM] microemulsions (Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. J. Phys. Chem. B 2013, 117, 3927-3934). The occurrence of effective FRET from the donor, coumarin-153 (C-153) to the acceptor rhodamine 6G (R6G) is evident from the decrease in the steady state fluorescence intensity of the donor with addition of acceptor and subsequent increase in the fluorescence intensity of the acceptor in the presence of donor. The excitation wavelength dependent FRET from C-153 to R6G has also been performed to assess the dynamic heterogeneity of these confined systems. In time-resolved experiments, the significant rise time of the acceptor in the presence of the donor further confirms the occurrence of FRET. The multiple donor-acceptor (D-A) distances, for various microemulsions, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C-153, in the different regions of the microemulsion. Time-resolved measurement reveals that with increasing excitation wavelength from 408 to 440 nm, the contribution of the faster rise component of FRET increases significantly due to the close proximity of the C-153 and R6G in the polar region of the microemulsion where occurrence of FRET is very high. Moreover, we have also studied the FRET with variation of R (R = [room temperature ionic liquids (RTILs)]/[surfactant]) and shown that the effect of excitation wavelength on FRET is similar irrespective of R values.

  20. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  1. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach.

    PubMed

    Scholz, Marek; Biehl, Anna-Louisa; Dědic, Roman; Hála, Jan

    2015-04-01

    The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 μM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions - the DF kinetics are clearly influenced by the presence of the (1)O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular (1)O2 lifetime of τΔ = 1-2 μs and a TPPS4 triplet lifetime of τT = 22 ± 5 μs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for (1)O2 detection in biological systems.

  2. Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster

    NASA Astrophysics Data System (ADS)

    Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom

    2018-04-01

    In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.

  3. Human serum albumin stability and toxicity of anthraquinone dye alizarin complexone: an albumin-dye model.

    PubMed

    Ding, Fei; Zhang, Li; Diao, Jian-Xiong; Li, Xiu-Nan; Ma, Lin; Sun, Ying

    2012-05-01

    The complexation between the primary vector of ligands in blood plasma, human serum albumin (HSA) and a toxic anthraquinone dye alizarin complexone, was unmasked by means of circular dichroism (CD), molecular modeling, steady state and time-resolved fluorescence, and UV/vis absorption measurements. The structural investigation of the complexed HSA through far-UV CD, three-dimensional and synchronous fluorescence shown the polypeptide chain of HSA partially destabilizing with a reduction of α-helix upon conjugation. From molecular modeling and competitive ligand binding results, Sudlow's site I, which was the same as that of warfarin-azapropazone site, was appointed to retain high-affinity for alizarin complexone. Moreover, steady state fluorescence displayed that static type and Förster energy transfer is the operational mechanism for the vanish in the tryptophan (Trp)-214 fluorescence, this corroborates time-resolved fluorescence that HSA-alizarin complexone adduct formation has an affinity of 10(5) M(-1), and the driving forces were found to be chiefly π-π, hydrophobic, and hydrogen bonds, associated with an exothermic free energy change. These data should be utilized to illustrate the mechanism by which the toxicological action of anthraquinone dyes is mitigated by transporter HSA. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Nonradiative inter- and intramolecular energy transfer from the aromatic donor anisole to a synthesized photoswitchable acceptor system.

    PubMed

    Bardhan, Munmun; Bhattacharya, Sudeshna; Misra, Tapas; Mukhopadhyay, Rupa; De, Asish; Chowdhury, Joydeep; Ganguly, Tapan

    2010-02-01

    We report steady state and time resolved fluorescence measurements on acetonitrile (ACN) solutions of the model compounds, energy donor anisole (A) and a photoswitchable acceptor N,N'-1,2-phenylene di-p-tosylamide (B) and the multichromophore (M) where A and B are connected by a spacer containing both rigid triple (acetylenic) and flexible methylene bonds. Both steady state and time correlated single photon counting measurements demonstrate that though intermolecular energy transfer, of Forster type, between the donor and acceptor moieties occurs with rate 10(8)s(-1) but when these two reacting components are linked by a spacer (multichromophore, M) the observed transfer rate ( approximately 10(11)s(-1)) enhances. This seemingly indicates that the imposition of the spacer by inserting a triple bond may facilitate in the propagation of electronic excitation energy through bond. The time resolved fluorescence measurements along with the theoretical predictions using Configuration interaction singles (CIS) method by using 6-31G (d,p) basis set, implemented in the Gaussian package indicate the formations of the two excited conformers of B. The experimental findings made from the steady state and time resolved fluorescence measurements demonstrate that, though two different isomeric species of the acceptor B are formed in the excited singlet states, the prevailing singlet-singlet nonradiative energy transfer route was found from the donor A to the relatively longer-lived isomeric species of B. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. Time-Resolved Laser Fluorescence Spectroscopy Study of the Coordination Chemistry of a Hydrophilic CHON [1,2,3-Triazol-4-yl]pyridine Ligand with Cm(III) and Eu(III).

    PubMed

    Wagner, Christoph; Mossini, Eros; Macerata, Elena; Mariani, Mario; Arduini, Arturo; Casnati, Alessandro; Geist, Andreas; Panak, Petra J

    2017-02-20

    The complexation of Cm(III) and Eu(III) with the novel i-SANEX complexing agent 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PTD) was studied by time-resolved laser fluorescence spectroscopy (TRLFS). The formation of 1:3, 1:2, and 1:1 metal/ligand complexes was identified upon increasing PTD concentration in 10 -3 mol/L HClO 4 and in 0.44 mol/L HNO 3 solutions. For all these complexes, stability constants were determined at different acid concentrations. Though under the extraction conditions proposed for an An/Ln separation process, that is, for 0.08 mol/L PTD in 0.44 mol/L HNO 3 , 1:3 complexes represent the major species, a significant fraction of 1:2 complexes was found. This is caused by ligand protonation, and results in lower Eu(III)/Am(III) separation factors compared to SO 3 -Ph-BTP, until now considered the i-SANEX reference ligand. Focused extraction studies performed at lower proton concentration, where the 1:3 complex is formed exclusively, confirm this assumption.

  6. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  7. Early Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy

    PubMed Central

    Paredes, Jose M.; Casares, Salvador; Ruedas-Rama, Maria J.; Fernandez, Elena; Castello, Fabio; Varela, Lorena; Orte, Angel

    2012-01-01

    Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies. PMID:22949804

  8. Characterization of domain-specific interaction of synthesized dye with serum proteins by spectroscopic and docking approaches along with determination of in vitro cytotoxicity and antiviral activity.

    PubMed

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Patel, Biman Kumar; Paul, Suvendu; Mahapatra, Ambikesh

    2017-11-20

    The interaction between a synthesized dye with proteins, bovine, and human serum albumin (BSA, HSA, respectively) under physiological conditions has been characterized in detail, by means of steady-state and time-resolved fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. An extensive time-resolved fluorescence spectroscopic characterization of the quenching process has been undertaken in conjugation with temperature-dependent fluorescence quenching studies to divulge the actual quenching mechanism. From the thermodynamic observations, it is clear that the binding process is a spontaneous molecular interaction, in which van der Waals and hydrogen bonding interactions play the major roles. The UV-vis absorption and CD results confirm that the dye can induce conformational and micro-environmental changes of both the proteins. In addition, the dye binding provokes the functionality of the native proteins in terms of esterase-like activity. The average binding distance (r) between proteins and dye has been calculated using FRET. Cytotoxicity and antiviral effects of the dye have been found using Vero cell and HSV-1F virus by performing MTT assay. The AutoDock-based docking simulation reveals the probable binding location of dye within the sub-domain IIA of HSA and IB of BSA.

  9. New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis.

    PubMed

    Jo, J A; Marcu, L; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J

    2007-01-01

    A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foam-cells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. This study has demonstrated the potential of using TR-LIFS information by means of LEC for in vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.

  10. Noninvasive in situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Ashjian, Peter; Elbarbary, Amir; Zuk, Patricia; DeUgarte, Daniel A; Benhaim, Prosper; Marcu, Laura; Hedrick, Marc H

    2004-01-01

    The clinical implantation of bioengineered tissues requires an in situ nondestructive evaluation of the quality of tissue constructs developed in vitro before transplantation. Time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) is demonstrated here to noninvasively monitor the formation of osteogenic extracellular matrix (ECM) produced by putative stem cells (PLA cells) derived from human adipose tissue. We show that this optical spectroscopy technique can assess the relative expression of collagens (types I, III, IV, and V) within newly forming osteogenic ECM. The results are consistent with those obtained by conventional histochemical techniques (immunofluorescence and Western blot) and demonstrate that TR-LIFS is a potential tool for monitoring the expression of distinct collagen types and the formation of collagen cross-links in intact tissue constructs.

  11. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100.

    PubMed

    Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz

    2007-03-01

    The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.

  12. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  13. Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy.

    PubMed

    Nagao, Ryo; Ueno, Yoshifumi; Yokono, Makio; Shen, Jian-Ren; Akimoto, Seiji

    2018-07-01

    Maintenance of energy balance under changeable light conditions is an essential function of photosynthetic organisms to achieve efficient photochemical reactions. Among the photosynthetic organisms, diatoms possess light-harvesting fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) as peripheral antennas. However, how diatoms regulate excitation-energy distribution between FCP and the two photosystem cores during light adaptation is poorly understood. In this study, we examined spectroscopic properties of a marine diatom Chaetoceros gracilis adapted in the dark and at photosynthetic photon flux density at 30 and 300 μmol photons m -2  s -1 . Absorption spectra at 77 K showed significant changes in the Soret region, and 77-K steady-state fluorescence spectra showed significant differences in the spectral shape and relative fluorescence intensity originating from both PSII and PSI, among the cells grown under different light conditions. These results suggest alterations of pigment composition and their interactions under the different light conditions. These alterations affected the excitation-energy dynamics monitored by picosecond time-resolved fluorescence analyses at 77 K significantly. The contributions of Chls having lower energy levels than the reaction center Chls in the two photosystems to the energy dynamics were clearly identified in the three cells but with presumably different roles. These findings provide insights into the regulatory mechanism of excitation-energy balance in diatoms under various light conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Observing Holliday junction branch migration one step at a time

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2004-03-01

    During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.

  15. Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging.

    PubMed

    Ning, Yingying; Tang, Juan; Liu, Yi-Wei; Jing, Jing; Sun, Yuansheng; Zhang, Jun-Long

    2018-04-21

    Herein, we report the design and synthesis of biocompatible Yb 3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb 3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb 3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb 3+ luminescence signals when the biocompatible Yb 3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.

  16. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  17. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy.

    PubMed

    Rautaniemi, Kaisa; Vuorimaa-Laukkanen, Elina; Strachan, Clare J; Laaksonen, Timo

    2018-05-07

    Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.

  18. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    PubMed Central

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  19. Synthesis and characterization of a fluorescent water-soluble paclitaxel prodrug.

    PubMed

    Sohn, Jeong-Sun; Choi, Eun-Sun; Jo, Byung-Wook; Hess, Michael; Han, Song-Hee

    2010-05-01

    A fluorescence susceptible water-soluble paclitaxel was synthesized by a condensation reaction between PEGylated paclitaxel (namely, PP7) and 1-pyrene butyric acid (PBA) in order to obtain a better understanding of the mechanism of action of paclitaxel as well as of the environment of the paclitaxel-binding site. The reaction was performed successfully and the resulting paclitaxel was characterized by FT-NMR, analytical-HPLC, UV spectro photometry, and fluorescence spectrometry. The synthesized paclitaxel analogue showed a high susceptibility to fluorescence in both excitation and emission spectra. And we have investigated the time-resolved fluorescence behavior of them in different solvents and at different excitation wavelengths.

  20. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  1. The nature of multiphoton fluorescence from red blood cells

    NASA Astrophysics Data System (ADS)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  2. Time-dependent photon migration imaging

    NASA Astrophysics Data System (ADS)

    Sevick, Eva M.; Wang, NaiGuang; Chance, Britton

    1992-02-01

    Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.

  3. Interpretation of measurements of dynamic fluorescence of the eye

    NASA Astrophysics Data System (ADS)

    Schweitzer, Dietrich; Hammer, Martin; Jentsch, Susanne; Schenke, Stefan

    2007-09-01

    First pathological alterations occur at cellular level, most in metabolism. An indirect estimation of metabolic activity in cells is measurement of microcirculation. Measurements of tissue autofluorescence are potentially suited for direct investigation of cellular metabolism. Besides redox pairs of co-enzymes (NADH-NAD, FADH2-FAD) several other fluorophores are excited in tissue. In addition, a number of anatomical structures are simultaneously excited, when investigating the eye-ground. In this study, spectral and time resolved comparison was performed between purified substances, single ocular structures and in vivo measurements of the time-resolved autofluorescence at the human eye. In human eyes, the ageing pigment lipofuscin covers other fluorophores at the fundus in long - wave visible range. Applying lifetime measurements, weakly emitting fluorophores can be detected, when the lifetimes are different from the strongly emitting fluorophore. For this, the autofluorescence was excited at 468 nm and detected in two spectral ranges (500 nm-560 nm, 560 nm-700 nm). In tri-exponential fitting, the short lifetime corresponds to retinal pigment epithelium, the mean lifetime corresponds probably to neural retina and the long lifetime is caused by fluorescence of connective tissue.

  4. Application of the laguerre deconvolution method for time-resolved fluorescence spectroscopy to the characterization of atherosclerotic plaques.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2005-01-01

    This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.

  5. Modification of measurement methods for evaluation of tissue-engineered cartilage function and biochemical properties using nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Sato, Masato; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto

    2008-02-01

    There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and components of engineered tissue. To meet this demand, we developed a method for extracellular matrix characterization using time-resolved autofluorescence spectroscopy, which enabled simultaneous measurements with mechanical properties using relaxation of laser-induced stress wave. In this study, in addition to time-resolved fluorescent spectroscopy, hyperspectral sensor, which enables to capture both spectral and spatial information, was used for evaluation of biochemical characterization of tissue-engineered cartilage. Hyperspectral imaging system provides spectral resolution of 1.2 nm and image rate of 100 images/sec. The imaging system consisted of the hyperspectral sensor, a scanner for x-y plane imaging, magnifying optics and Xenon lamp for transmmissive lighting. Cellular imaging using the hyperspectral image system has been achieved by improvement in spatial resolution up to 9 micrometer. The spectroscopic cellular imaging could be observed using cultured chondrocytes as sample. At early stage of culture, the hyperspectral imaging offered information about cellular function associated with endogeneous fluorescent biomolecules.

  6. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue.

    PubMed

    Pfefer, T Joshua; Wang, Quanzeng; Drezek, Rebekah A

    2011-11-01

    Computational approaches for simulation of light-tissue interactions have provided extensive insight into biophotonic procedures for diagnosis and therapy. However, few studies have addressed simulation of time-resolved fluorescence (TRF) in tissue and none have combined Monte Carlo simulations with standard TRF processing algorithms to elucidate approaches for cancer detection in layered biological tissue. In this study, we investigate how illumination-collection parameters (e.g., collection angle and source-detector separation) influence the ability to measure fluorophore lifetime and tissue layer thickness. Decay curves are simulated with a Monte Carlo TRF light propagation model. Multi-exponential iterative deconvolution is used to determine lifetimes and fractional signal contributions. The ability to detect changes in mucosal thickness is optimized by probes that selectively interrogate regions superficial to the mucosal-submucosal boundary. Optimal accuracy in simultaneous determination of lifetimes in both layers is achieved when each layer contributes 40-60% of the signal. These results indicate that depth-selective approaches to TRF have the potential to enhance disease detection in layered biological tissue and that modeling can play an important role in probe design optimization. Published by Elsevier Ireland Ltd.

  7. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer.

    PubMed

    Shalaby, Nourhan; Al-Ebraheem, Alia; Le, Du; Cornacchi, Sylvie; Fang, Qiyin; Farrell, Thomas; Lovrics, Peter; Gohla, Gabriela; Reid, Susan; Hodgson, Nicole; Farquharson, Michael

    2018-03-01

    One of the major problems in breast cancer surgery is defining surgical margins and establishing complete tumor excision within a single surgical procedure. The goal of this work is to establish instrumentation that can differentiate between tumor and normal breast tissue with the potential to be implemented in vivo during a surgical procedure. A time-resolved fluorescence and reflectance spectroscopy (tr-FRS) system is used to measure fluorescence intensity and lifetime as well as collect diffuse reflectance (DR) of breast tissue, which can subsequently be used to extract optical properties (absorption and reduced scatter coefficient) of the tissue. The tr-FRS data obtained from patients with Invasive Ductal Carcinoma (IDC) whom have undergone lumpectomy and mastectomy surgeries is presented. A preliminary study was conducted to determine the validity of using banked pre-frozen breast tissue samples to study the fluorescence response and optical properties. Once the validity was established, the tr-FRS system was used on a data-set of 40 pre-frozen matched pair cases to differentiate between tumor and normal breast tissue. All measurements have been conducted on excised normal and tumor breast samples post surgery. Our results showed the process of freezing and thawing did not cause any significant differences between fresh and pre-frozen normal or tumor breast tissue. The tr-FRS optical data obtained from 40 banked matched pairs showed significant differences between normal and tumor breast tissue. The work detailed in the main study showed the tr-FRS system has the potential to differentiate malignant from normal breast tissue in women undergoing surgery for known invasive ductal carcinoma. With further work, this successful outcome may result in the development of an accurate intraoperative real-time margin assessment system. Lasers Surg. Med. 50:236-245, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Combustion Diagnostics and Flow Visualization of Hypergolic Combustion and Gelled Mixing Behavior

    DTIC Science & Technology

    1997-12-19

    difference. Also, Exciplex Flourescence imaging has been implented to visualize diffusion layers which form at the contact interface of mixing...have been implemented and developed as a result of this effort. Among these techniques the most noteworthy involves a unique application of Exciplex ...fluorescence for visualization of diffusion layers formed between mixing liquids. Time resolved images of Exciplex fluorescence have been obtained

  9. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  10. Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis

    NASA Astrophysics Data System (ADS)

    Maurya, Neha; ud din Parray, Mehraj; Maurya, Jitendra Kumar; Kumar, Amit; Patel, Rajan

    2018-06-01

    The binding nature of amphiphilic drugs viz. promethazine hydrochloride (PMT) and adiphenine hydrochloride (ADP), with human hemoglobin (Hb) was unraveled by fluorescence, absorbance, time resolved fluorescence, fluorescence resonance energy transfer (FRET) and circular dichroism (CD) spectral techniques in combination with molecular docking and molecular dynamic simulation methods. The steady state fluorescence spectra indicated that both PMT and ADP quenches the fluorescence of Hb through static quenching mechanism which was further confirmed by time resolved fluorescence spectra. The UV-Vis spectroscopy suggested ground state complex formation. The activation energy (Ea) was observed more in the case of Hb-ADP than Hb-PMT interaction system. The FRET result indicates the high probability of energy transfer from β Trp37 residue of Hb to the PMT (r = 2.02 nm) and ADP (r = 2.33 nm). The thermodynamic data reveal that binding of PMT with Hb are exothermic in nature involving hydrogen bonding and van der Waal interaction whereas in the case of ADP hydrophobic forces play the major role and binding process is endothermic in nature. The CD results show that both PMT and ADP, induced secondary structural changes of Hb and unfold the protein by losing a large helical content while the effect is more pronounced with ADP. Additionally, we also utilized computational approaches for deep insight into the binding of these drugs with Hb and the results are well matched with our experimental results.

  11. Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis.

    PubMed

    Maurya, Neha; Ud Din Parray, Mehraj; Maurya, Jitendra Kumar; Kumar, Amit; Patel, Rajan

    2018-06-15

    The binding nature of amphiphilic drugs viz. promethazine hydrochloride (PMT) and adiphenine hydrochloride (ADP), with human hemoglobin (Hb) was unraveled by fluorescence, absorbance, time resolved fluorescence, fluorescence resonance energy transfer (FRET) and circular dichroism (CD) spectral techniques in combination with molecular docking and molecular dynamic simulation methods. The steady state fluorescence spectra indicated that both PMT and ADP quenches the fluorescence of Hb through static quenching mechanism which was further confirmed by time resolved fluorescence spectra. The UV-Vis spectroscopy suggested ground state complex formation. The activation energy (E a ) was observed more in the case of Hb-ADP than Hb-PMT interaction system. The FRET result indicates the high probability of energy transfer from β Trp37 residue of Hb to the PMT (r=2.02nm) and ADP (r=2.33nm). The thermodynamic data reveal that binding of PMT with Hb are exothermic in nature involving hydrogen bonding and van der Waal interaction whereas in the case of ADP hydrophobic forces play the major role and binding process is endothermic in nature. The CD results show that both PMT and ADP, induced secondary structural changes of Hb and unfold the protein by losing a large helical content while the effect is more pronounced with ADP. Additionally, we also utilized computational approaches for deep insight into the binding of these drugs with Hb and the results are well matched with our experimental results. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array

    PubMed Central

    Luthman, Anna Siri; Dumitru, Sebastian; Quiros‐Gonzalez, Isabel; Joseph, James

    2017-01-01

    Abstract The ability to resolve multiple fluorescent emissions from different biological targets in video rate applications, such as endoscopy and intraoperative imaging, has traditionally been limited by the use of filter‐based imaging systems. Hyperspectral imaging (HSI) facilitates the detection of both spatial and spectral information in a single data acquisition, however, instrumentation for HSI is typically complex, bulky and expensive. We sought to overcome these limitations using a novel robust and low cost HSI camera based on a spectrally resolved detector array (SRDA). We integrated this HSI camera into a wide‐field reflectance‐based imaging system operating in the near‐infrared range to assess the suitability for in vivo imaging of exogenous fluorescent contrast agents. Using this fluorescence HSI (fHSI) system, we were able to accurately resolve the presence and concentration of at least 7 fluorescent dyes in solution. We also demonstrate high spectral unmixing precision, signal linearity with dye concentration and at depth in tissue mimicking phantoms, and delineate 4 fluorescent dyes in vivo. Our approach, including statistical background removal, could be directly generalised to broader spectral ranges, for example, to resolve tissue reflectance or autofluorescence and in future be tailored to video rate applications requiring snapshot HSI data acquisition. PMID:28485130

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.E.; Adams, R.; Carlson, A.L.

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shiftmore » and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.« less

  14. Hydroxyl Radical Fluorescence and Quantum Yield Following Lyman-α Photoexcitation of Water Vapor in a Room Temperature Cell and Cooled in a Supersonic Expansion.

    PubMed

    Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J

    2018-06-28

    Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.

  15. Microviscosity of supercooled water confined within aminopropyl-modified mesoporous silica as studied by time-resolved fluorescence spectroscopy.

    PubMed

    Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio

    2012-01-01

    The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.

  16. Time-resolved and Depth-dependent Photo-Degradation of Marine Dissolved Organic Matter Analyzed by Semi-continuous EEM Fluorescence Monitoring

    NASA Astrophysics Data System (ADS)

    Gonsior, M.; Timko, S.; Conte, M. H.; Schmitt-Kopplin, P.

    2016-02-01

    Ten liter water samples were collected at the Bermuda Atlantic Time Series Station (BATS) at 200 m intervals down to a maximum depth of 4530 m and solid-phase extracted. The methanol extracts were dried and re-dissolved in pure water and then used to determine the time-resolved photo-degradation of marine dissolved organic matter to be able to determine kinetic data. Excitation Emission Matrix (EEM) fluorescence spectra were recorded every 20 minutes using a custom-built flow-through photo-degradation system during 20 h of solar simulated light exposure. The resulting EEM spectra were modeled using Parallel Factor Analysis (PARAFAC) and results revealed reproducible and significant changes in the photo-degradation of marine FDOM originating from different depths. A five component model was fitted and the terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in the surface layer, which might be the reason for its prevalence in the open ocean. Surface ocean waters were depleted in the highly photo-degradable components while protein-like fluorescent components were enriched, which was in agreement with previous studies. Ultrahigh resolution mass spectrometry confirmed unique aliphatic molecular ions in the Surface Ocean and hydrogen-deficient molecules at depth. Multivariate statistical analyses revealed strong correlations between unsaturated/aromatic molecular ions and depth, where aliphatic molecular ions were more prevalent in the Surface Ocean and aromatic molecular ions at depth. Strong correlations were also found between hydrogen-deficient molecular ions and the humic-like fluorescent components. The rapid photo-degradation of the deep-sea FDOM and the surface oceans relative depletion of aromatic molecular ions suggested that deep-ocean FDOM may be too photochemically labile to survive meridional overturning circulation.

  17. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  18. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest.

    PubMed

    Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  19. Confocal Microscopy Imaging with an Optical Transition Edge Sensor

    NASA Astrophysics Data System (ADS)

    Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.

    2018-05-01

    Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.

  20. Isomers in the excited state of electron-transferring flavoprotein from Megasphaera elsdenii: spectral resolution from the time-resolved fluorescence spectra.

    PubMed

    Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi; Tanaka, Fumio

    2008-02-27

    Electron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra. It was found that Iso-ETF displayed two spectra with lifetime of 0.605 ns (emission peak, 508 nm) and with lifetime of 1.70 ns (emission peak, 540 nm) at 5 degrees C, and with lifetime of 0.693 ns (emission peak, 508 nm) and with lifetime of 2.75 ns (emission peak, 540 nm) at 25 degrees C. Holo-ETF displayed two spectra with lifetime of 0.739 ns (emission peak, 508 nm) and with lifetime of 2.06 ns (emission peak, 545 nm) at 5 degrees C, and with lifetime of 0.711 ns (emission peak, 527 nm) and with lifetime of 3.08 ns (emission peak, 540 nm) at 25 degrees C. Thus fluorescence lifetimes of every spectrum increased upon elevating temperature. Emission peaks Iso-ETF did not change much upon elevating temperature. Activation enthalpy changes, activation entropy changes and activation Gibbs energy changes of quenching rates all displayed negative. Two emission species in the both ETF may be hydrogen-bonding isomers, because isoalloxazine ring of FAD contains four hydrogen acceptors and one donor.

  1. Time resolved PIV and flow visualization of 3D sheet cavitation

    NASA Astrophysics Data System (ADS)

    Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.

    2006-04-01

    Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.

  2. Fluorimetric Studies of a Trans-Membrane Protein and Its Interactions with Differently Functionalized Silver Nanoparticles.

    PubMed

    Gambucci, Marta; Tarpani, Luigi; Zampini, Giulia; Massaro, Giuseppina; Nocchetti, Morena; Sassi, Paola; Latterini, Loredana

    2018-06-18

    Trans-membrane proteins play important roles in the inter-cellular signaling to regulate the interactions among adjacent cells and influence cell fate. The study of the interactions between membrane proteins and nanomaterials is paramount for the design of nanomaterial-based therapies. In the present work, the fluorescence properties of the trans-membrane receptor Notch2 have been investigated. In particular, steady state and time resolved fluorescence methods have been used to characterize the emission of tryptophan residues of Notch2 and then this emission is used to monitor the impact of silver colloids on protein behavior. To this aim, silver colloids are prepared with two different methods to make sure they bear hydrophilic (citrate ions, C-AgNPs) or hydrophobic (dodecanethiol molecules D-AgNPs) capping agents; the preparation procedures are tightly controlled in order to obtain metal cores with similar size distributions (7.4 ± 2.5 and 5.0 ± 0.8 nm, respectively), thus making easier the comparison of the results. The occurrence of strong interactions between Notch2 and D-AgNPs is suggested by the efficient and statistically relevant quenching of the stationary protein emission already at low nanoparticle concentrations (ca. 12% quenching with [D-AgNPs] = 0.6nM). The quenching becomes even more pronounced (ca. 60%) when [D-AgNPs] is raised to 8.72nM. On the other hand, the addition of increasing concentrations of C-AgNPs to Notch2 does not affect the protein fluorescence (intensity variations below 5%) indicating that negligible interactions are taking place. The fluorescence data, recorded in the presence of increasing concentrations of silver nanoparticles, are then analyzed through the Stern-Volmer equation and the sphere of action model to discuss the nature of the interactions. The effect of D-AgNPs on the fluorescence decay times of Notch2 is also investigated and a decrease of the average decay time is observed (from 4.64 to 3.42 ns). The observed variations of the stationary and time-resolved fluorescence behavior of the protein are discussed in terms of static and collisional interactions. These results document that the capping shell is able to drive the protein-particle interactions, which have likely a hydrophobic nature.

  3. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    PubMed

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Probing the binding interaction of a phenazinium dye with serum transport proteins: a combined fluorometric and circular dichroism study.

    PubMed

    Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin

    2010-01-01

    In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of alpha-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.

  5. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection

    NASA Astrophysics Data System (ADS)

    Aslandaş, Ayşe Merve; Balcı, Neslihan; Arık, Mustafa; Şakiroğlu, Halis; Onganer, Yavuz; Meral, Kadem

    2015-11-01

    Fluorescent carbon dots (C-dots) were synthesized by a facile method containing liquid N2 treatment and centrifuge processes. The photophysical properties of the C-dots in an aqueous solution were examined at various conditions such as concentration, temperature, pH and excitation wavelength by using UV-vis absorption, fluorescence and time-resolved fluorescence spectroscopies. The C-dots emitted a broad fluorescence between approximately 350-550 nm and their fluorescence was tuned by changing excitation wavelength. The as-prepared C-dots were applied to Fe3+ detection from aqueous solution. Spectroscopic data revealed that the as-prepared C-dots were used to detect Fe3+ in the range of 12.5 μM to 100 μM as a fluorescence sensor.

  6. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.

    PubMed Central

    Atkinson, G H; Blanchard, D; Lemaire, H; Brack, T L; Hayashi, H

    1989-01-01

    The fluorescence spectrum of a distinct isometric and conformational intermediate formed on the 10(-11) s time scale during the bacteriorhodopsin (BR) photocycle is observed at room temperature using a two laser, pump-probe technique with picosecond time resolution. The BR photocycle is initiated by pulsed (8 ps) excitation at 565 nm, whereas the fluorescence is generated by 4-ps laser pulses at 590 nm. The unstructured fluorescence extends from 650 to 880 nm and appears in the same general spectral region as the fluorescence spectrum assigned to BR-570. The transient fluorescence spectrum can be distinguished from that assigned to BR-570 by a larger emission quantum yield (approximately twice that of BR-570) and by a maximum intensity near 731 nm (shifted 17 nm to higher energy from the maximum of the BR-570 fluorescence spectrum). The fluorescence spectrum of BR-570 only is measured with low energy, picosecond pulsed excitation at 590 nm and is in good agreement with recent data in the literature. The assignment of the transient fluorescence spectrum to the K-590 intermediate is based on its appearance at time delays longer than 40 ps. The K-590 fluorescence spectrum remains unchanged over the entire 40-100-ps interval. The relevance of these fluorescence data with respect to the molecular mechanism used to model the primary processes in the BR photocycle also is discussed. PMID:2713439

  7. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes.

    PubMed

    Pflock, Tobias J; Oellerich, Silke; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We have employed time-resolved spectroscopy on the picosecond time scale in combination with dynamic Monte Carlo simulations to investigate the photophysical properties of light-harvesting 2 (LH2) complexes from the purple photosynthetic bacterium Rhodopseudomonas acidophila. The variations of the fluorescence transients were studied as a function of the excitation fluence, the repetition rate of the excitation and the sample preparation conditions. Here we present the results obtained on detergent solubilized LH2 complexes, i.e., avoiding intercomplex interactions, and show that a simple four-state model is sufficient to grasp the experimental observations quantitatively without the need for any free parameters. This approach allows us to obtain a quantitative measure for the singlet-triplet annihilation rate in isolated, noninteracting LH2 complexes.

  8. Interactions of beta-blockers with model lipid membranes: molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations.

    PubMed

    Först, Gesche; Cwiklik, Lukasz; Jurkiewicz, Piotr; Schubert, Rolf; Hof, Martin

    2014-08-01

    Since pharmacokinetic and pharmacodynamic activities of drugs are often related to their interactions with biomembranes, it is of high interest to establish an approach for the characterization of these interactions at the molecular level. For the present study, beta-blockers (oxprenolol, propranolol, and acebutolol) were selected due to their well described nonspecific membrane effects (NME). Their interactions with model lipid membranes composed of palmitoyloleoylphosphatidylcholine (POPC) were studied using Time-Dependent Fluorescence Shift (TDFS) and Generalized Polarization (GP) as well as molecular dynamics (MD) simulations. Liposomal vesicles were labeled with fluorescent membrane polarity probes (Laurdan, Prodan, and Dtmac). Increasing beta-blocker concentrations (0-10 mM for acebutolol and oxprenolol, and 0-1.5 mM for propranolol) significantly rigidifies the lipid bilayer at the glycerol and headgroup level, which was detected in the steady-state and in the time-resolved fluorescence data. The effects of propranolol were considerably stronger than those of the two other beta-blockers. The addition of fluorescent probes precisely located at different levels within the lipid bilayer revealed the insertion of the beta-blockers into the POPC bilayer at the glycerol backbone level, which was further confirmed by MD simulations in the case of propranolol. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy.

    PubMed

    Sun, Yang; Park, Jesung; Stephens, Douglas N; Jo, Javier A; Sun, Lei; Cannata, Jonathan M; Saroufeem, Ramez M G; Shung, K Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 microm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  10. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    PubMed Central

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-01-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque. PMID:19566223

  11. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  12. In vivo flow cytometry and time-resolved near-IR angiography and lymphography

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Tuchin, Valery V.; Brock, Robert W.; Zharov, Vladimir P.

    2007-05-01

    Integration of photoacoustic and photothermal techniques with high-speed, high-resolution transmission and fluorescence microscopy shows great potential for in vivo flow cytometry and indocyanine green (ICG) near-infrared (IR) angiography of blood and lymph microvessels. In particular, the capabilities of in vivo flow cytometry using rat mesentery and nude mouse ear models are demonstrated for real-time quantitative detection of circulating and migrating individual blood and cancer cells in skin, mesentery, lymph nodes, liver, kidney; studying vascular dynamics with a focus on lymphatics; monitoring cell traffic between blood and lymph systems; high-speed imaging of cell deformability in flow; and label-free real-time monitoring of single cell extravasation from blood vessel lumen into tissue. As presented, the advantages of ICG IR-angiography include estimation of time resolved dye dynamics (appearance and clearance) in blood and lymph microvessels using fluorescent and photoacoustic modules of the integrated technique. These new approaches are important for monitoring and quantifying metastatic and apoptotic cells; comparative measurements of plasma and cell velocities; analysis of immune responses; monitoring of circulating macromolecules, chylomicrons, bacteria, viruses and nanoparticles; molecular imaging. In the future, we believe that the integrated technique presented will have great potential for translation to early disease diagnoses (e.g. cancer) or assessment of innovative therapeutic interventions in humans.

  13. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a

  14. Detection and Characterization of Aggregates, Prefibrillar Amyloidogenic Oligomers, and Protofibrils Using Fluorescence Spectroscopy

    PubMed Central

    Lindgren, Mikael; Sörgjerd, Karin; Hammarström, Per

    2005-01-01

    Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300–500 kD) within 2 h that matured after 20 h into larger spherical clusters (30–50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300–500 kD) with an apparent dissociation constant of 1.6 μM, which was slightly better than for ThT (6.8 μM). Time-resolved fluorescence anisotropy decay of ANS was shown to be a useful tool for giving further structural and kinetic information of the oligomeric aggregates. ThT dramatically increases its fluorescence quantum yield when bound to amyloid fibrils; however, the mechanism behind this property is unknown. Data from this work suggest that unbound ThT is also intrinsically quenched and functions similarly to a molecular rotor, which in combination with its environmental dependence provides a blue shift to the characteristic 482 nm wavelength when bound to amyloid fibrils. PMID:15764666

  15. Existence of a new emitting singlet state of proflavine: femtosecond dynamics of the excited state processes and quantum chemical studies in different solvents.

    PubMed

    Kumar, Karuppannan Senthil; Selvaraju, Chellappan; Malar, Ezekiel Joy Padma; Natarajan, Paramasivam

    2012-01-12

    Proflavine (3,6-diaminoacridine) shows fluorescence emission with lifetime, 4.6 ± 0.2 ns, in all the solvents irrespective of the solvent polarity. To understand this unusual photophysical property, investigations were carried out using steady state and time-resolved fluorescence spectroscopy in the pico- and femtosecond time domain. Molecular geometries in the ground and low-lying excited states of proflavine were examined by complete structural optimization using ab initio quantum chemical computations at HF/6-311++G** and CIS/6-311++G** levels. Time dependent density functional theory (TDDFT) calculations were performed to study the excitation energies in the low-lying excited states. The steady state absorption and emission spectral details of proflavine are found to be influenced by solvents. The femtosecond fluorescence decay of the proflavine in all the solvents follows triexponential function with two ultrafast decay components (τ(1) and τ(2)) in addition to the nanosecond component. The ultrafast decay component, τ(1), is attributed to the solvation dynamics of the particular solvent used. The second ultrafast decay component, τ(2), is found to vary from 50 to 215 ps depending upon the solvent. The amplitudes of the ultrafast decay components vary with the wavelength and show time dependent spectral shift in the emission maximum. The observation is interpreted that the time dependent spectral shift is not only due to solvation dynamics but also due to the existence of more than one emitting state of proflavine in the solvent used. Time resolved area normalized emission spectral (TRANES) analysis shows an isoemissive point, indicating the presence of two emitting states in homogeneous solution. Detailed femtosecond fluorescence decay analysis allows us to isolate the two independent emitting components of the close lying singlet states. The CIS and TDDFT calculations also support the existence of the close lying emitting states. The near constant lifetime observed for proflavine in different solvents is suggested to be due to the similar dipole moments of the ground and the evolved emitting singlet state of the dye from the Franck-Condon excited state.

  16. Microlensed dual-fiber probe for depth-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo

    2011-07-01

    We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.

  17. Effect of solvent hydrogen bonding on the photophysical properties of intramolecular charge transfer probe trans-ethyl p-(dimethylamino) cinamate and its derivative

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Moyon, N. S.; Mitra, Sivaprasad

    2009-08-01

    Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino) cinamate (EDAC) and 4-(dimethylamino) cinnamic acid (DMACA) were studied by steady state absorption and emission, picosecond time-resolved fluorescence experiments in various pure and mixed solvent systems. The large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition ( ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property; however, fluorescence emission maximum, stokes shift and fluorescence quantum yield show significant deviation from linearity in polar protic solvents, indicating a large contribution of solvent hydrogen bonding on the excited state relaxation mechanism. A quantitative estimation of contribution from different solvatochromic parameters was made using linear free energy relationship based on Kamlet-Taft equation.

  18. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    PubMed

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    PubMed

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Detection of high-risk atherosclerotic lesions by time-resolved fluorescence spectroscopy based on the Laguerre deconvolution technique

    NASA Astrophysics Data System (ADS)

    Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.

    2006-02-01

    This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.

  1. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  2. Quantitative Time-Resolved Fluorescence Imaging of Androgen Receptor and Prostate-Specific Antigen in Prostate Tissue Sections.

    PubMed

    Krzyzanowska, Agnieszka; Lippolis, Giuseppe; Helczynski, Leszek; Anand, Aseem; Peltola, Mari; Pettersson, Kim; Lilja, Hans; Bjartell, Anders

    2016-05-01

    Androgen receptor (AR) and prostate-specific antigen (PSA) are expressed in the prostate and are involved in prostate cancer (PCa). The aim of this study was to develop reliable protocols for reproducible quantification of AR and PSA in benign and malignant prostate tissue using time-resolved fluorescence (TRF) imaging techniques. AR and PSA were detected with TRF in tissue microarrays from 91 PCa patients. p63/ alpha-methylacyl-CoA racemase (AMACR) staining on consecutive sections was used to categorize tissue areas as benign or cancerous. Automated image analysis was used to quantify staining intensity. AR intensity was significantly higher in AMACR+ and lower in AMACR- cancer areas as compared with benign epithelium. The PSA intensity was significantly lower in cancer areas, particularly in AMACR- glands. The AR/PSA ratio varied significantly in the AMACR+ tumor cells as compared with benign glands. There was a trend of more rapid disease progression in patients with higher AR/PSA ratios in the AMACR- areas. This study demonstrates the feasibility of developing reproducible protocols for TRF imaging and automated image analysis to study the expression of AR and PSA in benign and malignant prostate. It also highlighted the differences in AR and PSA protein expression within AMACR- and AMACR+ cancer regions. © 2016 The Histochemical Society.

  3. Novel tissue phantom for testing a dual-modality diagnostic system: time-resolved fluorescence spectroscopy and high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura

    2008-02-01

    A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.

  4. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    PubMed

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Prostate cancer diagnosis with fluorescence lifetime imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Gandour-Edwards, Regina F.; Dall'Era, Marc; Marcu, Laura

    2017-02-01

    More than 1 million men in the United States undergo a prostate biopsy procedure annually and approximately 200,000 men receive a diagnosis of prostate cancer. 5-10% of these men have to undergo a repeat biopsy due to insufficient tissue sampling. We are studying the utility of a multi-spectral time resolved fluorescence spectroscopy (MS-TRFS) technique for real-time prostate cancer diagnosis. The MS-TRFS imaging setup, which includes a fiberoptic set-up with a 355nm excitation light source coupled with a blue (450nm) aiming beam, was used to image ex-vivo prostatectomy specimen. The prostate tissue from 11 patients was sectioned at 2mm thickness and the fluorescence lifetime information was overlaid spatially for histology and thus, diagnostic co-registration. Initial results show that fluorescence lifetime in the 390±40nm channel, which measures collagen and elastin signatures, is longer for glandular regions than in the stromal regions. Additionally, lifetime in the 452±45nm channel, corresponding to NAD redox state, is longer in the cancerous glandular region in comparison with the normal glandular regions. Current work is focused on developing real-time quantitative algorithms to combine the fluorescence signatures from the two channels for performing prostate cancer diagnosis on biopsies.

  6. Resolving environmental microheterogeneity and dielectric relaxation in fluorescence kinetics of protein

    NASA Astrophysics Data System (ADS)

    Rolinski, Olaf J.; McLaughlin, Damien; Birch, David J. S.; Vyshemirsky, Vladislav

    2016-09-01

    The fluorescence intensity decay of protein is easily measurable and reports on the intrinsic fluorophore-local environment interactions on the sub-nm spatial and sub-ns temporal scales, which are consistent with protein activity in numerous biomedical and industrial processes. This makes time-resolved fluorescence a perfect tool for understanding, monitoring and controlling these processes at the molecular level, but the complexity of the decay, which has been traditionally fitted to multi-exponential functions, has hampered the development of this technique over the last few decades. Using the example of tryptophan in HSA we present the alternative to the conventional approach to modelling intrinsic florescence intensity decay in protein where the key factors determining fluorescence decay, i.e. the excited-state depopulation and the dielectric relaxation (Toptygin and Brand 2000 Chem. Phys. Lett. 322 496-502), are represented by the individual relaxation functions. This allows quantification of both effects separately by determining their parameters from the global analysis of a series of fluorescence intensity decays measured at different detection wavelengths. Moreover, certain pairs of the recovered parameters of tryptophan were found to be correlated, indicating the influence of the dielectric relaxation on the transient rate of the electronic transitions. In this context the potential for the dual excited state depopulation /dielectric relaxation fluorescence lifetime sensing is discussed.

  7. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  8. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  9. New time-resolved micro-photoluminescence spectroscopy of natural and synthetic analogue minerals

    NASA Astrophysics Data System (ADS)

    Panczer, G.; Ollier, N.; Champagnon, B.; Gaft, M.

    2003-04-01

    Minerals as well as geomaterials often present light emissions under UV or visible excitations. This property called photoluminescence is due to low concentration impurities such as the rare earths, the transition elements and the lanthanides. The induced color is used for ore prospection but only spectroscopic analyses indicate the nature of the emitted centers. However natural samples contained numerous luminescent centers simultaneously and with regular steady-state measurements (such as in cathodoluminescence) all the emissions are often over lapping. In order to record the contributions of each separate center, it is possible to use time-resolved measurements based on the decay time of the emissions and using pulsed laser excitation. Some characteristic examples will be presented on apatites, zircons as well as gemstones. Geomaterials present as well micro scale heterogeneities (growth zoning, inclusions, devitrification, microphases...). Precise identification and optical effects of such heterogeneities have to be taken into account. To reach the microscale using photo luminescence studies, a microscope has be modified to allowed pulsed laser injection (from UV to visible), beam focus with micro scale resolution on the sample (<10 μm), as well as time resolved collection of micro fluorescence. Such equipment allows now undertaking time-resolved measurements of microphases. Applications on geomaterials will be presented.

  10. Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet.

    PubMed

    Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe

    2017-08-30

    In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

  11. Implementation of laser induced fluorescence in a pulse radiolysis experiment--a new way to analyze resazurin-like reduction mechanisms.

    PubMed

    Balcerzyk, A; Baldacchino, G

    2014-04-07

    Resazurin (RNO) reduction by hydrated electrons produces a fluorescent molecule: resorufin (RN). To take advantage of RN fluorescence, a novel setup is designed by implementing fluorescence detection induced by laser in a pulse radiolysis experiment. Time resolved fluorescence spectra were recorded with a fast gated intensified CCD camera during the reduction of RNO from μs to ms. Two 532 nm laser types have been used to describe the short μs range by a 5 ns Q-switch laser and the μs-ms range by a CW DPSS laser. By fitting the simulated model to the experimental data a second order rate constant of 10(9) M(-1) s(-1) was re-evaluated. This method should be considered in the near future in many in situ and real time measurements for evaluating radical production.

  12. Characterization of time-resolved fluorescence response measurements for distributed optical-fiber sensing.

    PubMed

    Sinchenko, Elena; Gibbs, W E Keith; Davis, Claire E; Stoddart, Paul R

    2010-11-20

    A distributed optical-fiber sensing system based on pulsed excitation and time-gated photon counting has been used to locate a fluorescent region along the fiber. The complex Alq3 and the infrared dye IR-125 were examined with 405 and 780 nm excitation, respectively. A model to characterize the response of the distributed fluorescence sensor to a Gaussian input pulse was developed and tested. Analysis of the Alq3 fluorescent response confirmed the validity of the model and enabled the fluorescence lifetime to be determined. The intrinsic lifetime obtained (18.2±0.9 ns) is in good agreement with published data. The decay rate was found to be proportional to concentration, which is indicative of collisional deactivation. The model allows the spatial resolution of a distributed sensing system to be improved for fluorophores with lifetimes that are longer than the resolution of the sensing system.

  13. Complexation induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: a drug-binding application using displacement assays.

    PubMed

    Pal, Kaushik; Mallick, Suman; Koner, Apurba L

    2015-06-28

    Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD.

  14. Fluorescence dynamics of biological systems using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratton, E.; Mantulin, W.W.; Weber, G.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less

  15. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    PubMed Central

    Chen, Jin; Venugopal, Vivek; Intes, Xavier

    2011-01-01

    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610

  16. Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging.

    PubMed

    Liu, Yongsheng; Zhou, Shanyong; Tu, Datao; Chen, Zhuo; Huang, Mingdong; Zhu, Haomiao; Ma, En; Chen, Xueyuan

    2012-09-12

    Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln(3+)), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on sub-5 nm amine-functionalized tetragonal ZrO(2)-Ln(3+) nanoparticles synthesized via a facile solvothermal method and ligand exchange. By utilizing the long-lived luminescence of Ln(3+), we demonstrate its application as a sensitive time-resolved fluorescence resonance energy transfer (FRET) bioprobe to detect avidin with a record-low detection limit of 3.0 nM. The oxide nanoparticles also exhibit specific recognition of cancer cells overexpressed with urokinase plasminogen activator receptor (uPAR, an important marker of tumor biology and metastasis) and thus may have great potentials in targeted bioimaging.

  17. Studies of Time-Resolved Fluorescence Spectroscopy and Resolved Absorption Spectra of Nucleic Acid Components.

    NASA Astrophysics Data System (ADS)

    Fu, Yingxian

    1993-01-01

    There is considerable uncertainty about dynamic aspects of the photophysics of the adenylyl chromophore, stemming from the discordant values reported for the room temperature fluorescence lifetimes (tau_1 = 5 ps, tau_2 = 330 ps for 9MeAde; tau_1 = 290 ps, tau_2 = 4.17 ns for ATP). Spectra reported in conjunction with these lifetimes create difficulties in assignment of emission. To clarify this situation I have investigated the fluorescence decay times and time -resolved emission spectra of adenylyl compounds under a variety of conditions (concentration, pH, solvent) using sub-ns laser excitation at 265 nm together with gated fast sampling (100 ps) detection and signal averaging. Multi -component decays and spectra are observed in aqueous solution. Major slow components (tau = 4.4 +/- 0.2 ns) with emission maxima at 380 nm are found for all components at pH 1.1 and for ATP at pH 4.4. At pH 7 a fast component (<100 ps) predominates. There is no marked evidence for a concentration dependence, the oscillator strengths are 10^ {-3}-10^{-5} and transitions must be classified as weakly forbidden. Single component emission is observed in acetonitrile and ethanol. The UV absorption spectra of biomolecules d(CG) and polyd(GC)cdotpolyd(GC) exhibit the different hypochromic effects due to different interactions between guanosine(G) and cytidine(C) in stacked form. The present work has been carried out to explain this quantitatively. To approach this problem the absorption spectra of G and C have been resolved into gaussian components using the PeakFit program. The absorption spectra (220-310 nm) of d(CG) and polyd(GC)cdotpolyd(GC) have been fitted with gaussian components of G and C (in the order of increasing energy, G1 and G2, and C1, C2 and C3, respectively), and the contribution to both spectra from individual gaussians is estimated in terms of oscillator strengths. The fitting results suggest that the small hypochromism in absorption spectrum of d(CG) may be attributed to the interactions between G1 and C1; the large hypochromism in absorption spectrum of polyd(GC)cdotpolyd(GC) probably originates from the interactions between G1, C1, C2 and C3. The present work has also resolved a series of absorption spectra of cytidyl chromophore in different pH aqueous solution and various solvents. Time-resolved emission spectra of GMP, dCMP and m^5 -dCMP in different pH aqueous solutions have been determined. The results show that pH affects the lifetimes and spectral characteristics of GMP significantly, but does not affect dCMP and m^5-dCMP.

  18. Subnanosecond polarized microfluorimetry in the time domain: An instrument for studying receptor trafficking in live cells

    NASA Astrophysics Data System (ADS)

    Martin-Fernandez, M. L.; Tobin, M. J.; Clarke, D. T.; Gregory, C. M.; Jones, G. R.

    1998-02-01

    We describe an instrument designed to monitor molecular motions in multiphasic, weakly fluorescent microscopic systems. It combines synchrotron radiation, a low irradiance polarized microfluorimeter, and an automated, multiframing, single-photon-counting data acquisition system, and is capable of continually accumulating subnanosecond resolved anisotropy decays with a real-time resolution of about 60 s. The instrument has initially been built to monitor ligand-receptor interactions in living cells, but can equally be applied to the continual measurement of any dynamic process involving fluorescent molecules, that occurs over a time scale from a few minutes to several hours. As a particularly demanding demonstration of its capabilities, we have used it to monitor the environmental constraints imposed on the peptide hormone epidermal growth factor during its endocytosis and recycling to the cell surface in live cells.

  19. The fluorescence resonance energy transfer (FRET) gate: a time-resolved study.

    PubMed

    Xu, Qing-Hua; Wang, Shu; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2005-01-18

    The two-step energy-transfer process in a self-assembled complex comprising a cationic conjugated polymer (CCP) and a dsDNA is investigated by using pump-dump-emission spectroscopy and time-correlated single-photon counting; energy is transferred from the CCP to an ethidium bromide (EB) molecule intercalated into the dsDNA through a fluorescein molecule linked to one terminus of the DNA. Time-dependent anisotropy measurements indicate that the inefficient direct energy transfer from the CCP to the intercalated EB results from the near orthogonality of their transition moments. These measurements also show that the transition moment of the fluorescein spans a range of angular distributions and lies between that of the CCP and EB. Consequently, the fluorescein acts as a fluorescence resonance energy-transfer gate to relay the excitation energy from the CCP to the EB.

  20. The fluorescence resonance energy transfer (FRET) gate: A time-resolved study

    PubMed Central

    Xu, Qing-Hua; Wang, Shu; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2005-01-01

    The two-step energy-transfer process in a self-assembled complex comprising a cationic conjugated polymer (CCP) and a dsDNA is investigated by using pump-dump-emission spectroscopy and time-correlated single-photon counting; energy is transferred from the CCP to an ethidium bromide (EB) molecule intercalated into the dsDNA through a fluorescein molecule linked to one terminus of the DNA. Time-dependent anisotropy measurements indicate that the inefficient direct energy transfer from the CCP to the intercalated EB results from the near orthogonality of their transition moments. These measurements also show that the transition moment of the fluorescein spans a range of angular distributions and lies between that of the CCP and EB. Consequently, the fluorescein acts as a fluorescence resonance energy-transfer gate to relay the excitation energy from the CCP to the EB. PMID:15642946

  1. Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.

    PubMed

    Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2017-08-20

    Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.

  2. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    NASA Astrophysics Data System (ADS)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  3. Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications.

    PubMed

    Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M

    2014-11-01

    The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.

  4. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy

    PubMed Central

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H.

    2016-01-01

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800

  5. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2015-12-01

    Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.

  6. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II

    NASA Astrophysics Data System (ADS)

    Nemtseva, Elena V.; Lashchuk, Olesya O.; Gerasimova, Marina A.; Melnik, Tatiana N.; Nagibina, Galina S.; Melnik, Bogdan S.

    2018-01-01

    In most cases, intermediate states of multistage folding proteins are not ‘visible’ under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  7. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    PubMed

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  8. Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes.

    PubMed

    Das, Ruma; Rajender, Gone; Giri, P K

    2018-02-07

    We explore the mechanism of the fluorescence enhancement and fluorescence quenching effect of single walled carbon nanotubes (SWCNTs) on highly fluorescent graphene quantum dots (GQDs) over a wide range of concentrations of SWCNTs. At very low concentrations of SWCNTs, the fluorescence intensity of the GQDs is enhanced, while at higher concentrations, systematic quenching of fluorescence is observed. The nature of the Stern-Volmer plot for the latter case was found to be non-linear indicating a combined effect of dynamic and static quenching. The contribution of the dynamic quenching component was assessed through the fluorescence lifetime measurements. The contribution of static quenching is confirmed from the red shift of the fluorescence spectra of the GQDs after addition of SWCNTs. The fluorescence intensity is first enhanced at very low concentration due to improved dispersion and higher absorption by GQDs, while at higher concentration, the fluorescence of GQDs is quenched due to the complex formation and associated reduction of the radiative sites of the GQDs, which is confirmed from time-resolved fluorescence measurements. Laser confocal microscopy imaging provides direct evidence of the enhancement and quenching of fluorescence at low and high concentrations of SWCNTs, respectively. This study provides an important insight into tuning the fluorescence of GQDs and understanding the interaction between GQDs and different CNTs, which is important for bio-imaging and drug delivery applications.

  9. Confocal fluorescence techniques in industrial application

    NASA Astrophysics Data System (ADS)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  10. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    PubMed Central

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6°C, ΔHTm = 56.5 kcal/mol, and ΔCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0°C, ΔHm= 51.4 kcal/mol, and ΔCp = 730 cal/mol//K. PMID:15454455

  11. Controlled fluorescence in a beetle's photonic structure and its sensitivity to environmentally induced changes

    PubMed Central

    Kaczmarek, Anna M.; Vukusic, Peter; Deparis, Olivier; Van Hooijdonk, Eloise

    2016-01-01

    The scales covering the elytra of the male Hoplia coerulea beetle contain fluorophores embedded within a porous photonic structure. The photonic structure controls both insect colour (reflected light) and fluorescence emission. Herein, the effects of water-induced changes on the fluorescence emission from the beetle were investigated. The fluorescence emission peak wavelength was observed to blue-shift on water immersion of the elytra whereas its reflectance peak wavelength was observed to red-shift. Time-resolved fluorescence measurements, together with optical simulations, confirmed that the radiative emission is controlled by a naturally engineered photonic bandgap while the elytra are in the dry state, whereas non-radiative relaxation pathways dominate the emission response of wet elytra. PMID:28003460

  12. Alteration of time-resolved autofluorescence properties of rat aorta, induced by diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Uherek, M.; Uličná, O.; Vančová, O.; Muchová, J.; Ďuračková, Z.; Šikurová, L.; Chorvát, D.

    2016-10-01

    Changes in autofluorescence properties of isolated rat aorta, induced by diabetes mellitus, were detected using time-resolved fluorescence spectroscopy with pulsed ultraviolet (UV) laser excitation. We demonstrated that time-resolved spectroscopy was able to detect changes in aorta tissues related to diabetes and unambiguously discriminate diabetic (τ 1 0.63  ±  0.05 ns, τ 2 3.66  ±  0.10 ns) samples from the control (τ 1 0.76  ±  0.03 ns, τ 2 4.48  ±  0.15 ns) group. We also report changes in the ratio of relative amplitudes of the two lifetime component in aorta tissue during diabetes, most likely related to the pseudohypoxic state with altered NADH homeostasis.

  13. Correlation of conformational heterogeneity of the tryptophyl side chain and time-resolved fluorescence intensity decay kinetics

    NASA Astrophysics Data System (ADS)

    Laws, William R.; Ross, J. B. Alexander

    1992-04-01

    The time-resolved fluorescence properties of a tryptophan residue should be useful for probing protein structure, function, and dynamics. To date, however, the non-single exponential fluorescence intensity decay kinetics for numerous peptides and proteins having a single tryptophan residue have not been adequately explained. Many possibilities have been considered and include: (1) contributions from the 1La and 1Lb states of indole; (2) excited-state hydrogen exchange; and (3) environmental heterogeneity from (chi) 1 and (chi) 2 rotamers. In addition, it has been suggested that generally many factors contribute to the decay and a distribution of probabilities may be more appropriate. Two recent results support multiple species due to conformational heterogeneity as the major contributor to complex kinetics. First, a rotationally constrained tryptophan analogue has fluorescence intensity decay kinetics that can be described by the sum of two exponentials with amplitudes comparable to the relative populations of the two rotational isomers. Second, the multiple exponentials observed for tyrosine-containing model compounds and peptides correlate with the (chi) 1 rotamer populations independently determined by 1H NMR. We now report similar correlations between rotamer populations and fluorescence intensity decay kinetics for a tryptophan analogue of oxytocin. It appears for this compound that either (chi) 2 rotations do not appreciably alter the indole environment, (chi) 2 rotations are rapid enough to average the observed dependence, or only one of two possible (chi) 2 populations is associated with each (chi) 1 rotamer.

  14. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    PubMed

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  15. Dynamic organization of myristoylated Src in the live cell plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less

  16. Dynamic organization of myristoylated Src in the live cell plasma membrane

    DOE PAGES

    Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.; ...

    2016-01-15

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less

  17. Intramolecular trap formation and Förster energy transfer in the hexapyropheophorbide- a molecular system

    NASA Astrophysics Data System (ADS)

    Al-Omari, S.

    2006-12-01

    The photophysical properties of the hexapyropheophorbide- a (P6) compound were studied using both steady-state and time-resolved spectroscopy. It was found that neighboring pyropheophorbide- a (pyroPheo) molecules covalently linked to each other through carbon chains, which could stack. This structural property is the reason for the possibility of formation of two different types of energy traps, which could be resolved experimentally. One of them is formed via face-to-face stacking of two pyroPheo molecules with a direction of the transition dipole moments parallel to each other. The second type of energy trap gives the dominant contribution to the fluorescence signal at a registration wavelength having the oblique geometry or orthogonal direction of the transition dipole moments of the interacting pyroPheo molecules. In any case, the dipole-dipole Förster energy transfer between pyroPheo molecules caused a very fast and efficient delivery of the excitation to a trap. As a result, the fluorescence as well as the singlet oxygen quantum yields of P6 were reduced by four and three times, respectively, compared to those values of the reference bispyrophephorbide- a (P2) compound.

  18. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    NASA Astrophysics Data System (ADS)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  19. Lagrangian 3D tracking of fluorescent microscopic objects in motion.

    PubMed

    Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  20. Two-Photon Fluorescence Spectroscopy and Imaging of 4-Dimethylaminonaphthalimide-Peptide and Protein Conjugates

    PubMed Central

    McLean, Alan M.; Socher, Elke; Varnavski, Oleg; Clark, Travis B.

    2014-01-01

    We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the important calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN-S38C-CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments. PMID:24245815

  1. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy.

    PubMed

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-11-19

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.

  2. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    PubMed Central

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  3. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130

  4. Validation and divergence of the activation energy barrier crossing transition at the AOT/lecithin reverse micellar interface.

    PubMed

    Narayanan, S Shankara; Sinha, Sudarson Sekhar; Sarkar, Rupa; Pal, Samir Kumar

    2008-03-13

    In this report, the validity and divergence of the activation energy barrier crossing model for the bound to free type water transition at the interface of the AOT/lecithin mixed reverse micelle (RM) has been investigated for the first time in a wide range of temperatures by time-resolved solvation of fluorophores. Here, picosecond-resolved solvation dynamics of two fluorescent probes, ANS (1-anilino-8-naphthalenesulfonic acid, ammonium salt) and Coumarin 500 (C-500), in the mixed RM have been carefully examined at 293, 313, 328, and 343 K. Using the dynamic light scattering (DLS) technique, the size of the mixed RMs at different temperatures was found to have an insignificant change. The solvation process at the reverse micellar interface has been found to be the activation energy barrier crossing type, in which interface-bound type water molecules get converted into free type water molecules. The activation energies, Ea, calculated for ANS and C-500 are 7.4 and 3.9 kcal mol(-1), respectively, which are in good agreement with that obtained by molecular dynamics simulation studies. However, deviation from the regular Arrhenius type behavior was observed for ANS around 343 K, which has been attributed to the spatial heterogeneity of the probe environments. Time-resolved fluorescence anisotropy decay of the probes has indicated the existence of the dyes in a range of locations in RM. With the increase in temperature, the overall anisotropy decay becomes faster revealing the lability of the microenvironment at elevated temperatures.

  5. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  6. Ultrafast dynamics of photoactive yellow protein via the photoexcitation and emission processes.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    Pump-dump fluorescence spectroscopy was performed for photoactive yellow protein (PYP) at room temperature. The effect of the dump pulse on the population of the potential energy surface of the electronic excited state was examined as depletion in the stationary fluorescence intensity. The dynamic behavior of the population in the electronic excited state was successfully probed in the various combinations of the pump-dump delay, the dump-pulse wavelength, the dump-pulse energy and the observation wavelength. The experimental results were compared with the results obtained by the femtosecond time-resolved fluorescence spectroscopy.

  7. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  8. Determination of the orientation of fluorescent labels relative to myosin S1 in solution from time-resolved fluorescence anisotropy experiments

    NASA Astrophysics Data System (ADS)

    van der Heide, Uulke A.; Gerritsen, Hans C.; Trayer, Ian P.; Levine, Yehudi K.

    1992-04-01

    The time-resolved fluorescence anisotropy of myosin S1 covalently labeled with Eosin-5- maleimide and 1,5-I-AEDANS was measured in solution. Each probe was specifically attached at one SH-group on the S1. The two most reactive SH sites on the heavy chain of the myosin S1 were used. The fluorescence anisotropy was measured at different excitation wavelengths. In this way, several absorption moments were utilized, each having a distinct orientation in the frame of the dye. The orientations of the transition moments in the dyes were determined in a separate experiment using an angle resolved fluorescence depolarization experiment on dyes embedded in stretched matrices of PVA polymers. The anisotropy decay curves exhibit fast (<3 ns) and slow (> 100 ns) components. The slow decay components reflect the motion of the large protein molecules. The fast anisotropy decay are attributed to a fast, but restricted, motion of the bound dye relative to the protein as experiments on free dyes in solution reveal subnanosecond anisotropy decays. The anisotropy decays have been analyzed in terms of a model which describes the restricted motion of the dye molecule relative to the protein and the overall rotation of the dye-protein complex in solution. An important element in the model is the incorporation of the orientational distribution of the dye relative to the protein. The observed anisotropy decays were analyzed using a global target approach in which the experimental data obtained at different excitation wavelengths are fitted simultaneously to the theoretical model. It is important to note that the orientational distribution of the dye relative to the protein, as well as the rotational correlation times of the motions for a dye attached to a given binding site, are independent of the excitation wavelength used. This leads to a reduction in the number of independent parameters optimized by the nonlinear least squares procedure. The orientational distribution of the dye relative to the protein obtained in this way is particularly useful for the interpretation of fluorescence depolarization data obtained from labeled muscle fibers. Indeed, knowledge of the distribution function of a dye attached to a binding site of the S1 protein is a prerequisite for a probe-independent determination of the orientational distribution of the S1 proteins themselves in the muscle fiber.

  9. Detailed Study of BSA Adsorption on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films by Time-Resolved Fluorescence Microscopy.

    PubMed

    Handschuh-Wang, Stephan; Wang, Tao; Druzhinin, Sergey I; Wesner, Daniel; Jiang, Xin; Schönherr, Holger

    2017-01-24

    The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSA FITC conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSA FITC on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSA FITC undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp 2 -defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSA FITC because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.

  10. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    PubMed Central

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.

    2016-01-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631

  11. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11.

    PubMed

    Brack, T L; Delaney, J K; Atkinson, G H; Albeck, A; Sheves, M; Ottolenghi, M

    1993-08-01

    The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data. The resonance Raman spectrum of ground-state BR6.11, measured with low-energy, 560-nm excitation, is significantly different from the spectrum of native BR-570, thus confirming that the picosecond transient absorption and picosecond time resolved fluorescence data are assignable to BR6.11 and its photoreaction alone and not to BR-570 reformed during there constitution process (<5% of the BR6.11 sample could be attributed to native BR-570).The J6.11 and K6.11 absorption and fluorescence data presented here are generally analogous to those measured for native J-625 and K-590, respectively, and therefore, the primary events in the BR6.11 photoreaction can be correlated with those in the native BR photocycle. The BR6.11 photoreaction, however, exhibits important differences including slower formation rates for J and K intermediates as well as the presence of a second K intermediate. These results demonstrate that the restricted motion in the C11=C12-C13 region of retinal found in BR6.11 does not greatly change the overall photoreaction mechanism,but does alter the rates at which processes occur.

  12. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    NASA Astrophysics Data System (ADS)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.

  13. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; de La Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin

    2018-01-01

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

  14. Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme.

    PubMed

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Ma, Lin; Yang, Xin-Ling; Zhang, Li; Sun, Ying

    2012-04-01

    Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions. Steady state fluorescence proclaimed the complex of malachite green with lysozyme yields quenching through static type, which substantiates time-resolved fluorescence measurements that lysozyme-malachite green conjugation formation has an affinity of 10(3)M(-1). Moreover, via molecular modeling and also CD data, we can safely arrive at a conclusion that the polypeptide chain of lysozyme partially destabilized upon complexation with malachite green. The data emerged here will help to further understand the toxicological action of malachite green in human body. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    DOE PAGES

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; ...

    2017-09-11

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here in this paper we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecondmore » timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.« less

  16. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here in this paper we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecondmore » timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.« less

  17. Solvent induced fluorescence enhancement of graphene oxide studied by ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Litao; Chen, Jinquan; He, Xiaoxiao; Yu, Xiantong; Yan, Shujun; Zhang, Sanjun; Pan, Haifeng; Xu, Jianhua

    2018-05-01

    Femtosecond transient absorption (TA) spectroscopy combined with picosecond time resolved fluorescence (TRF) were used to reveal the fluorescence kinetics of graphene oxide (GO) in water, ethanol and water-ethanol mixtures. Size-independent fluorescence of GO were observed in water, and pH-dependent fluorescence spectra could be fitted well by a triple emission relaxation with peaks around 440 nm, 500 nm, and 590 nm respectively. The results indicate that polycyclic aromatic hydrocarbons (PAHs) linked by oxygen-containing functional groups dominate GO's fluorescence emission. GO's fluorescence quantum yield was measured to be 2.8% in ethanol but 1.2% in water. The three decay components fluorescence decay, as well as the transient absorption dynamics with an offset, confirmed this solvent induced fluorescence enhancement. GO's Raman spectral signals showed that GO in ethanol has a smaller average size of PAHs than that of GO in water. Therefore, besides other enhancement effects reported in literatures, we proposed that solvents could also change the size of PAHs, resulting in a photoluminescence enhancement. Our experimental data demonstrates that GO's quantum yield could be up to 2.8% in water and 8.4% in ethanol and this observation may help ones to improve GO's photoluminescence efficiency as well as its applications in solution.

  18. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Jürgen; Gregor, Ingo; Erdmann, Rainer; Enderlein, Jörg

    2007-03-01

    Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.

  19. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    PubMed

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.

  20. Single-photon counting multicolor multiphoton fluorescence microscope.

    PubMed

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  1. Unmixing of fluorescence spectra to resolve quantitative time-series measurements of gene expression in plate readers.

    PubMed

    Lichten, Catherine A; White, Rachel; Clark, Ivan B N; Swain, Peter S

    2014-02-03

    To connect gene expression with cellular physiology, we need to follow levels of proteins over time. Experiments typically use variants of Green Fluorescent Protein (GFP), and time-series measurements require specialist expertise if single cells are to be followed. Fluorescence plate readers, however, a standard in many laboratories, can in principle provide similar data, albeit at a mean, population level. Nevertheless, extracting the average fluorescence per cell is challenging because autofluorescence can be substantial. Here we propose a general method for correcting plate reader measurements of fluorescent proteins that uses spectral unmixing and determines both the fluorescence per cell and the errors on that fluorescence. Combined with strain collections, such as the GFP fusion collection for budding yeast, our methodology allows quantitative measurements of protein levels of up to hundreds of genes and therefore provides complementary data to high throughput studies of transcription. We illustrate the method by following the induction of the GAL genes in Saccharomyces cerevisiae for over 20 hours in different sugars and argue that the order of appearance of the Leloir enzymes may be to reduce build-up of the toxic intermediate galactose-1-phosphate. Further, we quantify protein levels of over 40 genes, again over 20 hours, after cells experience a change in carbon source (from glycerol to glucose). Our methodology is sensitive, scalable, and should be applicable to other organisms. By allowing quantitative measurements on a per cell basis over tens of hours and over hundreds of genes, it should increase our understanding of the dynamic changes that drive cellular behaviour.

  2. Unmixing of fluorescence spectra to resolve quantitative time-series measurements of gene expression in plate readers

    PubMed Central

    2014-01-01

    Background To connect gene expression with cellular physiology, we need to follow levels of proteins over time. Experiments typically use variants of Green Fluorescent Protein (GFP), and time-series measurements require specialist expertise if single cells are to be followed. Fluorescence plate readers, however, a standard in many laboratories, can in principle provide similar data, albeit at a mean, population level. Nevertheless, extracting the average fluorescence per cell is challenging because autofluorescence can be substantial. Results Here we propose a general method for correcting plate reader measurements of fluorescent proteins that uses spectral unmixing and determines both the fluorescence per cell and the errors on that fluorescence. Combined with strain collections, such as the GFP fusion collection for budding yeast, our methodology allows quantitative measurements of protein levels of up to hundreds of genes and therefore provides complementary data to high throughput studies of transcription. We illustrate the method by following the induction of the GAL genes in Saccharomyces cerevisiae for over 20 hours in different sugars and argue that the order of appearance of the Leloir enzymes may be to reduce build-up of the toxic intermediate galactose-1-phosphate. Further, we quantify protein levels of over 40 genes, again over 20 hours, after cells experience a change in carbon source (from glycerol to glucose). Conclusions Our methodology is sensitive, scalable, and should be applicable to other organisms. By allowing quantitative measurements on a per cell basis over tens of hours and over hundreds of genes, it should increase our understanding of the dynamic changes that drive cellular behaviour. PMID:24495318

  3. Intraoperative optical biopsy for brain tumors using spectro-lifetime properties of intrinsic fluorophores

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; Kittle, David S.; Nie, Zhaojun; Falcone, Christina; Patil, Chirag G.; Chu, Ray M.; Mamelak, Adam N.; Black, Keith L.; Butte, Pramod V.

    2016-04-01

    We have developed and tested a system for real-time intra-operative optical identification and classification of brain tissues using time-resolved fluorescence spectroscopy (TRFS). A supervised learning algorithm using linear discriminant analysis (LDA) employing selected intrinsic fluorescence decay temporal points in 6 spectral bands was employed to maximize statistical significance difference between training groups. The linear discriminant analysis on in vivo human tissues obtained by TRFS measurements (N = 35) were validated by histopathologic analysis and neuronavigation correlation to pre-operative MRI images. These results demonstrate that TRFS can differentiate between normal cortex, white matter and glioma.

  4. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    PubMed

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.

  6. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions.

    PubMed

    Xu, Qing-Hua; Gaylord, Brent S; Wang, Shu; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2004-08-10

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor-acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents.

  7. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: The role of electrostatic and hydrophobic interactions

    PubMed Central

    Xu, Qing-Hua; Gaylord, Brent S.; Wang, Shu; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2004-01-01

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor–acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents. PMID:15282375

  8. Fluorescence studies on binding of pyrene and its derivatives to humic acid

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Maki, M.; Ishikawa, F.; Yoshikawa, T.; Gong, Y.-K.; Miyajima, T.

    2007-07-01

    Binding of pyrene (PyH) and its derivatives to humic acid (HA) has been studied by fluorescence spectroscopy. The nature of the interaction between HA and pyrene derivatives are extensively investigated by employing three derivatives ranging from anionic to cationic compounds: 1-pyrenebutylic acid (PyA), 1-pyrenemethanol (PyM), and 1-pyrenebutyltrimethylammonium bromide (PyB). Binding constants between HA and PyX (X = H, A, M, B) are obtained by steady-state fluorescence quenching techniques, and it is found that PyB has a markedly large binding constant among the pyrene family. This is attributed to a strong electrostatic interaction between cationic PyB and anionic HA. The result suggests that an electrostatic interaction plays a dominant role in binding of pyrenes to humic acid. The importance of electrostatic interaction was also confirmed by a salt effect on the binding constant. Influence of collisional quenching on the binding constant, which causes overestimation of the binding constant, was examined by time-resolved fluorescence spectroscopy as well as temperature effect in steady-state fluorescence measurements. It is elucidated that collisional quenching does not much bring overestimation into the binding constants.

  9. Towards metabolic mapping of the human retina.

    PubMed

    Schweitzer, D; Schenke, S; Hammer, M; Schweitzer, F; Jentsch, S; Birckner, E; Becker, W; Bergmann, A

    2007-05-01

    Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40 degrees fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 +/- 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510-560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1 = 190 ps) originates from the retinal pigment epithelium and the second lifetime (t2 = 1,000 ps) from the neural retina. The lifetime t3 approximately 5.5 ns might be influenced by the long decay of the fluorescence in the crystalline lens. In vitro analysis of the spectral properties of expected fluorophores under the condition of the living eye lightens the interpretation of in vivo measurements. Taking into account the transmission of the ocular media, the excitation of NADH is unlikely at the fundus. Copyright 2007 Wiley-Liss, Inc.

  10. Multiscale Spectroscopy of Diffusing Molecules in Crowded Environments

    NASA Astrophysics Data System (ADS)

    Heikal, Ahmed A.

    2015-06-01

    Living cells are known to be crowded with organelles, biomembranes, and macromolecules such as proteins, DNA, RNA, and actin filaments. It is believed that such macromolecular crowding affect biomolecular diffusion, protein-protein and protein-substrate interaction, and protein folding. In this contribution, I will discuss our recent results on rotational and translational diffusion of small and large molecules in crowded environments using time-resolved anisotropy and fluorescence correlation spectroscopy methods. In these studies, rhodamine green and enhanced green fluorescent protein are used as fluorescent probes diffusing in buffers enriched with biomimetic crowding agents such as Ficoll-70, bovine serum albumin (BSA), and ovalbumin. Controlled experiments on pure and glycerol-rich buffers were carried out as environments with variable, homogeneous viscosity. Our results indicate that the microviscosity differs from the corresponding bulk viscosity, depending on the nature of crowding agents (i.e., proteins versus polymers), the concentration of crowding agents and spatio-temporal scaling of our experimental approach. Our findings provide a foundation for fluorescence-based studies of diffusion and binding of biomolecules in the crowded milieu of living cells.

  11. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy.

    PubMed

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H

    2016-04-20

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Study on ultra-fast single photon counting spectrometer based on PCI

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-feng

    2010-10-01

    The time-correlated single photon counting spectrometer developed uses PCI bus technology. We developed the ultrafast data acquisition card based on PCI, replace multi-channel analyzer primary. The system theory and design of the spectrometer are presented in detail, and the process of operation is introduced with the integration of the system. Many standard samples have been measured and the data have been analyzed and contrasted. Experimental results show that the spectrometer, s sensitive is single photon counting, and fluorescence life-span and time resolution is picosecond level. And the instrument could measure time-resolved spectroscopy.

  13. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.

    PubMed

    Pflock, Tobias J; Oellerich, Silke; Krapf, Lisa; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We performed time-resolved spectroscopy on homoarrays of LH2 complexes from the photosynthetic purple bacterium Rhodopseudomonas acidophila. Variations of the fluorescence transients were monitored as a function of the excitation fluence and the repetition rate of the excitation. These parameters are directly related to the excitation density within the array and to the number of LH2 complexes that still carry a triplet state prior to the next excitation. Comparison of the experimental observations with results from dynamic Monte Carlo simulations for a model cluster of LH2 complexes yields qualitative agreement without the need for any free parameter and reveals the mutual relationship between energy transfer and annihilation processes.

  14. Time-resolved fluorescent properties of 8-vinyl-deoxyadenosine and 2-amino-deoxyribosylpurine exhibit different sensitivity to their opposite base in duplexes.

    PubMed

    Kenfack, Cyril A; Piémont, Etienne; Ben Gaied, Nouha; Burger, Alain; Mély, Yves

    2008-08-14

    8-Vinyl-deoxyadenosine (8VA) has been recently introduced as a fluorescent analogue of adenosine that is less perturbing and less quenched than the well-established 2-amino-deoxyribosylpurine (2AP) probe when inserted in oligonucleotides. To further validate 8VA as a fluorescent substitute of A, we compared the ability of 8VA and 2AP in sequences of the type d(CGT TTT XNX TTT TGC) (with N=8VA or 2AP and X=T and C) to discriminate the nature of the opposite base (Y) in duplexes. For both probes, systematic variations in the amplitudes of the short- and long-lived lifetimes of the fluorescence intensity decays as well as in the amplitude of the fast rotational correlation time of the fluorescence anisotropy decays were observed as a function of the nature of Y. From these parameters, we inferred a stability order 8VA-T > 8VA-G > 8VA-A > 8VA-C, similar to the stability order with the native A base, but different from the stability order with 2AP. Using a combination of molecular mechanics and ab initio calculations, we found that the time-resolved parameters of 8VA, but not the 2AP ones, correlate well with the geometry and the strength of the A-Y base-pairing interaction. This may be rationalized by the smaller structural and electronic perturbations induced by the vinyl group in position 8 as compared to the amino group at position 2. As a consequence, substitution of A by 8VA in a base pair was found to only minimally modify the structure and interaction energy of the base pair. Thus, 8VA can be used as a fluorescent substitute of the natural A, to straightforwardly discriminate the nature of the opposite base. This may find interesting applications notably in the elucidation of the mechanisms and dynamics of the DNA mismatch repair system.

  15. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    PubMed

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective strategy for developing FRET probes for bioassays.

  16. Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guang; Chu, Shengqi; Sun, Tianxi

    A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368–1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function andmore » flexibility of general XAS beamlines, and extend their capabilities to a wider user community.« less

  17. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    PubMed

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  18. Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    O'Brian, T. R.; Lawler, J. E.

    1992-01-01

    Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.

  19. Emission Enhancement in Quantum Emitters - Plasmonic Nanostructures Systems

    NASA Astrophysics Data System (ADS)

    Muqri, Aeshah; Suh, Jae Yong; Michogan Technological University Team

    In this poster, the emission enhancement probed by spectroscopic and dynamic means will be presented. Systems composed of quantum emitters ensembles in the vicinity of plasmonic structures were fabricated. Their coupling strength were investigated by measuring the reflection, steady state photoluminescence, and time resolved fluorescence.

  20. A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W

    PubMed Central

    Huang, Biao; Yu, Huixin; Bao, Jiandong; Zhang, Manda; Green, William L; Wu, Sing-Yung

    2018-01-01

    Objective: Using compound W (a 3,3′-diiodothyronine sulfate [T2S] immuno-crossreactive material)-specific polyclonal antibodies and homogeneous time-resolved fluorescence immunoassay assay techniques (AlphaLISA) to establish an indirect competitive compound W (ICW) quantitative detection method. Method: Photosensitive particles (donor beads) coated with compound W or T2S and rabbit anti-W antibody were incubated with biotinylated goat anti-rabbit antibody. This constitutes a detection system with streptavidin-coated acceptor particle. We have optimized the test conditions and evaluated the detection performance. Results: The sensitivity of the method was 5 pg/mL, and the detection range was 5 to 10 000 pg/mL. The intra-assay coefficient of variation averages <10% with stable reproducibility. Conclusions: The ICW-AlphaLISA shows good stability and high sensitivity and can measure a wide range of compound W levels in extracts of maternal serum samples. This may have clinical application to screen congenital hypothyroidism in utero. PMID:29449777

  1. Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay.

    PubMed

    Maple, P A C; Gray, J; Breuer, J; Kafatos, G; Parker, S; Brown, D

    2006-02-01

    Highly sensitive and specific, quantitative assays are needed to detect varicella-zoster virus (VZV) immunoglobulin G in human sera, particularly for determining immune status and response following vaccination. A time-resolved fluorescence immunoassay (TRFIA) has been developed, and its performance was compared to that of two commercial enzyme immunoassays (EIAs) and Merck glycoprotein EIA (gpEIA). The TRFIA had equivalent sensitivity (97.8%) and high specificity (93.5%) in relation to gpEIA. A commercial (Behring) EIA compared favorably with TRFIA in terms of sensitivity (98.4%) but had lower specificity (80.7%). Another commercial EIA (Diamedix) had high specificity (97.1%) but low sensitivity (76.4%) compared to TRFIA if equivocal test results were treated as negative for VZV antibody. A novel feature of the TRFIA was that the cutoff was generated using population mixture modeling and was expressed in mIU/ml, as the assay was calibrated using the British standard VZV antibody.

  2. A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W.

    PubMed

    Huang, Biao; Yu, Huixin; Bao, Jiandong; Zhang, Manda; Green, William L; Wu, Sing-Yung

    2018-01-01

    Using compound W (a 3,3'-diiodothyronine sulfate [T 2 S] immuno-crossreactive material)-specific polyclonal antibodies and homogeneous time-resolved fluorescence immunoassay assay techniques (AlphaLISA) to establish an indirect competitive compound W (ICW) quantitative detection method. Photosensitive particles (donor beads) coated with compound W or T 2 S and rabbit anti-W antibody were incubated with biotinylated goat anti-rabbit antibody. This constitutes a detection system with streptavidin-coated acceptor particle. We have optimized the test conditions and evaluated the detection performance. The sensitivity of the method was 5 pg/mL, and the detection range was 5 to 10 000 pg/mL. The intra-assay coefficient of variation averages <10% with stable reproducibility. The ICW-AlphaLISA shows good stability and high sensitivity and can measure a wide range of compound W levels in extracts of maternal serum samples. This may have clinical application to screen congenital hypothyroidism in utero.

  3. Design of a Highly Specific And Noninvasive Biosensor Suitable for Real-Time in Vivo Imaging of Mercury (II) Uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapleau, R.R.; Blomberg, R.; Ford, P.C.

    2009-05-12

    Mercury is a ubiquitous pollutant that when absorbed is extremely toxic to a wide variety of biochemical processes. Mercury (II) is a strong, invisible poison that is rapidly absorbed by tissues of the intestinal tract, kidneys, and liver upon ingestion. In this study, a novel fluorescence-based biosensor is presented that allows for the direct monitoring of the uptake and distribution of the metal under noninvasive in vivo conditions. With the introduction of a cysteine residue at position 205, located in close proximity to the chromophore, the green fluorescent protein (GFP) from Aequorea victoria was converted into a highly specific biosensormore » for this metal ion. The mutant protein exhibits a dramatic absorbance and fluorescence change upon mercuration at neutral pH. Absorbance and fluorescence properties with respect to the metal concentration exhibit sigmoidal binding behavior with a detection limit in the low nanomolar range. Time-resolved binding studies indicate rapid subsecond binding of the metal to the protein. The crystal structures obtained of mutant eGFP205C indicate a possible access route of the metal into the core of the protein. To our knowledge, this engineered protein is a first example of a biosensor that allows for noninvasive and real-time imaging of mercury uptake in a living cell. A major advantage is that its expression can be genetically controlled in many organisms to enable unprecedented studies of tissue specific mercury uptake.« less

  4. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells.

    PubMed

    Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-11-08

    Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.

  5. Comparison of the fluorescence kinetics of detergent-solubilized and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides.

    PubMed

    Pflock, Tobias; Dezi, Manuela; Venturoli, Giovanni; Cogdell, Richard J; Köhler, Jürgen; Oellerich, Silke

    2008-01-01

    Picosecond time-resolved fluorescence spectroscopy has been used in order to compare the fluorescence kinetics of detergent-solubilized and membrane-reconstituted light-harvesting 2 (LH2) complexes from the purple bacteria Rhodopseudomonas (Rps.) acidophila and Rhodobacter (Rb.) sphaeroides. LH2 complexes were reconstituted in phospholipid model membranes at different lipid:protein-ratios and all samples were studied exciting with a wide range of excitation densities. While the detergent-solubilized LH2 complexes from Rps. acidophila showed monoexponential decay kinetics (tau(f )= 980 ps) for excitation densities of up to 3.10(13) photons/(pulse.cm(2)), the membrane-reconstituted LH2 complexes showed multiexponential kinetics even at low excitation densities and high lipid:protein-ratios. The latter finding indicates an efficient clustering of LH2 complexes in the phospholipid membranes. Similar results were obtained for the LH2 complexes from Rb. sphaeroides.

  6. Excited-state dynamics of bis(9-fluorenyl)methane and its derivative 9-(9-ethylfluorenyl)-9'-fluorenylmethane: steric effect on energetics and dynamics of ground- and excited-state conformations.

    PubMed

    Boo, Bong Hyun; Lee, Minyung; Jeon, Ki-Seok; Kim, Seung-Joon

    2014-03-27

    Intramolecular excimer formation of bis(9-fluorenyl)methane (BFM) and 9-(9'-ethylfluorenyl)-9-fluorenylmethane (EFFM), in which an ethyl group is substituted to a 9-H atom in BFM, was studied by means of steady-state and time-resolved fluorescence. Ab initio and DFT calculations enabled the prediction of three conformers as stable species of orthogonal, trans-gauche, and gauche-gauche. The theoretical and experimental results reveal that the substitution effect is also found to appreciably influence the energies, spectroscopy, and kinetics associated with the interconversion of various conformers of the diaryl compounds. We have not observed the rising components in the excimer fluorescence decay of BFM and EFFM in PMMA as observed in the liquid solutions probably because of the existence of the sandwich conformer responsible for the excimer fluorescence prior to the laser irradiation.

  7. A flash photolysis-resonance fluorescence study of the formation of O(D-1) in the photolysis of water and reaction of O(D-1) with H2, Ar and He

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Klemm, R. B.

    1974-01-01

    The relative importance of two primary processes in the photolyis of water: (1) H2O + h (nu) yields H + OH, and (2) H2O + h (nu) yields H2 + OD-1 were determined in a direct manner by time resolved detection (via resonance fluorescence) of H and O formed in processes 1 and 2 respectively. The initially formed OD-1 was deactivated to ground state OP-3 prior to detection via resonance fluorescence. The relative quantum yields for processes 1 and 2 are 0.89 and 0.11 for the wavelength interval 105 to 145nm and = to or greater than 0.99, and = to or less than 0.01 for the wavelength interval 145 to 185nm. Rate constants at 300 K for the reactions OD-1 + H2, + Ar, and + He are presented.

  8. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  9. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  10. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE PAGES

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...

    2017-06-19

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  11. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  12. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: Study of binding interaction and structural changes of protein

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-03-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.

  13. Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation

    NASA Astrophysics Data System (ADS)

    Liebert, Adam; Sawosz, Piotr; Milej, Daniel; Kacprzak, Michał; Weigl, Wojciech; Botwicz, Marcin; MaCzewska, Joanna; Fronczewska, Katarzyna; Mayzner-Zawadzka, Ewa; Królicki, Leszek; Maniewski, Roman

    2011-04-01

    Recently, it was shown in measurements carried out on humans that time-resolved near-infrared reflectometry and fluorescence spectroscopy may allow for discrimination of information originating directly from the brain avoiding influence of contaminating signals related to the perfusion of extracerebral tissues. We report on continuation of these studies, showing that the near-infrared light can be detected noninvasively on the surface of the tissue at large interoptode distance. A multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm. The instrument was applied during intravenous injection of indocyanine green and the distributions of times of flight of photons were successfully acquired showing inflow and washout of the dye in the tissue. Time courses of the statistical moments of distributions of times of flight of photons are presented and compared to the results obtained simultaneously at shorter source-detector separations (3, 4, and 5 cm). We show in a series of experiments carried out on physical phantom and healthy volunteers that the time-resolved data acquisition in combination with very large source-detector separation may allow one to improve depth selectivity of perfusion assessment in the brain.

  14. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.; Albert, F.; Palmer, N. E.; Lee, J. J.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Stoeckl, C.

    2014-11-01

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic-a multichannel, hard x-ray spectrometer operating in the 20-500 keV range-has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ˜300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U Kβ). The detectors impulse response function was measured in situ on NIF short-pulse (˜90 ps) experiments, and in off-line tests.

  15. Demonstration of FRET in solutions

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Gryczynski, Zygmunt; Chib, Rahul; Fudala, Rafal; Baxi, Aatmun; Borejdo, Julian; Synak, Anna; Gryczynski, Ignacy

    2016-03-01

    We measured the Förster resonance energy transfer (FRET) from Uranin (U) donor to Rhodamine 101 (R101) acceptor in propylene glycol. Steady-state fluorescence measurements show a significant difference between mixed and unmixed fluorophore solutions. In the solution with mixed fluorophores, fluorescence intensity of the U donor decreases and intensity of R101 fluorescence increases. This is visualized as a color change from green to orange. Fluorescence anisotropy of the mixture solution increases in the donor emission wavelength region and decreases in the acceptor emission wavelengths; which is consistent with FRET occurrence. Time-resolved (lifetime) measurements show a decrease of the U lifetime in the presence of R101 acceptor. In the intensity decay of R101 acceptor appears a negative component indicating excited state process. All these measurements prove the presence of FRET in U/R101 mixture fluorescence.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chongqi; Harbich, Wolfgang; Sementa, Luca

    Ligand-protected Au clusters are non-bleaching fluorescence markers in bio- and medical applications. We show that their fluorescence is an intrinsic property of the Au cluster itself. We find a very intense and sharp fluorescence peak located at λ =739.2 nm (1.68 eV) for Au20 clusters in a Ne matrix held at 6 K. The fluorescence reflects the HOMO-LUMO diabatic bandgap of the cluster. The cluster shows a very rich absorption fine structure reminiscent of well defined molecule-like quantum levels. These levels are resolved since Au20 has only one stable isomer (tetrahedral), therefore our sample is mono-disperse in cluster size andmore » conformation. Density-functional theory (DFT) and time-dependent DFT calculations clarify the nature of optical absorptionand predict both main absorption peaks and intrinsic fluorescence in good agreement with experiment.« less

  17. Studies on the interaction between 7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one and cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Kuriakose, Alina C.; Pradeep, C.; Nampoori, V. P. N.; Thomas, Sheenu

    2018-04-01

    Quantum dots (QDs) are well known for their optical properties which differ from those of bulk semiconductors. Herein, we have created an energy transfer platform that combines CdS QDs with a coumarin based dye C485 [7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one]. Spectroscopic studies of energy transfer between the dye donor and CdS QDs as acceptors reveal the occurrence of dynamic quenching. Analysis of the steady-state and time resolved fluorescence measurements of C485 in the presence of CdS QDs infers fluorescence resonance (Förster type) energy transfer (FRET) as responsible for the quenching phenomena. The energy transfer efficiency as well as energy transfer distance for the donor-acceptor pair is calculated using steady-state fluorescence method. Luminescence enhancement of CdS QDs play a critical role in device performance for solar applications and also in the field of biological applications.

  18. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S.; Udayabhaskar, R.

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO throughmore » hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.« less

  19. Hybrid Optical-Ultrasonic Technique for Biomedical Diagnostics

    PubMed Central

    Marcu, L.; Sun, Y.; Stephens, D.; Park, J.; Farwell, D. G.; Shung, K. K.

    2010-01-01

    We report the development of a diagnostic system combining time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy and its application in diagnosis of tumors and atherosclerotic disease. This system allows for concurrent evaluation of distinct compositional, functional, and micro-anatomical features of normal and diseased tissues. PMID:21918737

  20. Mesoporous silica for drug delivery: Interactions with model fluorescent lipid vesicles and live cells.

    PubMed

    Bardhan, Munmun; Majumdar, Anupa; Jana, Sayantan; Ghosh, Tapas; Pal, Uttam; Swarnakar, Snehasikta; Senapati, Dulal

    2018-01-01

    Formulated mesoporous silica nanoparticle (MSN) systems offer the best possible drug delivery system through the release of drug molecules from the accessible pores. In the present investigation, steady state and time resolved fluorescence techniques along with the fluorescence imaging were applied to investigate the interactions of dye loaded MSN with fluorescent unilamellar vesicles and live cells. Here 1,2-dimyristoyl-sn-glycero-3-phospocholine (DMPC) was used to prepare Small Unilamellar Vesicles (SUVs) as the model membrane with fluorescent 1,6-diphenyl-1,3,5-hexatriene (DPH) molecule incorporated inside the lipid bilayer. The interaction of DPH incorporated DMPC membrane with Fluorescein loaded MSN lead to the release of Fluorescein (Fl) dye from the interior pores of MSN systems. The extent of release of Fl and spatial distribution of the DPH molecule has been explored by monitoring steady-state fluorescence intensity and fluorescence lifetime at physiological condition. To investigate the fate of drug molecule released from MSN, fluorescence anisotropy has been used. The drug delivery efficiency of the MSN as a carrier for doxorubicin (DOX), a fluorescent chemotherapeutic drug, has also been investigated at physiological conditions. The study gives a definite confirmation for high uptake and steady release of DOX in primary oral mucosal non-keratinized squamous cells in comparison to naked DOX treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques.

    PubMed

    Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan

    2010-09-01

    By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).

  2. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels.

    PubMed

    Wang, Xiaole; Huang, Yukun; Wu, Shijia; Duan, Nuo; Xu, Baocai; Wang, Zhouping

    2016-11-21

    Foodborne illnesses caused by Staphylococcus aureus and Salmonella typhimurium are common public health issues worldwide, affecting both developing and developed countries. In this study, aptamers labeled with multicolor lanthanide-doped time-resolved fluorescence (TRFL) nanoparticles were used as signal probes, and immobilized by Fe 3 O 4 magnetic nanoparticles were used as the capture probes. The signal probes were bonded onto the captured bacteria by the recognition of aptamer to form the sandwich-type complex. Under the optimal conditions, TRFL intensity at 544nm was used to quantify S. typhimurium (y=10,213×-12,208.92, R 2 =0.9922) and TRFL intensity at 615nm for S. aureus (y=4803.20×-1933.87, R 2 =0.9982) in the range of 10 2 -10 5 CFU/ml. Due to the magnetic separation and concentration of Fe 3 O 4 nanoparticles, detection limits of the developed method were found to be 15, 20CFU/ml for S. typhimurium and S. aureus, respectively. The application of this bioassay in milk was also investigated, and results were consistent with those of plate-counting method. Therefore, this simple and rapid method owns a great potential in the application for the multiplex analysis in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Trap formation and energy transfer in the hexapyropheophorbide a - fullerene C 60 hexaadduct molecular system

    NASA Astrophysics Data System (ADS)

    Ermilov, E. A.; Hackbarth, St.; Al-Omari, S.; Helmreich, M.; Jux, N.; Hirsch, A.; Röder, B.

    2005-06-01

    The photophysical properties of the novel hexapyropheophorbide a - fullerene hexaadduct (FHP6) compound were studied using both steady-state and time-resolved spectroscopic methods. It was found that neighboring pyropheophorbide a (pyroPheo) molecules covalently linked to one fullerene moiety due to the length and high flexibility of carbon chains could stack with each other. This structural property is the reason for the possibility of formation of two different types of energy traps, which could be resolved experimentally. One of them is formed via face-to-face stacking of two pyroPheo molecules with parallel to each other direction of the transition dipole moments. The second type of energy trap gives the dominant contribution to the fluorescence signal at registration wavelengths having the oblique geometry or orthogonal direction of the transition dipole moments of the interacting pyroPheo molecules. In any case the dipole-dipole resonant Förster energy transfer between pyroPheo molecules coupled to one fullerene moiety caused a very fast and efficient delivery of the excitation to a trap. As result the fluorescence as well as the singlet oxygen quantum yields of FHP6 were reduced three and two times, respectively, compared to those values of the reference bis pyropheophorbide a - fullerene hexaadduct (FHP1) compound.

  4. How to measure separations and angles between intra-molecular fluorescent markers

    NASA Astrophysics Data System (ADS)

    Flyvbjerg, Henrik; Mortensen, Kim I.; Sung, Jongmin; Spudich, James A.

    We demonstrate a novel, yet simple tool for the study of structure and function of biomolecules by extending two-colour co-localization microscopy to fluorescent molecules with fixed orientations and in intra-molecular proximity. From each color-separated microscope image in a time-lapse movie and using only simple means, we simultaneously determine both the relative (x,y)-separation of the fluorophores and their individual orientations in space with accuracy and precision. The positions and orientations of two domains of the same molecule are thus time-resolved. Using short double-stranded DNA molecules internally labelled with two fixed fluorophores, we demonstrate the accuracy and precision of our method using the known structure of double-stranded DNA as a benchmark, resolve 10-base-pair differences in fluorophore separations, and determine the unique 3D orientation of each DNA molecule, thereby establishing short, double-labelled DNA molecules as probes of 3D orientation of anything to which one can attach them firmly. This work was supported by a Lundbeck fellowship to K.I.M; a Stanford Bio-X fellowship to J.S. and Grants from the NIH (GM33289) to J.A.S. and the Human Frontier Science Program (GP0054/2009-C) to J.A.S. and H.F.

  5. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  6. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging

    PubMed Central

    Spagnol, Stephen T.; Dahl, Kris Noel

    2016-01-01

    The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322

  7. Accumulation and interaction of hypericin in low-density lipoprotein--a photophysical study.

    PubMed

    Mukherjee, Prasun; Adhikary, Ramkrishna; Halder, Mintu; Petrich, Jacob W; Miskovsky, Pavol

    2008-01-01

    The accumulation and interaction of hypericin with the biologically important macromolecule, low-density lipoprotein (LDL), is investigated using various steady-state and time-resolved fluorescence measurements. It is concluded that multiple hypericins can penetrate considerably deeply into the LDL molecule. Up to approximately 20 nonaggregated hypericin molecules can enter LDL; but upon increasing the hypericin concentration, the fluorescence lifetime of hypericin decreases drastically, suggesting most likely the self-quenching of aggregated hypericin. There is also evidence of energy transfer from tryptophans of the constituent protein, apoB-100, to hypericin in LDL. The results demonstrate the ability of LDL to solubilize hypericin (a known photosensitizer) in nonaggregated form, which has implications for the construction of drug delivery systems.

  8. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the toxicity of food dyes. Results from this work testify that model protein, though an indirect method, provides a more comprehensive profile of the essence of toxicity evaluation of food dyes.

  9. Noninvasive evaluation of tissue-engineered cartilage with time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Kutsuna, Toshiharu; Sato, Masato; Ishihara, Miya; Furukawa, Katsuko S; Nagai, Toshihiro; Kikuchi, Makoto; Ushida, Takashi; Mochida, Joji

    2010-06-01

    Regenerative medicine requires noninvasive evaluation. Our objective is to investigate the application of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) using a nano-second-pulsed laser for evaluation of tissue-engineered cartilage (TEC). To prepare scaffold-free TEC, articular chondrocytes from 4-week-old Japanese white rabbits were harvested, and were inoculated at a high density in a mold. Cells were cultured for 5 weeks by rotating culture (RC) or static culture (SC). The RC group and SC group at each week (n = 5), as well as normal articular cartilage and purified collagen type II (as controls), were analyzed by TR-LIFS. The peak wavelength was compared with those of type II collagen immunostaining and type II collagen quantification by enzyme-linked immunosorbent assay and tensile testing. The fluorescence peak wavelength of the TEC analyzed by this method shifted significantly in the RC group at 3 weeks, and in the SC group at 5 weeks (p < 0.01). These results correlated with changes in type II collagen (enzyme-linked immunosorbent assay) and changes in Young's modulus on tensile testing. The results were also supported by immunohistologic findings (type II collagen staining). Our findings show that TR-LIFS is useful for evaluating TEC.

  10. Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants.

    PubMed

    Blum, Christian; Meixner, Alfred J; Subramaniam, Vinod

    2004-12-01

    It is known from ensemble spectroscopy at cryogenic temperatures that variants of the Aequorea green fluorescent protein (GFP) occur in interconvertible spectroscopically distinct forms which are obscured in ensemble room temperature spectroscopy. By analyzing the fluorescence of the GFP variants EYFP and EGFP by spectrally resolved single-molecule spectroscopy we were able to observe spectroscopically different forms of the proteins and to dynamically monitor transitions between these forms at room temperature. In addition to the predominant EYFP B-form we have observed the blue-shifted I-form thus far only seen at cryogenic temperatures and have followed transitions between these forms. Further we have identified for EYFP and for EGFP three more, so far unknown, forms with red-shifted fluorescence. Transitions between the predominant forms and the red-shifted forms show a dark time which indicates the existence of a nonfluorescent intermediate. The spectral position of the newly-identified red-shifted forms and their formation via a nonfluorescent intermediate hint that these states may account for the possible photoactivation observed in bulk experiments. The comparison of the single-protein spectra of the red-shifted EYFP and EGFP forms with single-molecule fluorescence spectra of DsRed suggest that these new forms possibly originate from an extended chromophoric pi-system analogous to the DsRed chromophore.

  11. Detection of radiation-induced brain necrosis in live rats using label-free time-resolved fluorescence spectroscopy (TRFS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Ma, Htet S. W.; Sridharan, Shamira; Hansen, Katherine; Klich, Melanie; Perks, Julian; Kent, Michael; Kim, Kyoungmi; Fragoso, Ruben; Marcu, Laura

    2017-02-01

    Differentiating radiation-induced necrosis from recurrent tumor in the brain remains a significant challenge to the neurosurgeon. Clinical imaging modalities are not able to reliably discriminate the two tissue types, making biopsy location selection and surgical management difficult. Label-free fluorescence lifetime techniques have previously been shown to be able to delineate human brain tumor from healthy tissues. Thus, fluorescence lifetime techniques represent a potential means to discriminate the two tissues in real-time during surgery. This study aims to characterize the endogenous fluorescence lifetime signatures from radiation induced brain necrosis in a tumor-free rat model. Fischer rats received a single fraction of 60 Gy of radiation to the right hemisphere using a linear accelerator. Animals underwent a terminal live surgery after gross necrosis had developed, as verified with MRI. During surgery, healthy and necrotic brain tissue was measured with a fiber optic needle connected to a multispectral fluorescence lifetime system. Measurements of the necrotic tissue showed a 48% decrease in intensity and 20% increase in lifetimes relative to healthy tissue. Using a support vector machine classifier and leave-one-out validation technique, the necrotic tissue was correctly classified with 94% sensitivity and 97% specificity. Spectral contribution analysis also confirmed that the primary source of fluorescence contrast lies within the redox and bound-unbound population shifts of nicotinamide adenine dinucleotide. A clinical trial is presently underway to measure these tissue types in humans. These results show for the first time that radiation-induced necrotic tissue in the brain contains significantly different metabolic signatures that are detectable with label-free fluorescence lifetime techniques.

  12. The usefulness of optical analyses for detecting vulnerable plaques using rabbit models

    NASA Astrophysics Data System (ADS)

    Nakai, Kanji; Ishihara, Miya; Kawauchi, Satoko; Shiomi, Masashi; Kikuchi, Makoto; Kaji, Tatsumi

    2011-03-01

    Purpose: Carotid artery stenting (CAS) has become a widely used option for treatment of carotid stenosis. Although technical improvements have led to a decrease in complications related to CAS, distal embolism continues to be a problem. The purpose of this research was to investigate the usefulness of optical methods (Time-Resolved Laser- Induced Fluorescence Spectroscopy [TR-LIFS] and reflection spectroscopy [RS] as diagnostic tools for assessment of vulnerable atherosclerotic lesions, using rabbit models of vulnerable plaque. Materials & Methods: Male Japanese white rabbits were divided into a high cholesterol diet group and a normal diet group. In addition, we used a Watanabe heritable hyperlipidemic (WHHL) rabbit, because we confirmed the reliability of our animal model for this study. Experiment 1: TR-LIFS. Fluorescence was induced using the third harmonic wave of a Q switch Nd:YAG laser. The TR-LIFS was performed using a photonic multi-channel analyzer with ICCD (wavelength range, 200 - 860 nm). Experiment 2: RS. Refection spectra in the wavelength range of 900 to 1700 nm were acquired using a spectrometer. Results: In the TR-LIFS, the wavelength at the peak was longer by plaque formation. The TR-LIFS method revealed a difference in peak levels between a normal aorta and a lipid-rich aorta. The RS method showed increased absorption from 1450 to 1500 nm for lipid-rich plaques. We observed absorption around 1200 nm due to lipid only in the WHHL group. Conclusion: These methods using optical analysis might be useful for diagnosis of vulnerable plaques. Keywords: Carotid artery stenting, vulnerable plaque, Time-Resolved Laser-Induced Fluorescence

  13. Metabolic Imaging in Multiple Time Scales

    PubMed Central

    Ramanujan, V Krishnan

    2013-01-01

    We report here a novel combination of time-resolved imaging methods for probing mitochondrial metabolism multiple time scales at the level of single cells. By exploiting a mitochondrial membrane potential reporter fluorescence we demonstrate the single cell metabolic dynamics in time scales ranging from milliseconds to seconds to minutes in response to glucose metabolism and mitochondrial perturbations in real time. Our results show that in comparison with normal human mammary epithelial cells, the breast cancer cells display significant alterations in metabolic responses at all measured time scales by single cell kinetics, fluorescence recovery after photobleaching and by scaling analysis of time-series data obtained from mitochondrial fluorescence fluctuations. Furthermore scaling analysis of time-series data in living cells with distinct mitochondrial dysfunction also revealed significant metabolic differences thereby suggesting the broader applicability (e.g. in mitochondrial myopathies and other metabolic disorders) of the proposed strategies beyond the scope of cancer metabolism. We discuss the scope of these findings in the context of developing portable, real-time metabolic measurement systems that can find applications in preclinical and clinical diagnostics. PMID:24013043

  14. Saturation-resolved-fluorescence spectroscopy of Cr3+:mullite glass ceramic

    NASA Astrophysics Data System (ADS)

    Liu, Huimin; Knutson, Robert; Yen, W. M.

    1990-01-01

    We present a saturation-based technique designed to isolate and uncouple individual components of inhomogeneously broadened spectra that are simultaneously coupled to each other through spectral overlap and energy-transfer interactions. We have termed the technique saturation-resolved-fluorescence spectroscopy; we demonstrate its usefulness in deconvoluting the complex spectra of Cr3+:mullite glass ceramic.

  15. Spatially Resolved Analysis of Amines Using a Fluorescence Molecular Probe: Molecular Analysis of IDPs

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2002-01-01

    Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.

  16. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-11-15

    Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Asymmetric rotor-like probes to polarized fluorescence study of the macroscopically oriented uniaxial media: Model parameters recognition

    NASA Astrophysics Data System (ADS)

    Buczkowski, M.; Fisz, J. J.

    2008-07-01

    In this paper the possibility of the numerical data modelling in the case of angle- and time-resolved fluorescence spectroscopy is investigated. The asymmetric fluorescence probes are assumed to undergo the restricted rotational diffusion in a hosting medium. This process is described quantitatively by the diffusion tensor and the aligning potential. The evolution of the system is expressed in terms of the Smoluchowski equation with an appropriate time-developing operator. A matrix representation of this operator is calculated, then symmetrized and diagonalized. The resulting propagator is used to generate the synthetic noisy data set that imitates results of experimental measurements. The data set serves as a groundwork to the χ2 optimization, performed by the genetic algorithm followed by the gradient search, in order to recover model parameters, which are diagonal elements of the diffusion tensor, aligning potential expansion coefficients and directions of the electronic dipole moments. This whole procedure properly identifies model parameters, showing that the outlined formalism should be taken in the account in the case of analysing real experimental data.

  18. Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors

    NASA Astrophysics Data System (ADS)

    Shirmanova, M.; Lukina, M.; Orlova, A.; Studier, H.; Zagaynova, E.; Becker, W.; Shcheslavskiy, V.

    2017-07-01

    The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for the tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optical probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions, and in living mice. The luminescence spectroscopy data is substantiated with immunohistochemistry experiments. To the best of our knowledge, the measurements of both metabolic status and oxygenation of tumor in vivo by fluorescence/phosphorescence lifetime spectroscopy with a fiber-optic probe are done for the first time.

  19. In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries, and squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Hemmer, Joerg; Tromberg, Bruce J.; Steiner, Rudolf W.

    1994-05-01

    Certain bacteria are able to synthesize metal-free fluorescent porphyrins and can therefore be detected by sensitive autofluorescence measurements in the red spectral region. The porphyrin-producing bacterium Propionibacterium acnes, which is involved in the pathogenesis of acne vulgaris, was localized in human skin. Spectrally resolved fluorescence images of bacteria distribution in the face were obtained by a slow-scan CCD camera combined with a tunable liquid crystal filter. The structured autofluorescence of dental caries and dental plaque in the red is caused by oral bacteria, like Bacteroides or Actinomyces odontolyticus. `Caries images' were created by time-gated imaging in the ns-region after ultrashort laser excitation. Time-gated measurements allow the suppression of backscattered light and non-porphyrin autofluorescence. Biopsies of oral squamous cell carcinoma exhibited red autofluorescence in necrotic regions and high concentrations of the porphyrin-producing bacterium Pseudomonas aerigunosa. These studies suggest that the temporal and spectral characteristics of bacterial autofluorescence can be used in the diagnosis and treatment of a variety of diseases.

  20. Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus

    2006-10-01

    Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

  1. Spectral and kinetic effects accompanying the assembly of core complexes of Rhodobacter sphaeroides.

    PubMed

    Freiberg, Arvi; Chenchiliyan, Manoop; Rätsep, Margus; Timpmann, Kõu

    2016-11-01

    In the present work, spectral and kinetic changes accompanying the assembly of the light-harvesting 1 (LH1) complex with the reaction center (RC) complex into monomeric RC-LH1 and dimeric RC-LH1-PufX core complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides are systematically studied over the temperature range of 4.5-300K. The samples were interrogated with a combination of optical absorption, hole burning, fluorescence excitation, steady state and picosecond time resolved fluorescence spectroscopy. Fair additivity of the LH1 and RC absorption spectra suggests rather weak electronic coupling between them. A low-energy tail revealed at cryogenic temperatures in the absorption spectra of both monomeric and dimeric core complexes is proved to be due to the special pair of the RC. At selected excitation intensity and temperature, the fluorescence decay time of core complexes is shown to be a function of multiple factors, most importantly of the presence/absence of RCs, the supramolecular architecture (monomeric or dimeric) of the complexes, and whether the complexes were studied in a native membrane environment or in a detergent - purified state. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Numerical optix: A time-domain simulator of fluorescent light diffusion in turbid medium

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Delorme, Jean-François; Guilman, Olga; Leblond, Frédéric; Khayat, Mario

    2007-02-01

    The interest in fluorescence imaging has increased steadily in the last decade. Using fluorescence techniques, it is feasible to visualize and quantify the function of genes and the expression of enzymes and proteins deep inside tissues. When applied to small animal research, optical imaging based on fluorescent marker probes can provide valuable information on the specificity and efficacy of drugs at reduced cost and with greater efficiency. Meanwhile, fluorescence techniques represent an important class of optical methods being applied to in vitro and in vivo biomedical diagnostics, towards noninvasive clinical applications, such as detecting and monitoring specific pathological and physiological processes. ART has developed a time domain in vivo small animal fluorescence imaging system, eXplore Optix. Using the measured time-resolved fluorescence signal, fluorophore location and concentration can be quickly estimated. Furthermore, the 3D distribution of fluorophore can be obtained by fluorescent diffusion tomography. To accurately analyze and interpret the measured fluorescent signals from tissue, complex theoretical models and algorithms are employed. We present here a numerical simulator of eXplore Optix. It generates virtual data under well-controlled conditions that enable us to test, verify, and improve our models and algorithms piecewise separately. The theoretical frame of the simulator is an analytical solution of the fluorescence diffusion equation. Compared to existing models, the coupling of fluorophores with finite volume size is taken into consideration. Also, the influences of fluorescent inclusions to excitation and emission light are both accounted for. The output results are compared to Monte-Carlo simulations.

  3. Two-dimensional fluorescence correlation spectroscopy: resolution of fluorescence of tryptophan residues in horse heart myoglobin.

    PubMed

    Nakashima, Kenichi; Yuda, Kazuki; Ozaki, Yukihiro; Noda, Isao

    2003-11-01

    Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.

  4. Conformational dynamics of proanthocyanidins: physical and computational approaches

    Treesearch

    Fred L. Tobiason; Richard W. Hemingway; T. Hatano

    1998-01-01

    The interaction of plant polyphenols with proteins accounts for a good part of their commercial (e.g., leather manufacture) and biological (e.g., antimicrobial activity) significance. The interplay between observations of physical data such as crystal structure, NMR analyses, and time-resolved fluorescence with results of computational chemistry approaches has been...

  5. Exploring the Origin of Blue and Ultraviolet Fluorescence in Graphene Oxide.

    PubMed

    Kozawa, Daichi; Miyauchi, Yuhei; Mouri, Shinichiro; Matsuda, Kazunari

    2013-06-20

    We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.

  6. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  7. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water.

    PubMed

    Sahoo, Dibakar; Mandal, Abhishek; Mitra, Tapas; Chakraborty, Kaushik; Bardhan, Munmun; Dasgupta, Anjan Kumar

    2018-01-17

    Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼10 7 M -1 ). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (10 5 Ω to 7 × 10 4 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.

  8. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter.

    PubMed

    Hossain, Md Arafat; Canning, John; Yu, Zhikang; Ast, Sandra; Rutledge, Peter J; Wong, Joseph K-H; Jamalipour, Abbas; Crossley, Maxwell J

    2017-05-30

    A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λ ex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn 2+ is observed to accelerate with an increasing rate constant, k = 1.94 min -1 at T = 15 °C and k = 3.64 min -1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.

  9. Dynamics of DNA/intercalator complexes

    NASA Astrophysics Data System (ADS)

    Schurr, J. M.; Wu, Pengguang; Fujimoto, Bryant S.

    1990-05-01

    Complexes of linear and supercoiled DNAs with different intercalating dyes are studied by time-resolved fluorescence polarization anisotropy using intercalated ethidium as the probe. Existing theory is generalized to take account of excitation transfer between intercalated ethidiums, and Forster theory is shown to be valid in this context. The effects of intercalated ethidium, 9-aminoacridine, and proflavine on the torsional rigidity of linear and supercoiled DNAs are studied up to rather high binding ratios. Evidence is presented that metastable secondary structure persists in dye-relaxed supercoiled DNAs, which contradicts the standard model of supercoiled DNAs.

  10. Diode laser-induced infrared fluorescence of water vapour

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Hanson, Ronald K.; Jeffries, Jay B.

    2004-07-01

    Infrared laser-induced fluorescence (LIF) of water vapour was investigated for its potential as a spatially resolved gasdynamic diagnostic. A cw diode laser operating near 1392 nm was scanned across a single absorption transition in the ngr1 + ngr3 band of H2O in a static cell, and the resulting fluorescence signal was collected near 2.7 µm (both ngr1 and ngr3 bands). Experiments were conducted at low pressure in pure water vapour and mixtures of water vapour and N2 using a 20 mW laser in a double-pass arrangement. A simple analytical model was developed to relate LIF intensity to gas properties as a function of laser power. The spectrally resolved, single-line excitation spectrum was fitted with a Voigt profile, allowing inference of the water vapour temperature from the Doppler-broadened component of the measured fluorescence lineshape. A two-line excitation scheme was also investigated as a means of measuring temperature with reduced measurement time. From these initial measurements, we estimate that a practical sensor for atmospheric pressure applications would require a minimum of 1-2 W of laser power for two-line, fixed-wavelength temperature measurements and a minimum of about 70 W of power for scanned-wavelength measurements.

  11. Fluorescent speckle microscopy of microtubules: how low can you go?

    PubMed

    Waterman-Storer, C M; Salmon, E D

    1999-12-01

    Fluorescent speckle microscopy (FSM) is a new technique for visualizing the movement, assembly, and turnover of macromolecular assemblies like the cytoskeleton in living cells. In this method, contrast is created by coassembly of a small fraction of fluorescent subunits in a pool of unlabeled subunits. Random variation in association creates a nonuniform "fluorescent speckle" pattern. Fluorescent speckle movements in time-lapse recordings stand out to the eye and can be measured. Because fluorescent speckles represent fiduciary marks on the polymer lattice, FSM provides the opportunity for the first time to see the 2- and 3-dimensional trajectories of lattice movements within large arrays of polymers as well as identifying sites of assembly and disassembly of individual polymers. The technique works with either microinjection of fluorescently labeled subunits or expression of subunits ligated to green fluorescent protein (GFP). We have found for microtubules assembled in vitro that speckles containing one fluorophore can be detected and recorded using a conventional wide-field epi-fluorescence light microscope and digital imaging with a low noise cooled CCD camera. In living cells, optimal speckle contrast occurs at fractions of labeled tubulin of approximately 0.1-0.5% where the fluorescence of each speckle corresponds to one to seven fluorophores per resolvable unit (approximately 0.27 microm) in the microscope. This small fraction of labeled subunits significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells.

  12. Photophysical behavior of new acridine(1,8)dione dyes.

    PubMed

    Cabanzo Hernández, Rafael; David Gara, Pedro M; Velasco, Daniel Molina; Erra-Balsells, Rosa; Bilmes, Gabriel M

    2013-11-01

    The photophysical behavior of five acridine(1,8)dione dyes of biological interest was studied by absorption and fluorescence spectroscopy, photoacoustics and time resolved phosphorescence techniques. The results obtained in ethanol and acetonitrile solutions show that the main spectroscopic and photophysical parameters of these compounds depend strongly on both the solvent and oxygen concentrations. Oxygen completely quenched the triplet state of all dyes. In nitrogen-saturated solutions, quantum efficiencies of triplet formation in ethanol were lower than those in acetonitrile.

  13. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and high-spatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions. PMID:29449756

  14. A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan

    2011-02-01

    A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.

  15. Self-exchange reactions of radical anions in n-hexane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werst, D. W.; Chemistry

    The formation and reactions of radical anions in n-hexane at 190 K were investigated by pulse radiolysis and time-resolved fluorescence-detected magnetic resonance (FDMR). Electron attachment was found to occur for compounds with gas-phase electron affinities (EA) more positive than -1.1 {+-} 0.1 eV. The FDMR concentration and time dependence are interpreted as evidence for self-exchange electron-transfer reactions, indicating that formation of dimer radical anions is not prevalent for the range of molecules studied. FDMR detection of radical anions is mainly restricted to electron acceptors with EA less than approximately 0.5 eV.

  16. Temperature dependence of laser-induced fluorescence of Tb3+Tb3+ in molten LiCl-KCl eutectic

    NASA Astrophysics Data System (ADS)

    C., E.; -E., Jung | S.; | W., Bae; Cha | I., A.; Bae | Y., J.; | K., Park; Song

    2011-01-01

    Fluorescence spectra and lifetimes originated from both 5D3 →7FJ and 5D4 →7FJ transitions of Tb3+ were measured using time-resolved laser fluorescence spectroscopy in order to investigate the excited state relaxation in a molten salt medium. A cross-relaxation energy transfer of 5D3 →5D4 resulted in rise and decay behaviors in fluorescence signal waveforms of 5D4 →7FJ transitions. The fluorescence intensity ratios of 5D4 →7F5 to 5D3 →7F4 decreased drastically when the temperature of molten salt increased. This result suggests that the cross-relaxation effect becomes weakened with increasing temperature. In addition, a strong increase of the 5D4 emission over the 5D3 emission was observed at high Tb3+ concentration.

  17. Direct Detection of Time-Resolved Rabi Oscillationsin a Single Quantum Dot via Resonance Fluorescence

    DTIC Science & Technology

    2013-03-19

    Ware, E. A. Stinaff, D. Gammon, M. F. Doty, A. S . Bracker, D. Gershoni, V. L. Korenev , S . C. Bădescu, Y. Lyanda-Geller, and T. L. Reinecke, Phys. Rev...A SINGLE QUANTUM DOT VIA RESONANCE FLUORESCENCE 5a. CONTRACT NUMBER FA8750-12-2-0333 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) J...NUMBER CH 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of Michigan 450 Church Street Ann Arbor MI 48109-1040 8. PERFORMING

  18. Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Massey, G. A.; Lemon, C. J.

    1984-01-01

    A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.

  19. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods

    NASA Astrophysics Data System (ADS)

    Casamayou-Boucau, Yannick; Ryder, Alan G.

    2017-09-01

    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  20. An x-ray fluorescence imaging system for gold nanoparticle detection.

    PubMed

    Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J

    2013-11-07

    Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.

  1. Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements--method, rationale, and results on the activation energy of dioxygen formation.

    PubMed

    Buchta, Joachim; Grabolle, Markus; Dau, Holger

    2007-06-01

    The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 mus to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 mus (at 20 degrees C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 degrees C, pH 6.4). In the second part of the study, the temperature dependence (-2.7 to 27.5 degrees C) of the rate constant of dioxygen formation (600/s at 20 degrees C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.

  2. Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Treesearch

    Brian A. Pellerin; John Franco Saraceno; James B. Shanley; Stephen D. Sebestyen; George R. Aiken; Wilfred M. Wollheim; Brian A. Bergamaschi

    2012-01-01

    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3-) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water...

  3. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Liu, Hsiou-Yuan; Hsu, Hsiang; Huang, Shaio-Chih; Chen, Jeson; Yee, Fu-Ghoul; Chang, Huan-Cheng; Chang, Ming-Shien

    2016-05-01

    Measuring thermal properties with nanoscale spatial resolution either at or far from equilibrium is gaining importance in many scientific and engineering applications. Although negatively charged nitrogen-vacancy (NV-) centers in diamond have recently emerged as promising nanometric temperature sensors, most previous measurements were performed under steady state conditions. Here we employ a three-point sampling method which not only enables real-time detection of temperature changes over +/-100 K with a sensitivity of 2 K/(Hz)1/2, but also allows the study of nanometer scale heat transfer with a temporal resolution of better than 1 μs with the use of a pump-probe-type experiment. In addition to temperature sensing, we further show that nanodiamonds conjugated with gold nanorods, as optically-activated dual-functional nanoheaters and nanothermometers, are useful for highly localized hyperthermia treatment. We experimentally demonstrated time-resolved fluorescence nanothermometry, and the validity of the measurements was verified with finite-element numerical simulations. The approaches provided here will be useful for probing dynamical thermal properties on nanodevices in operation.

  4. Nondestructive assessment of collagen hydrogel cross-linking using time-resolved autofluorescence imaging

    NASA Astrophysics Data System (ADS)

    Sherlock, Benjamin E.; Harvestine, Jenna N.; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A.; Leach, J. Kent; Marcu, Laura

    2018-03-01

    We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable.

  5. Thermostability of glucose oxidase in silica gel obtained by sol-gel method and in solution studied by fluorimetric method.

    PubMed

    Przybyt, Małgorzata; Miller, Ewa; Szreder, Tomasz

    2011-04-04

    The thermostability of glucose oxidase entrapped in silica gel obtained by sol-gel method was studied by thermostimulated fluorescence of FAD at pH 5 and 7 and compared with that of the native enzyme in the solution and at the presence of ethanol. The unfolding temperatures were found to be lower for the enzyme immobilised in gel as compared with the native enzyme but higher as for the enzyme at the presence of ethanol. In gel, the thermal denaturation of glucose oxidase is independent on pH while in solution the enzyme is more stable at pH 5. The investigation the enzyme in different environment by steady-state fluorescence of FAD and tryptophan, synchronous fluorescence and time-resolved fluorescence of tryptophan indicates that the state of the molecule (tertiary structure and molecular dynamics) is different in gel and in solution. The ethanol produced during gel precursor hydrolysis is not the main factor influencing the thermostability of the enzyme but more important are interactions of the protein with the gel lattice. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The role of different structural motifs in the ultrafast dynamics of second generation protein stains.

    PubMed

    Chatterjee, Soumit; Karuso, Peter; Boulangé, Agathe; Peixoto, Philippe A; Franck, Xavier; Datta, Anindya

    2013-12-05

    Engineering the properties of fluorescent probes through modifications of the fluorophore structure has become a subject of interest in recent times. By doing this, the photophysical and photochemical properties of the modified fluorophore can be understood and this can guide the design and synthesis of better fluorophores for use in biotechnology. In this work, the electronic spectra and fluorescence decay kinetics of four analogues of the fluorescent natural product epicocconone were investigated. Epicocconone is unique in that the native state is weakly green fluorescent, whereas the enamine formed reversibly with proteins is highly emissive in the red. It was found that the ultrafast dynamics of the analogues depends profoundly on the H-bonding effect of solvents and solvent viscosity though solvent polarity also plays a role. Comparing the steady state and time-resolved data, the weak fluorescence of epicocconone in its native state is most likely due to the photoisomerization of the hydrocarbon side chain, while the keto enol moiety also has a role to play in determining the fluorescence quantum yield. This understanding is expected to aid the design of better protein stains from the same family.

  7. Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: Experiment and DFT/TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.

    2018-01-01

    Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.

  8. Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

    2013-10-01

    Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection.

  9. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  10. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  11. Open-air multispectral fluorescence-guided surgery platform for intraoperative detection of malignant tissue under ambient lighting conditions

    NASA Astrophysics Data System (ADS)

    Behrooz, Ali; Vasquez, Kristine O.; Waterman, Peter; Meganck, Jeff; Peterson, Jeffrey D.; Miller, Peter; Kempner, Joshua

    2017-02-01

    Intraoperative resection of tumors currently relies upon the surgeon's ability to visually locate and palpate tumor nodules. Undetected residual malignant tissue often results in the need for additional treatment or surgical intervention. The Solaris platform is a multispectral open-air fluorescence imaging system designed for translational fluorescence-guided surgery. Solaris supports video-rate imaging in four fixed fluorescence channels ranging from visible to near infrared, and a multispectral channel equipped with a liquid crystal tunable filter (LCTF) for multispectral image acquisition (520-620 nm). Identification of tumor margins using reagents emitting in the visible spectrum (400-650 nm), such as fluorescein isothiocyanate (FITC), present challenges considering the presence of auto-fluorescence from tissue and food in the gastrointestinal (GI) tract. To overcome this, Solaris acquires LCTF-based multispectral images, and by applying an automated spectral unmixing algorithm to the data, separates reagent fluorescence from tissue and food auto-fluorescence. The unmixing algorithm uses vertex component analysis to automatically extract the primary pure spectra, and resolves the reagent fluorescent signal using non-negative least squares. For validation, intraoperative in vivo studies were carried out in tumor-bearing rodents injected with FITC-dextran reagent that is primarily residing in malignant tissue 24 hours post injection. In the absence of unmixing, fluorescence from tumors is not distinguishable from that of surrounding tissue. Upon spectral unmixing, the FITC-labeled malignant regions become well defined and detectable. The results of these studies substantiate the multispectral power of Solaris in resolving FITC-based agent signal in deep tumor masses, under ambient and surgical light, and enhancing the ability to surgically resect them.

  12. Ultrafast hydrogen bond dynamics and partial electron transfer after photoexcitation of diethyl ester of 7-(diethylamino)-coumarin-3-phosphonic acid and its benzoxaphosphorin analog.

    PubMed

    Wagner, M S; Ilieva, E D; Petkov, P St; Nikolova, R D; Kienberger, R; Iglev, H

    2015-04-21

    The solvation dynamics after optical excitation of two phosphono-substituted coumarin derivatives dissolved in various solutions are studied by fluorescence up-conversion spectroscopy and quantum chemical simulations. The Kamlet-Taft analysis of the conventional absorption and emission spectra suggests weakening of the solvent-solute H-bonds upon optical excitation, which is in contrast to the results gained by the quantum simulations and earlier studies reported for coumarin derivatives without phosphono groups. The simulations give evidence that the solvent reorganisation around the excited fluorophore leads to partial electron transfer to the first solvation shell. The process occurs on a timescale between 1 and 10 ps depending on the solvent polarity and leads to a fast decay of the time-resolved emission signal. Using the ultrafast spectral shift of the time-dependent fluorescence we estimated the relaxation time of the H-bonds in the electronically excited state to be about 0.6 ps in water, 1.5 ps in ethanol and 2.8 ps in formamide.

  13. NADPH as a potential intrinsic probe for tumour margin estimation

    NASA Astrophysics Data System (ADS)

    Stewart, Hazel; Hupp, Ted R.; Birch, David J. S.

    2018-03-01

    The fluorescent properties of the reduced coenzyme NADH and its phosphorylated derivative (NADPH) have been explored in order to assess their potential as an intrinsic probe for cancer surgery. NADPH production is increased in cancer cells to quench reactive oxygen species and meet higher demands for biosynthesis, and has attractive fluorescent properties such as emission towards the visible part of the spectrum and a relatively long fluorescence lifetime upon binding to enzymes ( 1 - 6.5 ns) that helps discriminate against other endogenous species. Different environmental effects on NAD(P)H fluorescence are reported here, including an increase in lifetime upon oxygen removal, an ability to retain its fluorescent properties in a complex medium (a silica phantom) and its fluorescence lifetime also being distinguishable in a cell environment. In addition, the development of a miniaturized liquid light guide filter-based timecorrelated single photon counting fluorescence lifetime system is reported as a step towards time-resolved visual imaging in cancer surgery. This system has been demonstrated as being capable of accurately measuring NAD(P)H fluorescence lifetimes in both simple solvent and cellular environments.

  14. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis

    PubMed Central

    Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław

    2015-01-01

    Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress. PMID:25654166

  15. Site-specific multipoint fluorescence measurement system with end-capped optical fibers.

    PubMed

    Song, Woosub; Moon, Sucbei; Lee, Byoung-Cheol; Park, Chul-Seung; Kim, Dug Young; Kwon, Hyuk Sang

    2011-07-10

    We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of ∼1.5 ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology. © 2011 Optical Society of America

  16. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  17. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  18. Experimental Potential Energy Curve for the 43 Π Electronic State of NaCs

    NASA Astrophysics Data System (ADS)

    Steely, Andrew; Cooper, Hannah; Zain, Hareem; Whipp, Ciara; Faust, Carl; Kortyna, Andrew; Huennekens, John

    2017-04-01

    We present results from experimental studies of the 43 Π electronic state of the NaCs molecule. This electronic state is interesting in that its potential energy curve likely exhibits a double minimum. As a result, interference effects are observed in the resolved bound-free fluorescence spectra. The optical-optical double resonance method was used to obtain Doppler-free excitation spectra for the 43 Π state. This dataset of measured level energies was expanded largely by observing fluorescence from levels populated by collisions. To aid in level assignments, simulations of resolved bound-free fluorescence spectra were calculated using the BCONT program (R. J. Le Roy, University of Waterloo). Spectroscopic constants were determined to summarize data belonging to inner well, outer well, and above barrier regions of the electronic state. Current work focuses on using the IPA method to construct an experimental potential energy curve. Work supported by NSF and Susquehanna University.

  19. Applications of immunomagnetic capture and time-resolved fluorescence detection for Salmonella enteriditis in liquid eggs

    NASA Astrophysics Data System (ADS)

    Tu, Shu-I.; Gehring, Andrew; Paoli, George

    2008-04-01

    An immuno sandwich method was evaluated for the detection of Salmonella in liquid eggs. Liquid eggs spiked with different out-break strains of Salmonella were mixed with proper enrichment media and incubated at 37 C for 4 to 20 h. After enrichment, immunomagnetic beads (IMB) coated with anti Salmonella antibodies were used to capture the bacteria. Samarium (Sm) labeled anti Salmonella antibodies were then used to form sandwiched complexes with IMB captured bacteria. Sandwiched Salmonella were then treated with Sm-chelator to allow the measurement of the released Sm by time-resolved fluorescence (TRF). The processes ranging from IMB capture to Sm chelation were performed using an automated KingFisher apparatus. With this approach, the presence of ~ 1 CFU of outbreak strains of Salmonella Enteritidis per egg (~50 g of liquid eggs) could be detected after enrichment for 20 h at 37 C. For higher levels of Salmonella Enteritidis contamination, e.g., 10 CFU per 50 g of liquid eggs, the enrichment time could be reduced to 5 h at 37 C. The results demonstrated that a combination of IMB capture and TRF measurement could be a rapid and sensitive method for Salmonella Enteritidis detection in liquid eggs.

  20. Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Marcu, Laura; Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C

    2009-05-01

    Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally (360-550 nm range) and temporally (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths (1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and (2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS-based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk.

Top