Sample records for time-resolved optical waveguide

  1. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  2. Energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding.

    PubMed

    Shu, G W; Lin, C C; Lin, H T; Lin, T N; Shen, J L; Chiu, C H; Li, Z Y; Kuo, H C; Lin, C C; Wang, S C; Lin, C A J; Chang, W H

    2011-03-14

    We present the first observation of resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding. Steady-state and time-resolved photoluminescence measurements provide conclusive evidence of resonance energy transfer and obtain an optimum transfer efficiency of ~72%. A set of rate equations is successfully used to model the kinetics of resonance energy transfer.

  3. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    PubMed Central

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-01-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845

  4. Polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating.

    PubMed

    Miao, Houxun; Weiner, Andrew M; Langrock, Carsten; Roussev, Rostislav V; Fejer, Martin M

    2007-04-01

    We demonstrate polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating (FROG) measurements with a fiber-pigtailed, aperiodically poled lithium niobate waveguide. By scrambling the polarization much faster than the measurement integration time, we eliminate the impairment that frequency-independent random polarization fluctuations induce in FROG measurements. As a result we are able to retrieve intensity and phase profiles of few hundred femtosecond optical pulses with 50 MHz repetition rates at 5.2 nW coupled average power without control of the input polarization.

  5. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  6. Rapid updating of optical arbitrary waveforms via time-domain multiplexing.

    PubMed

    Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B

    2008-05-15

    We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.

  7. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  8. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  9. FIBER AND INTEGRATED OPTICS. FIBER WAVEGUIDE DEVICES: Fiber Michelson interferometer with a 50-km difference between its arms

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Kuznetsov, A. V.; Makarenko, A. Yu; Okhotnikov, O. G.; Prokhorov, A. M.; Shcherbakov, E. A.

    1990-12-01

    Single-mode fiber waveguides were used in constructing a Michelson interferometer with a 50-km difference between its arm lengths. An analysis was made of its resolving power as a function of the parameters of the optical part and of the characteristics of the electronic apparatus used in the system. The width of a spectral emission line of a semiconductor laser with a distributed Rayleigh fiber resonator was determined.

  10. Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions.

    PubMed

    Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G

    2013-02-11

    We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

  11. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  12. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  13. Continuously tunable optical buffer with a dual silicon waveguide design.

    PubMed

    Horak, Peter; Stewart, Will; Loh, Wei H

    2011-06-20

    We propose a design for an optical buffer that comprises two coupled silicon waveguides, which is capable of generating a large continuously tunable change in the propagation delay time. The optical delay can be varied by more than 100% through varying the spacing between the waveguides.

  14. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  15. FIBER AND INTEGRATED OPTICS: Detection of the optical anisotropy in KTP:Rb waveguides

    NASA Astrophysics Data System (ADS)

    Buritskiĭ, K. S.; Dianov, Evgenii M.; Maslov, Vladislav A.; Chernykh, V. A.; Shcherbakov, E. A.

    1990-10-01

    The optical characteristics of channel waveguides made of rubidium-activated potassium titanyl phosphate (KTP:Rb) were determined. The refractive index increment of such waveguides was found to exhibit a considerable anisotropy: Δnx / Δnz approx 2. A deviation of the distribution of the refractive index in a channel waveguide from the model distribution was observed for ion-exchange times in excess of 1 h.

  16. Optical properties of new wide heterogeneous waveguides with thermo optical shifters.

    PubMed

    De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M

    2008-12-22

    We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).

  17. Polymer electro-optic waveguide devices: Low-loss etchless fabrication techniques and passive-to-active integration

    NASA Astrophysics Data System (ADS)

    Geary, Kevin

    The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.

  18. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  19. Temporal waveguides for optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less

  20. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

    NASA Astrophysics Data System (ADS)

    Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.

    2018-04-01

    We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.

  1. Classical and low-light-level detection and pulse characterization using optical-frequency mixers

    NASA Astrophysics Data System (ADS)

    Langrock, Carsten

    2007-12-01

    Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation, frequency-resolved optical gating, and temporal imaging can be realized in single-polarization-guiding collinear waveguide structures at sub-60-aJ (400 photons/pulse) levels. Recently, guided-wave OF mixers have also become important for precision metrology applications based on frequency-comb generation (FCG) (i.e. optical ruler) using ultrashort pulses. The most compact and energy efficient FCG systems use fiber lasers. In collaboration with IMRA America, Inc., we demonstrate that RPE PPLN waveguides can be used to implement fully integrated fiber-laser-based FCG systems taking advantage of unprecedented octave-spanning spectral broadening of the input pulses in combination with simultaneous phase sensing inside the same waveguide.

  2. A dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled with a waveguide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian

    2014-10-07

    We theoretically propose a dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled to a waveguide system through external optical pump beams. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. The group delay of an all-optical analog to electromagnetically induced transparency effect can be controlled by tuning either the frequency of photonic crystal microcavities or the propagation phase of line waveguide. Group delay is controlled between 5.88 and 70.98 ps by dynamically tuning resonant frequencies of the microcavities. Alternatively, the group delay is controlled between 1.86more » and 12.08 ps by dynamically tuning the propagation phase of line waveguide. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward microstructure integration optical pulse trapping and all-optical dynamical storage of light devices in optical communication and quantum information processing.« less

  3. Efficient transportation of nano-sized particles along slotted photonic crystal waveguide.

    PubMed

    Lin, Pin-Tso; Lee, Po-Tsung

    2012-01-30

    We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development.

  4. Characterization of passive polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Joehnck, Matthias; Kalveram, Stefan; Lehmacher, Stefan; Pompe, Guido; Rudolph, Stefan; Neyer, Andreas; Hofstraat, Johannes W.

    1999-05-01

    The characterization of monomode passive polymer optical devices fabricated according to the POPCORN technology by methods originated from electron, ion and optical spectroscopy is summarized. Impacts of observed waveguide perturbations on the optical characteristics of the waveguide are evaluated. In the POPCORN approach optical components for telecommunication applications are fabricated by photo-curing of liquid halogenated (meth)acrylates which have been applied on moulded thermoplastic substrates. For tuning of waveguide material refractive indices with respect to the substrate refractive index frequently comonomer mixtures are used. The polymerization characteristics, especially the polymerization kinetics of individual monomers, determine the formation of copolymers. Therefore the unsaturation as function of UV-illumination time in the formation of halogenated homo- and copolymers has been examined. From different suitable copolymer system, after characterization of their glass transition temperatures, their curing behavior and their refractive indices as function of the monomer ratios, monomode waveguides applying PMMA substrates have been fabricated. To examine the materials composition also in the 6 X 6 micrometers 2 waveguides they have been visualized by transmission electron microscopy. With this method e.g. segregation phenomena could be observed in the waveguide cross section characterization as well. The optical losses in monomode waveguides caused by segregation and other materials induce defects like micro bubbles formed as a result of shrinkage have been quantized by return loss measurements. Defects causing scattering could be observed by convocal laser scanning microscopy and by conventional light microscopy.

  5. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    NASA Astrophysics Data System (ADS)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  6. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  7. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    PubMed Central

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  8. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    PubMed

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-07-26

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  9. Optical NOR logic gate design on square lattice photonic crystal platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  10. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  11. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  12. Microfabricated Waveguide Atom Traps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jau, Yuan-Yu

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading coldmore » atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.« less

  13. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  14. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOEpatents

    Heebner, John E [Livermore, CA

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  15. High speed CMOS acquisition system based on FPGA embedded image processing for electro-optical measurements

    NASA Astrophysics Data System (ADS)

    Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen

    2018-06-01

    Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.

  16. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  17. Combining near-field scanning optical microscopy with spectral interferometry for local characterization of the optical electric field in photonic structures.

    PubMed

    Trägårdh, Johanna; Gersen, Henkjan

    2013-07-15

    We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.

  18. Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide.

    PubMed

    Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken

    2012-04-09

    We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.

  19. Light coupling for on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin

    2017-12-01

    An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.

  20. Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-04-01

    In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.

  1. Propagation of THz pulses in rectangular subwavelength dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun

    2018-06-01

    Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.

  2. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  3. Plasmon-assisted optical vias for photonic ASICS

    DOEpatents

    Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna

    2017-03-21

    The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.

  4. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  5. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.

    PubMed

    Hwang, B S; Kwon, M H; Kim, Jeongyong

    2004-08-01

    We used the finite difference time domain (FDTD) method to study the use of scanning near field optical microscopy (SNOM) to locally excite the nanometric plasmonic waveguides. In our calculation, the light is funneled through a SNOM probe with a sub-wavelength optical aperture and is irradiated on one end of two types of plasmonic waveguides made of 50 nm Au sphere arrays and Au nanowires. The incident light was well localized at one end of the waveguides and consequently propagated toward the other end, due to the excitation of surface plasmon polaritons. We found that the propagation length of the nanosphere array type waveguide varies from 100 to 130 nm depending on the light wavelength, the size of the probe aperture, and the launching heights. Our result shows that reducing the aperture size and using the light of the plasmon resonance wavelength of the nanosphere array could increase the propagation length and, thus, the efficiency of electromagnetic energy transportation through nanosphere arrays. 2004 Wiley-Liss, Inc.

  6. Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide.

    PubMed

    Ciret, Charles; Leo, François; Kuyken, Bart; Roelkens, Gunther; Gorza, Simon-Pierre

    2016-01-11

    We report on the first experimental observation of an optical analogue of an event horizon in integrated nanophotonic waveguides, through the reflection of a continuous wave on an intense pulse. The experiment is performed in a dispersion-engineered silicon-on-insulator waveguide. In this medium, solitons do not suffer from Raman induced self-frequency shift as in silica fibers, a feature that is interesting for potential applications of optical event horizons. As shown by simulations, this also allows the observation of multiple reflections at the same time on fundamental solitons ejected by soliton fission.

  7. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  8. Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide.

    PubMed

    Wang, Ke-Yao; Foster, Mark A; Foster, Amy C

    2015-06-15

    Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.

  9. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.

    PubMed

    Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong

    2017-05-03

    A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.

  10. FIBER AND INTEGRATED OPTICS: Photodetector waveguide structures made of epitaxial InGaAs films and intended for integrated circuits manufactured from III-V semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Lamekin, V. F.; Smirnov, V. L.; Polyantsev, A. S.; Kogan, Yu I.; Babushkina, T. S.; Kuntsevich, T. S.; Peshkovskaya, O. G.

    1990-08-01

    Photodetector waveguide structures made of epitaxial InxGa1 - xAs solid-solution films were developed and investigated. These structures were intended for optical integrated circuits manufactured from III-V semiconductor compounds for operation in the wavelength range 1.0-1.5 μm. Two types of photodetector waveguide p-i-n structures were developed. They consisted of a composite waveguide and tunnel-coupled waveguides, respectively. A study was made of structural parameters, responsivity, spectral and time characteristics, and dark currents in photodetectors made of the waveguide structures. This investigation was carried out in the wavelength range 1.0-1.3 μm. The maximum spectral responsivity of one of the types of the waveguide photodetector was ~ 0.5 ± 0.1 A/W and the dark current did not exceed 10 - 7-10 - 8 A.

  11. Integrated optical refractometer based on bend waveguide with air trench structure

    NASA Astrophysics Data System (ADS)

    Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha

    2015-07-01

    This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.

  12. Fabrication of 8×8 MMI optical coupler in BK7 by ion-exchange

    NASA Astrophysics Data System (ADS)

    Li, Xia; Li, Xi-Hua; Zhou, Qiang; Jiang, Xiao-Qing; Yang, Jian-Yi; Wang, Ming-Hua

    2005-01-01

    The planar waveguide optical couplers are of prime importance in optical communication and optical signal processing system. Comparing with the optical fiber coupler (OFC) which fabricated by fused biconical taper technology, the planar waveguide couplers are more compact size, lower loss, better uniformity, easier manufacture and integration. Multimode interference (MMI) couplers have many advantages, such as compact size, wavelength and polarization insensitivity, fabrication tolerances and low loss, etc., which concentrate more and more attention. Conventional MMI devices are based on the uniform index waveguides. When the number of input/output waveguides becomes larger, the intrinsic propagation constant error, which will cause bad uniformity of output power, can"t be neglected. In fact, most waveguide devices are graded-index. With the enhanced compatibility of MMI coupler, the performance can be improved at the same time. Prior study shows that graded-index MMI couplers reach the best performance under certain index contrast. Among many available materials, glass is chosen to be the substrate of the coupler, because of its good features, such as low loss, ease fabrication, cheap cost, and so on. In this paper, an 8×8 MMI optical coupler is designed based on the principle of graded-index MMI. The coupler is composed of a waveguide, which is designed to support a large number of modes, and several access (usually single-mode) waveguides, which are used to launch light into and recover light from that multimode waveguide. The total length of the device is less than 3.5 centimeter, including S-bends which lead the multiple images to the output of the device with the spacing D=250μm to make the device fiber compatible. In this paper, we describe an experimental realization of the 8×8 graded-index MMI optical coupler and the measurement of its performance with the testing laser of the wavelength of 1.55μm. The device is fabricated by ion-exchange on BK7 glass substrate. During the ion-exchange process, a melting mixture of AgNO3 : (KNO3 : NaNO3) (molar ratio, 0.001:1) is used at 350~380°C for different times (range from 8 to 18 hours) to fabricate the coupler. The experimental results show that the performance of the optical coupler is quite promising. For instance, while launching light from No.5 waveguide, the uniformity of the device is approximately 0.72dB. Optimization of design and fabrication is going on to improve the total performance of the optical coupler.

  13. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    PubMed

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  14. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    PubMed Central

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-01-01

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range. PMID:28817020

  15. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  16. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  17. Optimization of figure of merit in magnetoplasmonic waveguides with Fe/Au multilayer for optical isolator based on nonreciprocal coupling on Si waveguides

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Shimodaira, Takahiro

    2018-04-01

    We report on magnetoplasmonic Si waveguides with a ferromagnetic Fe/conductive metal Au multilayer for realizing a sizable magnetooptic effect with a low propagation loss for integrated optical isolators. By combining the ferromagnetic metal Fe with a highly conductive Au layer, the largest nonreciprocal differences in effective index were estimated for propagation lengths of 1-20 µm. Mode analysis with and without a Au layer clarified that the insertion of a Au layer on an Fe layer improves the optical confinement in the Fe layer with reduced propagation loss and is effective in enlarging the magnetooptic effect for the same propagation length. On the basis of the optimized Fe/Au multilayer structure, we designed waveguide optical isolators based on nonreciprocal coupling by the finite difference time domain (FDTD) method. We estimated an optical isolation of 10.8 dB with a forward insertion loss of 13.4 dB in a 34-µm-long nonreciprocal directional coupler.

  18. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  19. Silicon photonics thermal phase shifter with reduced temperature range

    DOEpatents

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  20. FIBER AND INTEGRATED OPTICS: New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides

    NASA Astrophysics Data System (ADS)

    Tsarev, Andrei V.

    2007-08-01

    A new type of optical waveguides in silicon-on-insulator nanostructures is proposed and studied. Their optical properties are simulated by the beam propagation method and discussed. A new design in the form of heterogeneous waveguide structures is based on the production of additionally heavily doped p+-regions on the sides of a multimode stripe waveguide (the silicon core cross section is ~200 nm × 16 μm). Such doping provides the 'single-mode' behaviour of the heterogeneous waveguide due to the decrease in the optical losses for the fundamental mode and increase in losses for higher-order modes. Single-mode heterogeneous waveguides can be used as base waveguides in photonic and integrated optical elements.

  1. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  2. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties

    NASA Astrophysics Data System (ADS)

    Cao, Tianlin; Zhao, Fanyu; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong; Zhao, Zerun; Li, Jiaxin; Guo, Xiaotong

    2016-10-01

    In this work, a novel graphene oxide-polyimide (GOPI) as optical waveguide material was prepared. The structure, mechanical, thermal property and morphology of the GOPI was characterized by using fourier transform infrared, UV-visible spectroscopy, near-infrared spectrum, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscope and transmission electron microscopy. The thermo-optic coefficients (dn/dT) are -9.16 × 10-4 (532 nm), -7.56 × 10-4 (650 nm) and -4.82 × 10-4 (850 nm) °C-1, respectively. Based on the thermo-optic effect of prepared GOPI as waveguide material, a Y-branch with branching angle of 0.143° and Mach-Zehnder thermo-optic switches were designed. Using finite difference beam propagation method (FD-BPM) method, the simulation results such as power consumptions and response times of two different thermo-optic switches were obtained.

  3. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    NASA Astrophysics Data System (ADS)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way to increase aggregate bandwidth is to utilize different eigen-modes of a multimode waveguide, and integrated waveguide mode-muxes and demuxes for achieving simultaneous mode-division-multiplexing and wavelength-division-multiplexing will be demonstrated.

  4. Three Dimensionally Interconnected Silicon Nanomembranes for Optical Phased Array (OPA) and Optical True Time Delay (TTD) Applications

    DTIC Science & Technology

    2012-06-01

    Nanophotonic Waveguides," J. Lightwave Technol. 25 (1), 151-156 (2007). [7-4] Yongbo Tang, Zhechao Wang, Lech Wosinski, Urban Westergren, and Sailing...Waveguides," Photonics Journal, IEEE 3 (2), 203-208 (2011). [8-25] Zhechao Wang, Ning Zhu, Yongbo Tang, Lech Wosinski, Daoxin Dai, and Sailing He

  5. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  6. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  7. Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands.

    PubMed

    Tyszka-Zawadzka, Anna; Janaszek, Bartosz; Szczepański, Paweł

    2017-04-03

    The tunability of slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands is investigated. For the first time it has been shown that proper design of a GHMM structure forming waveguide layer and the geometry of the waveguide itself allows stopped light to be obtained in an almost freely selected range of wavelengths within SCLU bands. In particular, the possibility of controlling light propagation in GHMM waveguides by external biasing has been presented. The change of external electric field enables the stop light of the selected wavelength as well as the control of a number of modes, which can be stopped, cut off or supported. Proposed GHMM waveguides could offer great opportunities in the field of integrated photonics that are compatible with CMOS technology, especially since such structures can be utilized as photonic memory cells, tunable optical buffers, delays, optical modulators etc.

  8. Optical panel system including stackable waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, Leonard; Veligdan, James T.

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less

  9. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  10. Photorefractive response and optical damage of LiNbO3 optical waveguides produced by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Villarroel, J.; Carrascosa, M.; García-Cabañes, A.; Caballero-Calero, O.; Crespillo, M.; Olivares, J.

    2009-06-01

    The photorefractive behaviour of a novel type of optical waveguides fabricated in LiNbO3 by swift heavy ion irradiation is investigated. First, the electro-optic coefficient r 33 of these guides that is crucial in the photorefractive effect is measured. Second, two complementary aspects of the photorefractive response are studied: (i) recording and light-induced and dark erasure of holographic gratings; (ii) optical beam degradation in single-beam configuration. The main photorefractive parameters, recording and erasing time constants, maximum refractive-index change and optical damage thresholds are determined.

  11. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.

    PubMed

    Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan

    2009-11-09

    We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.

  12. Periodically modulated single-photon transport in one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  13. Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.

    2010-02-01

    A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.

  14. Optical clock signal distribution and packaging optimization

    NASA Astrophysics Data System (ADS)

    Wu, Linghui

    Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.

  15. Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm

    NASA Astrophysics Data System (ADS)

    Najar, Adel; Charrier, Joël; Lorrain, Nathalie; Haji, Lazhar; Oueslati, Mehrezi

    2007-09-01

    The on-off optical gain measurements as a function of the pump power were performed on porous silicon planar waveguides codoped by erbium and ytterbium ions. These measurements were obtained for different ratios of Yb concentration to Er concentration. The highest value of the gain was reached when the Yb concentration is three times higher than that of Er at a moderate 980nm pump power value equal to 70mW. Optical losses measurements have been performed on these waveguides and were equal to 2.1dB/cm and an internal gain of about 6.4dB/cm was obtained.

  16. Monolithically integrated solid state laser and waveguide using spin-on glass

    DOEpatents

    Ashby, C.I.H.; Hohimer, J.P.; Neal, D.R.; Vawter, G.A.

    1995-10-31

    A monolithically integrated photonic circuit is disclosed combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material. 4 figs.

  17. Bulk diamond optical waveguides fabricated by focused femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hadden, J. P.; Sotillo, Belén.; Bharadwaj, Vibhav; Rampini, Stefano; Bosia, Federico; Picollo, Federico; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney T.; Osellame, Roberto; Miura, Kiyotaka; Ferrari, Maurizio; Ramponi, Roberta; Olivero, Paolo; Barclay, Paul E.; Eaton, Shane M.

    2017-02-01

    Diamond's nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and their ability to be located, manipulated and read out using light. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532- nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work we show the possibility of buried waveguide fabrication in diamond, enabled by focused femtosecond high repetition rate laser pulses. We use μRaman spectroscopy to gain better insight into the structure and refractive index profile of the optical waveguides.

  18. Gain determination of optical active doped planar waveguides

    NASA Astrophysics Data System (ADS)

    Šmejcký, J.; Jeřábek, V.; Nekvindová, P.

    2017-12-01

    This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.

  19. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  20. 100 GHz pulse waveform measurement based on electro-optic sampling

    NASA Astrophysics Data System (ADS)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  1. Design, fabrication and analysis of integrated optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Sikorski, Yuri

    Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.

  2. Growth and optical waveguide fabrication in spinel MgGa2O4 crystal

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Ling; Cui, Xiao-Jun; Rensberg, Jura; Wu, Kui; Wesch, Werner; Wendler, Elke

    2017-10-01

    We report on optical waveguide fabrication in a spinel MgGa2O4 crystal by 6.0 MeV carbon ion implantation at a fluence of 2 × 1015 ions/cm2 for the first time to our knowledge. The MgGa2O4 crystal was grown by the floating zone method. The refractive index profile reconstructed by reflectivity calculation method showed that the MgGa2O4 waveguide is a typical barrier waveguide. The typical barrier-shaped refractive index profile is attributed mainly to the nuclear energy deposition of the incident carbon ions into the MgGa2O4 crystal. By performing end-coupling measurements and using the beam propagation method (BPM) for the analysis of the observed modes, it can be concluded that the modes can be confined inside the waveguide.

  3. Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator

    PubMed Central

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-01

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281

  4. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (<50%) and about 6 times the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  5. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  6. Study of a computer-controlled integrated optical gas-concentration sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A A; Egorov, M A; Chekhlova, T K

    2008-08-31

    A computer-controlled integrated optical waveguide sensor based on an optical waveguide of the diffusion type with the low attenuation coefficient is developed and studied. It is shown that the response time of the sensor is {approx}0.15 s. According to tests and computer simulations, the sensor can detect gaseous ammonia in air with the limiting theoretical concentration of {approx}0.1 ppm for the signal-to-noise ratio no less than 20. (laser applications and other topics in quantum electronics)

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of a computer-controlled integrated optical gas-concentration sensor

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.; Egorov, M. A.; Chekhlova, T. K.; Timakin, A. G.

    2008-08-01

    A computer-controlled integrated optical waveguide sensor based on an optical waveguide of the diffusion type with the low attenuation coefficient is developed and studied. It is shown that the response time of the sensor is ≈0.15 s. According to tests and computer simulations, the sensor can detect gaseous ammonia in air with the limiting theoretical concentration of ≈0.1 ppm for the signal-to-noise ratio no less than 20.

  8. Optical keyboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  9. Fabrication of raised and inverted SU8 polymer waveguides

    NASA Astrophysics Data System (ADS)

    Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.

    2005-01-01

    Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.

  10. Optical losses in p-type layers of GaN ridge waveguides in the IR region

    NASA Astrophysics Data System (ADS)

    Westreich, Ohad; Katz, Moti; Atar, Gil; Paltiel, Yossi; Sicron, Noam

    2017-07-01

    Optical losses in c-plane (0001) GaN ridge waveguides, containing Mg-doped layers, were measured at 1064 nm, using the Fabry-Perot method. The losses increase linearly with the modal content of the p-layer, indicating that the absorption in these waveguides is dominated by p-layer absorption. The p-layer absorption is strongly anisotropic with E⊥c losses 4 times higher than E∥c. The absorption is temperature independent between 10 °C and 60 °C, supporting the possibility that it is related to Mg-bound holes.

  11. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides.

    PubMed

    Teng, Jie; Dumon, Pieter; Bogaerts, Wim; Zhang, Hongbo; Jian, Xigao; Han, Xiuyou; Zhao, Mingshan; Morthier, Geert; Baets, Roel

    2009-08-17

    Athermal silicon ring resonators are experimentally demonstrated by overlaying a polymer cladding on narrowed silicon wires. The ideal width to achieve athermal condition for the TE mode of 220 nm-height SOI waveguides is found to be around 350 nm. After overlaying a polymer layer, the wavelength temperature dependence of the silicon ring resonator is reduced to less than 5 pm/degrees C, almost eleven times less than that of normal silicon waveguides. The optical loss of a 350-nm bent waveguide (with a radius of 15 microm) is extracted from the ring transmission spectrum. The scattering loss is reduced to an acceptable level of about 50 dB/cm after overlaying a polymer cladding. (c) 2009 Optical Society of America

  12. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings

    NASA Astrophysics Data System (ADS)

    Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli

    2000-05-01

    A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.

  13. Magneto-optical non-reciprocal devices in silicon photonics

    PubMed Central

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-01-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640

  14. Background-free balanced optical cross correlator

    DOEpatents

    Nejadmalayeri, Amir Hossein; Kaertner, Franz X

    2014-12-23

    A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

  15. On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Sang, Xinzhu; Wang, Kuiru; Wu, Qiang; Yan, Binbin; Li, Feng; Zhou, Xian; Zhong, Kangping; Zhou, Guiyao; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.

    2016-01-01

    High performance all-optical quantizer based on silicon waveguide is believed to have significant applications in photonic integratable optical communication links, optical interconnection networks, and real-time signal processing systems. In this paper, we propose an integratable all-optical quantizer for on-chip and low power consumption all-optical analog-to-digital converters. The quantization is realized by the strong cross-phase modulation and interference in a silicon-organic hybrid (SOH) slot waveguide based Mach-Zehnder interferometer. By carefully designing the dimension of the SOH waveguide, large nonlinear coefficients up to 16,000 and 18,069 W−1/m for the pump and probe signals can be obtained respectively, along with a low pulse walk-off parameter of 66.7 fs/mm, and all-normal dispersion in the wavelength regime considered. Simulation results show that the phase shift of the probe signal can reach 8π at a low pump pulse peak power of 206 mW and propagation length of 5 mm such that a 4-bit all-optical quantizer can be realized. The corresponding signal-to-noise ratio is 23.42 dB and effective number of bit is 3.89-bit. PMID:26777054

  16. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of light-control-light system using graphene oxide coated optical waveguide

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Soltani, Soroush; Faizal Ismail, Mohammad; Thambiratnam, Kavintheran; Yi, Chong Wu; Yasin, Moh

    2018-07-01

    An optical waveguide was coated with graphene oxide (GO) using the drop-casting technique to increase the interaction between the waveguide’s evanescent field and the GO layer. Subsequently, a 1550 nm tunable laser source and 980 nm pump laser is used to study the potential of the GO-film to control the flow of light through the waveguide by altering the state of the waveguide between transparent (ON) and opaque (OFF). The GO layer has a thickness of 0.40 µm and allows a 1550 nm signal with a peak power of  ‑7.0 dBm and average output power of 0 dBm to pass through at a maximum pump power of 60 mW. The waveguide has a responsivity of ~0.1 dB mW‑1, with the time to switch between the ON and OFF states being about 3 ms.

  18. Resonant Tunneling Quantum Well Integrated Optical Waveguide Modulator/ Switch

    DTIC Science & Technology

    1994-07-01

    time, which leads to the high speed operation. In this Phase I project, POC designed the RTDBQW device, including the optimization and precise definition...Effect of Free Carriers ............ 7 3.0 CHANNEL WAVEGUIDE DESIGN AND OPTIMIZATION ................... 10 3.1 Design Of Directional Coupling Mach...are essential for high speed signal routing and regeneration. POC’s design relies on the integration of an optical guided wave switch/modulator with a

  19. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  20. Highly coherent free-running dual-comb chip platform.

    PubMed

    Hébert, Nicolas Bourbeau; Lancaster, David G; Michaud-Belleau, Vincent; Chen, George Y; Genest, Jérôme

    2018-04-15

    We characterize the frequency noise performance of a free-running dual-comb source based on an erbium-doped glass chip running two adjacent mode-locked waveguide lasers. This compact laser platform, contained only in a 1.2 L volume, rejects common-mode environmental noise by 20 dB thanks to the proximity of the two laser cavities. Furthermore, it displays a remarkably low mutual frequency noise floor around 10  Hz 2 /Hz, which is enabled by its large-mode-area waveguides and low Kerr nonlinearity. As a result, it reaches a free-running mutual coherence time of 1 s since mode-resolved dual-comb spectra are generated even on this time scale. This design greatly simplifies dual-comb interferometers by enabling mode-resolved measurements without any phase lock.

  1. Chip-based wide field-of-view nanoscopy

    NASA Astrophysics Data System (ADS)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  2. FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides

    NASA Astrophysics Data System (ADS)

    Adamson, P. V.

    1990-10-01

    Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.

  3. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  4. Integrated photonics using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  5. Photonic emitters and circuits based on colloidal quantum dot composites

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  6. Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects

    NASA Astrophysics Data System (ADS)

    Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja

    2014-10-01

    In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.

  7. FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Frolov, V. V.

    1990-01-01

    A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.

  8. Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.

    2013-05-01

    Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.

  9. Polymer thermal optical switch for a flexible photonic circuit.

    PubMed

    Sun, Yue; Cao, Yue; Wang, Qi; Yi, Yunji; Sun, Xiaoqiang; Wu, Yuanda; Wang, Fei; Zhang, Daming

    2018-01-01

    Flexible and wearable optoelectronic devices are the new trend for an active lifestyle. These devices are polymer-based for flexibility. We demonstrated flexible polymer waveguide optical switches for a flexible photonic integrated circuit. The optical switches are composed of a single-mode inverted waveguide with dimensions of 5 μm waveguide width, 3 μm ridge height, and 3 μm slab height. A Mach-Zehnder structure was used in the device, with the Y-branch horizontal length of 0.1 cm, the distance between two heating branches of 30 μm, and the heating branch length of 1 cm. The optical field of the device was simulated by beam propagation to optimize the electrode position. The switching properties of the flexible optical switch with different working conditions, such as contact to the polymer, silicon, and skin, were simulated. The device was prepared based on the photo curved polymer and lithography method. The end faces of the flexible film device were processed using an excimer laser with optimized parameters of 28  mJ/cm 2 and 15 Hz. The response rise time and fall time on the PMMA substrate were measured as 1.98 ms and 2.71 ms, respectively. The power consumption was 16 mW and the extinction ratio was 11 dB. The response rise and fall times on the Si substrate were measured as 1.08 ms and 1.62 ms, respectively. The power consumption was 17 mW and the extinction ratio was 11 dB. The demonstrated properties indicate that this flexible optical waveguide structure can be used in the light control area of a wearable device.

  10. Surface normal coupling to multiple-slot and cover-slotted silicon nanocrystalline waveguides and ring resonators

    NASA Astrophysics Data System (ADS)

    Covey, John; Chen, Ray T.

    2014-03-01

    Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.

  11. Characterization of Si3N4/SiO2 optical channel waveguides by photon scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Wang, Yan; Chudgar, Mona H.; Jackson, Howard E.; Miller, Jeffrey S.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    Photon scanning tunneling microscopy (PSTM) is used to characterize Si3N4/Si02 optical channel waveguides being used for integrated optical-micromechanical sensors. PSTM utilizes an optical fiber tapered to a fine point which is piezoelectrically positioned to measure the decay of the evanescent field intensity associated with the waveguide propagating mode. Evanescent field decays are recorded for both ridge channel waveguides and planar waveguide regions. Values for the local effective refractive index are calculated from the data for both polarizations and compared to model calculations.

  12. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    PubMed

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  13. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  14. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.

    PubMed

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Kim, Un Jeong; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-02

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.

  15. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    PubMed Central

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-01-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115

  16. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  17. Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array

    DOEpatents

    Davids, Paul; DeRose, Christopher; Rakich, Peter Thomas

    2015-08-11

    An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.

  18. Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics.

    PubMed

    Sakamaki, Yohei; Shikama, Kota; Ikuma, Yuichiro; Suzuki, Kenya

    2017-08-21

    We propose a waveguide frontend with integrated polarization diversity optics for a wavelength selective switch (WSS) array with a liquid crystal on silicon switching engine to simplify the free space optics configuration and the alignment process in optical modules. The polarization diversity function is realized by the integration of a waveguide-type polarization beam splitter and a polarization rotating half-wave plate in a beam launcher using silica-based planar lightwave circuit technology. We confirmed experimentally the feasibility of using our proposed waveguide frontend in a two-in-one 1 × 20 WSS. The experimental results show that the fabricated waveguide frontend provides a polarization diversity function without any degradation in optical performance.

  19. Low-loss multimode interference couplers for terahertz waves

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  20. Spatially Modulated Gain Waveguide Electro-Optic Laser

    DTIC Science & Technology

    2013-08-09

    1997, pp 1223-1226. 5. Y. Li, S. M. Goldwasser, P. Herczfeld, L.M. Narducci, "Dynamics of an electro-optically tunable microchip laser ", IEEE...TYPE Final 3. DATES COVERED (From 7/2/2010-5-10-2013 To) 4. TITLE AND SUBTITLE Spatially modulated gain waveguide electro-optic laser 5a...optical waveguides laser on LiNb03 substrate. The main goal of this work is to implement an active LiNb03 waveguide with the desired spatially modulated

  1. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  2. Optical trapping and propulsion of red blood cells on waveguide surfaces.

    PubMed

    Ahluwalia, Balpreet Singh; McCourt, Peter; Huser, Thomas; Hellesø, Olav Gaute

    2010-09-27

    We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 
6 µm/s on a waveguide with a width of ~6 µm is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported.

  3. Optical NAND gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Raring, James [Goleta, CA; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  4. The waveguide laser - A review

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  5. Far infrared pump injection using an alumina waveguide

    NASA Astrophysics Data System (ADS)

    Nedvidek, F. J.; Kucerovsky, Z.; Brannen, Eric

    1987-01-01

    An alumina waveguide extension is employed to channel infrared radiation from a CO2 waveguide laser into an optically pumped far IR waveguide laser resonator in order to obtain far IR lasing with methyl alcohol and other media. Low pump transmission losses and efficient free space coupling are possible with proper choice of waveguide bore. The technique compares favorably with other injection schemes using refractive optics, and it offers greater flexibility, easier alignment, and less expense than optical arrangements using lenses.

  6. Extraction film for optical waveguide and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  7. Integrated resonant micro-optical gyroscope and method of fabrication

    DOEpatents

    Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM

    2006-09-12

    An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

  8. High efficiency all-optical plasmonic diode based on a nonlinear side-coupled waveguide-cavity structure with broken symmetry

    NASA Astrophysics Data System (ADS)

    Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao

    2018-05-01

    An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.

  9. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  10. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  11. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications

    NASA Astrophysics Data System (ADS)

    Kip, D.

    1998-08-01

    In several oxide crystals the refractive index can be changed by inhomogeneous illumination, and these photorefractive properties have allowed for a wide variety of applications in optical data storage and dynamic holography. The high light intensities that are inherent in waveguide geometries make it relatively easy to observe photorefractive effects in waveguide structures, too. On the one hand, these effects are feared as optical damage, as they can degrade the performance of integrated optical devices. On the other hand, optical wave mixing in photorefractive waveguides is of considerable interest for the development of nonlinear optical components. A review of the results of recent research on the fabrication, investigation, and applications of photorefractive waveguides is given. The formation and photorefractive properties of LiNbO3, LiTaO3, BaTiO3, KNbO3, SrxBa1-xNb2O6 (0.25hxА.75, SBN), and Bi12(Si,Ti,Ge)O20 (BSO, BTO, BGO) waveguides are discussed. Furthermore, the suitability of photorefractive waveguides for nonlinear optical components is demonstrated in some examples.

  12. Optical pumping in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  13. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.

  14. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  15. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  16. Application of microstructural optical waveguides with hollow core for enzyme immunoassay

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Pidenko, Sergei A.; Burmistrova, Natalia A.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.

    2018-04-01

    Microstructural optical waveguides with the hollow core are actively studied as a promising support for heterogeneous immunoassay in development of new optical biosensor elements for medicine and biology. Overcoming of the limitations associated with the low sorption capacity of glass used for the waveguides production is a crucial step for this assay format. In this work the possibility of silanization of microstructural optical waveguides with the hollow core using (3-glycidyloxypropyl) trimethoxysilane and their further application to enzymatic immunoassay was studied.

  17. Fluorescent fluid interface position sensor

    DOEpatents

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  18. Polymer Waveguide Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Ramey, Delvan A.

    1985-01-01

    The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.

  19. Polymer waveguide grating sensor integrated with a thin-film photodetector

    PubMed Central

    Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407

  20. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  1. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  2. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.

  3. Planar polymer and glass graded index waveguides for data center applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex

    2016-03-01

    Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.

  4. Broadband and scalable optical coupling for silicon photonics using polymer waveguides

    NASA Astrophysics Data System (ADS)

    La Porta, Antonio; Weiss, Jonas; Dangel, Roger; Jubin, Daniel; Meier, Norbert; Horst, Folkert; Offrein, Bert Jan

    2018-04-01

    We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

  5. Optical pumping in a whispering-mode optical waveguide

    DOEpatents

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  6. Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings.

    PubMed

    Bachim, Brent L; Ogunsola, Oluwafemi O; Gaylord, Thomas K

    2005-08-15

    Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

  7. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  8. Characteristics and instabilities of mode-locked quantum-dot diode lasers.

    PubMed

    Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J

    2013-04-08

    Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.

  9. A proposal for digital electro-optic switches with free-carrier dispersion effect and Goos-Hanchen shift in silicon-on-insulator waveguide corner mirror

    NASA Astrophysics Data System (ADS)

    Sun, DeGui

    2013-09-01

    In a silicon-on-insulator (SOI) waveguide corner mirror (WCM) structure, with the quantum process of a frustrated total internal reflection (FTIR) phenomenon and the time delay principle in the two-dimensional potential barrier tunneling process of a mass of particles, we derive an accurate physical model for the Goos-Hanchen (GH) shift of optical guided-mode in the FTIR process, and in principle match the GH shift jumping states with the independent guided-modes. Then, we propose and demonstrate a new regime of 1 × N digital optical switches with a matching state between the free-carrier dispersion (FCD) based refractive index modulation (RIM) of silicon to create a GH shift jumping function of a photonic signal at the reflecting interface and the independent guided-modes in the FTIR process, where a MOS-capacitor type electro-optic modulation regime is proposed and discussed to realize an effective FCD-based RIM. At the critical matching state, i.e., the incident of an optical beam is at the vicinity of Brewster angle in the WCM, a mini-change of refractive index of waveguide material can cause a great jump of GH shift along the FTIR reflecting interface, and further a 1 × N digital optical switching process could be realized. For a 350-500 nm single-mode rib waveguide made on the 220 nm CMOS-compatible SOI substrate and with the FCD effect based RIM of silicon crystal, a concentration variation of 1018-1019 cm-3 has caused a 0.5-2.5 μm GH shift of reflected beam, which is at 2-5 times of a mode-size and hence radically convinces an optical switching function with a 1 × 3-1 × 10 scale.

  10. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides.

    PubMed

    Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich

    2013-10-21

    We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

  11. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    NASA Astrophysics Data System (ADS)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that < 1 dB IL per connection can be achieved by either method and results indicate lowest potential losses associated with a fine-tuned self-writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  12. Optical waveguides with memory effect using photochromic material for neural network

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  13. Integrated optical gyroscopes offering low cost, small size and vibration immunity

    NASA Astrophysics Data System (ADS)

    Monovoukas, Christos; Swiecki, Andrew; Maseeh, Fariborz

    2000-03-01

    IntelliSense has developed an integrated optic gyro technology that provides the sensitivity of fiber optic gyros while utilizing batch microfabrication techniques to achieve the low cost of mechanical MEMS gyros. The base technology consists of an optical resonating waveguide chip, sensor electronics and an optical bench. The sensing element is based on an integrated optic waveguide chip in which counter-propagating optical fields are used to sense rotation in the plane of the waveguide through the Sagnac effect. It is powered by a semiconductor laser light source, which is coupled into a waveguide and split into two waveguide arms. Both signals are probed through the out coupled light at each waveguide arm, and rate information is derived from the difference in phase between these two signals. Measuring angular rotation is important for proper operation of a variety of systems such as: missile guidance systems, satellites, energy exploration, camera stabilization, robotics positioning, platform stabilization and space craft guidance to mention a few. This technology overcomes the limitations that previous commercially available gyros for this purpose have had including limitations in size, sensitivity, durability, and premium price.

  14. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters and couplers were fabricated with coupling ratios from 2% to 50% over a broad 350 nm bandwidth across the telecommunication band. Laser-induced birefringence was harnessed to generate polarization dependent MMI devices for strong polarization filtering (24 dB isolation), or polarization selective taps with up to 50% tapping efficiency over a 25 nm bandwidth. This dissertation is therefore the first demonstration of femtosecond laser direct writing as a flexible and monolithic means of embedding and integrating highly functional optical circuit devices within the cladding of optical fibers that can interconnect efficiently with the pre-existing fiber core waveguide. These developments represent a significant technological advancement for creating new 3D photonic integrated microsystems within the cladding of optical fibers and underpins a new technological platform of fiber cladding photonics.

  15. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  16. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  17. Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.

    1999-11-01

    A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.

  18. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  19. Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.

    2018-04-01

    Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.

  20. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  1. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  2. Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching.

    PubMed

    Tan, Yang; Chen, Feng

    2010-05-24

    We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400 degrees C, the propagation loss of the ridge waveguides is determined to be as low as approximately 0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

  3. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  4. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  5. Metal-clad waveguide characterization for contact-based light transmission into tissue

    NASA Astrophysics Data System (ADS)

    Chininis, Jeffrey; Whiteside, Paul; Hunt, Heather K.

    2016-02-01

    As contemporary laser dermatology procedures, like tattoo removal and skin resurfacing, become more popular, the complications of their operation are also becoming more prevalent. Frequent incidences of over-exposure, ocular injury, and excessive thermal damage represent mounting concerns for those seeking such procedures; moreover, each of these problems is a direct consequence of the standard, free-space method of laser transmission predominantly used in clinical settings. Therefore, an alternative method of light transmission is needed to minimize these problems. Here, we demonstrate and characterize an alternative method that uses planar waveguides to deliver light into sample tissue via direct contact. To do this, slab substrates made from glass were clad in layers of titanium and silver, constraining the light within the waveguide along the waveguide's length. By creating active areas on the waveguide surface, the propagating light could then optically tunnel into the tissue sample, when the waveguide was brought into contact with the tissue. SEM and EDS were used to characterize the metal film thickness and deposition rates onto the glass substrates. Laser light from a Q-switched Nd:YAG source operating at 532nm was coupled into the waveguide and transmitted into samples of pig skin. The amount of light transmitted was measured using photoacoustics techniques, in conjunction with a photodiode and integrating sphere. Transmitting light into tissue in this manner effectively resolves or circumvents the complications caused by free-space propagation methods as it reduces the operating distance to 0, which prevents hazardous back-reflections and allows for the ready incorporation of contact cooling technologies.

  6. Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.

    The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.

  7. Incorporating an optical waveguide into a neural interface

    DOEpatents

    Tolosa, Vanessa; Delima, Terri L.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tooker, Angela C.

    2016-11-08

    An optical waveguide integrated into a multielectrode array (MEA) neural interface includes a device body, at least one electrode in the device body, at least one electrically conducting lead coupled to the at least one electrode, at least one optical channel in the device body, and waveguide material in the at least one optical channel. The fabrication of a neural interface device includes the steps of providing a device body, providing at least one electrode in the device body, providing at least one electrically conducting lead coupled to the at least one electrode, providing at least one optical channel in the device body, and providing a waveguide material in the at least one optical channel.

  8. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  9. Optical XOR gate

    DOEpatents

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  10. Optical NOR gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  11. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  12. Evaporated As2S3 Luneburg lenses for LiNbO3:Ti optical waveguides

    NASA Technical Reports Server (NTRS)

    Busch, J. R.; Wood, V. E.; Kenan, R. P.; Verber, C. M.

    1981-01-01

    Luneburg lenses of good quality were formed on high index optical waveguides by evaporation of arsenic trisulfide glass through simple masks. Using only two thin circular aperture masks, lenses with focal spots of a few times the diffraction limited width at f/4 were obtained. These lenses were designed for and tested at both visible (633 nm) and infrared wavelengths. Procedures for the design, fabrication, and testing of lenses of this type are described.

  13. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  14. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  15. Numerical model of the polymer electro-optic waveguide

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen

    2012-09-01

    A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.

  16. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  17. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  18. Anti resonant reflecting optical waveguide structure based on oxidized porous silicon for label free bio sensing applications

    NASA Astrophysics Data System (ADS)

    Haji, L.; Hiraoui, M.; Lorrain, N.; Guendouz, M.

    2012-03-01

    In this letter we report on the use of an electrochemical process for the fabrication of anti resonant reflecting optical waveguide based on oxidized porous silicon. This method is known to allow the formation of various photonic structures (Bragg mirror, microcavity), thanks to the easy and in situ modulation of the porosity and thus of the refractive index. Planar anti resonant reflecting optical waveguide structure made from porous silicon is demonstrated to be very effective for low losses as compared to conventional resonant waveguide. Optical measurements carried out for TE and TM polarizations are reported and related to optical sensing.

  19. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  20. Strong field localization in subwavelength metal-dielectric optical waveguides

    NASA Astrophysics Data System (ADS)

    Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.

    2011-08-01

    Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.

  1. Optofluidic waveguides: I. Concepts and implementations

    PubMed Central

    Schmidt, Holger; Hawkins, Aaron R.

    2011-01-01

    We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048

  2. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  3. InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index

    NASA Astrophysics Data System (ADS)

    Mikami, O.; Nakagome, H.

    1985-11-01

    Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.

  4. INTEGRATED AND FIBER OPTICS: Threshold of photoinduced conversion of the polarization of radiation in lithium niobate optical waveguides

    NASA Astrophysics Data System (ADS)

    Kazanskiĭ, P. G.

    1989-02-01

    A threshold of photoinduced conversion of an ordinary wave into an extraordinary one was discovered for lithium niobate optical waveguides. The threshold intensity of the radiation was determined for waveguides prepared under different conditions. The experimental results were compared with theoretical estimates.

  5. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation

    PubMed Central

    Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; De La Rue, R. M.; Ahmad, H.

    2016-01-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015

  6. Multichannel waveguides for the simultaneous detection of disease biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K

    2009-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease ormore » for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.« less

  7. Investigation for connecting waveguide in off-planar integrated circuits.

    PubMed

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  8. WGM resonators for studying orbital angular momentum of a photon, and methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  9. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix.

    PubMed

    Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol

    2010-11-01

    This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.

  10. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  11. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    PubMed

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  12. Accurate real-time sensing tip for aqueous NO with optical fibers embedded in active hydrogel waveguide

    NASA Astrophysics Data System (ADS)

    Chung, Chieh-Wen; Tsai, May-Jywan; Lin, Peng-Wei; Huang, Ding-Wen; Wang, Kuan-Hsun; Chen, Yu-An; Meng, Hsin-Fei; Zan, Hsiao-Wen; Cheng, Henrich; Tong, Limin; Zhang, Lei; Horng, Sheng-Fu; Hung, Cheng-Hsiung

    2018-02-01

    A NO sensing tip is made by inserting two parallel optical fibers inside a poly 2-hydroxyethyl methacrylate (PolyHEMA) hydrogel waveguide mixed with the probe molecule 1, 2-Diaminoanthraquinone (DAQ). There is a length difference of 1 mm between the two fibers, and the light has to propagate through the difference from the short fiber to the long fiber. The total cross section area of the active hydrogel waveguide embedded with the fibers is only 3mm x 1.2 mm. For practical use the tip is housed in a needle for mechanical protection and the sensing tip is able to detect aqueous NO concentration around 1 μM with time resolution about 5 minutes. Such a sensing tip can be used to monitor the medical conditions inside the brain after a stroke or a brain injury.

  13. Low-temperature THz time domain waveguide spectrometer with butt-coupled emitter and detector crystal.

    PubMed

    Qiao, W; Stephan, D; Hasselbeck, M; Liang, Q; Dekorsy, T

    2012-08-27

    A compact high-resolution THz time-domain waveguide spectrometer that is operated inside a cryostat is demonstrated. A THz photo-Dember emitter and a ZnTe electro-optic detection crystal are directly attached to a parallel copper-plate waveguide. This allows the THz beam to be excited and detected entirely inside the cryostat, obviating the need for THz-transparent windows or external THz mirrors. Since no external bias for the emitter is required, no electric feed-through into the cryostat is necessary. Using asynchronous optical sampling, high resolution THz spectra are obtained in the frequency range from 0.2 to 2.0 THz. The THz emission from the photo-Dember emitter and the absorption spectrum of 1,2-dicyanobenzene film are measured as a function of temperature. An absorption peak around 750 GHz of 1,2-dicyanobenzene displays a blue shift with increasing temperature.

  14. FIBER AND INTEGRATED OPTICS: New method for determination of the parameters of a channel waveguide

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Sychugov, V. A.; Tishchenko, A. V.; Usievich, B. A.

    1992-02-01

    A new method for the determination of the parameters of channel integrated optical waveguides is proposed. This method is based on measuring the spectral transmission of a system comprising the investigated waveguide and single-mode fiber waveguides, which are brought into contact with the channel waveguide. The results are reported of an investigation of two channel waveguides formed in glass by a variety of methods and characterized by different refractive index profiles. The proposed method is found to be suitable for determination of the parameters of the refractive index profile of the investigated channel waveguides.

  15. Waveguide device and method for making same

    DOEpatents

    Forman, Michael A [San Francisco, CA

    2007-08-14

    A monolithic micromachined waveguide device or devices with low-loss, high-power handling, and near-optical frequency ranges is set forth. The waveguide and integrated devices are capable of transmitting near-optical frequencies due to optical-quality sidewall roughness. The device or devices are fabricated in parallel, may be mass produced using a LIGA manufacturing process, and may include a passive component such as a diplexer and/or an active capping layer capable of particularized signal processing of the waveforms propagated by the waveguide.

  16. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  17. Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon.

    PubMed

    Bai, Wubin; Yang, Hongjun; Ma, Yinji; Chen, Hao; Shin, Jiho; Liu, Yonghao; Yang, Quansan; Kandela, Irawati; Liu, Zhonghe; Kang, Seung-Kyun; Wei, Chen; Haney, Chad R; Brikha, Anlil; Ge, Xiaochen; Feng, Xue; Braun, Paul V; Huang, Yonggang; Zhou, Weidong; Rogers, John A

    2018-06-26

    Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.

    PubMed

    Ashrafi, Reza; Azaña, José

    2012-07-01

    A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.

  19. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  20. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  1. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    NASA Astrophysics Data System (ADS)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  2. Roughness measurements on coupling structures for optical interconnections integrated on a printed circuit board

    NASA Astrophysics Data System (ADS)

    Hendrickx, Nina; Van Erps, Jürgen; Suyal, Himanshu; Taghizadeh, Mohammad; Thienpont, Hugo; Van Daele, Peter

    2006-04-01

    In this paper, laser ablation (at UGent), deep proton writing (at VUB) and laser direct writing (at HWU) are presented as versatile technologies that can be used for the fabrication of coupling structures for optical interconnections integrated on a printed circuit board (PCB). The optical layer, a highly cross-linked acrylate based polymer, is applied on an FR4 substrate. Both laser ablation and laser direct writing are used for the definition of arrays of multimode optical waveguides, which guide the light in the plane of the optical layer. In order to couple light vertically in/out of the plane of the optical waveguides, coupling structures have to be integrated into the optical layer. Out-of-plane turning mirrors, that deflect the light beam over 90°, are used for this purpose. The surface roughness and angle of three mirror configurations are evaluated: a laser ablated one that is integrated into the optical waveguide, a laser direct written one that is also directly written onto the waveguide and a DPW insert that is plugged into a cavity into the waveguiding layer.

  3. NASA Tech Briefs, March 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Tool for Bending a Metal Tube Precisely in a Confined Space; Multiple-Use Mechanisms for Attachment to Seat Tracks; Force-Measuring Clamps; Cellular Pressure-Actuated Joint; Block QCA Fault-Tolerant Logic Gates; Hybrid VLSI/QCA Architecture for Computing FFTs; Arrays of Carbon Nanotubes as RF Filters in Waveguides; Carbon Nanotubes as Resonators for RF Spectrum Analyzers; Software for Viewing Landsat Mosaic Images; Updated Integrated Mission Program; Software for Sharing and Management of Information; Update on Integrated Optical Design Analyzer; Optical-Quality Thin Polymer Membranes; Rollable Thin Shell Composite-Material Paraboloidal Mirrors; Folded Resonant Horns for Power Ultrasonic Applications; Touchdown Ball-Bearing System for Magnetic Bearings; Flux-Based Deadbeat Control of Induction-Motor Torque; Block Copolymers as Templates for Arrays of Carbon Nanotubes; Throttling Cryogen Boiloff To Control Cryostat Temperature; Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station; Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers; and Time-Resolved Measurements in Optoelectronic Microbioanal.

  4. Graphene electrodes for lithium-niobate electro-optic devices.

    PubMed

    Chang, Zeshan; Jin, Wei; Chiang, Kin Seng

    2018-04-15

    We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.

  5. Polymer multimode waveguide optical and electronic PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Selviah, David R.

    2009-02-01

    The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.

  6. Optical Waveguides Written in Silicon with Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer

    Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.

  7. Directional emissivity from two-dimensional infrared waveguide arrays

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Davids, Paul S.; Finnegan, Patrick S.; Figueiredo, Pedro N.; Ginn, James C.

    2015-09-01

    Fabrication and optical characterization of surfaces covered with open-ended metallic waveguides are presented along with numerical modeling of these structures. Both modeling and measurement of the structures indicate that the 2-D array of 3D metallic waveguides modify both the direction and spectral content of the emissivity, resulting in directionality normal to the surface due to the optical axis of the waveguides and spectrally narrow emissivity due to the lateral dimensions of the waveguides. Furthermore, the optical behavior of these structures is placed in the broader context of other structured emission/absorption surfaces such as organ pipe modes, surface plasmon modes, and coherent thermal emission from gratings.

  8. Dark Solitons in High Velocity Waveguide Polariton Fluids.

    PubMed

    Walker, P M; Tinkler, L; Royall, B; Skryabin, D V; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N

    2017-09-01

    We study exciton-polariton nonlinear optical fluids in the high momentum waveguide regime for the first time. We demonstrate the formation of dark solitons with the expected dependence of width on fluid density for both main classes of soliton-forming fluid defects. The results are well described by numerical modeling of the fluid propagation. We deduce a continuous wave nonlinearity more than ten times that on picosecond time scales, arising due to interaction with the exciton reservoir.

  9. Electro-Optic Analog/Digital Converter.

    DTIC Science & Technology

    electro - optic material and a source of linearly polarized light is arranged to transmit its light energy along each of the optical waveguides. Electrodes are disposed contiguous to the optical waveguides for impressing electric fields thereacross. An input signal potential is applied to the electrodes to produce electric fields of intensity relative to each of the waveguides such that causes phase shift and resultant change of polarization which can be detected as representative of a binary ’one’ or binary ’zero’ for each of the channel optical

  10. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  11. Chemical-assisted femtosecond laser writing of lab-in-fibers.

    PubMed

    Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R

    2014-10-07

    The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.

  12. Coherent virtual absorption for discretized light

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2018-05-01

    Coherent virtual absorption (CVA) is a recently-introduced phenomenon for which exponentially growing waves incident onto a conservative optical medium are neither reflected nor transmitted, at least transiently. CVA has been associated to complex zeros of the scattering matrix and can be regarded as the time reversal of the decay process of a quasi-mode sustained by the optical medium. Here we consider CVA for discretized light transport in coupled resonator optical waveguides or waveguide arrays and show that a distinct kind of CVA, which is not related to complex zero excitation of quasi-modes, can be observed. This result suggests that scattering matrix analysis can not fully capture CVA phenomena.

  13. FIBER AND INTEGRATED OPTICS: Matching of fiber and strip optical waveguides by graded-index optical matching components

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Gordova, M. R.; Lamekin, V. F.; Nikolaev, I. V.; Sakharov, V. V.; Smirnov, V. L.; Polyantsev, A. S.

    1990-01-01

    A method for selection and calculation of the parameters of axisymmetric and anamorphic graded-index lenses for optical matching devices is developed and tested. These devices are intended for detachable connectors joining single-mode fibers to strip optical waveguides and are characterized by a greater tolerance to a mismatch between these waveguides. An experimental study is reported of a prototype of an optical matching device based on graded-index lenses characterized by insertion losses from 1-3 dB.

  14. Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides

    NASA Astrophysics Data System (ADS)

    Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-07-01

    Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also demonstrated.

  15. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  16. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res

  17. Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

    NASA Astrophysics Data System (ADS)

    Van Camp, Mackenzie A.

    Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian ( R2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.

  18. FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.

    1992-02-01

    A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.

  19. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    NASA Technical Reports Server (NTRS)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing requirements as well as achieve the power handling and other specifications in a suitably compact package.

  20. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  1. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  2. Waveguide structures in anisotropic nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  3. Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.

    2013-04-01

    An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.

  4. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  5. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  6. Novel Waveguide Architectures for Light Sources in Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Tummidi, Ravi Sekhar

    Of the many challenges which are threatening to derail the success trend set by Moore's Law, perhaps the most prominent one is the "Interconnect Bottleneck". The metallic interconnections which carry inter-chip and intra-chip signals are increasingly proving to be inadequate to carry the enormous amount of data due to band-width limitations, cross talk and increased latency. A silicon based optical interconnect is showing enormous promise to address this issue in a cost effective manner by leveraging the extremely matured CMOS fabrication infrastructure. An optical interconnect system consists of a low loss waveguide, modulator, photo detector and a light source. Of these the only component yet to be demonstrated in silicon is a CMOS compatible electrically pumped silicon based laser. The present work is our endeavor towards the goal of a practical light source in silicon. To this end we have focused our efforts on horizontal slot waveguide which consists of a nm thin low index silica layer sandwiched between two high index silicon layers. Such a structure provides an exceptionally high confinement for the TM-like mode in the thin silica slot. The shallow ridge profile of the waveguide allows in principle for lateral electrical access to the core of the waveguide for excitation of the slot embedded gain material like erbium or nano-crystal sensitized erbium using tunneling, polarization transfer or transport. Low losses in the proposed structure are paramount due to the low gain expectation (˜1dB/cm) from CMOS compatible gain media. This dissertation details the novel techniques conceived to mitigate the severe lateral radiation leakage loss of the TM-like mode in these waveguides and resonators using "Magic Widths" and "Magic Radii" designs. New fabrication techniques are discussed which were developed to achieve ultra-smooth waveguide surfaces to substantially reduce the scattering induced losses in the Silicon-on-Insulator (SOI) high index contrast system. This enabled us to achieve resonators with Qs of 1.6x106 for the TE-like mode in non-slot configurations and 3x105 for the TM-like mode in full slot configuration, the highest yet reported for this type of structure and close to our design requirements for a laser. Erbium was incorporated into the silica slot just 8.3 nm thick and photoluminescence was observed in full waveguide configuration. A simple phenomenological model based on spontaneous emission into a waveguide mode was developed, which predicted >10x Purcell enhancement of the luminescence decay in these slot waveguides even in the absence of a resonator, a result also yielded by a rigorous quantum electrodynamic analysis. These enhanced spontaneous emission rates were experimentally verified using time resolved photoluminescence decay and luminescence power measurements. The results so far indicate that these slot structures could be the enablers for very efficient LEDs due to the highly preferential characteristic of the spontaneous emission to go into the single guided mode. The future goal will be to harness this behavior for novel silicon photonic light sources.

  7. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  8. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    PubMed

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  9. Waveform synthesizer

    DOEpatents

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  10. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  11. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.

    PubMed

    Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I

    2012-01-31

    Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.

  12. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  13. Three-Dimensional Waveguide Arrays for Coupling Between Fiber-Optic Connectors and Surface-Mounted Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Seiki; Kinoshita, Masao

    2005-09-01

    This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.

  14. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  15. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  16. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    PubMed

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  17. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires.

    PubMed

    Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H

    2016-06-27

    We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.

  18. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    PubMed

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  19. Correlation between optical return loss and transmission fringe noise in high-index contrast waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Chi; Martin, Yves; Khater, Marwan

    2017-05-15

    We present a phenomenological model correlating optical return loss and amplitude of fringes in transmission spectrum due to distributed backscattering in high-index-contrast waveguides. The model is validated experimentally using four different waveguide cross sections.

  20. Device-packaging method and apparatus for optoelectronic circuits

    DOEpatents

    Zortman, William A.; Henry, Michael David; Jarecki, Jr., Robert L.

    2017-04-25

    An optoelectronic device package and a method for its fabrication are provided. The device package includes a lid die and an active die that is sealed or sealable to the lid die and in which one or more optical waveguides are integrally defined. The active die includes one or more active device regions, i.e. integral optoelectronic devices or etched cavities for placement of discrete optoelectronic devices. Optical waveguides terminate at active device regions so that they can be coupled to them. Slots are defined in peripheral parts of the active dies. At least some of the slots are aligned with the ends of integral optical waveguides so that optical fibers or optoelectronic devices inserted in the slots can optically couple to the waveguides.

  1. Controlled waveguide coupling for photon emission from colloidal PbS quantum dot using tunable microcavity made of optical polymer and silicon

    NASA Astrophysics Data System (ADS)

    Nozaka, Takahiro; Mukai, Kohki

    2016-04-01

    A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.

  2. Two different ways for waveguides and optoelectronics components on top of C-MOS

    NASA Astrophysics Data System (ADS)

    Fedeli, J. M.; Jeannot, S.; Kostrzewa, M.; Di Cioccio, L.; Jousseaume, V.; Orobtchouk, R.; Maury, P.; Zussy, M.

    2006-02-01

    While fabrication of photonic components at the wafer level is a long standing goal of integrated optics, new applications such as optical interconnects are introducing new challenges for waveguides and optoelectronic component fabrication. Indeed, global interconnects are expected to face severe limitations in the near future. To face this problem, optical links on top of a CMOS circuits could be an alternative. The critical points to perform an optical link on a chip are firstly the realization of compact passive optical distribution and secondly the report of optoelectronic components for the sources and detectors. This paper presents two different approaches for the integration of both waveguides and optoelectronic components. In a first "total bonding" approach, waveguides have been elaborated using classical "Silicon On Insulators" technology and then reported using molecular bonding on top off Si wafers. The S0I substrate was then chemically etched, after what InP dies were moleculary bonded on top of the waveguides. With this approach, optical components with low loses and a good equilibrium are demonsrated. Using molecular bonding, InP dies were reported with no degradation of the optoelectronic properties of the films. In a second approach, using PECVD silicon nitride or amorphous silicon coupled to PECVD silicon oxide, basic optical components are demonstrated. This low temperature technology is compatible with a microelectronic Back End process, allowing an integration of the waveguides directly on top of CMOS circuits. InP dies can then be bonded on top of the waveguides.

  3. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    NASA Astrophysics Data System (ADS)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  4. Direct write fabrication of waveguides and interconnects for optical printed wiring boards

    NASA Astrophysics Data System (ADS)

    Dingeldein, Joseph C.

    Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.

  5. Highly efficient coupler for dielectric slot waveguides and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Yu, Jiyao; Ohtera, Yasuo; Yamada, Hirohito

    2018-05-01

    A compact, highly efficient optical coupler for dielectric slot waveguides and hybrid plasmonic waveguides based on transition layers (air slot grooves) was investigated. The power-coupling efficiency of 75% for the direct coupling case increased to 90% following the insertion of an intermediate section. By performing time-averaged Poynting vector analysis, we successfully separated the factors of transmission, reflection, and radiation at the coupler interface. We found that the insertion of optimal air grooves into the coupler structure contributed to the improvement of coupling performance. The proposed compact structure is characterized by a high transmission efficiency, low reflection, small length, and broad-band spectrum response.

  6. Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system

    NASA Astrophysics Data System (ADS)

    Wang, Boyun; Zeng, Qingdong; Xiao, Shuyuan; Xu, Chen; Xiong, Liangbin; Lv, Hao; Du, Jun; Yu, Huaqing

    2017-11-01

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency (PIT) in two stub resonators side-coupled with a metal-dielectric-metal (MDM) plasmonic waveguide system. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons (SPPs) and the plasmonic waveguide based on graphene-Ag composite material structures with large effective Kerr nonlinear coefficient. An ultrafast response time of the order of 1 ps is reached because of ultrafast carrier relaxation dynamics of graphene. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the PIT system is achieved under excitation of a pump light with an intensity as low as 5.8 MW cm-2. The group delay is controlled between 0.14 and 0.67 ps. Moreover, the tunable bandwidth of about 42 nm is obtained. For the indirect coupling between two stub cavities or the phase coupling scheme, the phase shift multiplication effect of the PIT effect is found. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. This work not only paves the way towards the realization of on-chip integrated nanophotonic devices but also opens the possibility of the construction of ultrahigh-speed information processing chips based on plasmonic circuits.

  7. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  8. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  9. Nanophotonic Devices in Silicon for Nonlinear Optics

    DTIC Science & Technology

    2010-10-15

    record performance  Demonstration of world‟s lowest loss slot waveguides, made in a DOD-trusted foundry (BAE Systems)  Design study showing...highly-cited design study.  Design study on analog links using the above modulators.  Demonstration of the first silicon waveguides for the mid...Hochberg. Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links. Optics Express 2010

  10. Integrated optical transceiver with electronically controlled optical beamsteering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less

  11. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  12. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  13. Novel optical interconnect devices applying mask-transfer self-written method

    NASA Astrophysics Data System (ADS)

    Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

    2012-01-01

    The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

  14. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, J.; Sola, D.; Vázquez de Aldana, J. R.; Lifante, G.; de Aza, A. H.; Pena, P.; Peña, J. I.

    2015-01-01

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  15. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    NASA Astrophysics Data System (ADS)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  16. Self-bending of optical waveguides in a dry photosensitive medium

    NASA Astrophysics Data System (ADS)

    Malallah, Ra'ed; Wan, Min; Muniraj, Inbarasan; Cassidy, Derek; Sheridan, John T.

    2018-03-01

    Optical waveguide trajectories formed in an AA/PVA a photopolymer material photosensitive at 532 nm are examined. The transmission of light by this materials is discussed. The bending and arching of the waveguides which occur are investigated. The prediction of our model are shown to agree with the observed of trajectories. The largest index changes taking place at any time during the exposure, i.e. during SWW formation are found at the positions where the largest light intensity is present. Typically, such as maxima exist close to the input face at the location of the Primary Eye or at the location of the Secondary Eyes deeper with in the material. All photosensitive materials have a maximum saturation value of refractive index change that it is possible to induce, which is also discussed.

  17. Strongly-guided indium phosphide/indium gallium arsenic phosphide Mach-Zehnder modulator for optical communications

    NASA Astrophysics Data System (ADS)

    Betty, Ian Brian

    2006-12-01

    The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.

  18. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    NASA Astrophysics Data System (ADS)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  19. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong

    2018-01-01

    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  20. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  1. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    PubMed

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  2. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  3. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  4. All-optical switch with two periodically modulated nonlinear waveguides.

    PubMed

    Xie, Qiongtao; Luo, Xiaobing; Wu, Biao

    2010-02-01

    We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear directional coupler without periodic modulation, this all-optical switch has much lower switching threshold power and sharper switching width.

  5. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators

    NASA Astrophysics Data System (ADS)

    Ersen, Ali; Sahin, Mesut

    2017-05-01

    Neural electrodes and associated electronics are powered either through percutaneous wires or transcutaneous powering schemes with energy harvesting devices implanted underneath the skin. For electrodes implanted in the spinal cord and the brain stem that experience large displacements, wireless powering may be an option to eliminate device failure by the breakage of wires and the tethering of forces on the electrodes. We tested the feasibility of using optically clear polydimethylsiloxane (PDMS) as a waveguide to collect the light in a subcutaneous location and deliver to deeper regions inside the body, thereby replacing brittle metal wires tethered to the electrodes with PDMS-based optical waveguides that can transmit energy without being attached to the targeted electrode. We determined the attenuation of light along the PDMS waveguides as 0.36±0.03 dB/cm and the transcutaneous light collection efficiency of cylindrical waveguides as 44%±11% by transmitting a laser beam through the thenar skin of human hands. We then implanted the waveguides in rats for a month to demonstrate the feasibility of optical transmission. The collection efficiency and longitudinal attenuation values reported here can help others design their own waveguides and make estimations of the waveguide cross-sectional area required to deliver sufficient power to a certain depth in tissue.

  6. Modeling and Optimization of Optical Half Adder in Two Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Sonth, Mahesh V.; Soma, Savita; Gowre, Sanjaykumar C.; Biradar, Nagashettappa

    2018-05-01

    The output of photonic integrated devices is enhanced using crystal waveguides and cavities but optimization of these devices is a topic of research. In this paper, optimization of the optical half adder in two-dimensional (2-D) linear photonic crystals using four symmetric T-shaped waveguides with 180° phase shift inputs is proposed. The input section of a T-waveguide acts as a beam splitter, and the output section acts as a power combiner. The constructive and destructive interference phenomenon will provide an output optical power. Output port Cout will receive in-phase power through the 180° phase shifter cavity designed near the junction. The optical half adder is modeled in a 2-D photonic crystal using the finite difference time domain method (FDTD). It consists of a cubic lattice with an array of 39 × 43 silicon rods of radius r 0.12 μm and 0.6 μm lattice constant a. The extinction ratio r e of 11.67 dB and 12.51 dB are achieved at output ports using the RSoft FullWAVE-6.1 software package.

  7. Application de la technologie des materiaux sol-gel et polymere a l'optique integree

    NASA Astrophysics Data System (ADS)

    Saddiki, Zakaria

    2002-01-01

    With the advancement of optical telecommunication systems, "integrated optics" and "optical interconnect" technology are becoming more and more important. The major components of these two technologies are photonic integrated circuits (PICs), optoelectronic integrated circuits (OEICs), and optoelectronic multichip modules ( OE-MCMs). Optical signals are transmitted through optical waveguides that interconnect such components. The principle of optical transmission in waveguides is the same as that in optical fibres. To implement these technologies, both passive and active optical devices are needed. A wide variety of optical materials has been studied, e.g., glasses, lithium niobate, III-V semiconductors, sol-gel and polymers. In particular, passive optical components have been fabricated using glass optical waveguides by ion-exchange, or by flame hydrolysis deposition and reactive ion etching (FHD and RIE ). When using FHD and RIE, a very high temperatures (up to 1300°C) are needed to consolidate silica. This work reports on the fabrication and characterization of a new photo-patternable hybrid organic-inorganic glass sol-gel and polymer materials for the realisation of integrated optic and opto-electronic devices. They exhibit low losses in the NIR range, especially at the most important wavelengths windows for optical communications (1320 nm and 1550 nm). The sol-gel and polymer process is based on photo polymerization and thermo polymerization effects to create the wave-guide. The single-layer film is at low temperature and deep UV-light is employed to make the wave-guide by means of the well-known photolithography process. Like any photo-imaging process, the UV energy should exceed the threshold energy of chemical bonds in the photoactive component of hybrid glass material to form the expected integrated optic pattern with excellent line width control and vertical sidewalls. To achieve optical wave-guide, a refractive index difference Delta n occurred between the isolated (guiding layer) and the surrounding region (buffer and cladding). Accordingly, the refractive index emerges as a fundamental device performance material parameter and it is investigated using slab wave-guide. (Abstract shortened by UMI.)

  8. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  9. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  10. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  11. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  12. FIBER AND INTEGRATED OPTICS: Influence of diffraction-induced emission of light on resonant conversion of surface waves in diffraction-coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Shaposhnikov, S. N.

    1989-09-01

    An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.

  13. FIBER OPTICS. ACOUSTOOPTICS: Compression of random pulses in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Aleshkevich, Viktor A.; Kozhoridze, G. D.

    1990-07-01

    An investigation is made of the compression of randomly modulated signal + noise pulses during their propagation in a fiber waveguide. An allowance is made for a cubic nonlinearity and quadratic dispersion. The relationships governing the kinetics of transformation of the time envelope, and those which determine the duration and intensity of a random pulse are derived. The expressions for the optimal length of a fiber waveguide and for the maximum degree of compression are compared with the available data for regular pulses and the recommendations on selection of the optimal parameters are given.

  14. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath

    2018-05-01

    Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.

  15. Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems.

    PubMed

    Jung, Hyukjin; Jeong, Ki-Hun

    2009-08-17

    A microfabricated compound eye, comparable to a natural compound eye shows a spherical arrangement of integrated optical units called artificial ommatidia. Each consists of a self-aligned microlens and waveguide. The increase of waveguide length is imperative to obtain high resolution images through an artificial compound eye for wide field-of - view imaging as well as fast motion detection. This work presents an effective method for increasing the waveguide length of artificial ommatidium using a laser induced self-writing process in a photosensitive polymer resin. The numerical and experimental results show the uniform formation of waveguides and the increment of waveguide length over 850 microm. (c) 2009 Optical Society of America

  16. Electro-optics laboratory evaluation: Deutsch optical waveguide connectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A description of a test program evaluating the performance of an optical waveguide connector system is presented. Both quality and effectiveness of connections made in an optical fiber, performance of the equipment used and applicability of equipment and components to field conditions are reviewed.

  17. Optical interconnection using polyimide waveguide for multichip module

    NASA Astrophysics Data System (ADS)

    Koyanagi, Mitsumasa

    1996-01-01

    We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ringbus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection arid the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.

  18. Optical interconnection using polyimide waveguide for multichip module

    NASA Astrophysics Data System (ADS)

    Koyanagi, Mitsumasa

    1996-01-01

    We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ring-bus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection and the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.

  19. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  20. Metal-capped silicon organic micro-ring electro-optical modulator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Kirah, Khaled A.; Swillam, Mohamed A.

    2017-02-01

    An ultra-compact hybrid plasmonic waveguide ring electro-optical modulator is designed to be easily fabricated on silicon on insulator (SOI) substrates using standard silicon photonics technology. The proposed waveguide is based on a buried standard silicon waveguide of height 220 nm topped with polymer and metal. The key advantage of this novel design is that only the silicon layer of the waveguide is structured as a coupled ring resonator. Then, the device is covered with electro-optical polymer and metal in post processes with no need for lithography or accurate mask alignment techniques. The simple fabrication method imposes many design challenges to obtain a resonator of reasonable loaded quality factor and high extinction ratio. Here, the performance of the resonator is optimized in the telecom wavelength range around 1550 nm using 3D FDTD simulations. The design of the coupling junction between the access waveguide and the tightly bent ring is thoroughly studied. The extension of the metal over the coupling region is exploited to make the critical dimension of the design geometry at least 2.5 times larger than conventional plasmonic resonators and the design is thus more robust. In this paper, we demonstrate an electro-optical modulator that offers an insertion loss < 1 dB, a modulation depth of 12 dB for an applied peak to peak voltage of only 2 V and energy consumption of 1.74 fJ/bit. The performance is superior to previously reported hybrid plasmonic ring resonator based modulators while the design shows robustness and low fabrication cost.

  1. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  2. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  3. Waveguide metatronics: Lumped circuitry based on structural dispersion.

    PubMed

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-06-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of "waveguide metatronics," an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all "lumped" circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry.

  4. Light Stops at Exceptional Points

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod

    2018-01-01

    Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.

  5. Assembly of optical fibers for the connection of polymer-based waveguide

    NASA Astrophysics Data System (ADS)

    Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix

    2003-03-01

    This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.

  6. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides.

    PubMed

    Ikeda, Kazuhiro; Saperstein, Robert E; Alic, Nikola; Fainman, Yeshaiahu

    2008-08-18

    We introduce and present experimental evaluations of loss and nonlinear optical response in a waveguide and an optical resonator, both implemented with a silicon nitride/ silicon dioxide material platform prepared by plasma-enhanced chemical vapor deposition with dual frequency reactors that significantly reduce the stress and the consequent loss of the devices. We measure a relatively small loss of approximately 4dB/cm in the waveguides. The fabricated ring resonators in add-drop and all-pass arrangements demonstrate quality factors of Q=12,900 and 35,600. The resonators are used to measure both the thermal and ultrafast Kerr nonlinearities. The measured thermal nonlinearity is larger than expected, which is attributed to slower heat dissipation in the plasma-deposited silicon dioxide film. The n2 for silicon nitride that is unknown in the literature is measured, for the first time, as 2.4 x 10(-15)cm(2)/W, which is 10 times larger than that for silicon dioxide.

  7. Forecast analysis of optical waveguide bus performance

    NASA Technical Reports Server (NTRS)

    Ledesma, R.; Rourke, M. D.

    1979-01-01

    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.

  8. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas

    NASA Astrophysics Data System (ADS)

    Körner, H. S.; Stigloher, J.; Back, C. H.

    2017-09-01

    We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.

  9. High voltage photo switch package module

    DOEpatents

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  10. Optical data latch

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2010-08-31

    An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

  11. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G.; Sola, D.

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been comparedmore » to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.« less

  12. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE PAGES

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    2015-11-04

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  13. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  14. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  15. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  16. A new method for multi-bit and qudit transfer based on commensurate waveguide arrays

    NASA Astrophysics Data System (ADS)

    Petrovic, J.; Veerman, J. J. P.

    2018-05-01

    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques.

  17. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications.

    PubMed

    Chen, Hong; Fu, Houqiang; Huang, Xuanqi; Zhang, Xiaodong; Yang, Tsung-Han; Montes, Jossue A; Baranowski, Izak; Zhao, Yuji

    2017-12-11

    We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

  18. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  19. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  20. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    PubMed Central

    Zhang, Pengfei; Liu, Le; He, Yonghong; Zhou, Yanfei; Ji, Yanhong; Ma, Hui

    2015-01-01

    In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR) thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques. PMID:25871718

  1. Development and characterization of ultra-porous silica films made by the sol-gel method. Application to biosensing

    NASA Astrophysics Data System (ADS)

    Desfours, Caroline; Calas-Etienne, Sylvie; Horvath, Robert; Martin, Marta; Gergely, Csilla; Cuisinier, Frédéric; Etienne, Pascal

    2014-02-01

    The aim of this work is to demonstrate the sensing ability of reverse-symmetry waveguides to investigate adsorption of casein and build-up of poly-L-lysine mediated casein multilayers. A first part of this study is dedicated to the elaboration and characterization of ultra-porous thin films with very low refractive indices by an appropriate sol-gel method. This will form the basis of our planar optical sensors. Optical waveguide light mode spectroscopy is a real-time and sensitive method to study protein adsorption kinetics and lipid bilayers. We used it to test the obtained waveguides for in-situ monitoring of biomolecule adsorption. As a result, significant changes in the incoupling peak position were observed during the layer-by-layer adsorption. Finally, refractive index and thickness of the adsorbed layers were established.

  2. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less

  3. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  4. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section

    PubMed Central

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678

  5. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  6. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraud-Carrier, M., E-mail: mgeecee@byu.edu; Hill, C.; Decker, T.

    2016-03-28

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in {sup 85}Rb were monitored formore » optical absorption. Maximum absorption peak depths of 9% were measured.« less

  7. Enhanced emission of charged-exciton polaritons from colloidal quantum dots on a SiN/SiO2 slab waveguide

    PubMed Central

    Xu, Xingsheng; Li, Xingyun

    2015-01-01

    We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709

  8. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  9. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  10. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    NASA Astrophysics Data System (ADS)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on a silicon PhC chip design.

  11. Method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David E.

    2004-02-03

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and second plurality of stacked optical waveguides, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  12. Raman scattering in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  13. Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.

    PubMed

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2008-09-01

    This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

  14. Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.

  15. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    NASA Astrophysics Data System (ADS)

    Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Hadden, J. P.; Bosia, F.; Olivero, P.; Ferrari, M.; Ramponi, R.; Barclay, P. E.; Eaton, S. M.

    2018-01-01

    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work, we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as provide a technique for their optimization.

  16. Characterizations of SiN and AlN microfabricated waveguides for evanescent-field atom-trap applications

    NASA Astrophysics Data System (ADS)

    Lee, Jongmin; Eichenfield, Matt; Douglas, Erica; Mudrick, John; Biedermann, Grant; Jau, Yuan-Yu

    2017-04-01

    Trapping neutral atoms in the evanescent fields generated by microfabricated nano-waveguides will provide a new platform for neutral atom quantum controls via strong atom-photon interactions. At Sandia National Labs, we are aiming at developing the related technology that can enable the efficient optical coupling to the waveguide at multiple wavelengths, fabrication nano-waveguides to handle required optical power, more robust waveguide structure, and the new fabrication geometry to facilitate the cold-atom experiments. We will report our latest results on the related subjects. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

  17. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  18. Terahertz orbital angular momentum modes with flexible twisted hollow core antiresonant fiber

    NASA Astrophysics Data System (ADS)

    Stefani, Alessio; Fleming, Simon C.; Kuhlmey, Boris T.

    2018-05-01

    THz radiation is a more commonplace in research laboratories as well as in everyday life, with applications ranging from body scanners at airport security to short range wireless communications. In the optical domain, waveguides and other devices to manipulate radiation are well established. This is not yet the case in the THz regime because of the strong interaction of THz radiation with matter, leading to absorption, and the millimeter size of the wavelength and therefore of the required waveguides. We propose the use of a new material, polyurethane, for waveguides that allows high flexibility, overcoming the problem that large sizes otherwise result in rigid structures. With this material, we realize antiresonant hollow-core waveguides and we use the flexibility of the material to mechanically twist the waveguide in a tunable and reversible manner, with twist periods as short as tens of wavelengths. Twisting the waveguide, we demonstrate the generation of modes carrying orbital angular momentum. We use THz time domain spectroscopy to measure and clearly visualize the vortex nature of the mode, which is difficult in the optical domain. The proposed waveguide is a new platform offering new perspectives for THz guidance and particularly mode manipulation. The demonstrated ability to generate modes with an orbital angular momentum within a waveguide, in a controllable manner, will be beneficial to both fundamental, e.g., matter-radiation interaction, and applied, e.g., THz telecommunications, advances of THz research and technology. Moreover, this platform is not limited to the THz domain and could be scaled for other electromagnetic wavelengths.

  19. Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates

    NASA Astrophysics Data System (ADS)

    Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger

    2017-02-01

    Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.

  20. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  1. Time-domain measurement of optical transport in silicon micro-ring resonators.

    PubMed

    Pernice, Wolfram H P; Li, Mo; Tang, Hong X

    2010-08-16

    We perform time-domain measurements of optical transport dynamics in silicon nano-photonic devices. Using pulsed optical excitation the thermal and carrier induced optical nonlinearities of micro-ring resonators are investigated, allowing for identification of their individual contributions. Under pulsed excitation build-up of free carriers and heat in the waveguides leads to a beating oscillation of the cavity resonance frequency. When employing a burst of pulse trains shorter than the carrier life-time, the slower heating effect can be separated from the faster carrier effect. Our scheme provides a convenient way to thermally stabilize optical resonators for high-power time-domain applications and nonlinear optical conversion.

  2. Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique

    NASA Astrophysics Data System (ADS)

    Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu

    2017-11-01

    We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.

  3. High-efficiency power transfer for silicon-based photonic devices

    NASA Astrophysics Data System (ADS)

    Son, Gyeongho; Yu, Kyoungsik

    2018-02-01

    We demonstrate an efficient coupling of guided light of 1550 nm from a standard single-mode optical fiber to a silicon waveguide using the finite-difference time-domain method and propose a fabrication method of tapered optical fibers for efficient power transfer to silicon-based photonic integrated circuits. Adiabatically-varying fiber core diameters with a small tapering angle can be obtained using the tube etching method with hydrofluoric acid and standard single-mode fibers covered by plastic jackets. The optical power transmission of the fundamental HE11 and TE-like modes between the fiber tapers and the inversely-tapered silicon waveguides was calculated with the finite-difference time-domain method to be more than 99% at a wavelength of 1550 nm. The proposed method for adiabatic fiber tapering can be applied in quantum optics, silicon-based photonic integrated circuits, and nanophotonics. Furthermore, efficient coupling within the telecommunication C-band is a promising approach for quantum networks in the future.

  4. Optical properties of in-vitro biomineralised silica.

    PubMed

    Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G; Pisignano, Dario

    2012-01-01

    Silicon is the second most common element on the Earth's crust and its oxide (SiO(2)) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5-10 cm(-1), suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.

  5. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  6. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.

    PubMed

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P

    2015-06-10

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.

  7. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  8. Near-field optical technique applied for investigation of the characteristics of polymer fiber and waveguide structures.

    PubMed

    Ming, Hai; Tang, Lin; Sun, Xiaohong; Zhang, Jiangying; Wang, Pei; Lu, Yonghua; Bai, Ming; Guo, Yang; Xie, Aifang; Zhang, Zebo

    2004-01-01

    This article summarizes the near-field optical technique applied for investigating the characteristics of polymer fiber and waveguide structures. The near-field optical technique is used to analyze multimode interference structures of fiber. The localized fluctuation of the transmission caused by fractal cluster is carried out in Nd3+- and Eu3+-doped polymer fiber and film by means of a scanning near-field optical microscopy. The near-field optical spectrum of Nd3+-doped polymer fiber is investigated. The topography and near-field intensity images of Azo-polymer liquid crystal film for waveguide are obtained simultaneously.

  9. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  10. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  11. Low- and high-index sol-gel films for planar and channel-doped waveguides

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  12. Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.

  13. Electro-optic Waveguide Beam Deflector.

    DTIC Science & Technology

    beam deflection by variation in the electro - optic effect produced within the waveguide region in response to known or determinable magnitude variations in the electrical potential of an applied signal source.

  14. Glass light pipes for solar concentration

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.

    2018-02-01

    Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.

  15. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  16. Interactive optical panel

    DOEpatents

    Veligdan, James T.

    1995-10-03

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  17. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.

    PubMed

    Wang, Xin; Madsen, Christi K

    2014-11-03

    Based on arsenic tri-sulfide films on titanium-diffused lithium niobate, we designed a hybrid optical waveguide for efficient mid-infrared emission by phase-matched difference frequency generation (DFG). The hybrid waveguide structure possesses a low-index magnesium fluoride buffer layer sandwiched between two high-index As(2)S(3) slabs, so that pump and signal waves are tightly confined by titanium-diffused waveguide while the DFG output idler wave at mid-infrared is confined by the whole hybrid waveguide structure. On a 1 mm-long hybrid waveguide pumped at 50 mW powers, a normalized power conversion efficiency of 20.52%W(-1)cm(-2) was theoretically predicted, which is the highest record for mid-infrared DFG waveguides based on lithium niobate crystal, to the best of our knowledge. Using a tunable near-infrared pump laser at 1.38-1.47 µm or a tunable signal laser at 1.95-2.15 µm, a broad mid-infrared tuning range from 4.0 µm to 4.9 µm can be achieved. Such hybrid optical waveguides are feasible for mid-infrared emission with mW powers and sub-nanometer linewidths.

  18. Optically reconfigurable patterning for control of the propagation characteristics of a planar waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.

    2008-10-01

    We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.

  19. Silica/Electro-optic Polymer Optical Modulator for MMW Receiving (Preprint)

    DTIC Science & Technology

    2014-05-01

    radiation receiver with the use of a bowtie antenna . Waveguide design optimization is presented for a waveguide with an EO polymer core and silica/solgel...established. The bowtie antenna is simulated and shows a broadband response with a maximum at 5GHz and a 3dB-bandwidth of approximately 12GHz. A fiber...millimeter-wave (MMW) radiation receiver with the use of a bowtie antenna . Waveguide design optimization is presented for a waveguide with an EO polymer

  20. Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    NASA Astrophysics Data System (ADS)

    Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.

  1. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.

  2. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1997-01-01

    The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.

  3. A flexible micromachined optical sensor for simultaneous measurement of pressure and shear force distribution on foot

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Panergo, Reynold R.; Galvanin, Christopher M.; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.

    2003-07-01

    Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. While it is known from force plate analyses that there are medial/lateral and anterior/posterior shear components of the ground reaction force, there is little known about the actual distribution of this force during daily activities, nor about the role that shear plays in causing plantar ulceration. Furthermore, one critical reason why these data have not been obtained previously is the lack of a validated, widely used, commercially available shear sensor, in part because of the various technical issues associated with shear measurement. Here we have developed novel means of tranducing plantar shear and pressure stress via a new microfabricated optical system. The pressure/shear sensor consists of an array of optical waveguides lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular optical waveguides. The uniqueness of the sensor is in its batch fabrication process, which involves injection molding and embossing techniques with Polydimethylsiloxane (PDMS) as the optical medium. Here we present the preliminary results of the prototype. The sensor has been shown to have low noise and responds linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 N. The smallest area we have resolved in our mesh sensor is currently 950x950μm2

  4. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis.

    PubMed

    Ghosh, Somnath

    2018-05-10

    Coexistence and interplay between mesoscopic light dynamics with singular optics in spatially disordered waveguide lattices are reported. Two CW light beams of a 1.55 μm operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in a complex refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of the onset of such singular behavior and diffusive wave propagation is analyzed for the first time, to the best of our knowledge.

  5. Photonic crystal slab waveguides in moderate index contrast media: Generalized transverse Bragg waveguides

    NASA Astrophysics Data System (ADS)

    Burckel, David Bruce

    One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.

  6. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton.

    PubMed

    Ochiai, Tetsuyuki

    2015-02-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range.

  7. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton

    PubMed Central

    Ochiai, Tetsuyuki

    2015-01-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range. PMID:27877739

  8. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.

  9. Waveguide metatronics: Lumped circuitry based on structural dispersion

    PubMed Central

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-01-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of “waveguide metatronics,” an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all “lumped” circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry. PMID:27386566

  10. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    PubMed

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  12. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  13. Low loss hollow-core waveguide on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2012-07-01

    Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.

  14. Systematic control of optical features in aluminosilicate glass waveguides using direct femtosecond laser writing

    NASA Astrophysics Data System (ADS)

    Babu, B. Hari; Niu, Mengsi; Yang, Xiaoyu; Wang, Yanbo; Feng, Lin; Qin, Wei; Hao, Xiao-Tao

    2017-10-01

    Low loss optical waveguides inside aluminosilicate glasses have been successfully fabricated using direct femtosecond laser writing. To establish the influence of pulse energy and host variations on the optical waveguides have been tentatively explored and systematically studied with the help of different spectroscopic techniques. Isochronal annealing treatment effectively reduces the insertion losses to 1.01 ± 0.28 dB at 632.8 nm. A red shift of the Raman band has been observed with increasing Al2O3 content due to the bond angle variations. The point defects such as non-bridging oxygen hole centers have been corroborated by the photoluminescence studies and significant red-shift has also been documented with increasing Al2O3 content. In addition, there is no NBOHC defects perceived after isochronal annealing treatment inside the glass waveguides. Our results envisage that the present glass waveguides should be promising and potential for applications in passive waveguides and integrated photonic devices.

  15. Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.

    PubMed

    Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I

    2011-09-01

    Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America

  16. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  17. Multistage WDM access architecture employing cascaded AWGs

    NASA Astrophysics Data System (ADS)

    El-Nahal, F. I.; Mears, R. J.

    2009-03-01

    Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.

  18. NONLINEAR AND FIBER OPTICS: Influence of nonlinearity of the parameters of guided modes in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Goncharenko, I. A.

    1990-04-01

    The shift formula method is used to obtain analytic expressions which provide estimates of the influence of nonlinearity on the parameters of fiber waveguide modes. Depending on the sign of the nonlinear susceptibility of the waveguide core, the nonlinearity can improve or impair (right down to complete loss) the waveguiding properties of fibers. The optical power at which a fiber loses its guiding properties is constant far from the cutoff, but rises steeply near the critical cutoff frequency. The nonlinearity can be used to vary the zero dispersion wavelength and the range of single-mode operation of a fiber waveguide.

  19. A theoretical examination of the performances of wavelength multiplexers utilizing planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Gomaa, M. L.; Chartier, G.

    1985-04-01

    The performances of distributed coupling wavelength multiplexer-demultiplexer devices for optical telecommunications applications, i.e., data transfer, are assessed theoretically. The values used for the refraction indices and waveguide dimensions are based on the ionic exchange between the glass layer and a base salt bath. Gradients in the indices are also considered. A shift of indices is assumed to be present between parallel waveguides of different thicknesses separated by a liquid bath. The behavior of the two waveguides is then the variations of the coupling and energy exchanged as functions of the wavelength transmitted. Attention is also given to the case of identical coupled waveguides.

  20. Wideband Waveguide Acousto-Optic Bragg Cell.

    DTIC Science & Technology

    The results of an effort to improve the performance specifications of acousto - optic Bragg cells are reported. Various configurations of multiple...would provide a 700 MHz acousto - optic bandwidth. Investigated were Bragg cells fabricated on Ti diffused LiNb03 waveguides as well as Ti diffused LiNb03

  1. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  2. Low-loss optical waveguides made with molecular beam epitaxial In(0.012)Ga(0.988)As and In(0.2)Ga(0.8)As-GaAs superlattices

    NASA Technical Reports Server (NTRS)

    Das, U.; Bhattacharya, P. K.; Dhar, S.

    1986-01-01

    Low-loss optical guiding in In-doped GaAs is demonstrated for the first time. Ridge waveguides are made with single In(0.012)Ga(0.988)As ternary layers and In(0.2)Ga(0.8)As-GaAs superlattices. Attenuation constants of about 1.3 dB/cm are measured and the principal loss mechanism is identified to be scattering at the ridge walls. It is expected that improved fabrication techniques will lead to guides with attenuation less than or equal to 0.5 dB/cm.

  3. Generation of optical vortices in an integrated optical circuit

    NASA Astrophysics Data System (ADS)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  4. Measurement of nanoparticle size, suspension polydispersity, and stability using near-field optical trapping and light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2017-02-01

    Nanoparticles are becoming ubiquitous in applications including diagnostic assays, drug delivery and therapeutics. However, there remain challenges in the quality control of these products. Here we present methods for the orthogonal measurement of these parameters by tracking the motion of the nanoparticle in all three special dimensions as it interacts with an optical waveguide. These simultaneous measurements from a single particle basis address some of the gaps left by current measurement technologies such as nanoparticle tracking analysis, ζ-potential measurements, and absorption spectroscopy. As nanoparticles suspended in a microfluidic channel interact with the evanescent field of an optical waveguide, they experience forces and resulting motion in three dimensions: along the propagation axis of the waveguide (x-direction) they are propelled by the optical forces, parallel to the plane of the waveguide and perpendicular to the optical propagation axis (y-direction) they experience an optical gradient force generated from the waveguide mode profile which confines them in a harmonic potential well, and normal to the surface of the waveguide they experience an exponential downward optical force balanced by the surface interactions that confines the particle in an asymmetric well. Building on our Nanophotonic Force Microscopy technique, in this talk we will explain how to simultaneously use the motion in the y-direction to estimate the size of the particle, the comparative velocity in the x-direction to measure the polydispersity of a particle population, and the motion in the z-direction to measure the potential energy landscape of the interaction, providing insight into the colloidal stability.

  5. Microfiber Optical Sensors: A Review

    PubMed Central

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-01-01

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720

  6. Novel optical waveguides by in-depth controlled electronic damage with swift ions

    NASA Astrophysics Data System (ADS)

    Olivares, J.; García-Navarro, A.; Méndez, A.; Agulló-López, F.; García, G.; García-Cabañes, A.; Carrascosa, M.

    2007-04-01

    We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (1014 cm-2) and even low and ultralow (1012 cm-2) fluences. In particular, step-like waveguides with a high index jump Δn ∼ 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping.

  7. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  8. A Correlated Optical and Gamma Emission from GRB 081126A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gendre, B.; Klotz, A.; CESR, Observatoire Midi-Pyrenees, CNRS, Universite de Toulouse, BP 4346, F-31028-Toulouse Cedex 04

    2010-10-15

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations couldmore » potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.« less

  9. Nonlinear optical properties of organic materials V; Proceedings of the 5th Meeting, San Diego, CA, July 22-24, 1992

    NASA Astrophysics Data System (ADS)

    Williams, David J.

    The present volume on nonlinear optical properties of organic materials discusses organic nonlinear optics, polymers for nonlinear optics, characterization of nonlinear properties, photorefractive and second-order materials, harmonic generation in organic materials, and devices and applications. Particular attention is given to organic semiconductor-doped polymer glasses as novel nonlinear media, heterocyclic nonlinear optical materials, loss measurements in electrooptic polymer waveguides, the phase-matched second-harmonic generation in planar waveguides, electrooptic measurements in poled polymers, transient effects in spatial light modulation by nonlinearity-absorbing molecules, the electrooptic effects in organic single crystals, surface acoustic wave propagation in an organic nonlinear optical crystal, nonlinear optics of astaxanthin thin films; and advanced high-temperature polymers for integrated optical waveguides. (No individual items are abstracted in this volume)

  10. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  11. Design and analysis of optical waveguide elements in planar geometry

    NASA Astrophysics Data System (ADS)

    Mirkov, Mirko Georgiev

    1998-10-01

    This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic devices consisting of rectangular waveguides.

  12. Imaging electric field dynamics with graphene optoelectronics.

    PubMed

    Horng, Jason; Balch, Halleh B; McGuire, Allister F; Tsai, Hsin-Zon; Forrester, Patrick R; Crommie, Michael F; Cui, Bianxiao; Wang, Feng

    2016-12-16

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  13. NASA Tech Briefs, April 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics include: Tool for Bending a Metal Tube Precisely in a Confined Space; Multiple-Use Mechanisms for Attachment to Seat Tracks; Force-Measuring Clamps; Cellular Pressure-Actuated Joint; Block QCA Fault-Tolerant Logic Gates; Hybrid VLSI/QCA Architecture for Computing FFTs; Arrays of Carbon Nanotubes as RF Filters in Waveguides; Carbon Nanotubes as Resonators for RF Spectrum Analyzers; Software for Viewing Landsat Mosaic Images; Updated Integrated Mission Program; Software for Sharing and Management of Information; Optical-Quality Thin Polymer Membranes; Rollable Thin Shell Composite-Material Paraboloidal Mirrors; Folded Resonant Horns for Power Ultrasonic Applications; Touchdown Ball-Bearing System for Magnetic Bearings; Flux-Based Deadbeat Control of Induction-Motor Torque; Block Copolymers as Templates for Arrays of Carbon Nanotubes; Throttling Cryogen Boiloff To Control Cryostat Temperature; Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station; Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers; and Time-Resolved Measurements in Optoelectronic Microbioanal.

  14. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform

    PubMed Central

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-01-01

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions. PMID:27188594

  15. Optical interconnects based on VCSELs and low-loss silicon photonics

    NASA Astrophysics Data System (ADS)

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  16. Robust light transport in non-Hermitian photonic lattices

    PubMed Central

    Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della

    2015-01-01

    Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932

  17. Robust light transport in non-Hermitian photonic lattices.

    PubMed

    Longhi, Stefano; Gatti, Davide; Della Valle, Giuseppe

    2015-08-28

    Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.

  18. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    PubMed

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending tolerance indicated HWGs should be preferred in the construction of a fiber/waveguide-coupled ATR probe.

  19. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.

    PubMed

    Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun

    2014-10-20

    We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

  20. Direct laser written polymer waveguides with out of plane couplers for optical chips

    NASA Astrophysics Data System (ADS)

    Landowski, Alexander; Zepp, Dominik; Wingerter, Sebastian; von Freymann, Georg; Widera, Artur

    2017-10-01

    Optical technologies call for waveguide networks featuring high integration densities, low losses, and simple operation. Here, we present polymer waveguides fabricated from a negative tone photoresist via two-photon-lithography in direct laser writing, and show a detailed parameter study of their performance. Specifically, we produce waveguides featuring bend radii down to 40 μ m, insertion losses of the order of 10 dB, and loss coefficients smaller than 0.81 dB mm-1, facilitating high integration densities in writing fields of 300 μ m×300 μ m. A novel three-dimensional coupler design allows for coupling control as well as direct observation of outputs in a single field of view through a microscope objective. Finally, we present beam-splitting devices to construct larger optical networks, and we show that the waveguide material is compatible with the integration of quantum emitters.

  1. Integrated optical components in thin films of polymers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1995-01-01

    The results will be reported on the study of integrated optical components based on nonlinear optical polymeric films. Polymers poly(methyl methacrylate) (PMMA) and polyimide (PI) doped with organic laser dyes 4-dicyanomethylene-2-methyl-6-p dimethylaminostyryl-4H pyran (DCM) and 1, 3, 5, 7, 8 - pentamethyl-2,6 -diethyl-pyrromethene -BF2-complex (Pyrommethene 567, PM-567) were selected as materials for light guiding films. Additionally, UV polymerized polydiacetylene (PDA) on glass substrate was used as a waveguide material. Optical waveguides were fabricated using spin coating of preoxidized silicon wafers (1.5 micrometer silicon oxide layer) with organic dye/polymer solution followed by soft baking. the modes in slab waveguides were studied using prism coupling techniques. Measured values of mode coupling angles in multimode waveguides were used to calculate film thickness and refractive index for different polarizations. Refractive index anisotropy was found in PDA waveguide. The optimal conditions of spin coating for single mode waveguide fabrication were estimated. Propagation losses were measured by collecting the light scattered from the trace of a propagating mode either by scanning photo detector or by CCD camera. Different types of light coupling techniques were used including end-dire coupling, prism and grating coupling. Mechanical printing technique was developed for coupling grating fabrication resulting in gratings with 4% diffraction efficiency. The gratings demonstrated good stability with diffraction efficiency relaxation rate 2.4 dB/hour at a temperature approximately 15-20 C below glass transition point. Dye doped waveguides were transversally pumped with frequency doubled Nd:YAG Q-switched laser producing intensive light emission with apparent 6 kW/sq cm pump threshold and spectrum narrowing near 617 nm peak in the case of DCM doped waveguide. PM-567 doped waveguide pumped with CW Ar(+) laser (514 nm wavelength) far below threshold (0.1 W/sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.

  2. Flexible polymer waveguides for light-activated therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Kwok, Sheldon J. J.; Lin, Harvey H.; Lee, Dong Hee; Yun, Seok Hyun

    2017-02-01

    Conventional light-activated therapies, such as photodynamic therapy (PDT), photochemical tissue bonding (PTB), collagen crosslinking (CXL), low-level light therapy (LLLT), and antimicrobial therapy utilize external light sources and light propagation through free space, limiting treatment to accessible and superficial areas of the body. Recent progress has been made in developing biocompatible polymer waveguides to enhance light delivery to deep tissues. To further expand clinical utility, waveguides should be flexible and tough enough to enable use in anatomically difficult-to-reach regions, while having the requisite optical properties to achieve uniform and efficient illumination of the target area. Here, we present a new class of flexible polymer waveguides optimized for uniform light extraction into tissues. Our slab waveguides comprise two designs: first, a flexible polydimethylsiloxane (PDMS) based elastomer for CXL, and second, a tough polyacrylamide and alginate hydrogel for large-area phototherapies. Our waveguides are optically transparent in the visible wavelengths (400-750 nm) and a multimode fiber is used to couple light into the waveguide. We characterized the light propagation through the waveguides and light extraction into tissue, and validated our results with optical simulation. By changing the thickness and scattering properties, uniform light extraction through the length of the waveguide could be achieved. We demonstrate proof-of-concept scleral photo-crosslinking of an ex vivo porcine eyeball for prevention of myopia.

  3. 24-ch microlens-integrated no-polish connector for optical interconnection with polymer waveguides

    NASA Astrophysics Data System (ADS)

    Shiraishi, Takashi; Yagisawa, Takatoshi; Ikeuchi, Tadashi; Daikuhara, Osamu; Tanaka, Kazuhiro

    2013-02-01

    We successfully developed a new 24-ch optical connector for polymer waveguides. The connector consists of a transparent thermoplastic resin that has two rectangular slits on one side for alignment of the waveguide films and integrated microlens arrays on the other side for coupling to the MT connector. Two 12-ch waveguide films were cut to a 3-mm width. The thickness of each waveguide film was controlled at 100 μm. The waveguide films were inserted into the slits until they touched the bottom face of the slit. Ultraviolet curing adhesive was used to achieve a short hardening process. The expanded beam in the transparent material is focused by the microlens arrays formed on the connector surface. This lens structure enables assembly without the need for a polishing process. We designed the lens for coupling between a step-index 40-μm rectangular waveguide and a graded-index 50-μm fiber. We achieved low-loss optical coupling by designing a method of providing asymmetric magnification between the horizontal and vertical directions in order to compensate for the asymmetric numerical aperture of the waveguide. The typical measured coupling losses from/to the waveguide to/from the fiber were 1.2 dB and 0.6 dB, respectively. The total coupling loss was as small as that of a physical contact connection.

  4. Midinfrared laser absorption spectroscopy in coiled hollow optical waveguides

    NASA Astrophysics Data System (ADS)

    Fetzer, Gregory J.; Pittner, Anthony S.; Silkoff, Philip E.

    2003-07-01

    A new nitric oxide (NO) sensor is intended for use in assessment of airway inflammation with applications in asthma diagnosis and management as well as in other health care applications involving inflammation in the gastrointestinal tract and the urogenital organs. The sensor was designed to measure trace quantities of NO in air using the combination of hollow optical waveguides and quantum cascade lasers. The primary application intended is analysis of exhaled breath. The unique marriage of the components and the novel design provides for rapid response to concentration changes while maintaining sensitive measurement capabilities. We achieved a lower detectable limit of 58.8 ppb of NO in N2 with a 0-90% response time of 0.48 s. The QC laser was operated at room temperature in pulsed current mode near 5.4μm. The hollow waveguide used to make these measurements was 9m in length and the inside diameter was 1000μm. The waveguide was coiled with a 15cm radius of curvature and perforated on the interior walls of the coils to allow gas to flow into and out of the waveguide. The sensor can easily be converted to measure other gases in the midinfrared by selecting a QC laser whose output is coincident with the absorption line of interest.

  5. Copper-doped waveguides in glass substrates

    NASA Astrophysics Data System (ADS)

    Spirkova-Hradilova, Jarmila; Tresnakova-Nebolova, Pavlina; Jirka, Ivan; Mach, Karel; Perina, Vratislav; Mackova, Anna; Kuncova, Gabriela

    2001-05-01

    We have studied fabrication and properties of copper ion- exchanged waveguides fabricated in various types of special soda-lime silicate glass as well as commercial optical glass substrates. The ion exchange was performed in melts containing either CuI or CuII at temperatures from 350 degrees C to 500 degrees C for times ranging from 5 minutes to 21 hrs. Optical properties of the fabricated waveguides were studied using mode spectroscopy and photoluminescence spectroscopy and composition of the waveguides was determined by SEM, RBS, EPR and ESCA. After the ion exchange the refractive index increased, according to fabrication conditions, up to (Delta) n equals +0.0693 and the guides supported up to 16 TE and TM modes. The CuI $ARLR CuII redox reaction during the fabrication depended strongly on the composition as well as the temperature of the reaction melts. In the Cu2Cl2ZnCl2 melts the oxidation of CuI to CuII was strongly hampered, so that CuI prevailed in the waveguiding region. These samples exhibited the most intensive blue-green luminescence, in spite of those fabricated using the CuII-based reaction melts, where practically no blue-green luminescence was observed. ESCA measurement revealed an easy charge transfer between the both oxidation states of copper in the very surface regions of the samples.

  6. Propagation and switching of light in rectangular waveguiding structures

    NASA Astrophysics Data System (ADS)

    Sala, Anca L.

    1998-10-01

    In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.

  7. Photo-induced micro-mechanical optical switch

    DOEpatents

    Rajic, Slobodan; Datskos, Panagiotis George; Egert, Charles M.

    2002-01-01

    An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.

  8. Waveguide-based optical chemical sensor

    DOEpatents

    Grace, Karen M [Ranchos de Taos, NM; Swanson, Basil I [Los Alamos, NM; Honkanen, Seppo [Tucson, AZ

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  9. Sm 3+-doped polymer optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  10. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  11. Fast and reliable method to estimate losses of single-mode waveguides with an arbitrary 2D trajectory.

    PubMed

    Negredo, F; Blaicher, M; Nesic, A; Kraft, P; Ott, J; Dörfler, W; Koos, C; Rockstuhl, C

    2018-06-01

    Photonic wire bonds, i.e., freeform waveguides written by 3D direct laser writing, emerge as a technology to connect different optical chips in fully integrated photonic devices. With the long-term vision of scaling up this technology to a large-scale fabrication process, the in situ optimization of the trajectory of photonic wire bonds is at stake. A prerequisite for the real-time optimization is the availability of a fast loss estimator for single-mode waveguides of arbitrary trajectory. Losses occur because of the bending of the waveguides and at transitions among sections of the waveguide with different curvatures. Here, we present an approach that resides on the fundamental mode approximation, i.e., the assumption that the photonic wire bonds predominantly carry their energy in a single mode. It allows us to predict in a quick and reliable way the pertinent losses from pre-computed modal properties of the waveguide, enabling fast design of optimum paths.

  12. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao

    2016-06-15

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less

  13. Influence of gold nanoparticles on the 805 nm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides

    NASA Astrophysics Data System (ADS)

    de Assumpção, T. A. A.; Camilo, M. E.; Alayo, M. I.; da Silva, D. M.; Kassab, L. R. P.

    2017-10-01

    The production and characterization of pedestal waveguides based on PbO-GeO2 amorphous thin films codoped with Tm3+/Yb3+, with and without gold nanoparticles (NPs), are reported. Pedestal structure was obtained by conventional photolithography and plasma etching. Tm3+/Yb3+ codoped PGO amorphous thin film was obtained by RF Magnetron Sputtering deposition and used as core layer in the pedestal optical waveguide. The minimum propagation losses in the waveguide were 3.6 dB/cm at 1068 nm. The internal gain at 805 nm was enhanced and increased to 8.67 dB due to the presence of gold NPs. These results demonstrate for the first time that Tm3+/Yb3+ codoped PbO-GeO2 waveguides are promising for first telecom window and integrated photonics, especially for applications on fiber network at short distances.

  14. Optical splitter design for telecommunication access networks with triple-play services

    NASA Astrophysics Data System (ADS)

    Agalliu, Rajdi; Burtscher, Catalina; Lucki, Michal; Seyringer, Dana

    2018-01-01

    In this paper, we present various designs of optical splitters for access networks, such as GPON and XG-PON by ITU-T with triple-play services (ie data, voice and video). The presented designs exhibit a step forward, compared to the solutions recommended by the ITU, in terms of performance in transmission systems using WDM. The quality of performance is represented by the bit error rate and the Q-factor. Besides the standard splitter design, we propose a new length-optimized splitter design with a smaller waveguide core, providing some reduction of non-uniformity of the power split between the output waveguides. The achieved splitting parameters are incorporated in the simulations of passive optical networks. For this purpose, the OptSim tool employing Time Domain Split Step method was used.

  15. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  16. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen

    1995-01-01

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.

  17. Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field

    NASA Astrophysics Data System (ADS)

    Lv, Ri-Qing; Wang, Qi; Wang, Bo-Tao; Liu, Yu; Kong, Lingxin

    2018-05-01

    A PDMS/graphene enhanced PMMA micro optical waveguide sensor is reported in terms of fabrication method and optical characteristics. The micro optical waveguide with a diameter of 6 μm and a length of 800 μm is used as the sensing probe to realize refractive index (RI) measurement suspended in NaCl solutions with different concentrations. Experimental results show that the refractive index sensing sensitivity can reach 2027.97 nm/RIU within the refractive index ranging from 1.3333-1.3426. Research results show that PMMA/graphene micro optical waveguide doped with PDMS is an excellent high sensitive sensing technology in refractive index detection field.

  18. Nanoparticle sorting in silicon waveguide arrays

    NASA Astrophysics Data System (ADS)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  19. Single Mode Optical Waveguide Design Investigation.

    DTIC Science & Technology

    1981-07-10

    AD-AI04 584 CORNING GLASS WORKS NY F/G 20/6 SINGLE MODE OPTICAL WAVEGUIDE DESIGN INVESTIGATION. (7 N JUL 81 V A BHAGAVATJLA, R A WESTWIG. D B KECK...Contract N00173-8O-C-0563 / V. A./Bhagavatula R. A..Westwig D. B.!Keck Corning Glass Works Corning, New York H> July 1,0, 1981 CL 8m NA Single Mode Optical...Waveguide Design Inve-tigation Progress Report 3 1. Sumpry 1.1 ,A total of six fibers have been fabricated with parameters fitting the design matrix

  20. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.

  1. Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator.

    PubMed

    Ikeda, Taro; Takahashi, Kazunori; Kanamori, Yoshiaki; Hane, Kazuhiro

    2010-03-29

    Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0pi at the displacement of 1.0 mum at the voltage of 31 V. The dimension of the fabricated device is 50microm wide and 85microm long.

  2. Chirped self-similar optical pulses in tapered centrosymmetric nonlinear waveguides doped with resonant impurities

    NASA Astrophysics Data System (ADS)

    He, J. R.; Xu, S. L.; Xue, L.

    2017-11-01

    Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.

  3. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  4. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  5. Optical waveguiding properties of colloidal quantum dots doped polymer microfibers.

    PubMed

    Yu, Jiahao; Wang, Xiongbin; Chen, Rui

    2018-05-14

    QDs-doped polymer microfibers are fabricated through direct drawing method. By adding the polymethylmethacrylate into polystyrene, the surface quality and flexibility of microfiber are improved. Under direct excitation by the focused laser, the polymer microfibers doped with different quantum dots emit different colors and act as an optical waveguide. The waveguide properties of the microfiber are studied in detail. It is found that refractive index of the substrate and diameter of microfiber are the most important factors that affect the optical loss of this waveguide. The microfiber does not produce significant polarization after being deposited on the substrate. Moreover, exciting the QDs-doped polymer microfiber through a blue LED is demonstrated. This structure may find widespread applications in integrated photonic devices.

  6. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Feasibility of using waveguide holograms in systems for the transfer of amplitude—phase information along fibre communication lines

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.

    1995-02-01

    An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.

  7. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  8. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.

    PubMed

    Raval, Manan; Poulton, Christopher V; Watts, Michael R

    2017-07-01

    We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

  9. Investigation on dispersion in the active optical waveguide resonator

    NASA Astrophysics Data System (ADS)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  10. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

    NASA Astrophysics Data System (ADS)

    de Pedro, S.; Cadarso, V. J.; Ackermann, T. N.; Muñoz-Berbel, X.; Plaza, J. A.; Brugger, J.; Büttgenbach, S.; Llobera, A.

    2014-12-01

    Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9 wt % and 29.9 wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (Bapp), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to Bapp. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220 µm at 29.9 wt % of FF for VOASLT and 250 µm at 22.3 wt % FF for VOAIJP, at 0.57 kG for both. These deflections provide maximum actuation losses of 16.1 dB and 18.9 dB for the VOASLT and VOAIJP, respectively.

  11. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.

    PubMed

    Lilge, Lothar; Shah, Duoaud; Charron, Luc

    2013-07-07

    Single cell transport in microfluidic devices is a topic of interest as their utility is becoming appreciated by cell and molecular biologist. Cell transport should minimize mechanical stress due to friction or pressure gradients. Optical forces have the advantage of applying their forces across the cell volume and not only at the cell membrane and are thus preferable. Optical pushing by scattering force is a suitable candidate so highly dependent on the photon irradiance field inside the propagation capillary which in turn is determined by the waveguide properties delivering the radiation pressure. Here we present a numerical approach to predict the optical scattering force, speed and trajectory of cells as a function of waveguide and propagation capillary geometry. Experimental verification of the simulation approach is demonstrated using polystyrene microspheres and leukemia cells. Effects of optical fibre to waveguide alignment, capillary wall angle and temperature on the dynamic viscosity on speed and position of the microspheres and cells inside the propagation capillary are demonstrated.

  12. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  13. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  14. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  15. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    NASA Astrophysics Data System (ADS)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  16. Optical clock distribution in supercomputers using polyimide-based waveguides

    NASA Astrophysics Data System (ADS)

    Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.

    1999-04-01

    Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  17. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  18. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, Robert J.; Patterson, Frank

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  19. Polarization-dependent plasmonic splitter based on low-loss polymer optical materials

    NASA Astrophysics Data System (ADS)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong

    2018-01-01

    A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).

  20. Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; He, Ruiyun; Tan, Yang; Wang, Biao; Akhmadaliev, Shavkat; Zhou, Shengqiang; de Aldana, Javier R. Vázquez; Hu, Lili; Chen, Feng

    2016-01-01

    This work reports on the fabrication of ridge waveguides in Er3+/Yb3+ co-doped phosphate glass by the combination of femtosecond laser ablation and following swift carbon ion irradiation. The guiding properties of waveguides have been investigated at 633 and 1064 nm through end face coupling arrangement. The refractive index profile on the cross section of the waveguide has been constructed. The propagation losses can be reduced considerably after annealing treatment. Under the optical pump laser at 980 nm, the upconversion emission of both green and red fluorescence has been realized through the ridge waveguide structures.

  1. Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Yao, Yicun; Chen, Feng

    2012-12-01

    Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.

  2. High-Performance Flexible Waveguiding Photovoltaics

    PubMed Central

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  3. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  4. Modal noise investigation in multimode polymer waveguides

    NASA Astrophysics Data System (ADS)

    Beals, Joseph, IV; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; DeGroot, Jon V., Jr.; Clapp, Terry V.

    2007-11-01

    In this work the recent interest in waveguides for use in short optical links has motivated a study of the modal noise dependence on launch conditions in short-reach step-index multimode polymer waveguides. Short optical links, especially those with several connection interfaces and utilising a restricted launch are likely to be subject to a modal noise power penalty. We therefore experimentally study the modal noise impact of restricted launches for a short-reach optical link employing a 50 x 50 μm polymer multimode waveguide. Lens launches resulting in small diameter input spots are investigated as are restricted launches from an 8 μm core optical fibre. For a launch spot of 10 μm diameter no impairment is observed for up to 9 dBo of mode selective loss, and for a fibre launch with a dynamic input movement of 6 μm no impairment is seen for up to 8 dBo of mode selective loss.

  5. Optical biosensor technologies for molecular diagnostics at the point-of-care

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  6. Multi/demulti-plexer based on transverse mode conversion in photonic crystal waveguides.

    PubMed

    Zhou, Wen; Zhuang, Yuyang; Ji, Ke; Chen, He-ming

    2015-09-21

    A novel mode multiplexer and demultiplexer (MMUX/DEMMUX) based on 2-D photonic crystal (PC) at 1550 nm is proposed. The PC-based mode MMUX/DEMMUX including mode conversion function with a single-mode and multi-mode waveguides can be realized by quasi phase-matching TE(0) & TE(1) modes of two waveguides. 2DFinite-Difference-Time-Domain and beam propagation methods are used for simulation. The results show that PC-based mode MMUX/DEMMUX has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.36dB), low mode crosstalk (< -20.9 dB) and wide bandwidth (~100 nm).

  7. Note: Characterization of the plasma parameters of a capillary discharge-produced plasma channel waveguide to guide an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi; Yugami, Noboru; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kanagawa, Saitama 332-0012

    2010-04-15

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Nomarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 400 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  8. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  9. Integrated optics interferometer for high precision displacement measurement

    NASA Astrophysics Data System (ADS)

    Persegol, Dominique; Collomb, Virginie; Minier, Vincent

    2017-11-01

    We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.

  10. Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems

    DTIC Science & Technology

    2015-08-20

    optomechanical crystal cavities connected by a dispersion-engineered phonon waveguide. Pulsed and continuous- wave measurements are first used to char- acterize...device layer of a silicon-on-insulator wafer (see App. A), and consists of several parts: an op- tomechanical cavity with co- localized optical and acous... localized cavity mode and the nearly- resonant phonon waveguide modes. The optical coupling waveg- uide is fabricated in the near-field of the nanobeam

  11. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  12. Coupling losses between standard single-mode fibers and rectangular waveguides for integrated optics.

    PubMed

    Lierstuen, L O; Sudbø, A S

    1995-02-20

    The butt-coupling loss between different tapered rectangular waveguides and a standard single-mode optical fiber has been calculated. Losses as low as 0.16 dB can be reached for waveguides with a refractive-index contrast in the range of 0.5% to 1.96%. The fabrication tolerances are such that practical devices with coupling losses below 0.25 dB are feasible.

  13. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  14. Efficient Ti:LiNbO3 ridge waveguide lasers: investigation of Er and Yb:Er doped waveguides pumped at 980nm and 1486nm

    NASA Astrophysics Data System (ADS)

    Brüske, Dominik; Suntsov, Sergiy; Volk, Martin F.; Rüter, Christian E.; Kip, Detlef

    2018-02-01

    Erbium-ytterbium-codoped titanium in-diffused ridge waveguides optical amplifiers in x-cut congruent LiNbO3 substrates pumped at 980.5 nm and 1486 nm are reported for the first time. An internal gain of 2.8 dB/cm has been measured in 2.3 cm long Yb:Er:Ti:LiNbO3 ridge waveguides for the coupled pump power of 145 mW at 980.5 nm, which is the highest gain ever reported, to the best of our knowledge, for erbium-based LiNbO3 waveguide amplifiers under 980 nm excitation. Furthermore, we realized an internal gain of 3.2 dB/cm for the coupled pump power of 200 mW at 1486 nm, which also exceeds the best literature values for Er:Ti:LiNbO3 waveguide amplifiers pumped at this wavelength. In addition, we report on a method for local periodic poling (periods of 30 μm and 18.4 μm) of ridge waveguides in LiNbO3, which allows for future integration of waveguide lasers and nonlinear frequency converters on the same substrate.

  15. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  16. Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides

    NASA Astrophysics Data System (ADS)

    Fiedler, Kevin; Troian, Sandra

    The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  17. Waveguides in Thin Film Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Sakisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1996-01-01

    Results on the fabrication of integrated optical components in polymeric materials using photo printing methods will be presented. Optical waveguides were fabricated by spin coating preoxidized silicon wafers with organic dye/polymer solution followed by soft baking. The waveguide modes were studied using prism coupling technique. Propagation losses were measured by collecting light scattered from the trace of a propagation mode by either scanning photodetector or CCD camera. We observed the formation of graded index waveguides in photosensitive polyimides after exposure of UV light from a mercury arc lamp. By using a theoretical model, an index profile was reconstructed which is in agreement with the profile reconstructed by the Wentzel-Kramers-Brillouin calculation technique using a modal spectrum of the waveguides. Proposed mechanism for the formation of the graded index includes photocrosslinking followed by UV curing accompanied with optical absorption increase. We also developed the prototype of a novel single-arm double-mode interferometric sensor based on our waveguides. It demonstrates high sensitivity to the chance of ambient temperature. The device can find possible applications in aeropropulsion control systems.

  18. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    DOEpatents

    Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  19. Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion.

    PubMed

    Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M

    2007-08-20

    10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.

  20. A Simple Optical Waveguide Experiment.

    ERIC Educational Resources Information Center

    Phelps, J.; Sambles, J. R.

    1989-01-01

    Describes a thin film rectangular dielectric waveguide and its laboratory use. Discusses the theory of uniaxial thin film waveguides with mathematical expressions and the laboratory procedures for a classroom experiment with diagrams. (Author/YP)

  1. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  2. Nonlinear optical interactions in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.

    2017-03-01

    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  3. Improvements in brain activation detection using time-resolved diffuse optical means

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  4. Photonic generation of ultra-wide-band doublet pulse through monolithic integration of tapered directional coupler and quantum well waveguide.

    PubMed

    Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2012-10-22

    We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.

  5. Practical microstructured and plasmonic terahertz waveguides

    NASA Astrophysics Data System (ADS)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (< 1 s filling of a 10 cm long waveguide with an analyte). The transmission and absorption properties of such waveguides have been investigated both experimentally using THz-TDS spectroscopy and theoretically using finite element software. The modal refractive index of porous waveguides is smaller compared to pure polymer and it is easy to adjust by changing the air spacing between the layers, as well as the number of layers in the core. The porous waveguide exhibits considerably smaller transmission losses than bulk material. In the following chapters I review another promising approach towards designing of low-loss, low-dispersion THz waveguides. The hybrid metal/dielectric waveguides use a plasmonic mode guided in the gap between two parallel wires that are, in turn, encapsulated inside a low-loss, low-refractive index, micro-structured cladding that provides mechanical stability and isolation from the environment. I describe several promising techniques that can be used to encapsulate the two-wire waveguides, while minimizing the negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic claddings as two enabling materials for the two-wire waveguide encapsulation. The hybrid fiber design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. I present a detailed analysis of the modal properties of the hybrid metal/dielectric waveguides, compare them with the properties of a classic two-wire waveguide, and then present strategies for the improvement of hybrid waveguide performance by using higher cladding porosity or utilizing inherently porous cladding material. I study coupling efficiency into hybrid waveguides and conclude that it can be relatively high (>50%) in the broad frequency range ˜0.5 THz. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. I demonstrate that hybrid metal/dielectric porous waveguides can have a very large operational bandwidth, while supporting tightly confined, air-bound modes both at high and low frequencies. This is possible as, at higher frequencies, hybrid fibers can support ARROW-like low-loss air-bound modes, while changing their guidance mechanism to plasmonic confinement in the inter-wire air gap at lower frequencies. Finally, I describe an intriguing resonant property of some hybrid plasmonic modes of metal / dielectric waveguides that manifests itself in the strong frequency dependent change in the modal confinement from dielectric-bound to air-bound. I discuss how this property can be used to construct THz refractometers. Introduction of even lossless analytes into the fiber core leads to significant changes in the modal losses, which is used as a transduction mechanism. The resolution of the refractometer has been investigated numerically as a function of the operation frequency and the geometric parameters of the fiber. With a refractive index resolution on the order of ˜10-3 RIU, the composite fiber-based sensor is capable of identifying various gaseous analytes and aerosols or measuring the concentration of dust particles in the air.

  6. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  7. Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency.

    PubMed

    Ter-Gabrielyan, N; Fromzel, V; Mu, X; Meissner, H; Dubinskii, M

    2013-07-15

    We demonstrated the continuous-wave operation of a resonantly pumped Er:YAG single-mode channel waveguide laser with diffraction-limited output and nearly quantum defect limited efficiency. Using a longitudinally core-pumped, nearly square (61.2 μm×61.6 μm) Er3+:YAG waveguide embedded in an undoped YAG cladding, an output power of 9.1 W with a slope efficiency of 92.8% (versus absorbed pump power) has been obtained. To the best of our knowledge, this optical-to-optical efficiency is the highest ever demonstrated for a channel waveguide laser.

  8. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    PubMed

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  9. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    DOEpatents

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  10. Optical properties of in-vitro biomineralised silica

    PubMed Central

    Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C.; Müller, Werner E. G.; Pisignano, Dario

    2012-01-01

    Silicon is the second most common element on the Earth's crust and its oxide (SiO2) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5–10 cm−1, suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies. PMID:22934130

  11. Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography.

    PubMed

    Ishigure, Takaaki; Nitta, Yosuke

    2010-06-21

    We successfully fabricate a polymer optical waveguide with multiple graded-index (GI) cores directly on a substrate utilizing the soft-lithography method. A UV-curable polymer (TPIR-202) supplied from Tokyo Ohka Kogyo Co., Ltd. is used, and the GI cores are formed during the curing process of the core region, which is similar to the preform process we previously reported. We experimentally confirm that near parabolic refractive index profiles are formed in the parallel cores (more than 50 channels) with 40 microm x 40 microm size at 250-microm pitch. Although the loss is still as high as 0.1 approximately 0.3 dB/cm at 850 nm, which is mainly due to scattering loss inherent to the polymer matrix, the scattering loss attributed to the waveguide's structural irregularity could be sufficiently reduced by a graded refractive index profile. For comparison, we fabricate step-index (SI)-core waveguides with the same materials by means of the same process. Then, we evaluate the inter-channel crosstalk in the SI- and GI-core waveguides under almost the same conditions. It is noteworthy that remarkable crosstalk reduction (5 dB and beyond) is confirmed in the GI-core waveguides, since the propagating modes in GI-cores are tightly confined near the core center and less optical power is found near the core cladding boundary. This significant improvement in the inter-channel crosstalk allows the GI-core waveguides to be utilized for extra high-density on-board optical interconnections.

  12. Broad-Band Integrated Optical Electric Field Sensor Using Reflection Mach-Zehnder Waveguide Modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahong; Zhao, Zhengang; Li, Chuan; Li, Yingna

    2017-09-01

    A lithium niobate (LiNbO3) broad-band photonic sensor using reflection-type Mach-Zehnder optical waveguide modulator has been designed, fabricated, and experimentally demonstrated. The bare chip size of the sensor is microminiaturized as small as 20×5×0.5 mm3. The sensor has a wide band frequency response from 10 kHz to 20 GHz with variation less than ± 5 dB. The sensor system shows better linear characteristic from 100 mV/m to 700 V/m, and the sensitivity is 33 mV/m. Besides, the nanosecond EMP with intensity of 30 kV/m has been measured in the time domain.

  13. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-01

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  14. A tunable optofluidic circular liquid fiber

    NASA Astrophysics Data System (ADS)

    Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi

    2016-01-01

    This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.

  15. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  16. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  17. High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices

    NASA Astrophysics Data System (ADS)

    Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.

    1989-02-01

    A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.

  18. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  19. Photonic modes in synthetic photonic lattices localized due to nontrivial gauge field circulation

    NASA Astrophysics Data System (ADS)

    Pankov, Artem; Vatnik, Ilya; Churkin, Dmitry; Sukhorukov, Andrey A.

    2017-10-01

    One of concepts giving opportunities for studying of topological insulators in non-magnetic materials, or creating scattering-immune in optical waveguides is creation of synthetic gauge fields in photonic systems. It was shown that gauge fields shift the band-gaps of optical waves, which can be applied to implement one-way nonreciprocal waveguides, even though both the waveguide core and cladding are in a topologically trivial state [1]. In our work we propose a method to create a gauge field in a synthetic photonic mesh lattice - an optical device proved its high versatility for optical experiments [2]. We demonstrate presence of localized modes due to nontrivial gauge field circulation.

  20. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    NASA Astrophysics Data System (ADS)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  1. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.

    1995-12-12

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.

  2. Fabrication of a Quartz-Crystal-Microbalance/Optical-Waveguide Hybrid Sensor and In situ Evaluation of Vacuum-Evaporated Lead Phthalocyanine Thin Film

    NASA Astrophysics Data System (ADS)

    Shinbo, Kazunari; Uno, Akihiro; Hirakawa, Ryo; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao

    2013-05-01

    In this study, we fabricated a novel quartz-crystal-microbalance (QCM)/optical-waveguide hybrid sensor. An in situ observation of a lead phthalocyanine (PbPc) thin-film deposition was conducted during vacuum evaporation, and the effectiveness of the sensor was demonstrated. The film thickness was obtained from the QCM frequency, and the optical absorption of the film was observed by optical waveguide spectroscopy using part of the QCM substrate without the electrode. The film absorption depends on the polarization direction, substrate temperature and deposition rate, owing to aggregate formation. The thickness dependence of the absorption property was also investigated.

  3. Generation of sub-optical-cycle, carrier-envelope-phase--insensitive, extreme-uv pulses via nonlinear stabilization in a waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel

    2006-12-15

    We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.

  4. Optical temperature sensing on flexible polymer foils

    NASA Astrophysics Data System (ADS)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  5. Intelligent Processing of Ferroelectric Thin Films

    DTIC Science & Technology

    1994-05-31

    unsatisfactory. To detect the electroopic effects of thin films deposited on opaque substrates a waveguide refractometry of category 3 was reported. An advantage...of the waveguide refractometry is its capability of resolving the change in ordinary index from the change in the extraordinary index. Some successes

  6. Frequency-degenerate phase-sensitive optical parametric amplification based on four-wave mixing in graphene–silicon slot waveguide

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2018-06-01

    The phase-sensitive amplification process of a hybrid graphene–silicon (HyGS) slot waveguide with trilayers of graphene is investigated in this paper. Numerical simulation shows that a relatively high extinction ratio (42 dB) is achieved, because of the ultrahigh nonlinear coefficients, with a waveguide length of only 680 µm. In addition, the graphene layer provides the possibility of modulating the phase status and gain of the output signal. This study is expected to be highly beneficial to applications such as integrated optics and graphene-related active optical devices.

  7. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallard, B. R.; Kaushik, S.; Hadley, G. R.

    1996-02-01

    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way tomore » construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.« less

  8. Harmonic Bloch and dipole oscillations and their transition in elliptical optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Chan, Yun San; Zheng, Ming Jie; Yu, Kin Wah

    2011-03-01

    We have studied harmonic oscillations in an elliptical optical waveguide array in which the couplings between neighboring waveguides are varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, the long-living optical Bloch oscillation (BO) and dipole oscillation (DO) are obtained. Moreover, when a linear gradient in the propagation constant is applied, we achieve a switching from DO to BO and vice versa by ramping up or down the gradient profile]. The various optical oscillations as well as their switching are investigated by field evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals. Work supported by the General Research Fund of the Hong Kong SAR Government.

  9. An all-optical fiber optic photoacoustic transducer

    NASA Astrophysics Data System (ADS)

    Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai

    2018-02-01

    A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.

  10. Broadband athermal waveguides and devices for datacom and telecom applications

    NASA Astrophysics Data System (ADS)

    He, Liuqing; Guo, Yuhao; Han, Zhaohong; Wada, Kazumi; Kimerling, Lionel C.; Michel, Jurgen; Agarwal, Anuradha M.; Li, Guifang; Zhang, Lin

    2018-02-01

    The high temperature sensitivity of silicon material limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependence-wavelength-shift (TDWS) micro-ring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide which shows a low effective thermos-optical coefficient (TOC) of +/-1×10-6/K at 1400 nm to 1700 nm. The proposed waveguide shows low-loss performance of 0.01 dB/cm and stable broadband-athermal ability when it's applied in micro-ring resonators, and the optical loss of micro-ring resonator with a radius of 100 μm using this waveguide is 0.02 dB/cm.

  11. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  12. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  13. Coherent centres for light amplification in coupled waveguide arrays

    NASA Astrophysics Data System (ADS)

    Tripathi, Aditya; Kumar, Sunil

    2018-07-01

    In the study of optical lattices of waveguides, incorporation of nearest neighbour coupling and controllable nonlinearity can result in many interesting phenomena such as discrete diffraction, Anderson localization, diffusive transport, self-defocusing, discrete spatial solitons and discrete photonic resonances. The question of reflecting boundaries at the surfaces has been ignored most often. In the present study, we have shown through a simple one-dimensional waveguide array that light propagation gets completely modified along the length if effects from reflecting boundaries are also considered. We have shown only by considering the coupling on between neighbouring waveguides that there are periodic maximum power centres along the length of the excited waveguides which can be desirable for placing optical amplifiers in short or long distance communication and other applications.

  14. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    NASA Astrophysics Data System (ADS)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.

  15. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot resonance compared to that of conventional waveguide. Measured transmission spectra show a bandgap in the ΓM direction in the reciprocal lattice that is in agreement with the simulated results using the finite-difference time-domain (FDTD) method. Compared to polarization intensity EO modulator with a half-wave voltage length product of 4.7 V•mm. The PhC based EO modulator has a factor of 6.6 improvement in the figure of merit performance. The thin film PhC waveguide devices show considerable potential for ultra-wide bandwidth electro-optic modulators as well as tunable optical filters and switches.

  16. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less

  17. An analysis of the surface-normal coupling efficiency of a metal grating coupler embedded in a Scotch tape optical waveguide

    NASA Astrophysics Data System (ADS)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    The coupling efficiency at normal incidence of recently demonstrated aluminum grating couplers integrated in flexible Scotch tape waveguides has been analyzed theoretically and experimentally. Finite difference time domain (FDTD) and rigorously coupled wave analysis (RCWA) methods have been used to optimize the dimensions (duty cycle and metal thickness) of Scotch tape-embedded 1D Al gratings for maximum coupling at 635 nm wavelength. Good dimension and tape refractive index tolerances are predicted. FDTD simulations reveal the incident beam width and impinging position (alignment) values that avoid rediffraction and thus maximize the coupling efficiency. A 1D Al diffraction grating integrated into a Scotch tape optical waveguide has been fabricated and characterized. The fabrication process, based on pattern transfer, has been optimized to allow complete Al grating transfer onto the Scotch tape waveguide. A maximum coupling efficiency of 20% for TM-polarized normal incidence has been measured, which is in good agreement with the theoretical predictions. The measured coupling efficiency is further increased up to 28% for TM polarization under oblique incidence. Temperature dependence measurements have been also achieved and related to the simulations results and fabrication procedure.

  18. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2018-01-31

    Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less

  19. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  20. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.

    PubMed

    Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham

    2016-11-01

    Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.

  1. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  2. The use of optical waveguides in head up display (HUD) applications

    NASA Astrophysics Data System (ADS)

    Homan, Malcolm

    2013-06-01

    The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume glareshield mounted HUD. In many current Business Jet and Air Transport cockpits overhead mounted HUDs employ a conventional optical combiner to relay the display from a separate projector to the pilot's eyes. In BAE Systems' Electronic Systems QHUDTM configuration this combiner is replaced by the waveguide and the bulky, intrusive overhead projector completely eliminated. The result is a significant reduction in equipment volume and mass and a much greater head clearance combined with a substantially larger Head Motion Box. This latter feature is a fundamental outturn of waveguide optical solutions which removes the restrictions on pilot eye positioning associated with current conventional systems. LiteHUD®, developed by BAE Systems, Electronic Systems achieves equivalent optical performance to in-service HUDs for less cost, mass and volume.

  3. Double mushroom 1.55-μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules

    NASA Astrophysics Data System (ADS)

    Rymanov, Vitaly; Tekin, Tolga; Stöhr, Andreas

    2012-03-01

    High data rate photonic wireless systems operating at millimeter wave carrier frequencies are considered as a disruptive technology e.g. for reach extension in optical access networks and for mobile backhauling. Recently, we demonstrated 60 GHz photonic wireless systems with record data rates up to 27 Gbit/s. Because of the oxygen absorption at 60 GHz, it is beneficial for fixed wireless systems with spans exceeding 1 km to operate at even higher frequencies. Here, the recently regulated 10 GHz bandwidth within the E-band (60-90 GHz) is of particular interest, covering the 71-76 GHz and 81-86 GHz allocations for multi-gigabit wireless transmission. For this purpose, wideband waveguide photodetectors with high external quantum efficiency are required. Here, we report on double mushroom 1.55 μm waveguide photodetectors for integration in an E-band wireless transmitter module. The developed photodetector consists of a partially p-doped, partly non-intentionally doped absorbing layer centered in a mushroom-type optical waveguide, overcoming the compromise between the junction capacitance and the series resistance. For efficient fiber-chip coupling, a second mushroom-type passive optical waveguide is used. In contrast to the conventional shallow ridge waveguide approach, the mushroom-type passive waveguide allows to shift the center of the optical mode further away from the top surface, thus reducing waveguide losses due to the surface roughness. Experimentally, a very flat frequency response with a deviation up to +/-1 dB in the entire E-band has been found together with an output power level of -15.7 dBm at 10 mA photocurrent and at a frequency of 73 GHz.

  4. Waveguide Studies for Fiber Optics and Optical Signal Processing Applications.

    DTIC Science & Technology

    1980-04-01

    AO-A086 115 UNI!VERtSIT? OF SOUTIUR CALEPCRNA LOS AMUSS / 5 WAVGUIDE STUIES15 FOR FEB53 OpTECS AND OpTICAL SEOSA.o P /0Ksu-y "/6 UNLSIIDAPR N0 E...SAMUE Flola-??-c-sa UNCASZFIORAC-M-8042 U Final Technical Report (1 1April 1950 L V ~ WAVEGUIDE STUDIES FOR FIBER OPTICS AND OPTICAL SIGNAL PROCESSING...and Subtitle) 081 6&4𔃾JODO )EI YAVECUIDESTUDIES FOR JIBER OPTICS ANDL 7 Final ,T/echnical epoErt, OPTICAL SI’tNAL PROCESSING APPLICATIONS.4 11 Se 77

  5. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    PubMed

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  6. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  7. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  8. Nanoassembled dynamic optical waveguides and sensors based on zeolite L nanocontainers

    NASA Astrophysics Data System (ADS)

    Barroso, Álvaro; Dieckmann, Katrin; Alpmann, Christina; Buscher, Tim; Studer, Armido; Denz, Cornelia

    2015-03-01

    Although optical functional devices as waveguides and sensors are of utmost importance for metrology on the nano scale, the micro-and nano-assembly by optical means of functional materials to create such optical elements has yet not been considered. In the last years, an elegant strategy based on holographic optical tweezers (HOT) has been developed to design and fabricate permanent and dynamic three-dimensional micro- and nanostructures based on functional nanocontainers as building blocks. Nanocontainers that exhibit stable and ordered voids to hierarchically organize guest materials are especially attractive. Zeolite L are a type of porous micro-sized crystals which features a high number of strictly one-dimensional, parallel aligned nanochannels. They are highly interesting as building blocks of functional nano-and microsystems due to their potential as nanocontainers to accommodate various different guest molecules and to assemble them in specific configurations. For instance, based on zeolite L crystals, microscopic polarization sensors and chains of several microcrystals for hierarchical supramolecular organization have been realized. Here, we demonstrate the ability of nanocontainers in general, and zeolite L crystals in particular to represent the basic constituent of optical functional microsystems. We show that the capability of HOT to manipulate multitude of non-spherical microparticles in three dimensions can be exploited for the investigation of zeolite L nanocontainers as dynamic optical waveguides. Moreover, we implement as additional elements dye-loaded zeolite L to sense the guiding features of these novel waveguides with high spatial precision and microspheres to enhance the light coupling into the zeolite L waveguides. With this elaborated approach of using nanocontainers as tailored building blocks for functional optical systems a new era of bricking optical components in a lego-like style becomes feasible.

  9. Slow-light, band-edge waveguides for tunable time delays.

    PubMed

    Povinelli, M; Johnson, Steven; Joannopoulos, J

    2005-09-05

    We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

  10. Low-to-high refractive index contrast transition (RICT) device for low loss polymer-based optical coupling

    NASA Astrophysics Data System (ADS)

    Calabretta, N.; Cooman, I. A.; Stabile, R.

    2018-04-01

    We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.

  11. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Mcwright, G.

    1981-01-01

    The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.

  12. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    NASA Astrophysics Data System (ADS)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  13. Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy

    NASA Astrophysics Data System (ADS)

    Nada, Mohamed Y.; Othman, Mohamed A. K.; Capolino, Filippo

    2017-11-01

    We present an approach and a theoretical framework for generating high-order exceptional points of degeneracy (EPDs) in photonic structures based on periodic coupled resonator optical waveguides (CROWs). Such EPDs involve the coalescence of Floquet-Bloch eigenwaves in CROWs, without the presence of gain and loss, which contrasts with the parity-time symmetry required to develop exceptional points based on gain and loss balance. The EPDs arise here by introducing symmetry breaking in a conventional chain of coupled resonators through periodic coupling to an adjacent uniform optical waveguide, which leads to unique modal characteristics that cannot be realized in conventional CROWs. Such remarkable characteristics include high quality factors (Q factors) and strong field enhancement, even without any mirrors at the two ends of a cavity. We show for the first time the capability of CROWs to exhibit EPDs of various orders, including the degenerate band edge (DBE) and the stationary inflection point. The proposed CROW of finite length shows an enhanced quality factor when operating near the DBE, and the Q factor exhibits an unconventional scaling with the CROW's length. We develop the theory of EPDs in such unconventional CROW using coupled-wave equations, and we derive an analytical expression for the dispersion relation. The proposed unconventional CROW concepts have various potential applications including Q switching, nonlinear devices, lasers, and extremely sensitive sensors.

  14. Low-loss and energy efficient modulation in silicon photonic waveguides by adiabatic elimination scheme

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    2017-07-01

    High-speed Silicon Photonics calls for solutions providing a small footprint, high density, and minimum crosstalk, as exemplified by the recent development of integrated optical modulators. Yet, the performances of such modulators are hindered by intrinsic material losses, which results in low energy efficiency. Using the concept of Adiabatic Elimination, here, we introduce a scheme allowing for the low-loss modulation in densely packed waveguides. Our system is composed of two waveguides, whose coupling is mediated by an intermediate third waveguide. The signal is carried by the two outer modes, while the active control of their coupling is achieved via the intermediate dark mode. The modulation is performed by the manipulation of the central-waveguide mode index, leaving the signal-carrying waveguides unaffected by the loss. We discuss how Adiabatic Elimination provides a solution for mitigating signal losses and designing relatively compact, broadband, and energy-efficient integrated optical modulators.

  15. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.

    2014-01-01

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847

  16. Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils

    NASA Astrophysics Data System (ADS)

    Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas

    2016-10-01

    Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.

  17. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide.

    PubMed

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A

    2014-11-24

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.

  18. An investigation for the development of an integrated optical data preprocessor

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Vahey, D. W.; Kenan, R. P.; Wood, V. E.; Hartman, N. F.; Chapman, C. M.

    1978-01-01

    The successful fabrication and demonstration of an integrated optical circuit designed to perform a parallel processing operation by utilizing holographic subtraction to simultaneously compare N analog signal voltages with N predetermined reference voltages is summarized. The device alleviates transmission, storage and processing loads of satellite data systems by performing, at the sensor site, some preprocessing of data taken by remote sensors. Major accomplishments in the fabrication of integrated optics components include: (1) fabrication of the first LiNbO3 waveguide geodesic lens; (2) development of techniques for polishing TIR mirrors on LiNbO3 waveguides; (3) fabrication of high efficiency metal-over-photoresist gratings for waveguide beam splitters; (4) demonstration of high S/N holographic subtraction using waveguide holograms; and (5) development of alignment techniques for fabrication of integrated optics circuits. Important developments made in integrated optics are the discovery and suggested use of holographic self-subtraction in LiNbO3, development of a mathematical description of the operating modes of the preprocessor, and the development of theories for diffraction efficiency and beam quality of two dimensional beam defined gratings.

  19. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.

    PubMed

    Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír

    2016-03-07

    Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

  20. NASA Tech Briefs, September 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics.

Top