Sample records for time-series analysis methods

  1. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    PubMed

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  2. Highly comparative time-series analysis: the empirical structure of time series and their methods

    PubMed Central

    Fulcher, Ben D.; Little, Max A.; Jones, Nick S.

    2013-01-01

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344

  3. Analysis of Nonstationary Time Series for Biological Rhythms Research.

    PubMed

    Leise, Tanya L

    2017-06-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.

  4. Nonlinear Dynamics, Poor Data, and What to Make of Them?

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Zaliapin, I. V.

    2005-12-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict variability in the geosciences. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this talk we will describe the connections between time series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and present some of the novel methods for spectral analysis. These fall into two broad categories: (i) methods that try to ferret out regularities of the time series; and (ii) methods aimed at describing the characteristics of irregular processes. The former include singular-spectrum analysis (SSA), the multi-taper method (MTM), and the maximum-entropy method (MEM). The various steps, as well as the advantages and disadvantages of these methods, will be illustrated by their application to several important climatic time series, such as the Southern Oscillation Index (SOI), paleoclimatic time series, and instrumental temperature time series. The SOI index captures major features of interannual climate variability and is used extensively in its prediction. The other time series cover interdecadal and millennial time scales. The second category includes the calculation of fractional dimension, leading Lyapunov exponents, and Hurst exponents. More recently, multi-trend analysis (MTA), binary-decomposition analysis (BDA), and related methods have attempted to describe the structure of time series that include both regular and irregular components. Within the time available, I will try to give a feeling for how these methods work, and how well.

  5. Spectral analysis for GNSS coordinate time series using chirp Fourier transform

    NASA Astrophysics Data System (ADS)

    Feng, Shengtao; Bo, Wanju; Ma, Qingzun; Wang, Zifan

    2017-12-01

    Spectral analysis for global navigation satellite system (GNSS) coordinate time series provides a principal tool to understand the intrinsic mechanism that affects tectonic movements. Spectral analysis methods such as the fast Fourier transform, Lomb-Scargle spectrum, evolutionary power spectrum, wavelet power spectrum, etc. are used to find periodic characteristics in time series. Among spectral analysis methods, the chirp Fourier transform (CFT) with less stringent requirements is tested with synthetic and actual GNSS coordinate time series, which proves the accuracy and efficiency of the method. With the length of series only limited to even numbers, CFT provides a convenient tool for windowed spectral analysis. The results of ideal synthetic data prove CFT accurate and efficient, while the results of actual data show that CFT is usable to derive periodic information from GNSS coordinate time series.

  6. Process fault detection and nonlinear time series analysis for anomaly detection in safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, T.L.; Mullen, M.F.; Wangen, L.E.

    In this paper we discuss two advanced techniques, process fault detection and nonlinear time series analysis, and apply them to the analysis of vector-valued and single-valued time-series data. We investigate model-based process fault detection methods for analyzing simulated, multivariate, time-series data from a three-tank system. The model-predictions are compared with simulated measurements of the same variables to form residual vectors that are tested for the presence of faults (possible diversions in safeguards terminology). We evaluate two methods, testing all individual residuals with a univariate z-score and testing all variables simultaneously with the Mahalanobis distance, for their ability to detect lossmore » of material from two different leak scenarios from the three-tank system: a leak without and with replacement of the lost volume. Nonlinear time-series analysis tools were compared with the linear methods popularized by Box and Jenkins. We compare prediction results using three nonlinear and two linear modeling methods on each of six simulated time series: two nonlinear and four linear. The nonlinear methods performed better at predicting the nonlinear time series and did as well as the linear methods at predicting the linear values.« less

  7. Visibility Graph Based Time Series Analysis.

    PubMed

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  8. The method of trend analysis of parameters time series of gas-turbine engine state

    NASA Astrophysics Data System (ADS)

    Hvozdeva, I.; Myrhorod, V.; Derenh, Y.

    2017-10-01

    This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.

  9. Transformation-cost time-series method for analyzing irregularly sampled data

    NASA Astrophysics Data System (ADS)

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G. Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations—with associated costs—to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  10. Transformation-cost time-series method for analyzing irregularly sampled data.

    PubMed

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  11. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  12. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  13. Coupling detrended fluctuation analysis for analyzing coupled nonstationary signals.

    PubMed

    Hedayatifar, L; Vahabi, M; Jafari, G R

    2011-08-01

    When many variables are coupled to each other, a single case study could not give us thorough and precise information. When these time series are stationary, different methods of random matrix analysis and complex networks can be used. But, in nonstationary cases, the multifractal-detrended-cross-correlation-analysis (MF-DXA) method was introduced for just two coupled time series. In this article, we have extended the MF-DXA to the method of coupling detrended fluctuation analysis (CDFA) for the case when more than two series are correlated to each other. Here, we have calculated the multifractal properties of the coupled time series, and by comparing CDFA results of the original series with those of the shuffled and surrogate series, we can estimate the source of multifractality and the extent to which our series are coupled to each other. We illustrate the method by selected examples from air pollution and foreign exchange rates.

  14. Coupling detrended fluctuation analysis for analyzing coupled nonstationary signals

    NASA Astrophysics Data System (ADS)

    Hedayatifar, L.; Vahabi, M.; Jafari, G. R.

    2011-08-01

    When many variables are coupled to each other, a single case study could not give us thorough and precise information. When these time series are stationary, different methods of random matrix analysis and complex networks can be used. But, in nonstationary cases, the multifractal-detrended-cross-correlation-analysis (MF-DXA) method was introduced for just two coupled time series. In this article, we have extended the MF-DXA to the method of coupling detrended fluctuation analysis (CDFA) for the case when more than two series are correlated to each other. Here, we have calculated the multifractal properties of the coupled time series, and by comparing CDFA results of the original series with those of the shuffled and surrogate series, we can estimate the source of multifractality and the extent to which our series are coupled to each other. We illustrate the method by selected examples from air pollution and foreign exchange rates.

  15. Comparison of detrending methods for fluctuation analysis in hydrology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Chen, Yongqin David

    2011-03-01

    SummaryTrends within a hydrologic time series can significantly influence the scaling results of fluctuation analysis, such as rescaled range (RS) analysis and (multifractal) detrended fluctuation analysis (MF-DFA). Therefore, removal of trends is important in the study of scaling properties of the time series. In this study, three detrending methods, including adaptive detrending algorithm (ADA), Fourier-based method, and average removing technique, were evaluated by analyzing numerically generated series and observed streamflow series with obvious relative regular periodic trend. Results indicated that: (1) the Fourier-based detrending method and ADA were similar in detrending practices, and given proper parameters, these two methods can produce similarly satisfactory results; (2) detrended series by Fourier-based detrending method and ADA lose the fluctuation information at larger time scales, and the location of crossover points is heavily impacted by the chosen parameters of these two methods; and (3) the average removing method has an advantage over the other two methods, i.e., the fluctuation information at larger time scales is kept well-an indication of relatively reliable performance in detrending. In addition, the average removing method performed reasonably well in detrending a time series with regular periods or trends. In this sense, the average removing method should be preferred in the study of scaling properties of the hydrometeorolgical series with relative regular periodic trend using MF-DFA.

  16. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  17. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  18. Beyond linear methods of data analysis: time series analysis and its applications in renal research.

    PubMed

    Gupta, Ashwani K; Udrea, Andreea

    2013-01-01

    Analysis of temporal trends in medicine is needed to understand normal physiology and to study the evolution of disease processes. It is also useful for monitoring response to drugs and interventions, and for accountability and tracking of health care resources. In this review, we discuss what makes time series analysis unique for the purposes of renal research and its limitations. We also introduce nonlinear time series analysis methods and provide examples where these have advantages over linear methods. We review areas where these computational methods have found applications in nephrology ranging from basic physiology to health services research. Some examples include noninvasive assessment of autonomic function in patients with chronic kidney disease, dialysis-dependent renal failure and renal transplantation. Time series models and analysis methods have been utilized in the characterization of mechanisms of renal autoregulation and to identify the interaction between different rhythms of nephron pressure flow regulation. They have also been used in the study of trends in health care delivery. Time series are everywhere in nephrology and analyzing them can lead to valuable knowledge discovery. The study of time trends of vital signs, laboratory parameters and the health status of patients is inherent to our everyday clinical practice, yet formal models and methods for time series analysis are not fully utilized. With this review, we hope to familiarize the reader with these techniques in order to assist in their proper use where appropriate.

  19. Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs.

    PubMed

    Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew

    2014-01-01

    Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.

  20. Multiscale multifractal time irreversibility analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin

    2016-11-01

    Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.

  1. A comparative analysis of spectral exponent estimation techniques for 1/fβ processes with applications to the analysis of stride interval time series

    PubMed Central

    Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin

    2013-01-01

    Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509

  2. EnvironmentalWaveletTool: Continuous and discrete wavelet analysis and filtering for environmental time series

    NASA Astrophysics Data System (ADS)

    Galiana-Merino, J. J.; Pla, C.; Fernandez-Cortes, A.; Cuezva, S.; Ortiz, J.; Benavente, D.

    2014-10-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time-period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.

  3. hctsa: A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction.

    PubMed

    Fulcher, Ben D; Jones, Nick S

    2017-11-22

    Phenotype measurements frequently take the form of time series, but we currently lack a systematic method for relating these complex data streams to scientifically meaningful outcomes, such as relating the movement dynamics of organisms to their genotype or measurements of brain dynamics of a patient to their disease diagnosis. Previous work addressed this problem by comparing implementations of thousands of diverse scientific time-series analysis methods in an approach termed highly comparative time-series analysis. Here, we introduce hctsa, a software tool for applying this methodological approach to data. hctsa includes an architecture for computing over 7,700 time-series features and a suite of analysis and visualization algorithms to automatically select useful and interpretable time-series features for a given application. Using exemplar applications to high-throughput phenotyping experiments, we show how hctsa allows researchers to leverage decades of time-series research to quantify and understand informative structure in time-series data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.

    PubMed

    Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S

    2016-01-01

    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.

  5. On the equivalence of case-crossover and time series methods in environmental epidemiology.

    PubMed

    Lu, Yun; Zeger, Scott L

    2007-04-01

    The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.

  6. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction

    PubMed Central

    Carleton, W. Christopher; Campbell, David

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating—the most common chronometric technique in archaeological and palaeoenvironmental research—creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20–30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence. PMID:29351329

  7. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction.

    PubMed

    Carleton, W Christopher; Campbell, David; Collard, Mark

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20-30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence.

  8. Phase walk analysis of leptokurtic time series.

    PubMed

    Schreiber, Korbinian; Modest, Heike I; Räth, Christoph

    2018-06-01

    The Fourier phase information play a key role for the quantified description of nonlinear data. We present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting correlations among the Fourier phases. The method, being called phase walk analysis, is based on well established measures from random walk analysis, which are now applied to the unwrapped Fourier phases of time series. We provide an analytical description of its functionality and demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate the properties of leptokurtic time series and their influence on the Fourier phases of time series. The phase walk analysis is applied to measured and simulated intermittent time series, whose probability density distribution is approximated by power laws. We use the day-to-day returns of the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site. Testing for nonlinearities by means of surrogates shows that the new method yields strong significances for nonlinear behavior. Due to the drastically decreased computing time as compared to embedding space methods, the number of surrogate realizations can be increased by orders of magnitude. Thereby, the probability distribution of the test statistics can very accurately be derived and parameterized, which allows for much more precise tests on nonlinearities.

  9. Testing for nonlinearity in non-stationary physiological time series.

    PubMed

    Guarín, Diego; Delgado, Edilson; Orozco, Álvaro

    2011-01-01

    Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency domain. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. Applying our methodology to heart rate variability (HRV) records of five healthy patients, we encountered that nonlinear correlations are present in this non-stationary physiological signals.

  10. Clustering Financial Time Series by Network Community Analysis

    NASA Astrophysics Data System (ADS)

    Piccardi, Carlo; Calatroni, Lisa; Bertoni, Fabio

    In this paper, we describe a method for clustering financial time series which is based on community analysis, a recently developed approach for partitioning the nodes of a network (graph). A network with N nodes is associated to the set of N time series. The weight of the link (i, j), which quantifies the similarity between the two corresponding time series, is defined according to a metric based on symbolic time series analysis, which has recently proved effective in the context of financial time series. Then, searching for network communities allows one to identify groups of nodes (and then time series) with strong similarity. A quantitative assessment of the significance of the obtained partition is also provided. The method is applied to two distinct case-studies concerning the US and Italy Stock Exchange, respectively. In the US case, the stability of the partitions over time is also thoroughly investigated. The results favorably compare with those obtained with the standard tools typically used for clustering financial time series, such as the minimal spanning tree and the hierarchical tree.

  11. [Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].

    PubMed

    Panchelyuga, V A; Panchelyuga, M S

    2015-01-01

    Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.

  12. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series

    PubMed Central

    Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C.; Golino, Caroline A.; Kemper, Peter; Saha, Margaret S.

    2016-01-01

    Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features. PMID:27977764

  13. A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.

    PubMed

    Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin

    2014-01-30

    The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A novel water quality data analysis framework based on time-series data mining.

    PubMed

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A novel weight determination method for time series data aggregation

    NASA Astrophysics Data System (ADS)

    Xu, Paiheng; Zhang, Rong; Deng, Yong

    2017-09-01

    Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.

  16. Time Series Analysis Based on Running Mann Whitney Z Statistics

    USDA-ARS?s Scientific Manuscript database

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  17. Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction

    NASA Astrophysics Data System (ADS)

    Moeeni, Hamid; Bonakdari, Hossein; Fatemi, Seyed Ehsan

    2017-04-01

    Because time series stationarization has a key role in stochastic modeling results, three methods are analyzed in this study. The methods are seasonal differencing, seasonal standardization and spectral analysis to eliminate the periodic effect on time series stationarity. First, six time series including 4 streamflow series and 2 water temperature series are stationarized. The stochastic term for these series obtained with ARIMA is subsequently modeled. For the analysis, 9228 models are introduced. It is observed that seasonal standardization and spectral analysis eliminate the periodic term completely, while seasonal differencing maintains seasonal correlation structures. The obtained results indicate that all three methods present acceptable performance overall. However, model accuracy in monthly streamflow prediction is higher with seasonal differencing than with the other two methods. Another advantage of seasonal differencing over the other methods is that the monthly streamflow is never estimated as negative. Standardization is the best method for predicting monthly water temperature although it is quite similar to seasonal differencing, while spectral analysis performed the weakest in all cases. It is concluded that for each monthly seasonal series, seasonal differencing is the best stationarization method in terms of periodic effect elimination. Moreover, the monthly water temperature is predicted with more accuracy than monthly streamflow. The criteria of the average stochastic term divided by the amplitude of the periodic term obtained for monthly streamflow and monthly water temperature were 0.19 and 0.30, 0.21 and 0.13, and 0.07 and 0.04 respectively. As a result, the periodic term is more dominant than the stochastic term for water temperature in the monthly water temperature series compared to streamflow series.

  18. Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.

    PubMed

    Kis, Maria

    2005-01-01

    In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.

  19. Forecasting and analyzing high O3 time series in educational area through an improved chaotic approach

    NASA Astrophysics Data System (ADS)

    Hamid, Nor Zila Abd; Adenan, Nur Hamiza; Noorani, Mohd Salmi Md

    2017-08-01

    Forecasting and analyzing the ozone (O3) concentration time series is important because the pollutant is harmful to health. This study is a pilot study for forecasting and analyzing the O3 time series in one of Malaysian educational area namely Shah Alam using chaotic approach. Through this approach, the observed hourly scalar time series is reconstructed into a multi-dimensional phase space, which is then used to forecast the future time series through the local linear approximation method. The main purpose is to forecast the high O3 concentrations. The original method performed poorly but the improved method addressed the weakness thereby enabling the high concentrations to be successfully forecast. The correlation coefficient between the observed and forecasted time series through the improved method is 0.9159 and both the mean absolute error and root mean squared error are low. Thus, the improved method is advantageous. The time series analysis by means of the phase space plot and Cao method identified the presence of low-dimensional chaotic dynamics in the observed O3 time series. Results showed that at least seven factors affect the studied O3 time series, which is consistent with the listed factors from the diurnal variations investigation and the sensitivity analysis from past studies. In conclusion, chaotic approach has been successfully forecast and analyzes the O3 time series in educational area of Shah Alam. These findings are expected to help stakeholders such as Ministry of Education and Department of Environment in having a better air pollution management.

  20. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003

    NASA Astrophysics Data System (ADS)

    Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe

    2013-02-01

    Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.

  1. Time Series Imputation via L1 Norm-Based Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Kalantari, Mahdi; Yarmohammadi, Masoud; Hassani, Hossein; Silva, Emmanuel Sirimal

    Missing values in time series data is a well-known and important problem which many researchers have studied extensively in various fields. In this paper, a new nonparametric approach for missing value imputation in time series is proposed. The main novelty of this research is applying the L1 norm-based version of Singular Spectrum Analysis (SSA), namely L1-SSA which is robust against outliers. The performance of the new imputation method has been compared with many other established methods. The comparison is done by applying them to various real and simulated time series. The obtained results confirm that the SSA-based methods, especially L1-SSA can provide better imputation in comparison to other methods.

  2. Collaborative Research with Chinese, Indian, Filipino and North European Research Organizations on Infectious Disease Epidemics.

    PubMed

    Sumi, Ayako; Kobayashi, Nobumichi

    2017-01-01

    In this report, we present a short review of applications of time series analysis, which consists of spectral analysis based on the maximum entropy method in the frequency domain and the least squares method in the time domain, to the incidence data of infectious diseases. This report consists of three parts. First, we present our results obtained by collaborative research on infectious disease epidemics with Chinese, Indian, Filipino and North European research organizations. Second, we present the results obtained with the Japanese infectious disease surveillance data and the time series numerically generated from a mathematical model, called the susceptible/exposed/infectious/recovered (SEIR) model. Third, we present an application of the time series analysis to pathologic tissues to examine the usefulness of time series analysis for investigating the spatial pattern of pathologic tissue. It is anticipated that time series analysis will become a useful tool for investigating not only infectious disease surveillance data but also immunological and genetic tests.

  3. A better understanding of long-range temporal dependence of traffic flow time series

    NASA Astrophysics Data System (ADS)

    Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li

    2018-02-01

    Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.

  4. Non-parametric characterization of long-term rainfall time series

    NASA Astrophysics Data System (ADS)

    Tiwari, Harinarayan; Pandey, Brij Kishor

    2018-03-01

    The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.

  5. Multiscale multifractal detrended cross-correlation analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Wang, Jing; Lin, Aijing

    2014-06-01

    In this paper, we introduce a method called multiscale multifractal detrended cross-correlation analysis (MM-DCCA). The method allows us to extend the description of the cross-correlation properties between two time series. MM-DCCA may provide new ways of measuring the nonlinearity of two signals, and it helps to present much richer information than multifractal detrended cross-correlation analysis (MF-DCCA) by sweeping all the range of scale at which the multifractal structures of complex system are discussed. Moreover, to illustrate the advantages of this approach we make use of the MM-DCCA to analyze the cross-correlation properties between financial time series. We show that this new method can be adapted to investigate stock markets under investigation. It can provide a more faithful and more interpretable description of the dynamic mechanism between financial time series than traditional MF-DCCA. We also propose to reduce the scale ranges to analyze short time series, and some inherent properties which remain hidden when a wide range is used may exhibit perfectly in this way.

  6. Characterizing Time Series Data Diversity for Wind Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong

    Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less

  7. MEM spectral analysis for predicting influenza epidemics in Japan.

    PubMed

    Sumi, Ayako; Kamo, Ken-ichi

    2012-03-01

    The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

  8. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  9. A Comparison of Missing-Data Procedures for Arima Time-Series Analysis

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; Colby, Suzanne M.

    2005-01-01

    Missing data are a common practical problem for longitudinal designs. Time-series analysis is a longitudinal method that involves a large number of observations on a single unit. Four different missing-data methods (deletion, mean substitution, mean of adjacent observations, and maximum likelihood estimation) were evaluated. Computer-generated…

  10. Nonlinear Analysis of Surface EMG Time Series

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-04-01

    Applications of nonlinear analysis of surface electromyography time series of patients with and without low back pain are presented. Limitations of the standard methods based on the power spectrum are discussed.

  11. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces

    NASA Astrophysics Data System (ADS)

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.

  12. A Study on Predictive Analytics Application to Ship Machinery Maintenance

    DTIC Science & Technology

    2013-09-01

    Looking at the nature of the time series forecasting method , it would be better applied to offline analysis . The application for real- time online...other system attributes in future. Two techniques of statistical analysis , mainly time series models and cumulative sum control charts, are discussed in...statistical tool employed for the two techniques of statistical analysis . Both time series forecasting as well as CUSUM control charts are shown to be

  13. Multifractal analysis of the Korean agricultural market

    NASA Astrophysics Data System (ADS)

    Kim, Hongseok; Oh, Gabjin; Kim, Seunghwan

    2011-11-01

    We have studied the long-term memory effects of the Korean agricultural market using the detrended fluctuation analysis (DFA) method. In general, the return time series of various financial data, including stock indices, foreign exchange rates, and commodity prices, are uncorrelated in time, while the volatility time series are strongly correlated. However, we found that the return time series of Korean agricultural commodity prices are anti-correlated in time, while the volatility time series are correlated. The n-point correlations of time series were also examined, and it was found that a multifractal structure exists in Korean agricultural market prices.

  14. Time averaging, ageing and delay analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf

    2017-06-01

    We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

  15. Estimating short-run and long-run interaction mechanisms in interictal state.

    PubMed

    Ozkaya, Ata; Korürek, Mehmet

    2010-04-01

    We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.

  16. Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent

    NASA Astrophysics Data System (ADS)

    Cristescu, Constantin P.; Stan, Cristina; Scarlat, Eugen I.; Minea, Teofil; Cristescu, Cristina M.

    2012-04-01

    We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.

  17. How bootstrap can help in forecasting time series with more than one seasonal pattern

    NASA Astrophysics Data System (ADS)

    Cordeiro, Clara; Neves, M. Manuela

    2012-09-01

    The search for the future is an appealing challenge in time series analysis. The diversity of forecasting methodologies is inevitable and is still in expansion. Exponential smoothing methods are the launch platform for modelling and forecasting in time series analysis. Recently this methodology has been combined with bootstrapping revealing a good performance. The algorithm (Boot. EXPOS) using exponential smoothing and bootstrap methodologies, has showed promising results for forecasting time series with one seasonal pattern. In case of more than one seasonal pattern, the double seasonal Holt-Winters methods and the exponential smoothing methods were developed. A new challenge was now to combine these seasonal methods with bootstrap and carry over a similar resampling scheme used in Boot. EXPOS procedure. The performance of such partnership will be illustrated for some well-know data sets existing in software.

  18. A Multitaper, Causal Decomposition for Stochastic, Multivariate Time Series: Application to High-Frequency Calcium Imaging Data.

    PubMed

    Sornborger, Andrew T; Lauderdale, James D

    2016-11-01

    Neural data analysis has increasingly incorporated causal information to study circuit connectivity. Dimensional reduction forms the basis of most analyses of large multivariate time series. Here, we present a new, multitaper-based decomposition for stochastic, multivariate time series that acts on the covariance of the time series at all lags, C ( τ ), as opposed to standard methods that decompose the time series, X ( t ), using only information at zero-lag. In both simulated and neural imaging examples, we demonstrate that methods that neglect the full causal structure may be discarding important dynamical information in a time series.

  19. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

  20. Information retrieval for nonstationary data records

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1971-01-01

    A review and a critical discussion are made on the existing methods for analysis of nonstationary time series, and a new algorithm for splitting nonstationary time series, is applied to the analysis of sunspot data.

  1. Testing for intracycle determinism in pseudoperiodic time series.

    PubMed

    Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A

    2008-06-01

    A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.

  2. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  3. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis

    PubMed Central

    2012-01-01

    Background Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. Method We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. Results We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. Conclusions The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind. PMID:22369037

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamışlıoğlu, Miraç, E-mail: m.kamislioglu@gmail.com; Külahcı, Fatih, E-mail: fatihkulahci@firat.edu.tr

    Nonlinear time series analysis techniques have large application areas on the geoscience and geophysics fields. Modern nonlinear methods are provided considerable evidence for explain seismicity phenomena. In this study nonlinear time series analysis, fractal analysis and spectral analysis have been carried out for researching the chaotic behaviors of release radon gas ({sup 222}Rn) concentration occurring during seismic events. Nonlinear time series analysis methods (Lyapunov exponent, Hurst phenomenon, correlation dimension and false nearest neighbor) were applied for East Anatolian Fault Zone (EAFZ) Turkey and its surroundings where there are about 35,136 the radon measurements for each region. In this paper weremore » investigated of {sup 222}Rn behavior which it’s used in earthquake prediction studies.« less

  5. Automated Bayesian model development for frequency detection in biological time series.

    PubMed

    Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J

    2011-06-24

    A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure.

  6. Automated Bayesian model development for frequency detection in biological time series

    PubMed Central

    2011-01-01

    Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure. PMID:21702910

  7. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

  8. The "Chaos Theory" and nonlinear dynamics in heart rate variability analysis: does it work in short-time series in patients with coronary heart disease?

    PubMed

    Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana

    2007-04-01

    Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P < 0.001). The patients with CHD had higher fractal dimension in each exercise test program separately, as well as in exercise program at all. ApEn was significant lower in CHD group in both RR and ST-T ECG intervals (P < 0.001). The nonlinear dynamic methods could have clinical and prognostic applicability also in short-time ECG series. Dynamic analysis based on chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.

  9. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates

    2013-06-01

    We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.

  10. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography.

    PubMed

    Xie, Hong-Bo; Dokos, Socrates

    2013-06-01

    We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.

  11. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  12. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis.

    PubMed

    Lee, Hyokyeong; Moody-Davis, Asher; Saha, Utsab; Suzuki, Brian M; Asarnow, Daniel; Chen, Steven; Arkin, Michelle; Caffrey, Conor R; Singh, Rahul

    2012-01-01

    Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind.

  13. Interrupted time series analysis in drug utilization research is increasing: systematic review and recommendations.

    PubMed

    Jandoc, Racquel; Burden, Andrea M; Mamdani, Muhammad; Lévesque, Linda E; Cadarette, Suzanne M

    2015-08-01

    To describe the use and reporting of interrupted time series methods in drug utilization research. We completed a systematic search of MEDLINE, Web of Science, and reference lists to identify English language articles through to December 2013 that used interrupted time series methods in drug utilization research. We tabulated the number of studies by publication year and summarized methodological detail. We identified 220 eligible empirical applications since 1984. Only 17 (8%) were published before 2000, and 90 (41%) were published since 2010. Segmented regression was the most commonly applied interrupted time series method (67%). Most studies assessed drug policy changes (51%, n = 112); 22% (n = 48) examined the impact of new evidence, 18% (n = 39) examined safety advisories, and 16% (n = 35) examined quality improvement interventions. Autocorrelation was considered in 66% of studies, 31% reported adjusting for seasonality, and 15% accounted for nonstationarity. Use of interrupted time series methods in drug utilization research has increased, particularly in recent years. Despite methodological recommendations, there is large variation in reporting of analytic methods. Developing methodological and reporting standards for interrupted time series analysis is important to improve its application in drug utilization research, and we provide recommendations for consideration. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory

    PubMed Central

    Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM. PMID:29391864

  15. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.

    PubMed

    Yang, Haimin; Pan, Zhisong; Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.

  16. Cross-correlation of point series using a new method

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.

    1994-01-01

    Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new method, devised specifically for point series, utilizes a correlation measure that is based in the rms difference (or, alternatively, the median absolute difference) between nearest neightbors in overlapped segments of the two series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated as a template series against which the other, called the target series, is cross-correlated. To estimate a significance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest geomagnetic storms with the times of maximum in the undecennial solar activity cycle.

  17. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    PubMed

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  18. Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study

    NASA Astrophysics Data System (ADS)

    Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin

    2011-03-01

    Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.

  19. Does preprocessing change nonlinear measures of heart rate variability?

    PubMed

    Gomes, Murilo E D; Guimarães, Homero N; Ribeiro, Antônio L P; Aguirre, Luis A

    2002-11-01

    This work investigated if methods used to produce a uniformly sampled heart rate variability (HRV) time series significantly change the deterministic signature underlying the dynamics of such signals and some nonlinear measures of HRV. Two methods of preprocessing were used: the convolution of inverse interval function values with a rectangular window and the cubic polynomial interpolation. The HRV time series were obtained from 33 Wistar rats submitted to autonomic blockade protocols and from 17 healthy adults. The analysis of determinism was carried out by the method of surrogate data sets and nonlinear autoregressive moving average modelling and prediction. The scaling exponents alpha, alpha(1) and alpha(2) derived from the detrended fluctuation analysis were calculated from raw HRV time series and respective preprocessed signals. It was shown that the technique of cubic interpolation of HRV time series did not significantly change any nonlinear characteristic studied in this work, while the method of convolution only affected the alpha(1) index. The results suggested that preprocessed time series may be used to study HRV in the field of nonlinear dynamics.

  20. Sample entropy applied to the analysis of synthetic time series and tachograms

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.; Gálvez-Coyt, G. G.; Solís-Montufar, E.

    2017-01-01

    Entropy is a method of non-linear analysis that allows an estimate of the irregularity of a system, however, there are different types of computational entropy that were considered and tested in order to obtain one that would give an index of signals complexity taking into account the data number of the analysed time series, the computational resources demanded by the method, and the accuracy of the calculation. An algorithm for the generation of fractal time-series with a certain value of β was used for the characterization of the different entropy algorithms. We obtained a significant variation for most of the algorithms in terms of the series size, which could result counterproductive for the study of real signals of different lengths. The chosen method was sample entropy, which shows great independence of the series size. With this method, time series of heart interbeat intervals or tachograms of healthy subjects and patients with congestive heart failure were analysed. The calculation of sample entropy was carried out for 24-hour tachograms and time subseries of 6-hours for sleepiness and wakefulness. The comparison between the two populations shows a significant difference that is accentuated when the patient is sleeping.

  1. Wavelet analysis in ecology and epidemiology: impact of statistical tests

    PubMed Central

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-01-01

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the ‘beta-surrogate’ method. PMID:24284892

  2. Wavelet analysis in ecology and epidemiology: impact of statistical tests.

    PubMed

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-02-06

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.

  3. Estimation of Parameters from Discrete Random Nonstationary Time Series

    NASA Astrophysics Data System (ADS)

    Takayasu, H.; Nakamura, T.

    For the analysis of nonstationary stochastic time series we introduce a formulation to estimate the underlying time-dependent parameters. This method is designed for random events with small numbers that are out of the applicability range of the normal distribution. The method is demonstrated for numerical data generated by a known system, and applied to time series of traffic accidents, batting average of a baseball player and sales volume of home electronics.

  4. A New Modified Histogram Matching Normalization for Time Series Microarray Analysis.

    PubMed

    Astola, Laura; Molenaar, Jaap

    2014-07-01

    Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.

  5. Hybrid Wavelet De-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series

    NASA Astrophysics Data System (ADS)

    WANG, D.; Wang, Y.; Zeng, X.

    2017-12-01

    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.

  6. Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability.

    PubMed

    Krafty, Robert T

    2016-07-01

    Many studies record replicated time series epochs from different groups with the goal of using frequency domain properties to discriminate between the groups. In many applications, there exists variation in cyclical patterns from time series in the same group. Although a number of frequency domain methods for the discriminant analysis of time series have been explored, there is a dearth of models and methods that account for within-group spectral variability. This article proposes a model for groups of time series in which transfer functions are modeled as stochastic variables that can account for both between-group and within-group differences in spectra that are identified from individual replicates. An ensuing discriminant analysis of stochastic cepstra under this model is developed to obtain parsimonious measures of relative power that optimally separate groups in the presence of within-group spectral variability. The approach possess favorable properties in classifying new observations and can be consistently estimated through a simple discriminant analysis of a finite number of estimated cepstral coefficients. Benefits in accounting for within-group spectral variability are empirically illustrated in a simulation study and through an analysis of gait variability.

  7. Extending nonlinear analysis to short ecological time series.

    PubMed

    Hsieh, Chih-hao; Anderson, Christian; Sugihara, George

    2008-01-01

    Nonlinearity is important and ubiquitous in ecology. Though detectable in principle, nonlinear behavior is often difficult to characterize, analyze, and incorporate mechanistically into models of ecosystem function. One obvious reason is that quantitative nonlinear analysis tools are data intensive (require long time series), and time series in ecology are generally short. Here we demonstrate a useful method that circumvents data limitation and reduces sampling error by combining ecologically similar multispecies time series into one long time series. With this technique, individual ecological time series containing as few as 20 data points can be mined for such important information as (1) significantly improved forecast ability, (2) the presence and location of nonlinearity, and (3) the effective dimensionality (the number of relevant variables) of an ecological system.

  8. Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Lim, S. C.; Murugan, R.

    2001-12-01

    In this paper, we investigate the fractal scaling behaviors of foreign currency exchange rates with respect to Malaysian currency, Ringgit Malaysia. These time series are examined piecewise before and after the currency control imposed in 1st September 1998 using the monofractal model based on fractional Brownian motion. The global Hurst exponents are determined using the R/ S analysis, the detrended fluctuation analysis and the method of second moment using the correlation coefficients. The limitation of these monofractal analyses is discussed. The usual multifractal analysis reveals that there exists a wide range of Hurst exponents in each of the time series. A new method of modelling the multifractal time series based on multifractional Brownian motion with time-varying Hurst exponents is studied.

  9. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  10. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data

    NASA Astrophysics Data System (ADS)

    Yozgatligil, Ceylan; Aslan, Sipan; Iyigun, Cem; Batmaz, Inci

    2013-04-01

    This study aims to compare several imputation methods to complete the missing values of spatio-temporal meteorological time series. To this end, six imputation methods are assessed with respect to various criteria including accuracy, robustness, precision, and efficiency for artificially created missing data in monthly total precipitation and mean temperature series obtained from the Turkish State Meteorological Service. Of these methods, simple arithmetic average, normal ratio (NR), and NR weighted with correlations comprise the simple ones, whereas multilayer perceptron type neural network and multiple imputation strategy adopted by Monte Carlo Markov Chain based on expectation-maximization (EM-MCMC) are computationally intensive ones. In addition, we propose a modification on the EM-MCMC method. Besides using a conventional accuracy measure based on squared errors, we also suggest the correlation dimension (CD) technique of nonlinear dynamic time series analysis which takes spatio-temporal dependencies into account for evaluating imputation performances. Depending on the detailed graphical and quantitative analysis, it can be said that although computational methods, particularly EM-MCMC method, are computationally inefficient, they seem favorable for imputation of meteorological time series with respect to different missingness periods considering both measures and both series studied. To conclude, using the EM-MCMC algorithm for imputing missing values before conducting any statistical analyses of meteorological data will definitely decrease the amount of uncertainty and give more robust results. Moreover, the CD measure can be suggested for the performance evaluation of missing data imputation particularly with computational methods since it gives more precise results in meteorological time series.

  11. A New Modified Histogram Matching Normalization for Time Series Microarray Analysis

    PubMed Central

    Astola, Laura; Molenaar, Jaap

    2014-01-01

    Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data. PMID:27600344

  12. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    PubMed

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Fourier decomposition method for nonlinear and non-stationary time series analysis

    PubMed Central

    Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-01-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of ‘Fourier intrinsic band functions’ (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time–frequency–energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms. PMID:28413352

  14. HydroClimATe: hydrologic and climatic analysis toolkit

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  15. Multiscale structure of time series revealed by the monotony spectrum.

    PubMed

    Vamoş, Călin

    2017-03-01

    Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.

  16. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  17. Regenerating time series from ordinal networks.

    PubMed

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  18. Regenerating time series from ordinal networks

    NASA Astrophysics Data System (ADS)

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  19. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  20. A New Hybrid-Multiscale SSA Prediction of Non-Stationary Time Series

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2016-02-01

    Singular spectral analysis (SSA) is a non-parametric method used in the prediction of non-stationary time series. It has two parameters, which are difficult to determine and very sensitive to their values. Since, SSA is a deterministic-based method, it does not give good results when the time series is contaminated with a high noise level and correlated noise. Therefore, we introduce a novel method to handle these problems. It is based on the prediction of non-decimated wavelet (NDW) signals by SSA and then, prediction of residuals by wavelet regression. The advantages of our method are the automatic determination of parameters and taking account of the stochastic structure of time series. As shown through the simulated and real data, we obtain better results than SSA, a non-parametric wavelet regression method and Holt-Winters method.

  1. Modelling spatiotemporal change using multidimensional arrays Meng

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Appel, Marius; Pebesma, Edzer

    2017-04-01

    The large variety of remote sensors, model simulations, and in-situ records provide great opportunities to model environmental change. The massive amount of high-dimensional data calls for methods to integrate data from various sources and to analyse spatiotemporal and thematic information jointly. An array is a collection of elements ordered and indexed in arbitrary dimensions, which naturally represent spatiotemporal phenomena that are identified by their geographic locations and recording time. In addition, array regridding (e.g., resampling, down-/up-scaling), dimension reduction, and spatiotemporal statistical algorithms are readily applicable to arrays. However, the role of arrays in big geoscientific data analysis has not been systematically studied: How can arrays discretise continuous spatiotemporal phenomena? How can arrays facilitate the extraction of multidimensional information? How can arrays provide a clean, scalable and reproducible change modelling process that is communicable between mathematicians, computer scientist, Earth system scientist and stakeholders? This study emphasises on detecting spatiotemporal change using satellite image time series. Current change detection methods using satellite image time series commonly analyse data in separate steps: 1) forming a vegetation index, 2) conducting time series analysis on each pixel, and 3) post-processing and mapping time series analysis results, which does not consider spatiotemporal correlations and ignores much of the spectral information. Multidimensional information can be better extracted by jointly considering spatial, spectral, and temporal information. To approach this goal, we use principal component analysis to extract multispectral information and spatial autoregressive models to account for spatial correlation in residual based time series structural change modelling. We also discuss the potential of multivariate non-parametric time series structural change methods, hierarchical modelling, and extreme event detection methods to model spatiotemporal change. We show how array operations can facilitate expressing these methods, and how the open-source array data management and analytics software SciDB and R can be used to scale the process and make it easily reproducible.

  2. The Prediction of Teacher Turnover Employing Time Series Analysis.

    ERIC Educational Resources Information Center

    Costa, Crist H.

    The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…

  3. "Observation Obscurer" - Time Series Viewer, Editor and Processor

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.

    The program is described, which contains a set of subroutines suitable for East viewing and interactive filtering and processing of regularly and irregularly spaced time series. Being a 32-bit DOS application, it may be used as a default fast viewer/editor of time series in any compute shell ("commander") or in Windows. It allows to view the data in the "time" or "phase" mode, to remove ("obscure") or filter outstanding bad points; to make scale transformations and smoothing using few methods (e.g. mean with phase binning, determination of the statistically opti- mal number of phase bins; "running parabola" (Andronov, 1997, As. Ap. Suppl, 125, 207) fit and to make time series analysis using some methods, e.g. correlation, autocorrelation and histogram analysis: determination of extrema etc. Some features have been developed specially for variable star observers, e.g. the barycentric correction, the creation and fast analysis of "OC" diagrams etc. The manual for "hot keys" is presented. The computer code was compiled with a 32-bit Free Pascal (www.freepascal.org).

  4. An evaluation of dynamic mutuality measurements and methods in cyclic time series

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohua; Huang, Guitian; Duan, Na

    2010-12-01

    Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.

  5. Time series analysis of InSAR data: Methods and trends

    NASA Astrophysics Data System (ADS)

    Osmanoğlu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cabral-Cano, Enrique

    2016-05-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ;unwrapping; of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  6. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  7. Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress.

    PubMed

    Jo, Kyuri; Kwon, Hawk-Bin; Kim, Sun

    2014-06-01

    Measuring expression levels of genes at the whole genome level can be useful for many purposes, especially for revealing biological pathways underlying specific phenotype conditions. When gene expression is measured over a time period, we have opportunities to understand how organisms react to stress conditions over time. Thus many biologists routinely measure whole genome level gene expressions at multiple time points. However, there are several technical difficulties for analyzing such whole genome expression data. In addition, these days gene expression data is often measured by using RNA-sequencing rather than microarray technologies and then analysis of expression data is much more complicated since the analysis process should start with mapping short reads and produce differentially activated pathways and also possibly interactions among pathways. In addition, many useful tools for analyzing microarray gene expression data are not applicable for the RNA-seq data. Thus a comprehensive package for analyzing time series transcriptome data is much needed. In this article, we present a comprehensive package, Time-series RNA-seq Analysis Package (TRAP), integrating all necessary tasks such as mapping short reads, measuring gene expression levels, finding differentially expressed genes (DEGs), clustering and pathway analysis for time-series data in a single environment. In addition to implementing useful algorithms that are not available for RNA-seq data, we extended existing pathway analysis methods, ORA and SPIA, for time series analysis and estimates statistical values for combined dataset by an advanced metric. TRAP also produces visual summary of pathway interactions. Gene expression change labeling, a practical clustering method used in TRAP, enables more accurate interpretation of the data when combined with pathway analysis. We applied our methods on a real dataset for the analysis of rice (Oryza sativa L. Japonica nipponbare) upon drought stress. The result showed that TRAP was able to detect pathways more accurately than several existing methods. TRAP is available at http://biohealth.snu.ac.kr/software/TRAP/. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.

    We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.

  9. Improved nonlinear prediction method

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  10. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  11. High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong

    2008-02-01

    Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.

  12. The Effect on Non-Normal Distributions on the Integrated Moving Average Model of Time-Series Analysis.

    ERIC Educational Resources Information Center

    Doerann-George, Judith

    The Integrated Moving Average (IMA) model of time series, and the analysis of intervention effects based on it, assume random shocks which are normally distributed. To determine the robustness of the analysis to violations of this assumption, empirical sampling methods were employed. Samples were generated from three populations; normal,…

  13. Multifractal detrended cross-correlation analysis for two nonstationary signals.

    PubMed

    Zhou, Wei-Xing

    2008-06-01

    We propose a method called multifractal detrended cross-correlation analysis to investigate the multifractal behaviors in the power-law cross-correlations between two time series or higher-dimensional quantities recorded simultaneously, which can be applied to diverse complex systems such as turbulence, finance, ecology, physiology, geophysics, and so on. The method is validated with cross-correlated one- and two-dimensional binomial measures and multifractal random walks. As an example, we illustrate the method by analyzing two financial time series.

  14. Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks

    PubMed Central

    Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue

    2017-01-01

    Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques. PMID:28383496

  15. Measuring Complexity and Predictability of Time Series with Flexible Multiscale Entropy for Sensor Networks.

    PubMed

    Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue

    2017-04-06

    Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques.

  16. Modified cross sample entropy and surrogate data analysis method for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-09-01

    For researching multiscale behaviors from the angle of entropy, we propose a modified cross sample entropy (MCSE) and combine surrogate data analysis with it in order to compute entropy differences between original dynamics and surrogate series (MCSDiff). MCSDiff is applied to simulated signals to show accuracy and then employed to US and Chinese stock markets. We illustrate the presence of multiscale behavior in the MCSDiff results and reveal that there are synchrony containing in the original financial time series and they have some intrinsic relations, which are destroyed by surrogate data analysis. Furthermore, the multifractal behaviors of cross-correlations between these financial time series are investigated by multifractal detrended cross-correlation analysis (MF-DCCA) method, since multifractal analysis is a multiscale analysis. We explore the multifractal properties of cross-correlation between these US and Chinese markets and show the distinctiveness of NQCI and HSI among the markets in their own region. It can be concluded that the weaker cross-correlation between US markets gives the evidence for the better inner mechanism in the US stock markets than that of Chinese stock markets. To study the multiscale features and properties of financial time series can provide valuable information for understanding the inner mechanism of financial markets.

  17. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development

    USGS Publications Warehouse

    Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris

    2006-01-01

    We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.

  18. How long will the traffic flow time series keep efficacious to forecast the future?

    NASA Astrophysics Data System (ADS)

    Yuan, PengCheng; Lin, XuXun

    2017-02-01

    This paper investigate how long will the historical traffic flow time series keep efficacious to forecast the future. In this frame, we collect the traffic flow time series data with different granularity at first. Then, using the modified rescaled range analysis method, we analyze the long memory property of the traffic flow time series by computing the Hurst exponent. We calculate the long-term memory cycle and test its significance. We also compare it with the maximum Lyapunov exponent method result. Our results show that both of the freeway traffic flow time series and the ground way traffic flow time series demonstrate positively correlated trend (have long-term memory property), both of their memory cycle are about 30 h. We think this study is useful for the short-term or long-term traffic flow prediction and management.

  19. Time-Series Analysis: Assessing the Effects of Multiple Educational Interventions in a Small-Enrollment Course

    NASA Astrophysics Data System (ADS)

    Warren, Aaron R.

    2009-11-01

    Time-series designs are an alternative to pretest-posttest methods that are able to identify and measure the impacts of multiple educational interventions, even for small student populations. Here, we use an instrument employing standard multiple-choice conceptual questions to collect data from students at regular intervals. The questions are modified by asking students to distribute 100 Confidence Points among the options in order to indicate the perceived likelihood of each answer option being the correct one. Tracking the class-averaged ratings for each option produces a set of time-series. ARIMA (autoregressive integrated moving average) analysis is then used to test for, and measure, changes in each series. In particular, it is possible to discern which educational interventions produce significant changes in class performance. Cluster analysis can also identify groups of students whose ratings evolve in similar ways. A brief overview of our methods and an example are presented.

  20. The local properties of ocean surface waves by the phase-time method

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.

    1992-01-01

    A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.

  1. Simultaneous determination of radionuclides separable into natural decay series by use of time-interval analysis.

    PubMed

    Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro

    2004-05-01

    A delayed coincidence method, time-interval analysis (TIA), has been applied to successive alpha- alpha decay events on the millisecond time-scale. Such decay events are part of the (220)Rn-->(216)Po ( T(1/2) 145 ms) (Th-series) and (219)Rn-->(215)Po ( T(1/2) 1.78 ms) (Ac-series). By using TIA in addition to measurement of (226)Ra (U-series) from alpha-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject beta-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N(2) gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the (221)Fr-->(217)At ( T(1/2) 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the (225)Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples.

  2. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-01-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.

  3. State space model approach for forecasting the use of electrical energy (a case study on: PT. PLN (Persero) district of Kroya)

    NASA Astrophysics Data System (ADS)

    Kurniati, Devi; Hoyyi, Abdul; Widiharih, Tatik

    2018-05-01

    Time series data is a series of data taken or measured based on observations at the same time interval. Time series data analysis is used to perform data analysis considering the effect of time. The purpose of time series analysis is to know the characteristics and patterns of a data and predict a data value in some future period based on data in the past. One of the forecasting methods used for time series data is the state space model. This study discusses the modeling and forecasting of electric energy consumption using the state space model for univariate data. The modeling stage is began with optimal Autoregressive (AR) order selection, determination of state vector through canonical correlation analysis, estimation of parameter, and forecasting. The result of this research shows that modeling of electric energy consumption using state space model of order 4 with Mean Absolute Percentage Error (MAPE) value 3.655%, so the model is very good forecasting category.

  4. Sequential Monte Carlo for inference of latent ARMA time-series with innovations correlated in time

    NASA Astrophysics Data System (ADS)

    Urteaga, Iñigo; Bugallo, Mónica F.; Djurić, Petar M.

    2017-12-01

    We consider the problem of sequential inference of latent time-series with innovations correlated in time and observed via nonlinear functions. We accommodate time-varying phenomena with diverse properties by means of a flexible mathematical representation of the data. We characterize statistically such time-series by a Bayesian analysis of their densities. The density that describes the transition of the state from time t to the next time instant t+1 is used for implementation of novel sequential Monte Carlo (SMC) methods. We present a set of SMC methods for inference of latent ARMA time-series with innovations correlated in time for different assumptions in knowledge of parameters. The methods operate in a unified and consistent manner for data with diverse memory properties. We show the validity of the proposed approach by comprehensive simulations of the challenging stochastic volatility model.

  5. Determining temporal scales of the soil moisture variations by Empirical Mode Decompositions and wavelet methods and its use for validation of SMOS data

    NASA Astrophysics Data System (ADS)

    Usowicz, Jerzy, B.; Marczewski, Wojciech; Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz I.

    2010-05-01

    This paper presents the results of the time series analysis of the soil moisture observed at two test sites Podlasie, Polesie, in the Cal/Val AO 3275 campaigns in Poland, during the interval 2006-2009. The test sites have been selected on a basis of their contrasted hydrological conditions. The region Podlasie (Trzebieszow) is essentially drier than the wetland region Polesie (Urszulin). It is worthwhile to note that the soil moisture variations can be represented as a non-stationary random process, and therefore appropriate analysis methods are required. The so-called Empirical Mode Decomposition (EMD) method has been chosen, since it is one of the best methods for the analysis of non-stationary and nonlinear time series. To confirm the results obtained by the EMD we have also used the wavelet methods. Firstly, we have used EMD (analyze step) to decompose the original time series into the so-called Intrinsic Mode Functions (IMFs) and then by grouping and addition similar IMFs (synthesize step) to obtain a few signal components with corresponding temporal scales. Such an adaptive procedure enables to decompose the original time series into diurnal, seasonal and trend components. Revealing of all temporal scales which operates in the original time series is our main objective and this approach may prove to be useful in other studies. Secondly, we have analyzed the soil moisture time series from both sites using the cross-wavelet and wavelet coherency. These methods allow us to study the degree of spatial coherence, which may vary in various intervals of time. We hope the obtained results provide some hints and guidelines for the validation of ESA SMOS data. References: B. Usowicz, J.B. Usowicz, Spatial and temporal variation of selected physical and chemical properties of soil, Institute of Agrophysics, Polish Academy of Sciences, Lublin 2004, ISBN 83-87385-96-4 Rao, A.R., Hsu, E.-C., Hilbert-Huang Transform Analysis of Hydrological and Environmental Time Series, Springer, 2008, ISBN: 978-1-4020-6453-1 Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".

  6. Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference

    PubMed Central

    Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.

    2015-01-01

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922

  7. Generalized sample entropy analysis for traffic signals based on similarity measure

    NASA Astrophysics Data System (ADS)

    Shang, Du; Xu, Mengjia; Shang, Pengjian

    2017-05-01

    Sample entropy is a prevailing method used to quantify the complexity of a time series. In this paper a modified method of generalized sample entropy and surrogate data analysis is proposed as a new measure to assess the complexity of a complex dynamical system such as traffic signals. The method based on similarity distance presents a different way of signals patterns match showing distinct behaviors of complexity. Simulations are conducted over synthetic data and traffic signals for providing the comparative study, which is provided to show the power of the new method. Compared with previous sample entropy and surrogate data analysis, the new method has two main advantages. The first one is that it overcomes the limitation about the relationship between the dimension parameter and the length of series. The second one is that the modified sample entropy functions can be used to quantitatively distinguish time series from different complex systems by the similar measure.

  8. A hybrid wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series.

    PubMed

    Wang, Dong; Borthwick, Alistair G; He, Handan; Wang, Yuankun; Zhu, Jieyu; Lu, Yuan; Xu, Pengcheng; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-01-01

    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  10. Statistical properties and time-frequency analysis of temperature, salinity and turbidity measured by the MAREL Carnot station in the coastal waters of Boulogne-sur-Mer (France)

    NASA Astrophysics Data System (ADS)

    Kbaier Ben Ismail, Dhouha; Lazure, Pascal; Puillat, Ingrid

    2016-10-01

    In marine sciences, many fields display high variability over a large range of spatial and temporal scales, from seconds to thousands of years. The longer recorded time series, with an increasing sampling frequency, in this field are often nonlinear, nonstationary, multiscale and noisy. Their analysis faces new challenges and thus requires the implementation of adequate and specific methods. The objective of this paper is to highlight time series analysis methods already applied in econometrics, signal processing, health, etc. to the environmental marine domain, assess advantages and inconvenients and compare classical techniques with more recent ones. Temperature, turbidity and salinity are important quantities for ecosystem studies. The authors here consider the fluctuations of sea level, salinity, turbidity and temperature recorded from the MAREL Carnot system of Boulogne-sur-Mer (France), which is a moored buoy equipped with physico-chemical measuring devices, working in continuous and autonomous conditions. In order to perform adequate statistical and spectral analyses, it is necessary to know the nature of the considered time series. For this purpose, the stationarity of the series and the occurrence of unit-root are addressed with the Augmented-Dickey Fuller tests. As an example, the harmonic analysis is not relevant for temperature, turbidity and salinity due to the nonstationary condition, except for the nearly stationary sea level datasets. In order to consider the dominant frequencies associated to the dynamics, the large number of data provided by the sensors should enable the estimation of Fourier spectral analysis. Different power spectra show a complex variability and reveal an influence of environmental factors such as tides. However, the previous classical spectral analysis, namely the Blackman-Tukey method, requires not only linear and stationary data but also evenly-spaced data. Interpolating the time series introduces numerous artifacts to the data. The Lomb-Scargle algorithm is adapted to unevenly-spaced data and is used as an alternative. The limits of the method are also set out. It was found that beyond 50% of missing measures, few significant frequencies are detected, several seasonalities are no more visible, and even a whole range of high frequency disappears progressively. Furthermore, two time-frequency decomposition methods, namely wavelets and Hilbert-Huang Transformation (HHT), are applied for the analysis of the entire dataset. Using the Continuous Wavelet Transform (CWT), some properties of the time series are determined. Then, the inertial wave and several low-frequency tidal waves are identified by the application of the Empirical Mode Decomposition (EMD). Finally, EMD based Time Dependent Intrinsic Correlation (TDIC) analysis is applied to consider the correlation between two nonstationary time series.

  11. A KST framework for correlation network construction from time series signals

    NASA Astrophysics Data System (ADS)

    Qi, Jin-Peng; Gu, Quan; Zhu, Ying; Zhang, Ping

    2018-04-01

    A KST (Kolmogorov-Smirnov test and T statistic) method is used for construction of a correlation network based on the fluctuation of each time series within the multivariate time signals. In this method, each time series is divided equally into multiple segments, and the maximal data fluctuation in each segment is calculated by a KST change detection procedure. Connections between each time series are derived from the data fluctuation matrix, and are used for construction of the fluctuation correlation network (FCN). The method was tested with synthetic simulations and the result was compared with those from using KS or T only for detection of data fluctuation. The novelty of this study is that the correlation analyses was based on the data fluctuation in each segment of each time series rather than on the original time signals, which would be more meaningful for many real world applications and for analysis of large-scale time signals where prior knowledge is uncertain.

  12. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    NASA Technical Reports Server (NTRS)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  13. Time series analysis as input for clinical predictive modeling: Modeling cardiac arrest in a pediatric ICU

    PubMed Central

    2011-01-01

    Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. Conclusions We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting. PMID:22023778

  14. Transition Icons for Time-Series Visualization and Exploratory Analysis.

    PubMed

    Nickerson, Paul V; Baharloo, Raheleh; Wanigatunga, Amal A; Manini, Todd M; Tighe, Patrick J; Rashidi, Parisa

    2018-03-01

    The modern healthcare landscape has seen the rapid emergence of techniques and devices that temporally monitor and record physiological signals. The prevalence of time-series data within the healthcare field necessitates the development of methods that can analyze the data in order to draw meaningful conclusions. Time-series behavior is notoriously difficult to intuitively understand due to its intrinsic high-dimensionality, which is compounded in the case of analyzing groups of time series collected from different patients. Our framework, which we call transition icons, renders common patterns in a visual format useful for understanding the shared behavior within groups of time series. Transition icons are adept at detecting and displaying subtle differences and similarities, e.g., between measurements taken from patients receiving different treatment strategies or stratified by demographics. We introduce various methods that collectively allow for exploratory analysis of groups of time series, while being free of distribution assumptions and including simple heuristics for parameter determination. Our technique extracts discrete transition patterns from symbolic aggregate approXimation representations, and compiles transition frequencies into a bag of patterns constructed for each group. These transition frequencies are normalized and aligned in icon form to intuitively display the underlying patterns. We demonstrate the transition icon technique for two time-series datasets-postoperative pain scores, and hip-worn accelerometer activity counts. We believe transition icons can be an important tool for researchers approaching time-series data, as they give rich and intuitive information about collective time-series behaviors.

  15. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  16. Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling

    DOE PAGES

    Olofsson, K. Erik J.; Hanson, Jeremy M.; Shiraki, Daisuke; ...

    2014-07-14

    Here, time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models.more » The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones.« less

  17. Influence analysis for high-dimensional time series with an application to epileptic seizure onset zone detection

    PubMed Central

    Flamm, Christoph; Graef, Andreas; Pirker, Susanne; Baumgartner, Christoph; Deistler, Manfred

    2013-01-01

    Granger causality is a useful concept for studying causal relations in networks. However, numerical problems occur when applying the corresponding methodology to high-dimensional time series showing co-movement, e.g. EEG recordings or economic data. In order to deal with these shortcomings, we propose a novel method for the causal analysis of such multivariate time series based on Granger causality and factor models. We present the theoretical background, successfully assess our methodology with the help of simulated data and show a potential application in EEG analysis of epileptic seizures. PMID:23354014

  18. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    NASA Astrophysics Data System (ADS)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  19. A Recurrent Probabilistic Neural Network with Dimensionality Reduction Based on Time-series Discriminant Component Analysis.

    PubMed

    Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio

    2015-12-01

    This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.

  20. On statistical inference in time series analysis of the evolution of road safety.

    PubMed

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. An Observation Analysis Tool for time-series analysis and sensor management in the FREEWAT GIS environment for water resources management

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo

    2017-04-01

    In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.

  2. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  3. A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method

    NASA Technical Reports Server (NTRS)

    Van Dongen, H. P.; Olofsen, E.; VanHartevelt, J. H.; Kruyt, E. W.; Dinges, D. F. (Principal Investigator)

    1999-01-01

    Periodogram analysis of unequally spaced time-series, as part of many biological rhythm investigations, is complicated. The mathematical framework is scattered over the literature, and the interpretation of results is often debatable. In this paper, we show that the Lomb-Scargle method is the appropriate tool for periodogram analysis of unequally spaced data. A unique procedure of multiple period searching is derived, facilitating the assessment of the various rhythms that may be present in a time-series. All relevant mathematical and statistical aspects are considered in detail, and much attention is given to the correct interpretation of results. The use of the procedure is illustrated by examples, and problems that may be encountered are discussed. It is argued that, when following the procedure of multiple period searching, we can even benefit from the unequal spacing of a time-series in biological rhythm research.

  4. A cluster merging method for time series microarray with production values.

    PubMed

    Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio

    2014-09-01

    A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.

  5. Application of a time-series methodology to Federal program allocations. [Modified Box and Jenkins method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronfman, B. H.

    Time-series analysis provides a useful tool in the evaluation of public policy outputs. It is shown that the general Box and Jenkins method, when extended to allow for multiple interrupts, enables researchers simultaneously to examine changes in drift and level of a series, and to select the best fit model for the series. As applied to urban renewal allocations, results show significant changes in the level of the series, corresponding to changes in party control of the Executive. No support is given to the ''incrementalism'' hypotheses as no significant changes in drift are found.

  6. Terrain Dynamics Analysis Using Space-Time Domain Hypersurfaces and Gradient Trajectories Derived From Time Series of 3D Point Clouds

    DTIC Science & Technology

    2015-08-01

    optimized space-time interpolation method. Tangible geospatial modeling system was further developed to support the analysis of changing elevation surfaces...Evolution Mapped by Terrestrial Laser Scanning, talk, AGU Fall 2012 *Hardin E, Mitas L, Mitasova H., Simulation of Wind -Blown Sand for...Geomorphological Applications: A Smoothed Particle Hydrodynamics Approach, GSA 2012 *Russ, E. Mitasova, H., Time series and space-time cube analyses on

  7. Beyond trend analysis: How a modified breakpoint analysis enhances knowledge of agricultural production after Zimbabwe's fast track land reform

    NASA Astrophysics Data System (ADS)

    Hentze, Konrad; Thonfeld, Frank; Menz, Gunter

    2017-10-01

    In the discourse on land reform assessments, a significant lack of spatial and time-series data has been identified, especially with respect to Zimbabwe's ;Fast-Track Land Reform Programme; (FTLRP). At the same time, interest persists among land use change scientists to evaluate causes of land use change and therefore to increase the explanatory power of remote sensing products. This study recognizes these demands and aims to provide input on both levels: Evaluating the potential of satellite remote sensing time-series to answer questions which evolved after intensive land redistribution efforts in Zimbabwe; and investigating how time-series analysis of Normalized Difference Vegetation Index (NDVI) can be enhanced to provide information on land reform induced land use change. To achieve this, two time-series methods are applied to MODIS NDVI data: Seasonal Trend Analysis (STA) and Breakpoint Analysis for Additive Season and Trend (BFAST). In our first analysis, a link of agricultural productivity trends to different land tenure regimes shows that regional clustering of trends is more dominant than a relationship between tenure and trend with a slightly negative slope for all regimes. We demonstrate that clusters of strong negative and positive productivity trends are results of changing irrigation patterns. To locate emerging and fallow irrigation schemes in semi-arid Zimbabwe, a new multi-method approach is developed which allows to map changes from bimodal seasonal phenological patterns to unimodal and vice versa. With an enhanced breakpoint analysis through the combination of STA and BFAST, we are able to provide a technique that can be applied on large scale to map status and development of highly productive cropping systems, which are key for food production, national export and local employment. We therefore conclude that the combination of existing and accessible time-series analysis methods: is able to achieve both: overcoming demonstrated limitations of MODIS based trend analysis and enhancing knowledge of Zimbabwe's FTLRP.

  8. Piecewise multivariate modelling of sequential metabolic profiling data.

    PubMed

    Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan

    2008-02-19

    Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.

  9. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Multiscale Poincaré plots for visualizing the structure of heartbeat time series.

    PubMed

    Henriques, Teresa S; Mariani, Sara; Burykin, Anton; Rodrigues, Filipa; Silva, Tiago F; Goldberger, Ary L

    2016-02-09

    Poincaré delay maps are widely used in the analysis of cardiac interbeat interval (RR) dynamics. To facilitate visualization of the structure of these time series, we introduce multiscale Poincaré (MSP) plots. Starting with the original RR time series, the method employs a coarse-graining procedure to create a family of time series, each of which represents the system's dynamics in a different time scale. Next, the Poincaré plots are constructed for the original and the coarse-grained time series. Finally, as an optional adjunct, color can be added to each point to represent its normalized frequency. We illustrate the MSP method on simulated Gaussian white and 1/f noise time series. The MSP plots of 1/f noise time series reveal relative conservation of the phase space area over multiple time scales, while those of white noise show a marked reduction in area. We also show how MSP plots can be used to illustrate the loss of complexity when heartbeat time series from healthy subjects are compared with those from patients with chronic (congestive) heart failure syndrome or with atrial fibrillation. This generalized multiscale approach to Poincaré plots may be useful in visualizing other types of time series.

  11. A time-series method for automated measurement of changes in mitotic and interphase duration from time-lapse movies.

    PubMed

    Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W

    2011-01-01

    Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.

  12. Wavelet application to the time series analysis of DORIS station coordinates

    NASA Astrophysics Data System (ADS)

    Bessissi, Zahia; Terbeche, Mekki; Ghezali, Boualem

    2009-06-01

    The topic developed in this article relates to the residual time series analysis of DORIS station coordinates using the wavelet transform. Several analysis techniques, already developed in other disciplines, were employed in the statistical study of the geodetic time series of stations. The wavelet transform allows one, on the one hand, to provide temporal and frequential parameter residual signals, and on the other hand, to determine and quantify systematic signals such as periodicity and tendency. Tendency is the change in short or long term signals; it is an average curve which represents the general pace of the signal evolution. On the other hand, periodicity is a process which is repeated, identical to itself, after a time interval called the period. In this context, the topic of this article consists, on the one hand, in determining the systematic signals by wavelet analysis of time series of DORIS station coordinates, and on the other hand, in applying the denoising signal to the wavelet packet, which makes it possible to obtain a well-filtered signal, smoother than the original signal. The DORIS data used in the treatment are a set of weekly residual time series from 1993 to 2004 from eight stations: DIOA, COLA, FAIB, KRAB, SAKA, SODB, THUB and SYPB. It is the ign03wd01 solution expressed in stcd format, which is derived by the IGN/JPL analysis center. Although these data are not very recent, the goal of this study is to detect the contribution of the wavelet analysis method on the DORIS data, compared to the other analysis methods already studied.

  13. Autoregressive modeling for the spectral analysis of oceanographic data

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, Avijit; Cornillon, Peter; Jackson, Leland B.

    1989-01-01

    Over the last decade there has been a dramatic increase in the number and volume of data sets useful for oceanographic studies. Many of these data sets consist of long temporal or spatial series derived from satellites and large-scale oceanographic experiments. These data sets are, however, often 'gappy' in space, irregular in time, and always of finite length. The conventional Fourier transform (FT) approach to the spectral analysis is thus often inapplicable, or where applicable, it provides questionable results. Here, through comparative analysis with the FT for different oceanographic data sets, the possibilities offered by autoregressive (AR) modeling to perform spectral analysis of gappy, finite-length series, are discussed. The applications demonstrate that as the length of the time series becomes shorter, the resolving power of the AR approach as compared with that of the FT improves. For the longest data sets examined here, 98 points, the AR method performed only slightly better than the FT, but for the very short ones, 17 points, the AR method showed a dramatic improvement over the FT. The application of the AR method to a gappy time series, although a secondary concern of this manuscript, further underlines the value of this approach.

  14. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  15. Application of time series analysis for assessing reservoir trophic status

    Treesearch

    Paris Honglay Chen; Ka-Chu Leung

    2000-01-01

    This study is to develop and apply a practical procedure for the time series analysis of reservoir eutrophication conditions. A multiplicative decomposition method is used to determine the trophic variations including seasonal, circular, long-term and irregular changes. The results indicate that (1) there is a long high peak for seven months from April to October...

  16. Ecological Momentary Assessments and Automated Time Series Analysis to Promote Tailored Health Care: A Proof-of-Principle Study

    PubMed Central

    Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith GM; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter

    2015-01-01

    Background Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. Objective This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. Methods We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher’s tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). Results An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Conclusions Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use. PMID:26254160

  17. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

    PubMed Central

    Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun

    2016-01-01

    Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609

  18. Delay differential analysis of time series.

    PubMed

    Lainscsek, Claudia; Sejnowski, Terrence J

    2015-03-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.

  19. Financial time series analysis based on information categorization method

    NASA Astrophysics Data System (ADS)

    Tian, Qiang; Shang, Pengjian; Feng, Guochen

    2014-12-01

    The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.

  20. Time series behaviour of the number of Air Asia passengers: A distributional approach

    NASA Astrophysics Data System (ADS)

    Asrah, Norhaidah Mohd; Djauhari, Maman Abdurachman

    2013-09-01

    The common practice to time series analysis is by fitting a model and then further analysis is conducted on the residuals. However, if we know the distributional behavior of time series, the analyses in model identification, parameter estimation, and model checking are more straightforward. In this paper, we show that the number of Air Asia passengers can be represented as a geometric Brownian motion process. Therefore, instead of using the standard approach in model fitting, we use an appropriate transformation to come up with a stationary, normally distributed and even independent time series. An example in forecasting the number of Air Asia passengers will be given to illustrate the advantages of the method.

  1. On the deduction of chemical reaction pathways from measurements of time series of concentrations.

    PubMed

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.

  2. Determination of fundamental asteroseismic parameters using the Hilbert transform

    NASA Astrophysics Data System (ADS)

    Kiefer, René; Schad, Ariane; Herzberg, Wiebke; Roth, Markus

    2015-06-01

    Context. Solar-like oscillations exhibit a regular pattern of frequencies. This pattern is dominated by the small and large frequency separations between modes. The accurate determination of these parameters is of great interest, because they give information about e.g. the evolutionary state and the mass of a star. Aims: We want to develop a robust method to determine the large and small frequency separations for time series with low signal-to-noise ratio. For this purpose, we analyse a time series of the Sun from the GOLF instrument aboard SOHO and a time series of the star KIC 5184732 from the NASA Kepler satellite by employing a combination of Fourier and Hilbert transform. Methods: We use the analytic signal of filtered stellar oscillation time series to compute the signal envelope. Spectral analysis of the signal envelope then reveals frequency differences of dominant modes in the periodogram of the stellar time series. Results: With the described method the large frequency separation Δν can be extracted from the envelope spectrum even for data of poor signal-to-noise ratio. A modification of the method allows for an overview of the regularities in the periodogram of the time series.

  3. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  4. Fractal dynamics of heartbeat time series of young persons with metabolic syndrome

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.; Alonso-Martínez, A.; Ramírez-Hernández, L.; Martínez-Hernández, G.

    2012-10-01

    Many physiological systems have been in recent years quantitatively characterized using fractal analysis. We applied it to study heart variability of young subjects with metabolic syndrome (MS); we examined the RR time series (time between two R waves in ECG) with the detrended fluctuation analysis (DFA) method, the Higuchi's fractal dimension method and the multifractal analysis to detect the possible presence of heart problems. The results show that although the young persons have MS, the majority do not present alterations in the heart dynamics. However, there were cases where the fractal parameter values differed significantly from the healthy people values.

  5. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  6. A method for analyzing temporal patterns of variability of a time series from Poincare plots.

    PubMed

    Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E

    2012-07-01

    The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.

  7. Adaptive time-variant models for fuzzy-time-series forecasting.

    PubMed

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  8. Time series regression studies in environmental epidemiology.

    PubMed

    Bhaskaran, Krishnan; Gasparrini, Antonio; Hajat, Shakoor; Smeeth, Liam; Armstrong, Ben

    2013-08-01

    Time series regression studies have been widely used in environmental epidemiology, notably in investigating the short-term associations between exposures such as air pollution, weather variables or pollen, and health outcomes such as mortality, myocardial infarction or disease-specific hospital admissions. Typically, for both exposure and outcome, data are available at regular time intervals (e.g. daily pollution levels and daily mortality counts) and the aim is to explore short-term associations between them. In this article, we describe the general features of time series data, and we outline the analysis process, beginning with descriptive analysis, then focusing on issues in time series regression that differ from other regression methods: modelling short-term fluctuations in the presence of seasonal and long-term patterns, dealing with time varying confounding factors and modelling delayed ('lagged') associations between exposure and outcome. We finish with advice on model checking and sensitivity analysis, and some common extensions to the basic model.

  9. Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology

    NASA Astrophysics Data System (ADS)

    Sun, N.; Wang, Y. J.

    2018-04-01

    Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.

  10. Fractal analysis of GPS time series for early detection of disastrous seismic events

    NASA Astrophysics Data System (ADS)

    Filatov, Denis M.; Lyubushin, Alexey A.

    2017-03-01

    A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.

  11. The application of time series models to cloud field morphology analysis

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.

    1987-01-01

    A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.

  12. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory, and the recent volcanic eruption of El Hierro

    NASA Astrophysics Data System (ADS)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2012-04-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 years, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterise the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. Shortly after the publication of this method an eruption in the island of El Hierro took place for the first time in historical times, supporting our method and contributing towards the validation of our results.

  13. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  14. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    PubMed

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting.

  15. The application of complex network time series analysis in turbulent heated jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less

  16. The application of complex network time series analysis in turbulent heated jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less

  17. Periodic trim solutions with hp-version finite elements in time

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Hou, Lin-Jun

    1990-01-01

    Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.

  18. Multifractal behavior of an air pollutant time series and the relevance to the predictability.

    PubMed

    Dong, Qingli; Wang, Yong; Li, Peizhi

    2017-03-01

    Compared with the traditional method of detrended fluctuation analysis, which is used to characterize fractal scaling properties and long-range correlations, this research provides new insight into the multifractality and predictability of a nonstationary air pollutant time series using the methods of spectral analysis and multifractal detrended fluctuation analysis. First, the existence of a significant power-law behavior and long-range correlations for such series are verified. Then, by employing shuffling and surrogating procedures and estimating the scaling exponents, the major source of multifractality in these pollutant series is found to be the fat-tailed probability density function. Long-range correlations also partly contribute to the multifractal features. The relationship between the predictability of the pollutant time series and their multifractal nature is then investigated with extended analyses from the quantitative perspective, and it is found that the contribution of the multifractal strength of long-range correlations to the overall multifractal strength can affect the predictability of a pollutant series in a specific region to some extent. The findings of this comprehensive study can help to better understand the mechanisms governing the dynamics of air pollutant series and aid in performing better meteorological assessment and management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure

    NASA Astrophysics Data System (ADS)

    Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak

    2017-09-01

    Study of RR interval time series for Congestive Heart Failure had been an area of study with different methods including non-linear methods. In this article the cardiac dynamics of heart beat are explored in the light of complex network analysis, viz. visibility graph method. Heart beat (RR Interval) time series data taken from Physionet database [46, 47] belonging to two groups of subjects, diseased (congestive heart failure) (29 in number) and normal (54 in number) are analyzed with the technique. The overall results show that a quantitative parameter can significantly differentiate between the diseased subjects and the normal subjects as well as different stages of the disease. Further, the data when split into periods of around 1 hour each and analyzed separately, also shows the same consistent differences. This quantitative parameter obtained using the visibility graph analysis thereby can be used as a potential bio-marker as well as a subsequent alarm generation mechanism for predicting the onset of Congestive Heart Failure.

  20. A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases

    PubMed Central

    Imai, Chisato; Hashizume, Masahiro

    2015-01-01

    Background: Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Findings: Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. Conclusion: The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases. PMID:25859149

  1. Time-dependent limited penetrable visibility graph analysis of nonstationary time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong

    2017-06-01

    Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.

  2. Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method

    NASA Astrophysics Data System (ADS)

    Kuai, Ken Z.; Tsai, Christina W.

    2012-02-01

    SummarySediment transport processes vary at a variety of time scales - from seconds, hours, days to months and years. Multiple time scales exist in the system of flow, sediment transport and bed elevation change processes. As such, identification and selection of appropriate time scales for flow and sediment processes can assist in formulating a system of flow and sediment governing equations representative of the dynamic interaction of flow and particles at the desired details. Recognizing the importance of different varying time scales in the fluvial processes of sediment transport, we introduce the Hilbert-Huang Transform method (HHT) to the field of sediment transport for the time scale analysis. The HHT uses the Empirical Mode Decomposition (EMD) method to decompose a time series into a collection of the Intrinsic Mode Functions (IMFs), and uses the Hilbert Spectral Analysis (HSA) to obtain instantaneous frequency data. The EMD extracts the variability of data with different time scales, and improves the analysis of data series. The HSA can display the succession of time varying time scales, which cannot be captured by the often-used Fast Fourier Transform (FFT) method. This study is one of the earlier attempts to introduce the state-of-the-art technique for the multiple time sales analysis of sediment transport processes. Three practical applications of the HHT method for data analysis of both suspended sediment and bedload transport time series are presented. The analysis results show the strong impact of flood waves on the variations of flow and sediment time scales at a large sampling time scale, as well as the impact of flow turbulence on those time scales at a smaller sampling time scale. Our analysis reveals that the existence of multiple time scales in sediment transport processes may be attributed to the fractal nature in sediment transport. It can be demonstrated by the HHT analysis that the bedload motion time scale is better represented by the ratio of the water depth to the settling velocity, h/ w. In the final part, HHT results are compared with an available time scale formula in literature.

  3. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms

    Treesearch

    Robert E. Kennedy; Zhiqiang Yang; Warren B. Cohen

    2010-01-01

    We introduce and test LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery), a new approach to extract spectral trajectories of land surface change from yearly Landsat time-series stacks (LTS). The method brings together two themes in time-series analysis of LTS: capture of short-duration events and smoothing of long-term trends. Our strategy is...

  4. Large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  5. Quantifying Selection with Pool-Seq Time Series Data.

    PubMed

    Taus, Thomas; Futschik, Andreas; Schlötterer, Christian

    2017-11-01

    Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. A primer on the study of transitory dynamics in ecological series using the scale-dependent correlation analysis.

    PubMed

    Rodríguez-Arias, Miquel Angel; Rodó, Xavier

    2004-03-01

    Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.

  7. Time Series Expression Analyses Using RNA-seq: A Statistical Approach

    PubMed Central

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P.

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis. PMID:23586021

  8. Time series expression analyses using RNA-seq: a statistical approach.

    PubMed

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.

  9. The high order dispersion analysis based on first-passage-time probability in financial markets

    NASA Astrophysics Data System (ADS)

    Liu, Chenggong; Shang, Pengjian; Feng, Guochen

    2017-04-01

    The study of first-passage-time (FPT) event about financial time series has gained broad research recently, which can provide reference for risk management and investment. In this paper, a new measurement-high order dispersion (HOD)-is developed based on FPT probability to explore financial time series. The tick-by-tick data of three Chinese stock markets and three American stock markets are investigated. We classify the financial markets successfully through analyzing the scaling properties of FPT probabilities of six stock markets and employing HOD method to compare the differences of FPT decay curves. It can be concluded that long-range correlation, fat-tailed broad probability density function and its coupling with nonlinearity mainly lead to the multifractality of financial time series by applying HOD method. Furthermore, we take the fluctuation function of multifractal detrended fluctuation analysis (MF-DFA) to distinguish markets and get consistent results with HOD method, whereas the HOD method is capable of fractionizing the stock markets effectively in the same region. We convince that such explorations are relevant for a better understanding of the financial market mechanisms.

  10. Frequency-phase analysis of resting-state functional MRI

    PubMed Central

    Goelman, Gadi; Dan, Rotem; Růžička, Filip; Bezdicek, Ondrej; Růžička, Evžen; Roth, Jan; Vymazal, Josef; Jech, Robert

    2017-01-01

    We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience. PMID:28272522

  11. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  12. Temporal and long-term trend analysis of class C notifiable diseases in China from 2009 to 2014

    PubMed Central

    Zhang, Xingyu; Hou, Fengsu; Qiao, Zhijiao; Li, Xiaosong; Zhou, Lijun; Liu, Yuanyuan; Zhang, Tao

    2016-01-01

    Objectives Time series models are effective tools for disease forecasting. This study aims to explore the time series behaviour of 11 notifiable diseases in China and to predict their incidence through effective models. Settings and participants The Chinese Ministry of Health started to publish class C notifiable diseases in 2009. The monthly reported case time series of 11 infectious diseases from the surveillance system between 2009 and 2014 was collected. Methods We performed a descriptive and a time series study using the surveillance data. Decomposition methods were used to explore (1) their seasonality expressed in the form of seasonal indices and (2) their long-term trend in the form of a linear regression model. Autoregressive integrated moving average (ARIMA) models have been established for each disease. Results The number of cases and deaths caused by hand, foot and mouth disease ranks number 1 among the detected diseases. It occurred most often in May and July and increased, on average, by 0.14126/100 000 per month. The remaining incidence models show good fit except the influenza and hydatid disease models. Both the hydatid disease and influenza series become white noise after differencing, so no available ARIMA model can be fitted for these two diseases. Conclusion Time series analysis of effective surveillance time series is useful for better understanding the occurrence of the 11 types of infectious disease. PMID:27797981

  13. Complexity analysis based on generalized deviation for financial markets

    NASA Astrophysics Data System (ADS)

    Li, Chao; Shang, Pengjian

    2018-03-01

    In this paper, a new modified method is proposed as a measure to investigate the correlation between past price and future volatility for financial time series, known as the complexity analysis based on generalized deviation. In comparison with the former retarded volatility model, the new approach is both simple and computationally efficient. The method based on the generalized deviation function presents us an exhaustive way showing the quantization of the financial market rules. Robustness of this method is verified by numerical experiments with both artificial and financial time series. Results show that the generalized deviation complexity analysis method not only identifies the volatility of financial time series, but provides a comprehensive way distinguishing the different characteristics between stock indices and individual stocks. Exponential functions can be used to successfully fit the volatility curves and quantify the changes of complexity for stock market data. Then we study the influence for negative domain of deviation coefficient and differences during the volatile periods and calm periods. after the data analysis of the experimental model, we found that the generalized deviation model has definite advantages in exploring the relationship between the historical returns and future volatility.

  14. Cosinor-based rhythmometry

    PubMed Central

    2014-01-01

    A brief overview is provided of cosinor-based techniques for the analysis of time series in chronobiology. Conceived as a regression problem, the method is applicable to non-equidistant data, a major advantage. Another dividend is the feasibility of deriving confidence intervals for parameters of rhythmic components of known periods, readily drawn from the least squares procedure, stressing the importance of prior (external) information. Originally developed for the analysis of short and sparse data series, the extended cosinor has been further developed for the analysis of long time series, focusing both on rhythm detection and parameter estimation. Attention is given to the assumptions underlying the use of the cosinor and ways to determine whether they are satisfied. In particular, ways of dealing with non-stationary data are presented. Examples illustrate the use of the different cosinor-based methods, extending their application from the study of circadian rhythms to the mapping of broad time structures (chronomes). PMID:24725531

  15. Prediction Analysis for Measles Epidemics

    NASA Astrophysics Data System (ADS)

    Sumi, Ayako; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi; Olsen, Lars Folke; Kobayashi, Nobumichi

    2003-12-01

    A newly devised procedure of prediction analysis, which is a linearized version of the nonlinear least squares method combined with the maximum entropy spectral analysis method, was proposed. This method was applied to time series data of measles case notification in several communities in the UK, USA and Denmark. The dominant spectral lines observed in each power spectral density (PSD) can be safely assigned as fundamental periods. The optimum least squares fitting (LSF) curve calculated using these fundamental periods can essentially reproduce the underlying variation of the measles data. An extension of the LSF curve can be used to predict measles case notification quantitatively. Some discussions including a predictability of chaotic time series are presented.

  16. Relating interesting quantitative time series patterns with text events and text features

    NASA Astrophysics Data System (ADS)

    Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.

    2013-12-01

    In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other application domains such as data analysis of smart grids, cyber physical systems or the security of critical infrastructure, where the data consists of a combination of quantitative and textual time series data.

  17. A time series modeling approach in risk appraisal of violent and sexual recidivism.

    PubMed

    Bani-Yaghoub, Majid; Fedoroff, J Paul; Curry, Susan; Amundsen, David E

    2010-10-01

    For over half a century, various clinical and actuarial methods have been employed to assess the likelihood of violent recidivism. Yet there is a need for new methods that can improve the accuracy of recidivism predictions. This study proposes a new time series modeling approach that generates high levels of predictive accuracy over short and long periods of time. The proposed approach outperformed two widely used actuarial instruments (i.e., the Violence Risk Appraisal Guide and the Sex Offender Risk Appraisal Guide). Furthermore, analysis of temporal risk variations based on specific time series models can add valuable information into risk assessment and management of violent offenders.

  18. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofschen, S.; Wolff, I.

    1996-08-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are comparedmore » with measurements and show good agreement.« less

  19. Multidimensional stock network analysis: An Escoufier's RV coefficient approach

    NASA Astrophysics Data System (ADS)

    Lee, Gan Siew; Djauhari, Maman A.

    2013-09-01

    The current practice of stocks network analysis is based on the assumption that the time series of closed stock price could represent the behaviour of the each stock. This assumption leads to consider minimal spanning tree (MST) and sub-dominant ultrametric (SDU) as an indispensible tool to filter the economic information contained in the network. Recently, there is an attempt where researchers represent stock not only as a univariate time series of closed price but as a bivariate time series of closed price and volume. In this case, they developed the so-called multidimensional MST to filter the important economic information. However, in this paper, we show that their approach is only applicable for that bivariate time series only. This leads us to introduce a new methodology to construct MST where each stock is represented by a multivariate time series. An example of Malaysian stock exchange will be presented and discussed to illustrate the advantages of the method.

  20. Weighted combination of LOD values oa splitted into frequency windows

    NASA Astrophysics Data System (ADS)

    Fernandez, L. I.; Gambis, D.; Arias, E. F.

    In this analysis a one-day combined time series of LOD(length-of-day) estimates is presented. We use individual data series derived by 7 GPS and 3 SLR analysis centers, which routinely contribute to the IERS database over a recent 27-month period (Jul 1996 - Oct 1998). The result is compared to the multi-technique combined series C04 produced by the Central Bureau of the IERS that is commonly used as a reference for the study of the phenomena of Earth rotation variations. The Frequency Windows Combined Series procedure brings out a time series, which is close to C04 but shows an amplitude difference that might explain the evident periodic behavior present in the differences of these two combined series. This method could be useful to generate a new time series to be used as a reference in the high frequency variations of the Earth rotation studies.

  1. Shilling attack detection for recommender systems based on credibility of group users and rating time series.

    PubMed

    Zhou, Wei; Wen, Junhao; Qu, Qiang; Zeng, Jun; Cheng, Tian

    2018-01-01

    Recommender systems are vulnerable to shilling attacks. Forged user-generated content data, such as user ratings and reviews, are used by attackers to manipulate recommendation rankings. Shilling attack detection in recommender systems is of great significance to maintain the fairness and sustainability of recommender systems. The current studies have problems in terms of the poor universality of algorithms, difficulty in selection of user profile attributes, and lack of an optimization mechanism. In this paper, a shilling behaviour detection structure based on abnormal group user findings and rating time series analysis is proposed. This paper adds to the current understanding in the field by studying the credibility evaluation model in-depth based on the rating prediction model to derive proximity-based predictions. A method for detecting suspicious ratings based on suspicious time windows and target item analysis is proposed. Suspicious rating time segments are determined by constructing a time series, and data streams of the rating items are examined and suspicious rating segments are checked. To analyse features of shilling attacks by a group user's credibility, an abnormal group user discovery method based on time series and time window is proposed. Standard testing datasets are used to verify the effect of the proposed method.

  2. Shilling attack detection for recommender systems based on credibility of group users and rating time series

    PubMed Central

    Wen, Junhao; Qu, Qiang; Zeng, Jun; Cheng, Tian

    2018-01-01

    Recommender systems are vulnerable to shilling attacks. Forged user-generated content data, such as user ratings and reviews, are used by attackers to manipulate recommendation rankings. Shilling attack detection in recommender systems is of great significance to maintain the fairness and sustainability of recommender systems. The current studies have problems in terms of the poor universality of algorithms, difficulty in selection of user profile attributes, and lack of an optimization mechanism. In this paper, a shilling behaviour detection structure based on abnormal group user findings and rating time series analysis is proposed. This paper adds to the current understanding in the field by studying the credibility evaluation model in-depth based on the rating prediction model to derive proximity-based predictions. A method for detecting suspicious ratings based on suspicious time windows and target item analysis is proposed. Suspicious rating time segments are determined by constructing a time series, and data streams of the rating items are examined and suspicious rating segments are checked. To analyse features of shilling attacks by a group user’s credibility, an abnormal group user discovery method based on time series and time window is proposed. Standard testing datasets are used to verify the effect of the proposed method. PMID:29742134

  3. Robust extrema features for time-series data analysis.

    PubMed

    Vemulapalli, Pramod K; Monga, Vishal; Brennan, Sean N

    2013-06-01

    The extraction of robust features for comparing and analyzing time series is a fundamentally important problem. Research efforts in this area encompass dimensionality reduction using popular signal analysis tools such as the discrete Fourier and wavelet transforms, various distance metrics, and the extraction of interest points from time series. Recently, extrema features for analysis of time-series data have assumed increasing significance because of their natural robustness under a variety of practical distortions, their economy of representation, and their computational benefits. Invariably, the process of encoding extrema features is preceded by filtering of the time series with an intuitively motivated filter (e.g., for smoothing), and subsequent thresholding to identify robust extrema. We define the properties of robustness, uniqueness, and cardinality as a means to identify the design choices available in each step of the feature generation process. Unlike existing methods, which utilize filters "inspired" from either domain knowledge or intuition, we explicitly optimize the filter based on training time series to optimize robustness of the extracted extrema features. We demonstrate further that the underlying filter optimization problem reduces to an eigenvalue problem and has a tractable solution. An encoding technique that enhances control over cardinality and uniqueness is also presented. Experimental results obtained for the problem of time series subsequence matching establish the merits of the proposed algorithm.

  4. Surface Area Analysis Using the Brunauer-Emmett-Teller (BET) Method: Standard Operating Procedure Series: SOP-C

    DTIC Science & Technology

    2016-09-01

    Method Scientific Operating Procedure Series : SOP-C En vi ro nm en ta l L ab or at or y Jonathon Brame and Chris Griggs September 2016...BET) Method Scientific Operating Procedure Series : SOP-C Jonathon Brame and Chris Griggs Environmental Laboratory U.S. Army Engineer Research and...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing

  5. Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Poornima; Jothiprakash, V.

    2018-06-01

    Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.

  6. Assessing error sources for Landsat time series analysis for tropical test sites in Viet Nam and Ethiopia

    NASA Astrophysics Data System (ADS)

    Schultz, Michael; Verbesselt, Jan; Herold, Martin; Avitabile, Valerio

    2013-10-01

    Researchers who use remotely sensed data can spend half of their total effort analysing prior data. If this data preprocessing does not match the application, this time spent on data analysis can increase considerably and can lead to inaccuracies. Despite the existence of a number of methods for pre-processing Landsat time series, each method has shortcomings, particularly for mapping forest changes under varying illumination, data availability and atmospheric conditions. Based on the requirements of mapping forest changes as defined by the United Nations (UN) Reducing Emissions from Forest Degradation and Deforestation (REDD) program, the accurate reporting of the spatio-temporal properties of these changes is necessary. We compared the impact of three fundamentally different radiometric preprocessing techniques Moderate Resolution Atmospheric TRANsmission (MODTRAN), Second Simulation of a Satellite Signal in the Solar Spectrum (6S) and simple Dark Object Subtraction (DOS) on mapping forest changes using Landsat time series data. A modification of Breaks For Additive Season and Trend (BFAST) monitor was used to jointly map the spatial and temporal agreement of forest changes at test sites in Ethiopia and Viet Nam. The suitability of the pre-processing methods for the occurring forest change drivers was assessed using recently captured Ground Truth and high resolution data (1000 points). A method for creating robust generic forest maps used for the sampling design is presented. An assessment of error sources has been performed identifying haze as a major source for time series analysis commission error.

  7. SaaS Platform for Time Series Data Handling

    NASA Astrophysics Data System (ADS)

    Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail

    2018-02-01

    The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.

  8. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory

    NASA Astrophysics Data System (ADS)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2011-10-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Third, we analyze the non-homogeneous Poisson process with a generalized Pareto distribution as the intensity function.

  9. Modeling BAS Dysregulation in Bipolar Disorder.

    PubMed

    Hamaker, Ellen L; Grasman, Raoul P P P; Kamphuis, Jan Henk

    2016-08-01

    Time series analysis is a technique that can be used to analyze the data from a single subject and has great potential to investigate clinically relevant processes like affect regulation. This article uses time series models to investigate the assumed dysregulation of affect that is associated with bipolar disorder. By formulating a number of alternative models that capture different kinds of theoretically predicted dysregulation, and by comparing these in both bipolar patients and controls, we aim to illustrate the heuristic potential this method of analysis has for clinical psychology. We argue that, not only can time series analysis elucidate specific maladaptive dynamics associated with psychopathology, it may also be clinically applied in symptom monitoring and the evaluation of therapeutic interventions.

  10. The study on the parallel processing based time series correlation analysis of RBC membrane flickering in quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag

    2017-02-01

    Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.

  11. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  12. Analysis of biomedical time signals for characterization of cutaneous diabetic micro-angiopathy

    NASA Astrophysics Data System (ADS)

    Kraitl, Jens; Ewald, Hartmut

    2007-02-01

    Photo-plethysmography (PPG) is frequently used in research on microcirculation of blood. It is a non-invasive procedure and takes minimal time to be carried out. Usually PPG time series are analyzed by conventional linear methods, mainly Fourier analysis. These methods may not be optimal for the investigation of nonlinear effects of the hearth circulation system like vasomotion, autoregulation, thermoregulation, breathing, heartbeat and vessels. The wavelet analysis of the PPG time series is a specific, sensitive nonlinear method for the in vivo identification of hearth circulation patterns and human health status. This nonlinear analysis of PPG signals provides additional information which cannot be detected using conventional approaches. The wavelet analysis has been used to study healthy subjects and to characterize the health status of patients with a functional cutaneous microangiopathy which was associated with diabetic neuropathy. The non-invasive in vivo method is based on the radiation of monochromatic light through an area of skin on the finger. A Photometrical Measurement Device (PMD) has been developed. The PMD is suitable for non-invasive continuous online monitoring of one or more biologic constituent values and blood circulation patterns.

  13. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  14. Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals

    NASA Astrophysics Data System (ADS)

    Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.

    2018-02-01

    Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ <α-, where α+ is related to heart rate decelerations and α- to heart rate accelerations, and the proportion of the signal in which the above inequality holds. A very similar effect is observed if asymmetric noise is added to a symmetric self-affine function. No such phenomena are observed in the same physiological data after shuffling or with a group of symmetric synthetic time series.

  15. Evaluation of Hydrologic and Meteorological Impacts on Dengue Fever Incidences in Southern Taiwan using Time- Frequency Method

    NASA Astrophysics Data System (ADS)

    Tsai, Christina; Yeh, Ting-Gu

    2017-04-01

    Extreme weather events are occurring more frequently as a result of climate change. Recently dengue fever has become a serious issue in southern Taiwan. It may have characteristic temporal scales that can be identified. Some researchers have hypothesized that dengue fever incidences are related to climate change. This study applies time-frequency analysis to time series data concerning dengue fever and hydrologic and meteorological variables. Results of three time-frequency analytical methods - the Hilbert Huang transform (HHT), the Wavelet Transform (WT) and the Short Time Fourier Transform (STFT) are compared and discussed. A more effective time-frequency analysis method will be identified to analyze relevant time series data. The most influential time scales of hydrologic and meteorological variables that are associated with dengue fever are determined. Finally, the linkage between hydrologic/meteorological factors and dengue fever incidences can be established.

  16. A Space Affine Matching Approach to fMRI Time Series Analysis.

    PubMed

    Chen, Liang; Zhang, Weishi; Liu, Hongbo; Feng, Shigang; Chen, C L Philip; Wang, Huili

    2016-07-01

    For fMRI time series analysis, an important challenge is to overcome the potential delay between hemodynamic response signal and cognitive stimuli signal, namely the same frequency but different phase (SFDP) problem. In this paper, a novel space affine matching feature is presented by introducing the time domain and frequency domain features. The time domain feature is used to discern different stimuli, while the frequency domain feature to eliminate the delay. And then we propose a space affine matching (SAM) algorithm to match fMRI time series by our affine feature, in which a normal vector is estimated using gradient descent to explore the time series matching optimally. The experimental results illustrate that the SAM algorithm is insensitive to the delay between the hemodynamic response signal and the cognitive stimuli signal. Our approach significantly outperforms GLM method while there exists the delay. The approach can help us solve the SFDP problem in fMRI time series matching and thus of great promise to reveal brain dynamics.

  17. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.

    PubMed

    Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.

  18. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates

    PubMed Central

    2011-01-01

    Background The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. Results We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. Conclusions The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa. PMID:22784572

  19. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentili, Pier Luigi, E-mail: pierluigi.gentili@unipg.it; Gotoda, Hiroshi; Dolnik, Milos

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and amore » local nonlinear predictor. We compare the performances of these three methods.« less

  20. Panel data analysis of cardiotocograph (CTG) data.

    PubMed

    Horio, Hiroyuki; Kikuchi, Hitomi; Ikeda, Tomoaki

    2013-01-01

    Panel data analysis is a statistical method, widely used in econometrics, which deals with two-dimensional panel data collected over time and over individuals. Cardiotocograph (CTG) which monitors fetal heart rate (FHR) using Doppler ultrasound and uterine contraction by strain gage is commonly used in intrapartum treatment of pregnant women. Although the relationship between FHR waveform pattern and the outcome such as umbilical blood gas data at delivery has long been analyzed, there exists no accumulated FHR patterns from large number of cases. As time-series economic fluctuations in econometrics such as consumption trend has been studied using panel data which consists of time-series and cross-sectional data, we tried to apply this method to CTG data. The panel data composed of a symbolized segment of FHR pattern can be easily handled, and a perinatologist can get the whole FHR pattern view from the microscopic level of time-series FHR data.

  1. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  2. Neuronal and network computation in the brain

    NASA Astrophysics Data System (ADS)

    Babloyantz, A.

    1999-03-01

    The concepts and methods of non-linear dynamics have been a powerful tool for studying some gamow aspects of brain dynamics. In this paper we show how, from time series analysis of electroencepholograms in sick and healthy subjects, chaotic nature of brain activity could be unveiled. This finding gave rise to the concept of spatiotemporal cortical chaotic networks which in turn was the foundation for a simple brain-like device which is able to become attentive, perform pattern recognition and motion detection. A new method of time series analysis is also proposed which demonstrates for the first time the existence of neuronal code in interspike intervals of coclear cells.

  3. A systematic review of methodology: time series regression analysis for environmental factors and infectious diseases.

    PubMed

    Imai, Chisato; Hashizume, Masahiro

    2015-03-01

    Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases.

  4. A hybrid wavelet analysis-cloud model data-extending approach for meteorologic and hydrologic time series

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing

    2015-05-01

    For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.

  5. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz

    2018-04-01

    For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.

  6. Long-range memory and multifractality in gold markets

    NASA Astrophysics Data System (ADS)

    Mali, Provash; Mukhopadhyay, Amitabha

    2015-03-01

    Long-range correlation and fluctuation in the gold market time series of the world's two leading gold consuming countries, namely China and India, are studied. For both the market series during the period 1985-2013 we observe a long-range persistence of memory in the sequences of maxima (minima) of returns in successive time windows of fixed length, but the series, as a whole, are found to be uncorrelated. Multifractal analysis for these series as well as for the sequences of maxima (minima) is carried out in terms of the multifractal detrended fluctuation analysis (MF-DFA) method. We observe a weak multifractal structure for the original series that mainly originates from the fat-tailed probability distribution function of the values, and the multifractal nature of the original time series is enriched into their sequences of maximal (minimal) returns. A quantitative measure of multifractality is provided by using a set of ‘complexity parameters’.

  7. Accuracy of the Garmin 920 XT HRM to perform HRV analysis.

    PubMed

    Cassirame, Johan; Vanhaesebrouck, Romain; Chevrolat, Simon; Mourot, Laurent

    2017-12-01

    Heart rate variability (HRV) analysis is widely used to investigate autonomous cardiac drive. This method requires periodogram measurement, which can be obtained by an electrocardiogram (ECG) or from a heart rate monitor (HRM), e.g. the Garmin 920 XT device. The purpose of this investigation was to assess the accuracy of RR time series measurements from a Garmin 920 XT HRM as compared to a standard ECG, and to verify whether the measurements thus obtained are suitable for HRV analysis. RR time series were collected simultaneously with an ECG (Powerlab system, AD Instruments, Castell Hill, Australia) and a Garmin XT 920 in 11 healthy subjects during three conditions, namely in the supine position, the standing position and during moderate exercise. In a first step, we compared RR time series obtained with both tools using the Bland and Altman method to obtain the limits of agreement in all three conditions. In a second step, we compared the results of HRV analysis between the ECG RR time series and Garmin 920 XT series. Results show that the accuracy of this system is in accordance with the literature in terms of the limits of agreement. In the supine position, bias was 0.01, - 2.24, + 2.26 ms; in the standing position, - 0.01, - 3.12, + 3.11 ms respectively, and during exercise, - 0.01, - 4.43 and + 4.40 ms. Regarding HRV analysis, we did not find any difference for HRV analysis in the supine position, but the standing and exercise conditions both showed small modifications.

  8. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  9. New insights into soil temperature time series modeling: linear or nonlinear?

    NASA Astrophysics Data System (ADS)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and ANFIS (respectively) were optimized with the particle swarm optimization (PSO) algorithm in conjunction with the wavelet transform and nonlinear methods (Wavelet-MLP & Wavelet-ANFIS). A comparison of the proposed methodology with individual and hybrid nonlinear models in predicting DST time series indicates the lowest Akaike Information Criterion (AIC) index value, which considers model simplicity and accuracy simultaneously at different depths and stations. The methodology presented in this study can thus serve as an excellent alternative to complex nonlinear methods that are normally employed to examine DST.

  10. Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series.

    PubMed

    Bruce, Scott A; Hall, Martica H; Buysse, Daniel J; Krafty, Robert T

    2018-03-01

    Many studies of biomedical time series signals aim to measure the association between frequency-domain properties of time series and clinical and behavioral covariates. However, the time-varying dynamics of these associations are largely ignored due to a lack of methods that can assess the changing nature of the relationship through time. This article introduces a method for the simultaneous and automatic analysis of the association between the time-varying power spectrum and covariates, which we refer to as conditional adaptive Bayesian spectrum analysis (CABS). The procedure adaptively partitions the grid of time and covariate values into an unknown number of approximately stationary blocks and nonparametrically estimates local spectra within blocks through penalized splines. CABS is formulated in a fully Bayesian framework, in which the number and locations of partition points are random, and fit using reversible jump Markov chain Monte Carlo techniques. Estimation and inference averaged over the distribution of partitions allows for the accurate analysis of spectra with both smooth and abrupt changes. The proposed methodology is used to analyze the association between the time-varying spectrum of heart rate variability and self-reported sleep quality in a study of older adults serving as the primary caregiver for their ill spouse. © 2017, The International Biometric Society.

  11. Time Series Modelling of Syphilis Incidence in China from 2005 to 2012

    PubMed Central

    Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau

    2016-01-01

    Background The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. Methods In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). Results The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Conclusion Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis. PMID:26901682

  12. Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar

    2016-02-01

    The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time series or relations among phase shifted time series.

  13. BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data

    PubMed Central

    Gonçalves, Joana P; Madeira, Sara C; Oliveira, Arlindo L

    2009-01-01

    Background The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem is tractable, and efficient algorithms can be used. However, there is still a need for specialized applications able to take advantage of the temporal properties inherent to expression time series, both from a computational and a biological perspective. Findings BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO) annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms. Conclusion BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: . We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress. PMID:19583847

  14. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Wang, Y.; Zhang, J.; Delgado, J.

    2017-05-01

    Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, three time series analysis methods, Holt-Winters (HW), integrated time series (ITS), and seasonal autoregressive integrated moving average (SARIMA), are explored to simulate the groundwater level in a coastal aquifer, China. The monthly groundwater table depth data collected in a long time series from 2000 to 2011 are simulated and compared with those three time series models. The error criteria are estimated using coefficient of determination ( R 2), Nash-Sutcliffe model efficiency coefficient ( E), and root-mean-squared error. The results indicate that three models are all accurate in reproducing the historical time series of groundwater levels. The comparisons of three models show that HW model is more accurate in predicting the groundwater levels than SARIMA and ITS models. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.

  15. Comparative analysis of time-scaling properties about water pH in Poyang Lake Inlet and Outlet on the basis of fractal methods.

    PubMed

    Shi, K; Liu, C Q; Huang, Z W; Zhang, B; Su, Y

    2010-01-01

    Detrended fluctuation analysis (DFA) and multifractal methods are applied to the time-scaling properties analysis of water pH series in Poyang Lake Inlet and Outlet in China. The results show that these pH series are characterised by long-term memory and multifractal scaling, and these characteristics have obvious differences between the Lake Inlet and Outlet. The comparison results suggest that monofractal and multifractal parameters can be quantitative dynamical indexes reflecting the capability of anti-acidification of Poyang Lake. Furthermore, we investigated the frequency-size distribution of pH series in Poyang Lake Inlet and Outlet. Our findings suggest that water pH is an example of a self-organised criticality (SOC) process. The results show that it is different SOC behaviours that result in the differences of power-law relations between pH series in Poyang Lake Inlet and Outlet. This work can be helpful to improvement of modelling of lake water quality.

  16. Ecological Momentary Assessments and Automated Time Series Analysis to Promote Tailored Health Care: A Proof-of-Principle Study.

    PubMed

    van der Krieke, Lian; Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith Gm; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter

    2015-08-07

    Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher's tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use.

  17. Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data

    ERIC Educational Resources Information Center

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.

    2012-01-01

    We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…

  18. Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series

    NASA Astrophysics Data System (ADS)

    Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.

    2014-12-01

    We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q<0 and greater than GHE when q>0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.

  19. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    PubMed

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  20. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  1. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be studied through the copula theory. As to the parameter estimation, the maximum likelihood estimation (MLE) will be applied. To illustrate the method, the univariate time series model and the dependence structure will be determined and tested using the monthly discharge time series of Cuyahoga River Basin.

  2. A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2018-02-01

    Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.

  3. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  4. Models for forecasting hospital bed requirements in the acute sector.

    PubMed Central

    Farmer, R D; Emami, J

    1990-01-01

    STUDY OBJECTIVE--The aim was to evaluate the current approach to forecasting hospital bed requirements. DESIGN--The study was a time series and regression analysis. The time series for mean duration of stay for general surgery in the age group 15-44 years (1969-1982) was used in the evaluation of different methods of forecasting future values of mean duration of stay and its subsequent use in the formation of hospital bed requirements. RESULTS--It has been suggested that the simple trend fitting approach suffers from model specification error and imposes unjustified restrictions on the data. Time series approach (Box-Jenkins method) was shown to be a more appropriate way of modelling the data. CONCLUSION--The simple trend fitting approach is inferior to the time series approach in modelling hospital bed requirements. PMID:2277253

  5. A likelihood-based time series modeling approach for application in dendrochronology to examine the growth-climate relations and forest disturbance history.

    PubMed

    Lee, E Henry; Wickham, Charlotte; Beedlow, Peter A; Waschmann, Ronald S; Tingey, David T

    2017-10-01

    A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for climate and forest disturbances (i.e., pests, diseases, fire). The statistical method is illustrated with a tree-ring width time series for a mature closed-canopy Douglas-fir stand on the west slopes of the Cascade Mountains of Oregon, USA that is impacted by Swiss needle cast disease caused by the foliar fungus, Phaecryptopus gaeumannii (Rhode) Petrak. The likelihood-based TSIA method is proposed for the field of dendrochronology to understand the interaction of temperature, water, and forest disturbances that are important in forest ecology and climate change studies.

  6. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan

    2016-10-01

    Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.

  7. Variance fluctuations in nonstationary time series: a comparative study of music genres

    NASA Astrophysics Data System (ADS)

    Jennings, Heather D.; Ivanov, Plamen Ch.; De Martins, Allan M.; da Silva, P. C.; Viswanathan, G. M.

    2004-05-01

    An important problem in physics concerns the analysis of audio time series generated by transduced acoustic phenomena. Here, we develop a new method to quantify the scaling properties of the local variance of nonstationary time series. We apply this technique to analyze audio signals obtained from selected genres of music. We find quantitative differences in the correlation properties of high art music, popular music, and dance music. We discuss the relevance of these objective findings in relation to the subjective experience of music.

  8. AIR POLLUTION EPIDEMIOLOGY: CAN INFORMATION BE OBTAINED FROM THE VARIATIONS IN SIGNIFICANCE AND RISK AS A FUNCTION OF DAYS AFTER EXPOSURE (LAG STRUCTURE)?

    EPA Science Inventory

    Determine if analysis of lag structure from time series epidemiology, using gases, particles, and source factor time series, can contribute to understanding the relationships among various air pollution indicators. Methods: Analyze lag structure from an epidemiologic study of ca...

  9. Symbolic Time-Series Analysis for Anomaly Detection in Mechanical Systems

    DTIC Science & Technology

    2006-08-01

    Amol Khatkhate, Asok Ray , Fellow, IEEE, Eric Keller, Shalabh Gupta, and Shin C. Chin Abstract—This paper examines the efficacy of a novel method for...recognition. KHATKHATE et al.: SYMBOLIC TIME-SERIES ANALYSIS FOR ANOMALY DETECTION 447 Asok Ray (F’02) received graduate degrees in electri- cal...anomaly detection has been pro- posed by Ray [6], where the underlying information on the dynamical behavior of complex systems is derived based on

  10. Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis

    NASA Astrophysics Data System (ADS)

    Eduardo Virgilio Silva, Luiz; Otavio Murta, Luiz

    2012-12-01

    Complexity in time series is an intriguing feature of living dynamical systems, with potential use for identification of system state. Although various methods have been proposed for measuring physiologic complexity, uncorrelated time series are often assigned high values of complexity, errouneously classifying them as a complex physiological signals. Here, we propose and discuss a method for complex system analysis based on generalized statistical formalism and surrogate time series. Sample entropy (SampEn) was rewritten inspired in Tsallis generalized entropy, as function of q parameter (qSampEn). qSDiff curves were calculated, which consist of differences between original and surrogate series qSampEn. We evaluated qSDiff for 125 real heart rate variability (HRV) dynamics, divided into groups of 70 healthy, 44 congestive heart failure (CHF), and 11 atrial fibrillation (AF) subjects, and for simulated series of stochastic and chaotic process. The evaluations showed that, for nonperiodic signals, qSDiff curves have a maximum point (qSDiffmax) for q ≠1. Values of q where the maximum point occurs and where qSDiff is zero were also evaluated. Only qSDiffmax values were capable of distinguish HRV groups (p-values 5.10×10-3, 1.11×10-7, and 5.50×10-7 for healthy vs. CHF, healthy vs. AF, and CHF vs. AF, respectively), consistently with the concept of physiologic complexity, and suggests a potential use for chaotic system analysis.

  11. Detrended fluctuation analysis based on higher-order moments of financial time series

    NASA Astrophysics Data System (ADS)

    Teng, Yue; Shang, Pengjian

    2018-01-01

    In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.

  12. Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials

    PubMed Central

    Liebherr, Magnus; Haas, Christian T.

    2014-01-01

    Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is not usual to measure a large number of strides (e.g., strides). Amongst others, clinical gait analysis is limited due to short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical conditions. Stride time data of five self-paced walking trials ( strides each) of subjects with PD and a healthy control group (CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of variation (CV), fractal scaling exponents (DFA) and (AFA) were calculated. Two surrogate tests were performed: A) the whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found concerning and . Surrogate version B yielded a higher mean squared error and empirical quantiles than version A. Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true . The method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It provides an approach to integrate FS as standard in clinical gait analysis and to overcome limitations such as short walkways. PMID:24465708

  13. Characterization of chaotic attractors under noise: A recurrence network perspective

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2016-12-01

    We undertake a detailed numerical investigation to understand how the addition of white and colored noise to a chaotic time series changes the topology and the structure of the underlying attractor reconstructed from the time series. We use the methods and measures of recurrence plot and recurrence network generated from the time series for this analysis. We explicitly show that the addition of noise obscures the property of recurrence of trajectory points in the phase space which is the hallmark of every dynamical system. However, the structure of the attractor is found to be robust even upto high noise levels of 50%. An advantage of recurrence network measures over the conventional nonlinear measures is that they can be applied on short and non stationary time series data. By using the results obtained from the above analysis, we go on to analyse the light curves from a dominant black hole system and show that the recurrence network measures are capable of identifying the nature of noise contamination in a time series.

  14. Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing

    NASA Astrophysics Data System (ADS)

    Bałdysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; KroszczyńSki, Krzysztof

    2015-08-01

    The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann—Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.

  15. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  16. Application of process monitoring to anomaly detection in nuclear material processing systems via system-centric event interpretation of data from multiple sensors of varying reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao

    In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less

  17. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    PubMed

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  18. Time-Frequency Analyses of Tide-Gauge Sensor Data

    PubMed Central

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors’ data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829

  19. Time-frequency analyses of tide-gauge sensor data.

    PubMed

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.

  20. Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability.

    PubMed

    Beda, Alessandro; Simpson, David M; Faes, Luca

    2017-01-01

    The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.

  1. Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability

    PubMed Central

    2017-01-01

    The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings. PMID:28968394

  2. Quantifying memory in complex physiological time-series.

    PubMed

    Shirazi, Amir H; Raoufy, Mohammad R; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R; Amodio, Piero; Jafari, G Reza; Montagnese, Sara; Mani, Ali R

    2013-01-01

    In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of "memory length" was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are 'forgotten' quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.

  3. Quantifying Memory in Complex Physiological Time-Series

    PubMed Central

    Shirazi, Amir H.; Raoufy, Mohammad R.; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R.; Amodio, Piero; Jafari, G. Reza; Montagnese, Sara; Mani, Ali R.

    2013-01-01

    In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of “memory length” was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are ‘forgotten’ quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations. PMID:24039811

  4. Time series analysis of ozone data in Isfahan

    NASA Astrophysics Data System (ADS)

    Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.

    2008-07-01

    Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.

  5. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  6. Addressing Spatial Dependence Bias in Climate Model Simulations—An Independent Component Analysis Approach

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2018-02-01

    Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.

  7. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  8. Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series

    PubMed Central

    Shao, Ying-Hui; Gu, Gao-Feng; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Sornette, Didier

    2012-01-01

    Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and to compare their performance, no clear consensus exists on what is the best method and under which conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when using different generators of LRC time series. Here, we compare the performances of four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving Average (BDMA), and Centred Detrending Moving Average (CDMA)]. We use three different generators [Fractional Gaussian Noises, and two ways of generating Fractional Brownian Motions]. We find that CDMA has the best performance and DFA is only slightly worse in some situations, while FA performs the worst. In addition, CDMA and DFA are less sensitive to the scaling range than FA. Hence, CDMA and DFA remain “The Methods of Choice” in determining the Hurst index of time series. PMID:23150785

  9. The MEM of spectral analysis applied to L.O.D.

    NASA Astrophysics Data System (ADS)

    Fernandez, L. I.; Arias, E. F.

    The maximum entropy method (MEM) has been widely applied for polar motion studies taking advantage of its performance on the management of complex time series. The authors used the algorithm of the MEM to estimate Cross Spectral function in order to compare interannual Length-of-Day (LOD) time series with Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) series, which are close related to El Niño-Southern Oscillation (ENSO) events.

  10. Visualization of time series statistical data by shape analysis (GDP ratio changes among Asia countries)

    NASA Astrophysics Data System (ADS)

    Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri

    2018-03-01

    It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.

  11. Statistical inference methods for sparse biological time series data.

    PubMed

    Ndukum, Juliet; Fonseca, Luís L; Santos, Helena; Voit, Eberhard O; Datta, Susmita

    2011-04-25

    Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001). We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under different biological perturbations.

  12. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  13. Multiscale entropy-based methods for heart rate variability complexity analysis

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio

    2015-03-01

    Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.

  14. Detection and characterization of cultural noise sources in magnetotelluric data: individual and joint analysis of the polarization attributes of the electric and magnetic field time-series in the time-frequency domain

    NASA Astrophysics Data System (ADS)

    Escalas, M.; Queralt, P.; Ledo, J.; Marcuello, A.

    2012-04-01

    Magnetotelluric (MT) method is a passive electromagnetic technique, which is currently used to characterize sites for the geological storage of CO2. These later ones are usually located nearby industrialized, urban or farming areas, where man-made electromagnetic (EM) signals contaminate the MT data. The identification and characterization of the artificial EM sources which generate the so-called "cultural noise" is an important challenge to obtain the most reliable results with the MT method. The polarization attributes of an EM signal (tilt angle, ellipticity and phase difference between its orthogonal components) are related to the character of its source. In a previous work (Escalas et al. 2011), we proposed a method to distinguish natural signal from cultural noise in the raw MT data. It is based on the polarization analysis of the MT time-series in the time-frequency domain, using a wavelet scheme. We developed an algorithm to implement the method, and was tested with both synthetic and field data. In 2010, we carried out a controlled-source electromagnetic (CSEM) experiment in the Hontomín site (the Research Laboratory on Geological Storage of CO2 in Spain). MT time-series were contaminated at different frequencies with the signal emitted by a controlled artificial EM source: two electric dipoles (1 km long, arranged in North-South and East-West directions). The analysis with our algorithm of the electric field time-series acquired in this experiment was successful: the polarization attributes of both the natural and artificial signal were obtained in the time-frequency domain, highlighting their differences. The processing of the magnetic field time-series acquired in the Hontomín experiment has been done in the present work. This new analysis of the polarization attributes of the magnetic field data has provided additional information to detect the contribution of the artificial source in the measured data. Moreover, the joint analysis of the polarization attributes of the electric and magnetic field has been crucial to fully characterize the properties and the location of the noise source. Escalas, M., Queralt, P., Ledo, J., Marcuello, A., 2011. Identification of cultural noise sources in magnetotelluric data: estimating polarization attributes in the time-frequency domain using wavelet analysis. Geophysical Research Abstracts Vol. 13, EGU2011-6085. EGU General Assembly 2011.

  15. Long Term Precipitation Pattern Identification and Derivation of Non Linear Precipitation Trend in a Catchment using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Poornima; Jothiprakash, Vinayakam

    2017-04-01

    Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.

  16. Extension of classical hydrological risk analysis to non-stationary conditions due to climate change - application to the Fulda catchment, Germany

    NASA Astrophysics Data System (ADS)

    Fink, G.; Koch, M.

    2010-12-01

    An important aspect in water resources and hydrological engineering is the assessment of hydrological risk, due to the occurrence of extreme events, e.g. droughts or floods. When dealing with the latter - as is the focus here - the classical methods of flood frequency analysis (FFA) are usually being used for the proper dimensioning of a hydraulic structure, for the purpose of bringing down the flood risk to an acceptable level. FFA is based on extreme value statistics theory. Despite the progress of methods in this scientific branch, the development, decision, and fitting of an appropriate distribution function stills remains a challenge, particularly, when certain underlying assumptions of the theory are not met in real applications. This is, for example, the case when the stationarity-condition for a random flood time series is not satisfied anymore, as could be the situation when long-term hydrological impacts of future climate change are to be considered. The objective here is to verify the applicability of classical (stationary) FFA to predicted flood time series in the Fulda catchment in central Germany, as they may occur in the wake of climate change during the 21st century. These discharge time series at the outlet of the Fulda basin have been simulated with a distributed hydrological model (SWAT) that is forced by predicted climate variables of a regional climate model for Germany (REMO). From the simulated future daily time series, annual maximum (extremes) values are computed and analyzed for the purpose of risk evaluation. Although the 21st century estimated extreme flood series of the Fulda river turn out to be only mildly non-stationary, alleviating the need for further action and concern at the first sight, the more detailed analysis of the risk, as quantified, for example, by the return period, shows non-negligent differences in the calculated risk levels. This could be verified by employing a new method, the so-called flood series maximum analysis (FSMA) method, which consists in the stochastic simulation of numerous trajectories of a stochastic process with a given GEV-distribution over a certain length of time (> larger than a desired return period). Then the maximum value for each trajectory is computed, all of which are then used to determine the empirical distribution of this maximum series. Through graphical inversion of this distribution function the size of the design flood for a given risk (quantile) and given life duration can be inferred. The results of numerous simulations show that for stationary flood series, the new FSMA method results, expectedly, in nearly identical risk values as the classical FFA approach. However, once the flood time series becomes slightly non-stationary - for reasons as discussed - and regardless of whether the trend is increasing or decreasing, large differences in the computed risk values for a given design flood occur. Or in other word, for the same risk, the new FSMA method would lead to different values in the design flood for a hydraulic structure than the classical FFA method. This, in turn, could lead to some cost savings in the realization of a hydraulic project.

  17. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach

    NASA Astrophysics Data System (ADS)

    Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal

    2018-06-01

    Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.

  18. Fractal analysis of the short time series in a visibility graph method

    NASA Astrophysics Data System (ADS)

    Li, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2016-05-01

    The aim of this study is to evaluate the performance of the visibility graph (VG) method on short fractal time series. In this paper, the time series of Fractional Brownian motions (fBm), characterized by different Hurst exponent H, are simulated and then mapped into a scale-free visibility graph, of which the degree distributions show the power-law form. The maximum likelihood estimation (MLE) is applied to estimate power-law indexes of degree distribution, and in this progress, the Kolmogorov-Smirnov (KS) statistic is used to test the performance of estimation of power-law index, aiming to avoid the influence of droop head and heavy tail in degree distribution. As a result, we find that the MLE gives an optimal estimation of power-law index when KS statistic reaches its first local minimum. Based on the results from KS statistic, the relationship between the power-law index and the Hurst exponent is reexamined and then amended to meet short time series. Thus, a method combining VG, MLE and KS statistics is proposed to estimate Hurst exponents from short time series. Lastly, this paper also offers an exemplification to verify the effectiveness of the combined method. In addition, the corresponding results show that the VG can provide a reliable estimation of Hurst exponents.

  19. Fluctuation of similarity (FLUS) to detect transitions between distinct dynamical regimes in short time series

    PubMed Central

    Malik, Nishant; Marwan, Norbert; Zou, Yong; Mucha, Peter J.; Kurths, Jürgen

    2016-01-01

    A method to identify distinct dynamical regimes and transitions between those regimes in a short univariate time series was recently introduced [1], employing the computation of fluctuations in a measure of nonlinear similarity based on local recurrence properties. In the present work, we describe the details of the analytical relationships between this newly introduced measure and the well known concepts of attractor dimensions and Lyapunov exponents. We show that the new measure has linear dependence on the effective dimension of the attractor and it measures the variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the method, we identify various types of dynamical transitions in different nonlinear models. We present testbed examples for the new method’s robustness against noise and missing values in the time series. We also use this method to analyze time series of social dynamics, specifically an analysis of the U.S. crime record time series from 1975 to 1993. Using this method, we find that dynamical complexity in robberies was influenced by the unemployment rate until the late 1980’s. We have also observed a dynamical transition in homicide and robbery rates in the late 1980’s and early 1990’s, leading to increase in the dynamical complexity of these rates. PMID:25019852

  20. Analysis of financial time series using multiscale entropy based on skewness and kurtosis

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Shang, Pengjian

    2018-01-01

    There is a great interest in studying dynamic characteristics of the financial time series of the daily stock closing price in different regions. Multi-scale entropy (MSE) is effective, mainly in quantifying the complexity of time series on different time scales. This paper applies a new method for financial stability from the perspective of MSE based on skewness and kurtosis. To better understand the superior coarse-graining method for the different kinds of stock indexes, we take into account the developmental characteristics of the three continents of Asia, North America and European stock markets. We study the volatility of different financial time series in addition to analyze the similarities and differences of coarsening time series from the perspective of skewness and kurtosis. A kind of corresponding relationship between the entropy value of stock sequences and the degree of stability of financial markets, were observed. The three stocks which have particular characteristics in the eight piece of stock sequences were discussed, finding the fact that it matches the result of applying the MSE method to showing results on a graph. A comparative study is conducted to simulate over synthetic and real world data. Results show that the modified method is more effective to the change of dynamics and has more valuable information. The result is obtained at the same time, finding the results of skewness and kurtosis discrimination is obvious, but also more stable.

  1. Analysis and Forecasting of Shoreline Position

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Tebbens, S. F.

    2007-12-01

    Analysis of historical shoreline positions on sandy coasts, in the geologic record, and study of sea-level rise curves reveals that the dynamics of the underlying processes produce temporal/spatial signals that exhibit power scaling and are therefore self-affine fractals. Self-affine time series signals can be quantified over many orders of magnitude in time and space in terms of persistence, a measure of the degree of correlation between adjacent values in the stochastic portion of a time series. Fractal statistics developed for self-affine time series are used to forecast a probability envelope bounding future shoreline positions. The envelope provides the standard deviation as a function of three variables: persistence, a constant equal to the value of the power spectral density when 1/period equals 1, and the number of time increments. The persistence of a twenty-year time series of the mean-high-water (MHW) shoreline positions was measured for four profiles surveyed at Duck, NC at the Field Research Facility (FRF) by the U.S. Army Corps of Engineers. The four MHW shoreline time series signals are self-affine with persistence ranging between 0.8 and 0.9, which indicates that the shoreline position time series is weakly persistent (where zero is uncorrelated), and has highly varying trends for all time intervals sampled. Forecasts of a probability envelope for future MHW positions are made for the 20 years of record and beyond to 50 years from the start of the data records. The forecasts describe the twenty-year data sets well and indicate that within a 96% confidence envelope, future decadal MHW shoreline excursions should be within 14.6 m of the position at the start of data collection. This is a stable-oscillatory shoreline. The forecasting method introduced here includes the stochastic portion of the time series while the traditional method of predicting shoreline change reduces the time series to a linear trend line fit to historic shoreline positions and extrapolated linearly to forecast future positions with a linearly increasing mean that breaks the confidence envelope eight years into the future and continues to increase. The traditional method is a poor representation of the observed shoreline position time series and is a poor basis for extrapolating future shoreline positions.

  2. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  3. A Numerical Method for Calculating the Wave Drag of a Configuration from the Second Derivative of the Area Distribution of a Series of Equivalent Bodies of Revolution

    NASA Technical Reports Server (NTRS)

    Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.

    1959-01-01

    A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.

  4. A systematic review on the use of time series data in the study of antimicrobial consumption and Pseudomonas aeruginosa resistance.

    PubMed

    Athanasiou, Christos I; Kopsini, Angeliki

    2018-06-12

    In the field of antimicrobial resistance, the number of studies that use time series data has increased recently. The purpose of this study is the systematic review of all studies on antibacterial consumption and on Pseudomonas aeruginosa resistance in healthcare settings, that have used time series data. A systematic review of the literature till June 2017 was conducted. All the studies that have used time series data and have examined the inhospital antibiotic consumption and Ps. aeruginosa resistance rates or incidence were eligible. No other exclusion criteria were applied. Data on the structure, terminology used, methods used and results of each article were recorded and analyzed as possible. A total of thirty six studies were retrieved, twenty three of which were in accordance with our criteria. Thirteen of them were quasi experimental studies and ten were ecological observational studies. Eighteen studies collected time series data of both parameters and the statistical methodology of "time series analysis" was applied in nine studies. Most of the studies were published in the last eight years. The Interrupted Time Series design was the most widespread. As expected, there was high heterogeneity in regard to the study design, terminology and statistical methods applied. Copyright © 2018. Published by Elsevier Ltd.

  5. New Perspectives for the Evaluation of Training Sessions in Self-Regulated Learning: Time-Series Analyses of Diary Data

    ERIC Educational Resources Information Center

    Schmitz, Bernhard; Wiese, Bettina S.

    2006-01-01

    The present study combines a standardized diary approach with time-series analysis methods to investigate the process of self-regulated learning. Based on a process-focused adaptation of Zimmerman's (2000) learning model, an intervention (consisting of four weekly training sessions) to increase self-regulated learning was developed. The diaries…

  6. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  7. Finite element techniques in computational time series analysis of turbulent flows

    NASA Astrophysics Data System (ADS)

    Horenko, I.

    2009-04-01

    In recent years there has been considerable increase of interest in the mathematical modeling and analysis of complex systems that undergo transitions between several phases or regimes. Such systems can be found, e.g., in weather forecast (transitions between weather conditions), climate research (ice and warm ages), computational drug design (conformational transitions) and in econometrics (e.g., transitions between different phases of the market). In all cases, the accumulation of sufficiently detailed time series has led to the formation of huge databases, containing enormous but still undiscovered treasures of information. However, the extraction of essential dynamics and identification of the phases is usually hindered by the multidimensional nature of the signal, i.e., the information is "hidden" in the time series. The standard filtering approaches (like f.~e. wavelets-based spectral methods) have in general unfeasible numerical complexity in high-dimensions, other standard methods (like f.~e. Kalman-filter, MVAR, ARCH/GARCH etc.) impose some strong assumptions about the type of the underlying dynamics. Approach based on optimization of the specially constructed regularized functional (describing the quality of data description in terms of the certain amount of specified models) will be introduced. Based on this approach, several new adaptive mathematical methods for simultaneous EOF/SSA-like data-based dimension reduction and identification of hidden phases in high-dimensional time series will be presented. The methods exploit the topological structure of the analysed data an do not impose severe assumptions on the underlying dynamics. Special emphasis will be done on the mathematical assumptions and numerical cost of the constructed methods. The application of the presented methods will be first demonstrated on a toy example and the results will be compared with the ones obtained by standard approaches. The importance of accounting for the mathematical assumptions used in the analysis will be pointed up in this example. Finally, applications to analysis of meteorological and climate data will be presented.

  8. Scaling analysis and model estimation of solar corona index

    NASA Astrophysics Data System (ADS)

    Ray, Samujjwal; Ray, Rajdeep; Khondekar, Mofazzal Hossain; Ghosh, Koushik

    2018-04-01

    A monthly average solar green coronal index time series for the period from January 1939 to December 2008 collected from NOAA (The National Oceanic and Atmospheric Administration) has been analysed in this paper in perspective of scaling analysis and modelling. Smoothed and de-noising have been done using suitable mother wavelet as a pre-requisite. The Finite Variance Scaling Method (FVSM), Higuchi method, rescaled range (R/S) and a generalized method have been applied to calculate the scaling exponents and fractal dimensions of the time series. Autocorrelation function (ACF) is used to find autoregressive (AR) process and Partial autocorrelation function (PACF) has been used to get the order of AR model. Finally a best fit model has been proposed using Yule-Walker Method with supporting results of goodness of fit and wavelet spectrum. The results reveal an anti-persistent, Short Range Dependent (SRD), self-similar property with signatures of non-causality, non-stationarity and nonlinearity in the data series. The model shows the best fit to the data under observation.

  9. Fluctuation of similarity to detect transitions between distinct dynamical regimes in short time series

    NASA Astrophysics Data System (ADS)

    Malik, Nishant; Marwan, Norbert; Zou, Yong; Mucha, Peter J.; Kurths, Jürgen

    2014-06-01

    A method to identify distinct dynamical regimes and transitions between those regimes in a short univariate time series was recently introduced [N. Malik et al., Europhys. Lett. 97, 40009 (2012), 10.1209/0295-5075/97/40009], employing the computation of fluctuations in a measure of nonlinear similarity based on local recurrence properties. In this work, we describe the details of the analytical relationships between this newly introduced measure and the well-known concepts of attractor dimensions and Lyapunov exponents. We show that the new measure has linear dependence on the effective dimension of the attractor and it measures the variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the method, we identify various types of dynamical transitions in different nonlinear models. We present testbed examples for the new method's robustness against noise and missing values in the time series. We also use this method to analyze time series of social dynamics, specifically an analysis of the US crime record time series from 1975 to 1993. Using this method, we find that dynamical complexity in robberies was influenced by the unemployment rate until the late 1980s. We have also observed a dynamical transition in homicide and robbery rates in the late 1980s and early 1990s, leading to increase in the dynamical complexity of these rates.

  10. A Maple package for improved global mapping forecast

    NASA Astrophysics Data System (ADS)

    Carli, H.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2014-03-01

    We present a Maple implementation of the well known global approach to time series analysis and some further developments designed to improve the computational efficiency of the forecasting capabilities of the approach. This global approach can be summarized as being a reconstruction of the phase space, based on a time ordered series of data obtained from the system. After that, using the reconstructed vectors, a portion of this space is used to produce a mapping, a polynomial fitting, through a minimization procedure, that represents the system and can be employed to forecast further entries for the series. In the present implementation, we introduce a set of commands, tools, in order to perform all these tasks. For example, the command VecTS deals mainly with the reconstruction of the vector in the phase space. The command GfiTS deals with producing the minimization and the fitting. ForecasTS uses all these and produces the prediction of the next entries. For the non-standard algorithms, we here present two commands: IforecasTS and NiforecasTS that, respectively deal with the one-step and the N-step forecasting. Finally, we introduce two further tools to aid the forecasting. The commands GfiTS and AnalysTS, basically, perform an analysis of the behavior of each portion of a series regarding the settings used on the commands just mentioned above. Catalogue identifier: AERW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERW_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 95018 Distribution format: tar.gz Programming language: Maple 14. Computer: Any capable of running Maple Operating system: Any capable of running Maple. Tested on Windows ME, Windows XP, Windows 7. RAM: 128 MB Classification: 4.3, 4.9, 5 Nature of problem: Time series analysis and improving forecast capability. Solution method: The method of solution is partially based on a result published in [1]. Restrictions: If the time series that is being analyzed presents a great amount of noise or if the dynamical system behind the time series is of high dimensionality (Dim≫3), then the method may not work well. Unusual features: Our implementation can, in the cases where the dynamics behind the time series is given by a system of low dimensionality, greatly improve the forecast. Running time: This depends strongly on the command that is being used. References: [1] Barbosa, L.M.C.R., Duarte, L.G.S., Linhares, C.A. and da Mota, L.A.C.P., Improving the global fitting method on nonlinear time series analysis, Phys. Rev. E 74, 026702 (2006).

  11. New Insights into Signed Path Coefficient Granger Causality Analysis

    PubMed Central

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547

  12. Statistical analysis of long-term monitoring data for persistent organic pollutants in the atmosphere at 20 monitoring stations broadly indicates declining concentrations.

    PubMed

    Kong, Deguo; MacLeod, Matthew; Hung, Hayley; Cousins, Ian T

    2014-11-04

    During recent decades concentrations of persistent organic pollutants (POPs) in the atmosphere have been monitored at multiple stations worldwide. We used three statistical methods to analyze a total of 748 time series of selected POPs in the atmosphere to determine if there are statistically significant reductions in levels of POPs that have had control actions enacted to restrict or eliminate manufacture, use and emissions. Significant decreasing trends were identified in 560 (75%) of the 748 time series collected from the Arctic, North America, and Europe, indicating that the atmospheric concentrations of these POPs are generally decreasing, consistent with the overall effectiveness of emission control actions. Statistically significant trends in synthetic time series could be reliably identified with the improved Mann-Kendall (iMK) test and the digital filtration (DF) technique in time series longer than 5 years. The temporal trends of new (or emerging) POPs in the atmosphere are often unclear because time series are too short. A statistical detrending method based on the iMK test was not able to identify abrupt changes in the rates of decline of atmospheric POP concentrations encoded into synthetic time series.

  13. Retrieving hydrological connectivity from empirical causality in karst systems

    NASA Astrophysics Data System (ADS)

    Delforge, Damien; Vanclooster, Marnik; Van Camp, Michel; Poulain, Amaël; Watlet, Arnaud; Hallet, Vincent; Kaufmann, Olivier; Francis, Olivier

    2017-04-01

    Because of their complexity, karst systems exhibit nonlinear dynamics. Moreover, if one attempts to model a karst, the hidden behavior complicates the choice of the most suitable model. Therefore, both intense investigation methods and nonlinear data analysis are needed to reveal the underlying hydrological connectivity as a prior for a consistent physically based modelling approach. Convergent Cross Mapping (CCM), a recent method, promises to identify causal relationships between time series belonging to the same dynamical systems. The method is based on phase space reconstruction and is suitable for nonlinear dynamics. As an empirical causation detection method, it could be used to highlight the hidden complexity of a karst system by revealing its inner hydrological and dynamical connectivity. Hence, if one can link causal relationships to physical processes, the method should show great potential to support physically based model structure selection. We present the results of numerical experiments using karst model blocks combined in different structures to generate time series from actual rainfall series. CCM is applied between the time series to investigate if the empirical causation detection is consistent with the hydrological connectivity suggested by the karst model.

  14. Applications and development of new algorithms for displacement analysis using InSAR time series

    NASA Astrophysics Data System (ADS)

    Osmanoglu, Batuhan

    Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.

  15. qFeature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  16. Detecting population-environmental interactions with mismatched time series data.

    PubMed

    Ferguson, Jake M; Reichert, Brian E; Fletcher, Robert J; Jager, Henriëtte I

    2017-11-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida's southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population-environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. © 2017 by the Ecological Society of America.

  17. Detecting population–environmental interactions with mismatched time series data

    PubMed Central

    Ferguson, Jake M.; Reichert, Brian E.; Fletcher, Robert J.; Jager, Henriëtte I.

    2017-01-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida’s southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population–environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. PMID:28759123

  18. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, M.

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that the authors' techniques allow more accurate estimation of the global system loading, resulting in fewer object migrations than local methods. The authors' method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.

  19. Memory and long-range correlations in chess games

    NASA Astrophysics Data System (ADS)

    Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.

    2014-01-01

    In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.

  20. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  1. A harmonic linear dynamical system for prominent ECG feature extraction.

    PubMed

    Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  2. The time series approach to short term load forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, M.T.; Behr, S.M.

    The application of time series analysis methods to load forecasting is reviewed. It is shown than Box and Jenkins time series models, in particular, are well suited to this application. The logical and organized procedures for model development using the autocorrelation function make these models particularly attractive. One of the drawbacks of these models is the inability to accurately represent the nonlinear relationship between load and temperature. A simple procedure for overcoming this difficulty is introduced, and several Box and Jenkins models are compared with a forecasting procedure currently used by a utility company.

  3. Toward Capturing Momentary Changes of Heart Rate Variability by a Dynamic Analysis Method

    PubMed Central

    Zhang, Haoshi; Zhu, Mingxing; Zheng, Yue; Li, Guanglin

    2015-01-01

    The analysis of heart rate variability (HRV) has been performed on long-term electrocardiography (ECG) recordings (12~24 hours) and short-term recordings (2~5 minutes), which may not capture momentary change of HRV. In this study, we present a new method to analyze the momentary HRV (mHRV). The ECG recordings were segmented into a series of overlapped HRV analysis windows with a window length of 5 minutes and different time increments. The performance of the proposed method in delineating the dynamics of momentary HRV measurement was evaluated with four commonly used time courses of HRV measures on both synthetic time series and real ECG recordings from human subjects and dogs. Our results showed that a smaller time increment could capture more dynamical information on transient changes. Considering a too short increment such as 10 s would cause the indented time courses of the four measures, a 1-min time increment (4-min overlapping) was suggested in the analysis of mHRV in the study. ECG recordings from human subjects and dogs were used to further assess the effectiveness of the proposed method. The pilot study demonstrated that the proposed analysis of mHRV could provide more accurate assessment of the dynamical changes in cardiac activity than the conventional measures of HRV (without time overlapping). The proposed method may provide an efficient means in delineating the dynamics of momentary HRV and it would be worthy performing more investigations. PMID:26172953

  4. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development.

    PubMed

    Siegert, F; Weijer, C J; Nomura, A; Miike, H

    1994-01-01

    We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.

  5. Data imputation analysis for Cosmic Rays time series

    NASA Astrophysics Data System (ADS)

    Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.

    2017-05-01

    The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.

  6. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  7. Acoustical Applications of the HHT Method

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    2003-01-01

    A document discusses applications of a method based on the Huang-Hilbert transform (HHT). The method was described, without the HHT name, in Analyzing Time Series Using EMD and Hilbert Spectra (GSC-13817), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 63. To recapitulate: The method is especially suitable for analyzing time-series data that represent nonstationary and nonlinear physical phenomena. The method involves the empirical mode decomposition (EMD), in which a complicated signal is decomposed into a finite number of functions, called intrinsic mode functions (IMFs), that admit well-behaved Hilbert transforms. The HHT consists of the combination of EMD and Hilbert spectral analysis.

  8. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).

    PubMed

    Mayaud, C; Wagner, T; Benischke, R; Birk, S

    2014-04-16

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems.

  9. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    PubMed Central

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-01-01

    Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems. PMID:24748687

  10. Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-04-10

    We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.

  11. Structural models used in real-time biosurveillance outbreak detection and outbreak curve isolation from noisy background morbidity levels

    PubMed Central

    Cheng, Karen Elizabeth; Crary, David J; Ray, Jaideep; Safta, Cosmin

    2013-01-01

    Objective We discuss the use of structural models for the analysis of biosurveillance related data. Methods and results Using a combination of real and simulated data, we have constructed a data set that represents a plausible time series resulting from surveillance of a large scale bioterrorist anthrax attack in Miami. We discuss the performance of anomaly detection with structural models for these data using receiver operating characteristic (ROC) and activity monitoring operating characteristic (AMOC) analysis. In addition, we show that these techniques provide a method for predicting the level of the outbreak valid for approximately 2 weeks, post-alarm. Conclusions Structural models provide an effective tool for the analysis of biosurveillance data, in particular for time series with noisy, non-stationary background and missing data. PMID:23037798

  12. Detection of a sudden change of the field time series based on the Lorenz system.

    PubMed

    Da, ChaoJiu; Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan

    2017-01-01

    We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series.

  13. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data sets, but little research exists of how these tools compare to each other in practice. This work introduces and defines exploratory causal analysis (ECA) to address this issue along with the concept of data causality in the taxonomy of causal studies introduced in this work. The motivation is to provide a framework for exploring potential causal structures in time series data sets. ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.

  14. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Korbel, Jan

    2014-11-01

    In the framework of Multifractal Diffusion Entropy Analysis we propose a method for choosing an optimal bin-width in histograms generated from underlying probability distributions of interest. The method presented uses techniques of Rényi’s entropy and the mean squared error analysis to discuss the conditions under which the error in the multifractal spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as sampled at a daily rate in the time period 1950-2013. In order to demonstrate a strength of the method proposed we compare the multifractal δ-spectrum for various bin-widths and show the robustness of the method, especially for large values of q. For such values, other methods in use, e.g., those based on moment estimation, tend to fail for heavy-tailed data or data with long correlations. Connection between the δ-spectrum and Rényi’s q parameter is also discussed and elucidated on a simple example of multiscale time series.

  15. Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.

    2016-12-01

    Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.

  16. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.

    PubMed

    Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius

    2012-01-01

    Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries.

  17. Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.

    2016-07-01

    The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.

  18. Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Narayana, A. C.

    2018-07-01

    In this paper, we study the multifractal characteristics and cross-correlation behaviour of Air Pollution Index (API) time series data through multifractal detrended cross-correlation analysis method. We analyse the daily API records of nine air pollutants of the university of Hyderabad campus for a period of three years (2013-2016). The cross-correlation behaviour has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, it is found that the cross-correlation analysis shows anti-correlation behaviour for all possible 36 bivariate time series. We also observe the existence of multifractal nature in all the bivariate time series in which many of them show strong multifractal behaviour. In particular, the hazardous particulate matter PM2.5 and inhalable particulate matter PM10 shows anti-correlated behaviour with all air pollutants.

  19. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  20. Crossing trend analysis methodology and application for Turkish rainfall records

    NASA Astrophysics Data System (ADS)

    Şen, Zekâi

    2018-01-01

    Trend analyses are the necessary tools for depicting possible general increase or decrease in a given time series. There are many versions of trend identification methodologies such as the Mann-Kendall trend test, Spearman's tau, Sen's slope, regression line, and Şen's innovative trend analysis. The literature has many papers about the use, cons and pros, and comparisons of these methodologies. In this paper, a completely new approach is proposed based on the crossing properties of a time series. It is suggested that the suitable trend from the centroid of the given time series should have the maximum number of crossings (total number of up-crossings or down-crossings). This approach is applicable whether the time series has dependent or independent structure and also without any dependence on the type of the probability distribution function. The validity of this method is presented through extensive Monte Carlo simulation technique and its comparison with other existing trend identification methodologies. The application of the methodology is presented for a set of annual daily extreme rainfall time series from different parts of Turkey and they have physically independent structure.

  1. Detection of chaos: New approach to atmospheric pollen time-series analysis

    NASA Astrophysics Data System (ADS)

    Bianchi, M. M.; Arizmendi, C. M.; Sanchez, J. R.

    1992-09-01

    Pollen and spores are biological particles that are ubiquitous to the atmosphere and are pathologically significant, causing plant diseases and inhalant allergies. One of the main objectives of aerobiological surveys is forecasting. Prediction models are required in order to apply aerobiological knowledge to medical or agricultural practice; a necessary condition of these models is not to be chaotic. The existence of chaos is detected through the analysis of a time series. The time series comprises hourly counts of atmospheric pollen grains obtained using a Burkard spore trap from 1987 to 1989 at Mar del Plata. Abraham's method to obtain the correlation dimension was applied. A low and fractal dimension shows chaotic dynamics. The predictability of models for atomspheric pollen forecasting is discussed.

  2. Wavelet Statistical Analysis of Low-Latitude Geomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Papa, A. R.; Akel, A. F.

    2009-05-01

    Following previous works by our group (Papa et al., JASTP, 2006), where we analyzed a series of records acquired at the Vassouras National Geomagnetic Observatory in Brazil for the month of October 2000, we introduced a wavelet analysis for the same type of data and for other periods. It is well known that wavelets allow a more detailed study in several senses: the time window for analysis can be drastically reduced if compared to other traditional methods (Fourier, for example) and at the same time allow an almost continuous accompaniment of both amplitude and frequency of signals as time goes by. This advantage brings some possibilities for potentially useful forecasting methods of the type also advanced by our group in previous works (see for example, Papa and Sosman, JASTP, 2008). However, the simultaneous statistical analysis of both time series (in our case amplitude and frequency) is a challenging matter and is in this sense that we have found what we consider our main goal. Some possible trends for future works are advanced.

  3. Estimating serial correlation and self-similarity in financial time series-A diversification approach with applications to high frequency data

    NASA Astrophysics Data System (ADS)

    Gerlich, Nikolas; Rostek, Stefan

    2015-09-01

    We derive a heuristic method to estimate the degree of self-similarity and serial correlation in financial time series. Especially, we propagate the use of a tailor-made selection of different estimation techniques that are used in various fields of time series analysis but until now have not consequently found their way into the finance literature. Following the idea of portfolio diversification, we show that considerable improvements with respect to robustness and unbiasedness can be achieved by using a basket of estimation methods. With this methodological toolbox at hand, we investigate real market data to show that noticeable deviations from the assumptions of constant self-similarity and absence of serial correlation occur during certain periods. On the one hand, this may shed a new light on seemingly ambiguous scientific findings concerning serial correlation of financial time series. On the other hand, a proven time-changing degree of self-similarity may help to explain high-volatility clusters of stock price indices.

  4. Event coincidence analysis for quantifying statistical interrelationships between event time series. On the role of flood events as triggers of epidemic outbreaks

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.

    2016-05-01

    Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.

  5. Multifractality and Network Analysis of Phase Transition

    PubMed Central

    Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang

    2017-01-01

    Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414

  6. Analysis in natural time domain of geoelectric time series monitored prior two strong earthquakes occurred in Mexico

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, A.; Flores-Marquez, L. E.

    2009-12-01

    The short-time prediction of seismic phenomena is currently an important problem in the scientific community. In particular, the electromagnetic processes associated with seismic events take in great interest since the VAN method was implemented. The most important features of this methodology are the seismic electrical signals (SES) observed prior to strong earthquakes. SES has been observed in the electromagnetic series linked to EQs in Greece, Japan and Mexico. By mean of the so-called natural time domain, introduced by Varotsos et al. (2001), they could characterize signals of dichotomic nature observed in different systems, like SES and ionic current fluctuations in membrane channels. In this work we analyze SES observed in geoelectric time series monitored in Guerrero, México. Our analysis concern with two strong earthquakes occurred, on October 24, 1993 (M=6.6) and September 14, 1995 (M=7.3). The time series of the first one displayed a seismic electric signal six days before the main shock and for the second case the time series displayed dichotomous-like fluctuations some months before the EQ. In this work we present the first results of the analysis in natural time domain for the two cases which seems to be agreeing with the results reported by Varotsos. P. Varotsos, N. Sarlis, and E. Skordas, Practica of the Athens Academy 76, 388 (2001).

  7. Empirical Investigation of Critical Transitions in Paleoclimate

    NASA Astrophysics Data System (ADS)

    Loskutov, E. M.; Mukhin, D.; Gavrilov, A.; Feigin, A.

    2016-12-01

    In this work we apply a new empirical method for the analysis of complex spatially distributed systems to the analysis of paleoclimate data. The method consists of two general parts: (i) revealing the optimal phase-space variables and (ii) construction the empirical prognostic model by observed time series. The method of phase space variables construction based on the data decomposition into nonlinear dynamical modes which was successfully applied to global SST field and allowed clearly separate time scales and reveal climate shift in the observed data interval [1]. The second part, the Bayesian approach to optimal evolution operator reconstruction by time series is based on representation of evolution operator in the form of nonlinear stochastic function represented by artificial neural networks [2,3]. In this work we are focused on the investigation of critical transitions - the abrupt changes in climate dynamics - in match longer time scale process. It is well known that there were number of critical transitions on different time scales in the past. In this work, we demonstrate the first results of applying our empirical methods to analysis of paleoclimate variability. In particular, we discuss the possibility of detecting, identifying and prediction such critical transitions by means of nonlinear empirical modeling using the paleoclimate record time series. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep155102. Ya. I. Molkov, D. N. Mukhin, E. M. Loskutov, A.M. Feigin, (2012) : Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.3. Mukhin, D., Kondrashov, D., Loskutov, E., Gavrilov, A., Feigin, A., & Ghil, M. (2015). Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models. Journal of Climate, 28(5), 1962-1976. http://doi.org/10.1175/JCLI-D-14-00240.1

  8. Empirical mode decomposition and long-range correlation analysis of sunspot time series

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Leung, Yee

    2010-12-01

    Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the proposed EMD-based method—are further compared, and possible reasons for the different results are given. Two numerical experiments are designed for quantitatively evaluating the performances of these three methods in removing periodic trends with inexact/exact cycles and in detecting the possible crossover points.

  9. Deep learning on temporal-spectral data for anomaly detection

    NASA Astrophysics Data System (ADS)

    Ma, King; Leung, Henry; Jalilian, Ehsan; Huang, Daniel

    2017-05-01

    Detecting anomalies is important for continuous monitoring of sensor systems. One significant challenge is to use sensor data and autonomously detect changes that cause different conditions to occur. Using deep learning methods, we are able to monitor and detect changes as a result of some disturbance in the system. We utilize deep neural networks for sequence analysis of time series. We use a multi-step method for anomaly detection. We train the network to learn spectral and temporal features from the acoustic time series. We test our method using fiber-optic acoustic data from a pipeline.

  10. Detection of a sudden change of the field time series based on the Lorenz system

    PubMed Central

    Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan

    2017-01-01

    We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series. PMID:28141832

  11. Detecting dryland degradation through the use of Time Series Segmentation and Residual Trend analysis (TSS-RESTREND)

    NASA Astrophysics Data System (ADS)

    Burrell, A. L.; Evans, J. P.; Liu, Y.

    2017-12-01

    Dryland degradation is an issue of international significance as dryland regions play a substantial role in global food production. Remotely sensed data provide the only long term, large scale record of changes within dryland ecosystems. The Residual Trend, or RESTREND, method is applied to satellite observations to detect dryland degradation. Whilst effective in most cases, it has been shown that the RESTREND method can fail to identify degraded pixels if the relationship between vegetation and precipitation has broken-down as a result of severe or rapid degradation. This study presents an extended version of the RESTREND methodology that incorporates the Breaks For Additive Seasonal and Trend method to identify step changes in the time series that are related to significant structural changes in the ecosystem, e.g. land use changes. When applied to Australia, this new methodology, termed Time Series Segmentation and Residual Trend analysis (TSS-RESTREND), was able to detect degradation in 5.25% of pixels compared to only 2.0% for RESTREND alone. This modified methodology was then assessed in two regions with known histories of degradation where it was found to accurately capture both the timing and directionality of ecosystem change.

  12. Visualizing frequent patterns in large multivariate time series

    NASA Astrophysics Data System (ADS)

    Hao, M.; Marwah, M.; Janetzko, H.; Sharma, R.; Keim, D. A.; Dayal, U.; Patnaik, D.; Ramakrishnan, N.

    2011-01-01

    The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. Then we quantify the efficiency of the discovered motifs by linking them with a performance metric. To visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient motif) can be quickly detected from a large time series for further investigation. We have applied these methods to two real-world data sets: data center cooling and oil well production. The results provide important new insights into the recurring patterns.

  13. Gravity Tides Extracted from Relative Gravimeter Data by Combining Empirical Mode Decomposition and Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Hongjuan; Guo, Jinyun; Kong, Qiaoli; Chen, Xiaodong

    2018-04-01

    The static observation data from a relative gravimeter contain noise and signals such as gravity tides. This paper focuses on the extraction of the gravity tides from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity tides time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity tides derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity tides estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity tides from relative gravimeter data compared to that estimated with ICA.

  14. Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder

    PubMed Central

    Taniguchi, Tadahiro; Takenaka, Kazuhito; Bando, Takashi

    2018-01-01

    Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant information can be expected to complicate the data analysis, e.g., more factors need to be analyzed; even varying the levels of redundancy can influence the results of the analysis. We assume that the measured multi-dimensional sensor time-series data of driving behavior are generated from low-dimensional data shared by the many types of one-dimensional data of which multi-dimensional time-series data are composed. Meanwhile, sensor time-series data may be defective because of sensor failure. Therefore, another important function is to reduce the negative effect of defective data when extracting low-dimensional time-series data. This study proposes a defect-repairable feature extraction method based on a deep sparse autoencoder (DSAE) to extract low-dimensional time-series data. In the experiments, we show that DSAE provides high-performance latent feature extraction for driving behavior, even for defective sensor time-series data. In addition, we show that the negative effect of defects on the driving behavior segmentation task could be reduced using the latent features extracted by DSAE. PMID:29462931

  15. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    PubMed

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  16. The coupling analysis between stock market indices based on permutation measures

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung

    2016-04-01

    Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  17. Reconstruction of network topology using status-time-series data

    NASA Astrophysics Data System (ADS)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  18. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations.

    PubMed

    Buras, Allan; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Ahlgrimm, Svenja; Hermann, Philipp; Simard, Sonia; Heinrich, Ingo; Helle, Gerd; Unterseher, Martin; Schnittler, Martin; Eusemann, Pascal; Wilmking, Martin

    2016-01-01

    This paper introduces a new approach-the Principal Component Gradient Analysis (PCGA)-to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA) to define groups of similar trends. Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA.

  19. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations

    PubMed Central

    Buras, Allan; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Ahlgrimm, Svenja; Hermann, Philipp; Simard, Sonia; Heinrich, Ingo; Helle, Gerd; Unterseher, Martin; Schnittler, Martin; Eusemann, Pascal; Wilmking, Martin

    2016-01-01

    This paper introduces a new approach–the Principal Component Gradient Analysis (PCGA)–to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA) to define groups of similar trends. Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA. PMID:27467508

  20. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  1. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    PubMed

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  2. Phase space reconstruction and estimation of the largest Lyapunov exponent for gait kinematic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josiński, Henryk; Świtoński, Adam; Silesian University of Technology, Akademicka 16, 44-100 Gliwice

    The authors describe an example of application of nonlinear time series analysis directed at identifying the presence of deterministic chaos in human motion data by means of the largest Lyapunov exponent. The method was previously verified on the basis of a time series constructed from the numerical solutions of both the Lorenz and the Rössler nonlinear dynamical systems.

  3. Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions.

    PubMed

    Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo

    2014-06-01

    In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    PubMed

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  5. An introduction to chaotic and random time series analysis

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.

  6. a Landsat Time-Series Stacks Model for Detection of Cropland Change

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, J.; Zhang, J.

    2017-09-01

    Global, timely, accurate and cost-effective cropland monitoring with a fine spatial resolution will dramatically improve our understanding of the effects of agriculture on greenhouse gases emissions, food safety, and human health. Time-series remote sensing imagery have been shown particularly potential to describe land cover dynamics. The traditional change detection techniques are often not capable of detecting land cover changes within time series that are severely influenced by seasonal difference, which are more likely to generate pseuso changes. Here,we introduced and tested LTSM ( Landsat time-series stacks model), an improved Continuous Change Detection and Classification (CCDC) proposed previously approach to extract spectral trajectories of land surface change using a dense Landsat time-series stacks (LTS). The method is expected to eliminate pseudo changes caused by phenology driven by seasonal patterns. The main idea of the method is that using all available Landsat 8 images within a year, LTSM consisting of two term harmonic function are estimated iteratively for each pixel in each spectral band .LTSM can defines change area by differencing the predicted and observed Landsat images. The LTSM approach was compared with change vector analysis (CVA) method. The results indicated that the LTSM method correctly detected the "true change" without overestimating the "false" one, while CVA pointed out "true change" pixels with a large number of "false changes". The detection of change areas achieved an overall accuracy of 92.37 %, with a kappa coefficient of 0.676.

  7. Aerosol Index Dynamics over Athens and Beijing

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Tzanis, C.; Xue, Y.

    2014-11-01

    We present the analysis of monthly mean Aerosol Index (AI) values, over Athens, Greece, and Beijing, China, for the period 1979-2012. The aim of the analysis is the identification of time scaling in the AI time series, by using a data analysis technique that would not be affected by the non-stationarity of the data. The appropriate technique satisfying this criterion is the Detrended Fluctuation Analysis (DF A). For the deseasonalization of time series classic Wiener method was applied filtering out the seasonal - 3 months, semiannual - 6 months and annual - 12 months periods. The data analysis for both Athens and Beijing revealed that the exponents α for both time periods are greater than 0.5 indicating that persistence of the correlations in the fluctuations of the deseasonalized AI values exists for time scales between about 4 months and 3.5 years (for the period 1979-1993) or 4 years (for the period 1996-2012).

  8. Aerosol Index Dynamics over Athens and Beijing

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Tzanis, C.; Xue, Y.

    2014-11-01

    We present the analysis of monthly mean Aerosol Index (AI) values, over Athens, Greece, and Beijing, China, for the period 1979- 2012. The aim of the analysis is the identification of time scaling in the AI time series, by using a data analysis technique that would not be affected by the non-stationarity of the data. The appropriate technique satisfying this criterion is the Detrended Fluctuation Analysis (DFA). For the deseasonalization of time series classic Wiener method was applied filtering out the seasonal - 3 months, semiannual - 6 months and annual - 12 months periods. The data analysis for both Athens and Beijing revealed that the exponents α for both time periods are greater than 0.5 indicating that persistence of the correlations in the fluctuations of the deseasonalized AI values exists for time scales between about 4 months and 3.5 years (for the period 1979-1993) or 4 years (for the period 1996-2012).

  9. A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.

    2014-12-01

    Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.

  10. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  11. Detection of traffic incidents using nonlinear time series analysis

    NASA Astrophysics Data System (ADS)

    Fragkou, A. D.; Karakasidis, T. E.; Nathanail, E.

    2018-06-01

    In this study, we present results of the application of nonlinear time series analysis on traffic data for incident detection. More specifically, we analyze daily volume records of Attica Tollway (Greece) collected from sensors located at various locations. The analysis was performed using the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) method of the volume data of the lane closest to the median. The results show that it is possible to identify, through the abrupt change of the dynamics of the system revealed by RPs and RQA, the occurrence of incidents on the freeway and differentiate from recurrent traffic congestion. The proposed methodology could be of interest for big data traffic analysis.

  12. Topological data analysis of financial time series: Landscapes of crashes

    NASA Astrophysics Data System (ADS)

    Gidea, Marian; Katz, Yuri

    2018-02-01

    We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their Lp-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the Lp-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of Lp-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which complements the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.

  13. Detecting of forest afforestation and deforestation in Hainan Jianfengling Forest Park (China) using yearly Landsat time-series images

    NASA Astrophysics Data System (ADS)

    Jiao, Quanjun; Zhang, Xiao; Sun, Qi

    2018-03-01

    The availability of dense time series of Landsat images pro-vides a great chance to reconstruct forest disturbance and change history with high temporal resolution, medium spatial resolution and long period. This proposal aims to apply forest change detection method in Hainan Jianfengling Forest Park using yearly Landsat time-series images. A simple detection method from the dense time series Landsat NDVI images will be used to reconstruct forest change history (afforestation and deforestation). The mapping result showed a large decrease occurred in the extent of closed forest from 1980s to 1990s. From the beginning of the 21st century, we found an increase in forest areas with the implementation of forestry measures such as the prohibition of cutting and sealing in our study area. Our findings provide an effective approach for quickly detecting forest changes in tropical original forest, especially for afforestation and deforestation, and a comprehensive analysis tool for forest resource protection.

  14. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry

    NASA Astrophysics Data System (ADS)

    Su, Xiaoli; Luo, Zhicai; Zhou, Zebing

    2018-06-01

    Knowledge of backscatter change is important to accurately retrieve elevation change time series from satellite radar altimetry over continental ice sheets. Previously, backscatter coefficients generated in two cases, namely with and without accounting for backscatter gradient (BG), are used. However, the difference between backscatter time series obtained separately in these two cases and its impact on retrieving elevation change are not well known. Here we first compare the mean profiles of the Ku and Ka band backscatter over the Greenland ice sheet (GrIS), with results illustrating that the Ku-band backscatter is 3 ∼ 5 dB larger than that of the Ka band. We then conduct statistic analysis about time series of backscatter formed separately in the above two cases for both Ku and Ka bands over two regions in the GrIS. It is found that the standard deviation of backscatter time series becomes slightly smaller after removing the BG effect, which suggests that the method for the BG correction is effective. Furthermore, the impact on elevation change from backscatter change due to the BG effect is separately assessed for both Ku and Ka bands over the GrIS. We conclude that Ka band altimetry would benefit from a BG induced backscatter analysis (∼10% over region 2). This study may provide a reference to form backscatter time series towards refining elevation change time series from satellite radar altimetry over ice sheets using repeat-track analysis.

  15. Procedures for numerical analysis of circadian rhythms

    PubMed Central

    REFINETTI, ROBERTO; LISSEN, GERMAINE CORNÉ; HALBERG, FRANZ

    2010-01-01

    This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed. PMID:23710111

  16. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  17. Time series analysis for psychological research: examining and forecasting change

    PubMed Central

    Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341

  18. Time series analysis for psychological research: examining and forecasting change.

    PubMed

    Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials.

  19. Comparison of Nomothetic versus Idiographic-Oriented Methods for Making Predictions about Distal Outcomes from Time Series Data

    ERIC Educational Resources Information Center

    Castro-Schilo, Laura; Ferrer, Emilio

    2013-01-01

    We illustrate the idiographic/nomothetic debate by comparing 3 approaches to using daily self-report data on affect for predicting relationship quality and breakup. The 3 approaches included (a) the first day in the series of daily data; (b) the mean and variability of the daily series; and (c) parameters from dynamic factor analysis, a…

  20. Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Isa Aliyu, Aliyu; Baleanu, Dumitru

    2018-03-01

    This research analyzes the symmetry analysis, explicit solutions and convergence analysis to the time fractional Cahn-Allen (CA) and time-fractional Klein-Gordon (KG) equations with Riemann-Liouville (RL) derivative. The time fractional CA and time fractional KG are reduced to respective nonlinear ordinary differential equation of fractional order. We solve the reduced fractional ODEs using an explicit power series method. The convergence analysis for the obtained explicit solutions are investigated. Some figures for the obtained explicit solutions are also presented.

  1. Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers

    PubMed Central

    Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope

    2013-01-01

    Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448

  2. Review of current GPS methodologies for producing accurate time series and their error sources

    NASA Astrophysics Data System (ADS)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.

  3. Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases.

    PubMed

    Altiparmak, Fatih; Ferhatosmanoglu, Hakan; Erdal, Selnur; Trost, Donald C

    2006-04-01

    An effective analysis of clinical trials data involves analyzing different types of data such as heterogeneous and high dimensional time series data. The current time series analysis methods generally assume that the series at hand have sufficient length to apply statistical techniques to them. Other ideal case assumptions are that data are collected in equal length intervals, and while comparing time series, the lengths are usually expected to be equal to each other. However, these assumptions are not valid for many real data sets, especially for the clinical trials data sets. An addition, the data sources are different from each other, the data are heterogeneous, and the sensitivity of the experiments varies by the source. Approaches for mining time series data need to be revisited, keeping the wide range of requirements in mind. In this paper, we propose a novel approach for information mining that involves two major steps: applying a data mining algorithm over homogeneous subsets of data, and identifying common or distinct patterns over the information gathered in the first step. Our approach is implemented specifically for heterogeneous and high dimensional time series clinical trials data. Using this framework, we propose a new way of utilizing frequent itemset mining, as well as clustering and declustering techniques with novel distance metrics for measuring similarity between time series data. By clustering the data, we find groups of analytes (substances in blood) that are most strongly correlated. Most of these relationships already known are verified by the clinical panels, and, in addition, we identify novel groups that need further biomedical analysis. A slight modification to our algorithm results an effective declustering of high dimensional time series data, which is then used for "feature selection." Using industry-sponsored clinical trials data sets, we are able to identify a small set of analytes that effectively models the state of normal health.

  4. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K

    2018-02-01

    In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.

  5. Modified DTW for a quantitative estimation of the similarity between rainfall time series

    NASA Astrophysics Data System (ADS)

    Djallel Dilmi, Mohamed; Barthès, Laurent; Mallet, Cécile; Chazottes, Aymeric

    2017-04-01

    The Precipitations are due to complex meteorological phenomenon and can be described as intermittent process. The spatial and temporal variability of this phenomenon is significant and covers large scales. To analyze and model this variability and / or structure, several studies use a network of rain gauges providing several time series of precipitation measurements. To compare these different time series, the authors compute for each time series some parameters (PDF, rain peak intensity, occurrence, amount, duration, intensity …). However, and despite the calculation of these parameters, the comparison of the parameters between two series of measurements remains qualitative. Due to the advection processes, when different sensors of an observation network measure precipitation time series identical in terms of intermitency or intensities, there is a time lag between the different measured series. Analyzing and extracting relevant information on physical phenomena from these precipitation time series implies the development of automatic analytical methods capable of comparing two time series of precipitation measured by different sensors or at two different locations and thus quantifying the difference / similarity. The limits of the Euclidean distance to measure the similarity between the time series of precipitation have been well demonstrated and explained (eg the Euclidian distance is indeed very sensitive to the effects of phase shift : between two identical but slightly shifted time series, this distance is not negligible). To quantify and analysis these time lag, the correlation functions are well established, normalized and commonly used to measure the spatial dependences that are required by many applications. However, authors generally observed that there is always a considerable scatter of the inter-rain gauge correlation coefficients obtained from the individual pairs of rain gauges. Because of a substantial dispersion of estimated time lag, the interpretation of this inter-correlation is not straightforward. We propose here to use an improvement of the Euclidian distance which integrates the global complexity of the rainfall series. The Dynamic Time Wrapping (DTW) used in speech recognition allows matching two time series instantly different and provide the most probable time lag. However, the original formulation of the DTW suffers from some limitations. In particular, it is not adequate to the rain intermittency. In this study we present an adaptation of the DTW for the analysis of rainfall time series : we used time series from the "Météo France" rain gauge network observed between January 1st, 2007 and December 31st, 2015 on 25 stations located in the Île de France area. Then we analyze the results (eg. The distance, the relationship between the time lag detected by our methods and others measured parameters like speed and direction of the wind…) to show the ability of the proposed similarity to provide usefull information on the rain structure. The possibility of using this measure of similarity to define a quality indicator of a sensor integrated into an observation network is also envisaged.

  6. Smoothing of climate time series revisited

    NASA Astrophysics Data System (ADS)

    Mann, Michael E.

    2008-08-01

    We present an easily implemented method for smoothing climate time series, generalizing upon an approach previously described by Mann (2004). The method adaptively weights the three lowest order time series boundary constraints to optimize the fit with the raw time series. We apply the method to the instrumental global mean temperature series from 1850-2007 and to various surrogate global mean temperature series from 1850-2100 derived from the CMIP3 multimodel intercomparison project. These applications demonstrate that the adaptive method systematically out-performs certain widely used default smoothing methods, and is more likely to yield accurate assessments of long-term warming trends.

  7. Temporal evolution of total ozone and circulation patterns over European mid-latitudes

    NASA Astrophysics Data System (ADS)

    Monge Sanz, B. M.; Casale, G. R.; Palmieri, S.; Siani, A. M.

    2003-04-01

    Linear correlation analysis and the running correlation technique are used to investigate the interannual and interdecadal variations of total ozone (TO) over several mid-latitude European locations. The study includes the longest series of ozone data, that of the Swiss station of Arosa. TO series have been related to time series of two circulation indices, the North Atlantic Oscillation Index (NAOI) and the Arctic Oscillation Index (AOI). The analysis has been performed with monthly data, and both series containing all the months of the year and winter (DJFM) series have been used. Special attention has been given to winter series, which exhibit very high correlation coefficients with NAOI and AOI; interannual variations of this relationship are studied by applying the running correlation technique. TO and circulation indices data series have been also partitioned into their different time-scale components with the Kolmogorov-Zurbenko method. Long-term components indicate the existence of strong opposite connection between total ozone and circulation patterns over the studied region during the last three decades. However, it is also observed that this relation has not always been so, and in previous times differences in the correlation amplitude and sign have been detected.

  8. What does the structure of its visibility graph tell us about the nature of the time series?

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Donner, Reik V.

    2017-04-01

    Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).

  9. Application of modern tests for stationarity to single-trial MEG data: transferring powerful statistical tools from econometrics to neuroscience.

    PubMed

    Kipiński, Lech; König, Reinhard; Sielużycki, Cezary; Kordecki, Wojciech

    2011-10-01

    Stationarity is a crucial yet rarely questioned assumption in the analysis of time series of magneto- (MEG) or electroencephalography (EEG). One key drawback of the commonly used tests for stationarity of encephalographic time series is the fact that conclusions on stationarity are only indirectly inferred either from the Gaussianity (e.g. the Shapiro-Wilk test or Kolmogorov-Smirnov test) or the randomness of the time series and the absence of trend using very simple time-series models (e.g. the sign and trend tests by Bendat and Piersol). We present a novel approach to the analysis of the stationarity of MEG and EEG time series by applying modern statistical methods which were specifically developed in econometrics to verify the hypothesis that a time series is stationary. We report our findings of the application of three different tests of stationarity--the Kwiatkowski-Phillips-Schmidt-Schin (KPSS) test for trend or mean stationarity, the Phillips-Perron (PP) test for the presence of a unit root and the White test for homoscedasticity--on an illustrative set of MEG data. For five stimulation sessions, we found already for short epochs of duration of 250 and 500 ms that, although the majority of the studied epochs of single MEG trials were usually mean-stationary (KPSS test and PP test), they were classified as nonstationary due to their heteroscedasticity (White test). We also observed that the presence of external auditory stimulation did not significantly affect the findings regarding the stationarity of the data. We conclude that the combination of these tests allows a refined analysis of the stationarity of MEG and EEG time series.

  10. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  11. Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes

    PubMed Central

    Manning, Cerys; Rattray, Magnus

    2017-01-01

    Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5’ LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package. PMID:28493880

  12. Analysis of Zenith Tropospheric Delay above Europe based on long time series derived from the EPN data

    NASA Astrophysics Data System (ADS)

    Baldysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; Kroszczynski, Krzysztof; Araszkiewicz, Andrzej

    2015-04-01

    In recent years, the GNSS system began to play an increasingly important role in the research related to the climate monitoring. Based on the GPS system, which has the longest operational capability in comparison with other systems, and a common computational strategy applied to all observations, long and homogeneous ZTD (Zenith Tropospheric Delay) time series were derived. This paper presents results of analysis of 16-year ZTD time series obtained from the EPN (EUREF Permanent Network) reprocessing performed by the Military University of Technology. To maintain the uniformity of data, analyzed period of time (1998-2013) is exactly the same for all stations - observations carried out before 1998 were removed from time series and observations processed using different strategy were recalculated according to the MUT LAC approach. For all 16-year time series (59 stations) Lomb-Scargle periodograms were created to obtain information about the oscillations in ZTD time series. Due to strong annual oscillations which disturb the character of oscillations with smaller amplitude and thus hinder their investigation, Lomb-Scargle periodograms for time series with the deleted annual oscillations were created in order to verify presence of semi-annual, ter-annual and quarto-annual oscillations. Linear trend and seasonal components were estimated using LSE (Least Square Estimation) and Mann-Kendall trend test were used to confirm the presence of linear trend designated by LSE method. In order to verify the effect of the length of time series on the estimated size of the linear trend, comparison between two different length of ZTD time series was performed. To carry out a comparative analysis, 30 stations which have been operating since 1996 were selected. For these stations two periods of time were analyzed: shortened 16-year (1998-2013) and full 18-year (1996-2013). For some stations an additional two years of observations have significant impact on changing the size of linear trend - only for 4 stations the size of linear trend was exactly the same for two periods of time. In one case, the nature of the trend has changed from negative (16-year time series) for positive (18-year time series). The average value of a linear trends for 16-year time series is 1,5 mm/decade, but their spatial distribution is not uniform. The average value of linear trends for all 18-year time series is 2,0 mm/decade, with better spatial distribution and smaller discrepancies.

  13. A geodetic matched filter search for slow slip with application to the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W. B.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low-frequency earthquakes and repeating earthquakes provide evidence of low-amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent data sets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with postprocessed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modeling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T, and Mw of events larger than Mw 6 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the downdip edges of the Mw>7.5 slow slip events.

  14. A geodetic matched-filter search for slow slip with application to the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low frequency earthquakes and repeating earthquakes provide evidence of low amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here, we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent datasets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with post-processed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modelling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T and Mw of events larger than Mw 6.0 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the down dip edges of the Mw > 7.5 SSEs.

  15. Study on common seasonal signals in GPS time series and environmental loadings using Multichannel Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Bogusz, Janusz

    2017-04-01

    Seasonal oscillations in the GPS position time series can arise from real geophysical effects and numerical artefacts. According to Dong et al. (2002) environmental loading effects can account for approximately 40% of the total variance of the annual signals in GPS time series, however using generally acknowledged methods (e.g. Least Squares Estimation, Wavelet Decomposition, Singular Spectrum Analysis) to model seasonal signals we are not able to separate real from spurious signals (effects of mismodelling aliased into annual period as well as draconitic). Therefore, we propose to use Multichannel Singular Spectrum Analysis (MSSA) to determine seasonal oscillations (with annual and semi-annual periods) from GPS position time series and environmental loading displacement models. The MSSA approach is an extension of the classical Karhunen-Loève method and it is a special case of SSA for multivariate time series. The main advantage of MSSA is the possibility to extract common seasonal signals for stations from selected area and to investigate the causality between a set of time series as well. In this research, we explored the ability of MSSA application to separate real geophysical effects from spurious effects in GPS time series. For this purpose, we used GPS position changes and environmental loading models. We analysed the topocentric time series from 250 selected stations located worldwide, delivered from Network Solution obtained by the International GNSS Service (IGS) as a contribution to the latest realization of the International Terrestrial Reference System (namely ITRF2014, Rebishung et al., 2016). We also researched atmospheric, hydrological and non-tidal oceanic loading models provided by the EOST/IPGS Loading Service in the Centre-of-Figure (CF) reference frame. The analysed displacements were estimated from ERA-Interim (surface pressure), MERRA-land (soil moisture and snow) as well as ECCO2 ocean bottom pressure. We used Multichannel Singular Spectrum Analysis to determine common seasonal signals in two case studies with adopted a 3-years lag-window as the optimal window size. We also inferred the statistical significance of oscillations through the Monte Carlo MSSA method (Allen and Robertson, 1996). In the first case study, we investigated the common spatio-temporal seasonal signals for all stations. For this purpose, we divided selected stations with respect to the continents. For instance, for stations located in Europe, seasonal oscillations accounts for approximately 45% of the GPS-derived data variance. Much higher variance of seasonal signals is explained by hydrological loadings of about 92%, while the non-tidal oceanic loading accounted for 31% of total variance. In the second case study, we analysed the capability of the MSSA method to establish a causality between several time series. Each of estimated Principal Component represents pattern of the common signal for all analysed data. For ZIMM station (Zimmerwald, Switzerland), the 1st, 2nd and 9th, 10th Principal Components, which accounts for 35% of the variance, corresponds to the annual and semi-annual signals. In this part, we applied the non-parametric MSSA approach to extract the common seasonal signals for GPS time series and environmental loadings for each of the 250 stations with clear statement, that some part of seasonal signal reflects the real geophysical effects. REFERENCES: 1. Allen, M. and Robertson, A.: 1996, Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, No. 11, 775-784. DOI: 10.1007/s003820050142. 2. Dong, D., Fang, P., Bock, Y., Cheng, M.K. and Miyazaki, S.: 2002, Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107, No. B4, 2075. DOI: 10.1029/2001JB000573. 3. Rebischung, P., Altamimi, Z., Ray, J. and Garayt, B.: 2016, The IGS contribution to ITRF2014. Journal of Geodesy, 90, No. 7, 611-630. DOI:10.1007/s00190-016-0897-6.

  16. Volatility behavior of visibility graph EMD financial time series from Ising interacting system

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Wang, Jun; Fang, Wen

    2015-08-01

    A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.

  17. Centrality measures in temporal networks with time series analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  18. Pi2 detection using Empirical Mode Decomposition (EMD)

    NASA Astrophysics Data System (ADS)

    Mieth, Johannes Z. D.; Frühauff, Dennis; Glassmeier, Karl-Heinz

    2017-04-01

    Empirical Mode Decomposition has been used as an alternative method to wavelet transformation to identify onset times of Pi2 pulsations in data sets of the Scandinavian Magnetometer Array (SMA). Pi2 pulsations are magnetohydrodynamic waves occurring during magnetospheric substorms. Almost always Pi2 are observed at substorm onset in mid to low latitudes on Earth's nightside. They are fed by magnetic energy release caused by dipolarization processes. Their periods lie between 40 to 150 seconds. Usually, Pi2 are detected using wavelet transformation. Here, Empirical Mode Decomposition (EMD) is presented as an alternative approach to the traditional procedure. EMD is a young signal decomposition method designed for nonlinear and non-stationary time series. It provides an adaptive, data driven, and complete decomposition of time series into slow and fast oscillations. An optimized version using Monte-Carlo-type noise assistance is used here. By displaying the results in a time-frequency space a characteristic frequency modulation is observed. This frequency modulation can be correlated with the onset of Pi2 pulsations. A basic algorithm to find the onset is presented. Finally, the results are compared to classical wavelet-based analysis. The use of different SMA stations furthermore allows the spatial analysis of Pi2 onset times. EMD mostly finds application in the fields of engineering and medicine. This work demonstrates the applicability of this method to geomagnetic time series.

  19. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  20. Application of the Hilbert-Huang Transform to Financial Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden

    2005-01-01

    A paper discusses the application of the Hilbert-Huang transform (HHT) method to time-series financial-market data. The method was described, variously without and with the HHT name, in several prior NASA Tech Briefs articles and supporting documents. To recapitulate: The method is especially suitable for analyzing time-series data that represent nonstationary and nonlinear phenomena including physical phenomena and, in the present case, financial-market processes. The method involves the empirical mode decomposition (EMD), in which a complicated signal is decomposed into a finite number of functions, called "intrinsic mode functions" (IMFs), that admit well-behaved Hilbert transforms. The HHT consists of the combination of EMD and Hilbert spectral analysis. The local energies and the instantaneous frequencies derived from the IMFs through Hilbert transforms can be used to construct an energy-frequency-time distribution, denoted a Hilbert spectrum. The instant paper begins with a discussion of prior approaches to quantification of market volatility, summarizes the HHT method, then describes the application of the method in performing time-frequency analysis of mortgage-market data from the years 1972 through 2000. Filtering by use of the EMD is shown to be useful for quantifying market volatility.

  1. Comparison of ITRF2014 station coordinate input time series of DORIS, VLBI and GNSS

    NASA Astrophysics Data System (ADS)

    Tornatore, Vincenza; Tanır Kayıkçı, Emine; Roggero, Marco

    2016-12-01

    In this paper station coordinate time series from three space geodesy techniques that have contributed to the realization of the International Terrestrial Reference Frame 2014 (ITRF2014) are compared. In particular the height component time series extracted from official combined intra-technique solutions submitted for ITRF2014 by DORIS, VLBI and GNSS Combination Centers have been investigated. The main goal of this study is to assess the level of agreement among these three space geodetic techniques. A novel analytic method, modeling time series as discrete-time Markov processes, is presented and applied to the compared time series. The analysis method has proven to be particularly suited to obtain quasi-cyclostationary residuals which are an important property to carry out a reliable harmonic analysis. We looked for common signatures among the three techniques. Frequencies and amplitudes of the detected signals have been reported along with their percentage of incidence. Our comparison shows that two of the estimated signals, having one-year and 14 days periods, are common to all the techniques. Different hypotheses on the nature of the signal having a period of 14 days are presented. As a final check we have compared the estimated velocities and their standard deviations (STD) for the sites that co-located the VLBI, GNSS and DORIS stations, obtaining a good agreement among the three techniques both in the horizontal (1.0 mm/yr mean STD) and in the vertical (0.7 mm/yr mean STD) component, although some sites show larger STDs, mainly due to lack of data, different data spans or noisy observations.

  2. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  3. a Method of Time-Series Change Detection Using Full Polsar Images from Different Sensors

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yang, J.; Zhao, J.; Shi, H.; Yang, L.

    2018-04-01

    Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.

  4. Multivariable nonlinear analysis of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2003-05-01

    We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.

  5. Spectral and correlation analysis with applications to middle-atmosphere radars

    NASA Technical Reports Server (NTRS)

    Rastogi, Prabhat K.

    1989-01-01

    The correlation and spectral analysis methods for uniformly sampled stationary random signals, estimation of their spectral moments, and problems arising due to nonstationary are reviewed. Some of these methods are already in routine use in atmospheric radar experiments. Other methods based on the maximum entropy principle and time series models have been used in analyzing data, but are just beginning to receive attention in the analysis of radar signals. These methods are also briefly discussed.

  6. Unveiling signatures of interdecadal climate changes by Hilbert analysis

    NASA Astrophysics Data System (ADS)

    Zappalà, Dario; Barreiro, Marcelo; Masoller, Cristina

    2017-04-01

    A recent study demonstrated that, in a class of networks of oscillators, the optimal network reconstruction from dynamics is obtained when the similarity analysis is performed not on the original dynamical time series, but on transformed series obtained by Hilbert transform. [1] That motivated us to use Hilbert transform to study another kind of (in a broad sense) "oscillating" series, such as the series of temperature. Actually, we found that Hilbert analysis of SAT (Surface Air Temperature) time series uncovers meaningful information about climate and is therefore a promising tool for the study of other climatological variables. [2] In this work we analysed a large dataset of SAT series, performing Hilbert transform and further analysis with the goal of finding signs of climate change during the analysed period. We used the publicly available ERA-Interim dataset, containing reanalysis data. [3] In particular, we worked on daily SAT time series, from year 1979 to 2015, in 16380 points arranged over a regular grid on the Earth surface. From each SAT time series we calculate the anomaly series and also, by using the Hilbert transform, we calculate the instantaneous amplitude and instantaneous frequency series. Our first approach is to calculate the relative variation: the difference between the average value on the last 10 years and the average value on the first 10 years, divided by the average value over all the analysed period. We did this calculations on our transformed series: frequency and amplitude, both with average values and standard deviation values. Furthermore, to have a comparison with an already known analysis methods, we did these same calculations on the anomaly series. We plotted these results as maps, where the colour of each site indicates the value of its relative variation. Finally, to gain insight in the interpretation of our results over real SAT data, we generated synthetic sinusoidal series with various levels of additive noise. By applying Hilbert analysis to the synthetic data, we uncovered a clear trend between mean amplitude and mean frequency: as the noise level grows, the amplitude increases while the frequency decreases. Research funded in part by AGAUR (Generalitat de Catalunya), EU LINC project (Grant No. 289447) and Spanish MINECO (FIS2015-66503-C3-2-P).

  7. Pearson correlation estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.

  8. Re-analysis of Alaskan benchmark glacier mass-balance data using the index method

    USGS Publications Warehouse

    Van Beusekom, Ashely E.; O'Nell, Shad R.; March, Rod S.; Sass, Louis C.; Cox, Leif H.

    2010-01-01

    At Gulkana and Wolverine Glaciers, designated the Alaskan benchmark glaciers, we re-analyzed and re-computed the mass balance time series from 1966 to 2009 to accomplish our goal of making more robust time series. Each glacier's data record was analyzed with the same methods. For surface processes, we estimated missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernized the traditional degree-day model and derived new degree-day factors in an effort to match the balance time series more closely. We estimated missing yearly-site data with a new balance gradient method. These efforts showed that an additional step needed to be taken at Wolverine Glacier to adjust for non-representative index sites. As with the previously calculated mass balances, the re-analyzed balances showed a continuing trend of mass loss. We noted that the time series, and thus our estimate of the cumulative mass loss over the period of record, was very sensitive to the data input, and suggest the need to add data-collection sites and modernize our weather stations.

  9. Rainfall Prediction of Indian Peninsula: Comparison of Time Series Based Approach and Predictor Based Approach using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Dash, Y.; Mishra, S. K.; Panigrahi, B. K.

    2017-12-01

    Prediction of northeast/post monsoon rainfall which occur during October, November and December (OND) over Indian peninsula is a challenging task due to the dynamic nature of uncertain chaotic climate. It is imperative to elucidate this issue by examining performance of different machine leaning (ML) approaches. The prime objective of this research is to compare between a) statistical prediction using historical rainfall observations and global atmosphere-ocean predictors like Sea Surface Temperature (SST) and Sea Level Pressure (SLP) and b) empirical prediction based on a time series analysis of past rainfall data without using any other predictors. Initially, ML techniques have been applied on SST and SLP data (1948-2014) obtained from NCEP/NCAR reanalysis monthly mean provided by the NOAA ESRL PSD. Later, this study investigated the applicability of ML methods using OND rainfall time series for 1948-2014 and forecasted up to 2018. The predicted values of aforementioned methods were verified using observed time series data collected from Indian Institute of Tropical Meteorology and the result revealed good performance of ML algorithms with minimal error scores. Thus, it is found that both statistical and empirical methods are useful for long range climatic projections.

  10. Comparison of time-series registration methods in breast dynamic infrared imaging

    NASA Astrophysics Data System (ADS)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  11. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.

  12. The application of neural networks to myoelectric signal analysis: a preliminary study.

    PubMed

    Kelly, M F; Parker, P A; Scott, R N

    1990-03-01

    Two neural network implementations are applied to myoelectric signal (MES) analysis tasks. The motivation behind this research is to explore more reliable methods of deriving control for multidegree of freedom arm prostheses. A discrete Hopfield network is used to calculate the time series parameters for a moving average MES model. It is demonstrated that the Hopfield network is capable of generating the same time series parameters as those produced by the conventional sequential least squares (SLS) algorithm. Furthermore, it can be extended to applications utilizing larger amounts of data, and possibly to higher order time series models, without significant degradation in computational efficiency. The second neural network implementation involves using a two-layer perceptron for classifying a single site MES based on two features, specifically the first time series parameter, and the signal power. Using these features, the perceptron is trained to distinguish between four separate arm functions. The two-dimensional decision boundaries used by the perceptron classifier are delineated. It is also demonstrated that the perceptron is able to rapidly compensate for variations when new data are incorporated into the training set. This adaptive quality suggests that perceptrons may provide a useful tool for future MES analysis.

  13. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  14. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

  15. "Batch" kinetics in flow: online IR analysis and continuous control.

    PubMed

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monitoring of Viral Induced Cell Death Using Real Time Cell Analysis

    DTIC Science & Technology

    2016-11-01

    studies have shown that real- time cell analysis (RTCA) platforms such as the xCELLigence can be used to gather quantitative measurements of viral...Teng, Z., Kuang, X., Wang, J., Zhang, X. Real- time cell analysis – A new method for dynamic, quantitative measurement of infectious viruses and...cytopathogenicity. A) Real- time monitoring of BSR cells infected with a 1:10 dilution series of Gan Gan virus. The curve is an average of eight

  17. Model Performance Evaluation and Scenario Analysis ...

    EPA Pesticide Factsheets

    This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit measures that capture magnitude only, sequence only, and combined magnitude and sequence errors. The performance measures include error analysis, coefficient of determination, Nash-Sutcliffe efficiency, and a new weighted rank method. These performance metrics only provide useful information about the overall model performance. Note that MPESA is based on the separation of observed and simulated time series into magnitude and sequence components. The separation of time series into magnitude and sequence components and the reconstruction back to time series provides diagnostic insights to modelers. For example, traditional approaches lack the capability to identify if the source of uncertainty in the simulated data is due to the quality of the input data or the way the analyst adjusted the model parameters. This report presents a suite of model diagnostics that identify if mismatches between observed and simulated data result from magnitude or sequence related errors. MPESA offers graphical and statistical options that allow HSPF users to compare observed and simulated time series and identify the parameter values to adjust or the input data to modify. The scenario analysis part of the too

  18. Increasing the quality, comparability and accessibility of phytoplankton species composition time-series data

    NASA Astrophysics Data System (ADS)

    Zingone, Adriana; Harrison, Paul J.; Kraberg, Alexandra; Lehtinen, Sirpa; McQuatters-Gollop, Abigail; O'Brien, Todd; Sun, Jun; Jakobsen, Hans H.

    2015-09-01

    Phytoplankton diversity and its variation over an extended time scale can provide answers to a wide range of questions relevant to societal needs. These include human health, the safe and sustained use of marine resources and the ecological status of the marine environment, including long-term changes under the impact of multiple stressors. The analysis of phytoplankton data collected at the same place over time, as well as the comparison among different sampling sites, provide key information for assessing environmental change, and evaluating new actions that must be made to reduce human induced pressures on the environment. To achieve these aims, phytoplankton data may be used several decades later by users that have not participated in their production, including automatic data retrieval and analysis. The methods used in phytoplankton species analysis vary widely among research and monitoring groups, while quality control procedures have not been implemented in most cases. Here we highlight some of the main differences in the sampling and analytical procedures applied to phytoplankton analysis and identify critical steps that are required to improve the quality and inter-comparability of data obtained at different sites and/or times. Harmonization of methods may not be a realistic goal, considering the wide range of purposes of phytoplankton time-series data collection. However, we propose that more consistent and detailed metadata and complementary information be recorded and made available along with phytoplankton time-series datasets, including description of the procedures and elements allowing for a quality control of the data. To keep up with the progress in taxonomic research, there is a need for continued training of taxonomists, and for supporting and complementing existing web resources, in order to allow a constant upgrade of knowledge in phytoplankton classification and identification. Efforts towards the improvement of metadata recording, data annotation and quality control procedures will ensure the internal consistency of phytoplankton time series and facilitate their comparability and accessibility, thus strongly increasing the value of the precious information they provide. Ultimately, the sharing of quality controlled data will allow one to recoup the high cost of obtaining the data through the multiple use of the time-series data in various projects over many decades.

  19. Mutual information estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    For the automated, objective and joint analysis of time series, similarity measures are crucial. Used in the analysis of climate records, they allow for a complimentary, unbiased view onto sparse datasets. The irregular sampling of many of these time series, however, makes it necessary to either perform signal reconstruction (e.g. interpolation) or to develop and use adapted measures. Standard linear interpolation comes with an inevitable loss of information and bias effects. We have recently developed a Gaussian kernel-based correlation algorithm with which the interpolation error can be substantially lowered, but this would not work should the functional relationship in a bivariate setting be non-linear. We therefore propose an algorithm to estimate lagged auto and cross mutual information from irregularly sampled time series. We have extended the standard and adaptive binning histogram estimators and use Gaussian distributed weights in the estimation of the (joint) probabilities. To test our method we have simulated linear and nonlinear auto-regressive processes with Gamma-distributed inter-sampling intervals. We have then performed a sensitivity analysis for the estimation of actual coupling length, the lag of coupling and the decorrelation time in the synthetic time series and contrast our results to the performance of a signal reconstruction scheme. Finally we applied our estimator to speleothem records. We compare the estimated memory (or decorrelation time) to that from a least-squares estimator based on fitting an auto-regressive process of order 1. The calculated (cross) mutual information results are compared for the different estimators (standard or adaptive binning) and contrasted with results from signal reconstruction. We find that the kernel-based estimator has a significantly lower root mean square error and less systematic sampling bias than the interpolation-based method. It is possible that these encouraging results could be further improved by using non-histogram mutual information estimators, like k-Nearest Neighbor or Kernel-Density estimators, but for short (<1000 points) and irregularly sampled datasets the proposed algorithm is already a great improvement.

  20. Identifying Autocorrelation Generated by Various Error Processes in Interrupted Time-Series Regression Designs: A Comparison of AR1 and Portmanteau Tests

    ERIC Educational Resources Information Center

    Huitema, Bradley E.; McKean, Joseph W.

    2007-01-01

    Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…

  1. Identifying Changes of Complex Flood Dynamics with Recurrence Analysis

    NASA Astrophysics Data System (ADS)

    Wendi, D.; Merz, B.; Marwan, N.

    2016-12-01

    Temporal changes in flood hazard system are known to be difficult to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. Moreover hydrological time series (i.e. discharge) are often subject to measurement errors, such as rating curve error especially in the case of extremes where observation are actually derived through extrapolation. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. Sensitivity of the common measurement errors and noise on recurrence analysis will also be analyzed and evaluated against conventional methods. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic to certain flood events.

  2. Statistical physics approaches to financial fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhong

    2009-12-01

    Complex systems attract many researchers from various scientific fields. Financial markets are one of these widely studied complex systems. Statistical physics, which was originally developed to study large systems, provides novel ideas and powerful methods to analyze financial markets. The study of financial fluctuations characterizes market behavior, and helps to better understand the underlying market mechanism. Our study focuses on volatility, a fundamental quantity to characterize financial fluctuations. We examine equity data of the entire U.S. stock market during 2001 and 2002. To analyze the volatility time series, we develop a new approach, called return interval analysis, which examines the time intervals between two successive volatilities exceeding a given value threshold. We find that the return interval distribution displays scaling over a wide range of thresholds. This scaling is valid for a range of time windows, from one minute up to one day. Moreover, our results are similar for commodities, interest rates, currencies, and for stocks of different countries. Further analysis shows some systematic deviations from a scaling law, which we can attribute to nonlinear correlations in the volatility time series. We also find a memory effect in return intervals for different time scales, which is related to the long-term correlations in the volatility. To further characterize the mechanism of price movement, we simulate the volatility time series using two different models, fractionally integrated generalized autoregressive conditional heteroscedasticity (FIGARCH) and fractional Brownian motion (fBm), and test these models with the return interval analysis. We find that both models can mimic time memory but only fBm shows scaling in the return interval distribution. In addition, we examine the volatility of daily opening to closing and of closing to opening. We find that each volatility distribution has a power law tail. Using the detrended fluctuation analysis (DFA) method, we show long-term auto-correlations in these volatility time series. We also analyze return, the actual price changes of stocks, and find that the returns over the two sessions are often anti-correlated.

  3. Time Series Modelling of Syphilis Incidence in China from 2005 to 2012.

    PubMed

    Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau

    2016-01-01

    The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis.

  4. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  5. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  6. Comparison between four dissimilar solar panel configurations

    NASA Astrophysics Data System (ADS)

    Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.

    2017-12-01

    Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.

  7. A perturbative approach for enhancing the performance of time series forecasting.

    PubMed

    de Mattos Neto, Paulo S G; Ferreira, Tiago A E; Lima, Aranildo R; Vasconcelos, Germano C; Cavalcanti, George D C

    2017-04-01

    This paper proposes a method to perform time series prediction based on perturbation theory. The approach is based on continuously adjusting an initial forecasting model to asymptotically approximate a desired time series model. First, a predictive model generates an initial forecasting for a time series. Second, a residual time series is calculated as the difference between the original time series and the initial forecasting. If that residual series is not white noise, then it can be used to improve the accuracy of the initial model and a new predictive model is adjusted using residual series. The whole process is repeated until convergence or the residual series becomes white noise. The output of the method is then given by summing up the outputs of all trained predictive models in a perturbative sense. To test the method, an experimental investigation was conducted on six real world time series. A comparison was made with six other methods experimented and ten other results found in the literature. Results show that not only the performance of the initial model is significantly improved but also the proposed method outperforms the other results previously published. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Analysis of crude oil markets with improved multiscale weighted permutation entropy

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Liu, Cheng

    2018-03-01

    Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.

  9. CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis.

    PubMed

    Vrahatis, Aristidis G; Dimitrakopoulou, Konstantina; Balomenos, Panos; Tsakalidis, Athanasios K; Bezerianos, Anastasios

    2016-03-15

    In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time. To address these challenges, we developed time-vaRying enriCHment integrOmics Subpathway aNalysis tOol (CHRONOS) by integrating time series mRNA/microRNA expression data with KEGG pathway maps and microRNA-target interactions. Specifically, microRNA-mediated subpathway topologies are extracted and evaluated based on the temporal transition and the fold change activity of the linked genes/microRNAs. Further, we provide measures that capture the structural and functional features of subpathways in relation to the complete organism pathway atlas. Our application to synthetic and real data shows that CHRONOS outperforms current subpathway-based methods into unraveling the inherent dynamic properties of pathways. CHRONOS is freely available at http://biosignal.med.upatras.gr/chronos/ tassos.bezerianos@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient

    PubMed Central

    Zhang, Zhenwei; VanSwearingen, Jessie; Brach, Jennifer S.; Perera, Subashan

    2016-01-01

    Human gait is a complex interaction of many nonlinear systems and stride intervals exhibit self-similarity over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree and can be interpreted as a biomarker of relative diseases. The previous study showed that the average wavelet method provides the most accurate results to estimate this scaling exponent when applied to stride interval time series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet method. This paper presents a comparative numerical analysis of sixteen mother wavelets using simulated and real fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good performance on the mean square error test for both short and long signals. Next, we comparatively analyzed these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and relatively low errors for short signal lengths. It can be considered as the most suitable mother function without the burden of considering the signal length. PMID:27960102

  11. A hybrid approach EMD-HW for short-term forecasting of daily stock market time series data

    NASA Astrophysics Data System (ADS)

    Awajan, Ahmad Mohd; Ismail, Mohd Tahir

    2017-08-01

    Recently, forecasting time series has attracted considerable attention in the field of analyzing financial time series data, specifically within the stock market index. Moreover, stock market forecasting is a challenging area of financial time-series forecasting. In this study, a hybrid methodology between Empirical Mode Decomposition with the Holt-Winter method (EMD-HW) is used to improve forecasting performances in financial time series. The strength of this EMD-HW lies in its ability to forecast non-stationary and non-linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy and offers a new forecasting method in time series. The daily stock market time series data of 11 countries is applied to show the forecasting performance of the proposed EMD-HW. Based on the three forecast accuracy measures, the results indicate that EMD-HW forecasting performance is superior to traditional Holt-Winter forecasting method.

  12. Enrollment Projection within a Decision-Making Framework.

    ERIC Educational Resources Information Center

    Armstrong, David F.; Nunley, Charlene Wenckowski

    1981-01-01

    Two methods used to predict enrollment at Montgomery College in Maryland are compared and evaluated, and the administrative context in which they are used is considered. The two methods involve time series analysis (curve fitting) and indicator techniques (yield from components). (MSE)

  13. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  14. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  15. Assessment of trend and seasonality in road accident data: an Iranian case study.

    PubMed

    Razzaghi, Alireza; Bahrampour, Abbas; Baneshi, Mohammad Reza; Zolala, Farzaneh

    2013-06-01

    Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data from Taybad city. This study is a cross-sectional study. We used data from accidents occurring in Taybad between 2007 and 2011. We obtained the data from the Ministry of Health (MOH) and used the time series method with a time lag of one month. After plotting the trend, non-stationary data in mean and variance were removed using Box-Cox transformation and a differencing method respectively. The ACF and PACF plots were used to control the stationary situation. The traffic accidents in our study had an increasing trend over the five years of study. Based on ACF and PACF plots gained after applying Box-Cox transformation and differencing, data did not fit to a time series model. Therefore, neither ARIMA model nor seasonality were observed. Traffic accidents in Taybad have an upward trend. In addition, we expected either the AR model, MA model or ARIMA model to have a seasonal trend, yet this was not observed in this analysis. Several reasons may have contributed to this situation, such as uncertainty of the quality of data, weather changes, and behavioural factors that are not taken into account by time series analysis.

  16. The Use of Time Series Analysis and t Tests with Serially Correlated Data Tests.

    ERIC Educational Resources Information Center

    Nicolich, Mark J.; Weinstein, Carol S.

    1981-01-01

    Results of three methods of analysis applied to simulated autocorrelated data sets with an intervention point (varying in autocorrelation degree, variance of error term, and magnitude of intervention effect) are compared and presented. The three methods are: t tests; maximum likelihood Box-Jenkins (ARIMA); and Bayesian Box Jenkins. (Author/AEF)

  17. Hybrid intelligent methodology to design translation invariant morphological operators for Brazilian stock market prediction.

    PubMed

    Araújo, Ricardo de A

    2010-12-01

    This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Granger causality--statistical analysis under a configural perspective.

    PubMed

    von Eye, Alexander; Wiedermann, Wolfgang; Mun, Eun-Young

    2014-03-01

    The concept of Granger causality can be used to examine putative causal relations between two series of scores. Based on regression models, it is asked whether one series can be considered the cause for the second series. In this article, we propose extending the pool of methods available for testing hypotheses that are compatible with Granger causation by adopting a configural perspective. This perspective allows researchers to assume that effects exist for specific categories only or for specific sectors of the data space, but not for other categories or sectors. Configural Frequency Analysis (CFA) is proposed as the method of analysis from a configural perspective. CFA base models are derived for the exploratory analysis of Granger causation. These models are specified so that they parallel the regression models used for variable-oriented analysis of hypotheses of Granger causation. An example from the development of aggression in adolescence is used. The example shows that only one pattern of change in aggressive impulses over time Granger-causes change in physical aggression against peers.

  19. The cross-correlation analysis of multi property of stock markets based on MM-DFA

    NASA Astrophysics Data System (ADS)

    Yang, Yujun; Li, Jianping; Yang, Yimei

    2017-09-01

    In this paper, we propose a new method called DH-MXA based on distribution histograms of Hurst surface and multiscale multifractal detrended fluctuation analysis. The method allows us to investigate the cross-correlation characteristics among multiple properties of different stock time series. It may provide a new way of measuring the nonlinearity of several signals. It also can provide a more stable and faithful description of cross-correlation of multiple properties of stocks. The DH-MXA helps us to present much richer information than multifractal detrented cross-correlation analysis and allows us to assess many universal and subtle cross-correlation characteristics of stock markets. We show DH-MXA by selecting four artificial data sets and five properties of four stock time series from different countries. The results show that our proposed method can be adapted to investigate the cross-correlation of stock markets. In general, the American stock markets are more mature and less volatile than the Chinese stock markets.

  20. Stochastic optimization for modeling physiological time series: application to the heart rate response to exercise

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Stirling, J. R.

    2007-01-01

    Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.

  1. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  2. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    PubMed

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  3. Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota

    PubMed Central

    Toussaint, Nora C.; Buffie, Charlie G.; Rätsch, Gunnar; Pamer, Eric G.; Sander, Chris; Xavier, João B.

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli. PMID:24348232

  4. Continuous time transfer using GPS carrier phase.

    PubMed

    Dach, Rolf; Schildknecht, Thomas; Springer, Tim; Dudle, Gregor; Prost, Leon

    2002-11-01

    The Astronomical Institute of the University of Berne is hosting one of the Analysis Centers (AC) of the International GPS Service (IGS). A network of a few GPS stations in Europe and North America is routinely analyzed for time transfer purposes, using the carrier phase observations. This work is done in the framework of a joint project with the Swiss Federal Office of Metrology and Accreditation (METAS). The daily solutions are computed independently. The resulting time transfer series show jumps of up to 1 ns at the day boundaries. A method to concatenate the daily time transfer solutions to a continuous series was developed. A continuous time series is available for a time span of more than 4 mo. The results were compared with the time transfer results from other techniques such as two-way satellite time and frequency transfer. This concatenation improves the results obtained in a daily computing scheme because a continuous time series better reflects the characteristics of continuously working clocks.

  5. Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Amelung, F.

    2014-12-01

    Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.

  6. Comparison of discrete Fourier transform (DFT) and principal component analysis/DFT as forecasting tools for absorbance time series received by UV-visible probes installed in urban sewer systems.

    PubMed

    Plazas-Nossa, Leonardo; Torres, Andrés

    2014-01-01

    The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.

  7. Homogenisation of minimum and maximum air temperature in northern Portugal

    NASA Astrophysics Data System (ADS)

    Freitas, L.; Pereira, M. G.; Caramelo, L.; Mendes, L.; Amorim, L.; Nunes, L.

    2012-04-01

    Homogenization of minimum and maximum air temperature has been carried out for northern Portugal for the period 1941-2010. The database corresponds to the values of the monthly arithmetic averages calculated from daily values observed at stations within the network of stations managed by the national Institute of Meteorology (IM). Some of the weather stations of IM's network are collecting data for more than a century; however, during the entire observing period, some factors have affected the climate series and have to be considered such as, changes in the station surroundings and changes related to replacement of manually operated instruments. Besides these typical changes, it is of particular interest the station relocation to rural areas or to the urban-rural interface and the installation of automatic weather stations in the vicinity of the principal or synoptic stations with the aim of replacing them. The information from these relocated and new stations was merged to produce just one but representative time series of that site. This process starts at the end 90's and the information of the time series fusion process constitutes the set of metadata used. Two basic procedures were performed: (i) preliminary statistical and quality control analysis; and, (ii) detection and correction of problems of homogeneity. In the first case, was developed and used software for quality control, specifically dedicated for the detection of outliers, based on the quartile values of the time series itself. The analysis of homogeneity was performed using the MASH (Multiple Analysis of Series for Homogenisation) and HOMER, which is a software application developed and recently made available within the COST Action ES0601 (COST-ES0601, 2012). Both methods provide a fast quality control of the original data and were developed for automatic processing, analyzing, homogeneity testing and adjusting of climatological data, but manual usage is also possible. Obtained results with both methods will be presented, compared and discussed along with the results of the sensitivity tests performed with both methods. COST-ES0601, 2012: "ACTION COST-ES0601 - Advances in homogenisation methods of climate series: an integrated approach HOME". Available at http://www.homogenisation.org/v_02_15/ [accessed 3 January 2012].

  8. Motif-Synchronization: A new method for analysis of dynamic brain networks with EEG

    NASA Astrophysics Data System (ADS)

    Rosário, R. S.; Cardoso, P. T.; Muñoz, M. A.; Montoya, P.; Miranda, J. G. V.

    2015-12-01

    The major aim of this work was to propose a new association method known as Motif-Synchronization. This method was developed to provide information about the synchronization degree and direction between two nodes of a network by counting the number of occurrences of some patterns between any two time series. The second objective of this work was to present a new methodology for the analysis of dynamic brain networks, by combining the Time-Varying Graph (TVG) method with a directional association method. We further applied the new algorithms to a set of human electroencephalogram (EEG) signals to perform a dynamic analysis of the brain functional networks (BFN).

  9. Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression

    PubMed Central

    Fasmer, Erlend Eindride; Berle, Jan Øystein; Oedegaard, Ketil J.; Hauge, Erik R.

    2018-01-01

    Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series. PMID:29668743

  10. Graph theory applied to the analysis of motor activity in patients with schizophrenia and depression.

    PubMed

    Fasmer, Erlend Eindride; Fasmer, Ole Bernt; Berle, Jan Øystein; Oedegaard, Ketil J; Hauge, Erik R

    2018-01-01

    Depression and schizophrenia are defined only by their clinical features, and diagnostic separation between them can be difficult. Disturbances in motor activity pattern are central features of both types of disorders. We introduce a new method to analyze time series, called the similarity graph algorithm. Time series of motor activity, obtained from actigraph registrations over 12 days in depressed and schizophrenic patients, were mapped into a graph and we then applied techniques from graph theory to characterize these time series, primarily looking for changes in complexity. The most marked finding was that depressed patients were found to be significantly different from both controls and schizophrenic patients, with evidence of less regularity of the time series, when analyzing the recordings with one hour intervals. These findings support the contention that there are important differences in control systems regulating motor behavior in patients with depression and schizophrenia. The similarity graph algorithm we have described can easily be applied to the study of other types of time series.

  11. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less

  12. Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers.

    PubMed

    Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope

    2013-01-01

    With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.

  13. Extended AIC model based on high order moments and its application in the financial market

    NASA Astrophysics Data System (ADS)

    Mao, Xuegeng; Shang, Pengjian

    2018-07-01

    In this paper, an extended method of traditional Akaike Information Criteria(AIC) is proposed to detect the volatility of time series by combining it with higher order moments, such as skewness and kurtosis. Since measures considering higher order moments are powerful in many aspects, the properties of asymmetry and flatness can be observed. Furthermore, in order to reduce the effect of noise and other incoherent features, we combine the extended AIC algorithm with multiscale wavelet analysis, in which the newly extended AIC algorithm is applied to wavelet coefficients at several scales and the time series are reconstructed by wavelet transform. After that, we create AIC planes to derive the relationship among AIC values using variance, skewness and kurtosis respectively. When we test this technique on the financial market, the aim is to analyze the trend and volatility of the closing price of stock indices and classify them. And we also adapt multiscale analysis to measure complexity of time series over a range of scales. Empirical results show that the singularity of time series in stock market can be detected via extended AIC algorithm.

  14. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.

    PubMed

    Wang, Zhuo; Jin, Shuilin; Liu, Guiyou; Zhang, Xiurui; Wang, Nan; Wu, Deliang; Hu, Yang; Zhang, Chiping; Jiang, Qinghua; Xu, Li; Wang, Yadong

    2017-05-23

    The development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis. We present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types. The DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore .

  15. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    PubMed Central

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  16. A four-stage hybrid model for hydrological time series forecasting.

    PubMed

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  17. A data-driven approach for denoising GNSS position time series

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Xu, Caijun; Yi, Lei; Fang, Rongxin

    2017-12-01

    Global navigation satellite system (GNSS) datasets suffer from common mode error (CME) and other unmodeled errors. To decrease the noise level in GNSS positioning, we propose a new data-driven adaptive multiscale denoising method in this paper. Both synthetic and real-world long-term GNSS datasets were employed to assess the performance of the proposed method, and its results were compared with those of stacking filtering, principal component analysis (PCA) and the recently developed multiscale multiway PCA. It is found that the proposed method can significantly eliminate the high-frequency white noise and remove the low-frequency CME. Furthermore, the proposed method is more precise for denoising GNSS signals than the other denoising methods. For example, in the real-world example, our method reduces the mean standard deviation of the north, east and vertical components from 1.54 to 0.26, 1.64 to 0.21 and 4.80 to 0.72 mm, respectively. Noise analysis indicates that for the original signals, a combination of power-law plus white noise model can be identified as the best noise model. For the filtered time series using our method, the generalized Gauss-Markov model is the best noise model with the spectral indices close to - 3, indicating that flicker walk noise can be identified. Moreover, the common mode error in the unfiltered time series is significantly reduced by the proposed method. After filtering with our method, a combination of power-law plus white noise model is the best noise model for the CMEs in the study region.

  18. Sector Identification in a Set of Stock Return Time Series Traded at the London Stock Exchange

    NASA Astrophysics Data System (ADS)

    Coronnello, C.; Tumminello, M.; Lillo, F.; Micciche, S.; Mantegna, R. N.

    2005-09-01

    We compare some methods recently used in the literature to detect the existence of a certain degree of common behavior of stock returns belonging to the same economic sector. Specifically, we discuss methods based on random matrix theory and hierarchical clustering techniques. We apply these methods to a portfolio of stocks traded at the London Stock Exchange. The investigated time series are recorded both at a daily time horizon and at a 5-minute time horizon. The correlation coefficient matrix is very different at different time horizons confirming that more structured correlation coefficient matrices are observed for long time horizons. All the considered methods are able to detect economic information and the presence of clusters characterized by the economic sector of stocks. However, different methods present a different degree of sensitivity with respect to different sectors. Our comparative analysis suggests that the application of just a single method could not be able to extract all the economic information present in the correlation coefficient matrix of a stock portfolio.

  19. Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing

    NASA Astrophysics Data System (ADS)

    Lyons, Mitchell B.; Roelfsema, Chris M.; Phinn, Stuart R.

    2013-03-01

    The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (≈200 km2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.

  20. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and sets up initial conditions and integrates; (2) a routine that calculates system reduced derivatives using recurrence relations for quotients and products; and (3) a routine that determines the step size and sums the series. The order of accuracy used in a trajectory calculation is arbitrary and can be set by the user. The algorithm directly calculates the motion of other planetary bodies and does not require ephemeris files (except to start the calculation). The code also runs with Taylor series and Runge-Kutta used interchangeably for different phases of a mission.

  1. Duality between Time Series and Networks

    PubMed Central

    Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.

    2011-01-01

    Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093

  2. A multi-pixel InSAR time series analysis method: Simultaneous estimation of atmospheric noise, orbital errors and deformation

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2016-12-01

    InSAR time series analysis allows reconstruction of ground deformation with meter-scale spatial resolution and high temporal sampling. For instance, the ESA Sentinel-1 Constellation is capable of providing 6-day temporal sampling, thereby opening a new window on the spatio-temporal behavior of tectonic processes. However, due to computational limitations, most time series methods rely on a pixel-by-pixel approach. This limitation is a concern because (1) accounting for orbital errors requires referencing all interferograms to a common set of pixels before reconstruction of the time series and (2) spatially correlated atmospheric noise due to tropospheric turbulence is ignored. Decomposing interferograms into statistically independent wavelets will mitigate issues of correlated noise, but prior estimation of orbital uncertainties will still be required. Here, we explore a method that considers all pixels simultaneously when solving for the spatio-temporal evolution of interferometric phase Our method is based on a massively parallel implementation of a conjugate direction solver. We consider an interferogram as the sum of the phase difference between 2 SAR acquisitions and the corresponding orbital errors. In addition, we fit the temporal evolution with a physically parameterized function while accounting for spatially correlated noise in the data covariance. We assume noise is isotropic for any given InSAR pair with a covariance described by an exponential function that decays with increasing separation distance between pixels. We regularize our solution in space using a similar exponential function as model covariance. Given the problem size, we avoid matrix multiplications of the full covariances by computing convolutions in the Fourier domain. We first solve the unregularized least squares problem using the LSQR algorithm to approach the final solution, then run our conjugate direction solver to account for data and model covariances. We present synthetic tests showing the efficiency of our method. We then reconstruct a 20-year continuous time series covering Northern Chile. Without input from any additional GNSS data, we recover the secular deformation rate, seasonal oscillations and the deformation fields from the 2005 Mw 7.8 Tarapaca and 2007 Mw 7.7 Tocopilla earthquakes.

  3. Multi-scale clustering of functional data with application to hydraulic gradients in wetlands

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Sharp, Julia L.; Peck, Rory G.; Rosenberry, Donald O.

    2011-01-01

    A new set of methods are developed to perform cluster analysis of functions, motivated by a data set consisting of hydraulic gradients at several locations distributed across a wetland complex. The methods build on previous work on clustering of functions, such as Tarpey and Kinateder (2003) and Hitchcock et al. (2007), but explore functions generated from an additive model decomposition (Wood, 2006) of the original time se- ries. Our decomposition targets two aspects of the series, using an adaptive smoother for the trend and circular spline for the diurnal variation in the series. Different measures for comparing locations are discussed, including a method for efficiently clustering time series that are of different lengths using a functional data approach. The complicated nature of these wetlands are highlighted by the shifting group memberships depending on which scale of variation and year of the study are considered.

  4. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  5. Introduction and application of the multiscale coefficient of variation analysis.

    PubMed

    Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh

    2017-10-01

    Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.

  6. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  7. Spatial-dependence recurrence sample entropy

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.; Yan, Hong

    2018-03-01

    Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.

  8. Data and methodological problems in establishing state gasoline-conservation targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, D.L.; Walton, G.H.

    The Emergency Energy Conservation Act of 1979 gives the President the authority to set gasoline-conservation targets for states in the event of a supply shortage. This paper examines data and methodological problems associated with setting state gasoline-conservation targets. The target-setting method currently used is examined and found to have some flaws. Ways of correcting these deficiencies through the use of Box-Jenkins time-series analysis are investigated. A successful estimation of Box-Jenkins models for all states included the estimation of the magnitude of the supply shortages of 1979 in each state and a preliminary estimation of state short-run price elasticities, which weremore » found to vary about a median value of -0.16. The time-series models identified were very simple in structure and lent support to the simple consumption growth model assumed by the current target method. The authors conclude that the flaws in the current method can be remedied either by replacing the current procedures with time-series models or by using the models in conjunction with minor modifications of the current method.« less

  9. 'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

    PubMed

    Baksi, Krishanu D; Kuntal, Bhusan K; Mande, Sharmila S

    2018-01-01

    Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called 'TIME' (Temporal Insights into Microbial Ecology'), developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the 'causality graph analysis' module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome data and demonstrate the ease with which it can be used to perform complex analysis.

  10. Outlier-resilient complexity analysis of heartbeat dynamics

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Chang, Yi-Chung; Lin, Chen; Young, Hsu-Wen Vincent; Lin, Yen-Hung; Ho, Yi-Lwun; Peng, Chung-Kang; Hu, Kun

    2015-03-01

    Complexity in physiological outputs is believed to be a hallmark of healthy physiological control. How to accurately quantify the degree of complexity in physiological signals with outliers remains a major barrier for translating this novel concept of nonlinear dynamic theory to clinical practice. Here we propose a new approach to estimate the complexity in a signal by analyzing the irregularity of the sign time series of its coarse-grained time series at different time scales. Using surrogate data, we show that the method can reliably assess the complexity in noisy data while being highly resilient to outliers. We further apply this method to the analysis of human heartbeat recordings. Without removing any outliers due to ectopic beats, the method is able to detect a degradation of cardiac control in patients with congestive heart failure and a more degradation in critically ill patients whose life continuation relies on extracorporeal membrane oxygenator (ECMO). Moreover, the derived complexity measures can predict the mortality of ECMO patients. These results indicate that the proposed method may serve as a promising tool for monitoring cardiac function of patients in clinical settings.

  11. Non-uniform multivariate embedding to assess the information transfer in cardiovascular and cardiorespiratory variability series.

    PubMed

    Faes, Luca; Nollo, Giandomenico; Porta, Alberto

    2012-03-01

    The complexity of the short-term cardiovascular control prompts for the introduction of multivariate (MV) nonlinear time series analysis methods to assess directional interactions reflecting the underlying regulatory mechanisms. This study introduces a new approach for the detection of nonlinear Granger causality in MV time series, based on embedding the series by a sequential, non-uniform procedure, and on estimating the information flow from one series to another by means of the corrected conditional entropy. The approach is validated on short realizations of linear stochastic and nonlinear deterministic processes, and then evaluated on heart period, systolic arterial pressure and respiration variability series measured from healthy humans in the resting supine position and in the upright position after head-up tilt. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    NASA Astrophysics Data System (ADS)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC (Becker et al., 2013 and Schamm et al., 2014). Caussinus, H., und O. Mestre, 2004: Detection and correction of artificial shifts in climate series, Journal of the Royal, Statistical Society. Series C (Applied Statistics), 53(3), 405-425. Mestre, O., 2003: Correcting climate series using ANOVA technique, Proceedings of the fourth seminar Willmott, C.; Rowe, C. & Philpot, W., 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring The American Carthographer, 12, 5-16 Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U. & Ziese, M., 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present Earth System Science Data, 5, 71-99 Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M. & Stender, P., 2014: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product, Earth System Science Data, 6, 49-60

  13. Time Series Model Identification by Estimating Information.

    DTIC Science & Technology

    1982-11-01

    principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R

  14. Time Series Decomposition into Oscillation Components and Phase Estimation.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  15. Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion

    NASA Astrophysics Data System (ADS)

    Li, Z.; Ghaith, M.

    2017-12-01

    Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.

  16. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    PubMed

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. Copyright © 2014. Published by Elsevier Inc.

  17. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series

    PubMed Central

    Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.

    2014-01-01

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. PMID:24657353

  18. Novel Flood Detection and Analysis Method Using Recurrence Property

    NASA Astrophysics Data System (ADS)

    Wendi, Dadiyorto; Merz, Bruno; Marwan, Norbert

    2016-04-01

    Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.

  19. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.

    PubMed

    Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin

    2014-04-30

    Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  1. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    PubMed

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  2. Association mining of dependency between time series

    NASA Astrophysics Data System (ADS)

    Hafez, Alaaeldin

    2001-03-01

    Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.

  3. Nonstationary time series analysis of surface water microbial pathogen population dynamics using cointegration methods

    EPA Science Inventory

    Background/Question/Methods Bacterial pathogens in surface water present disease risks to aquatic communities and for human recreational activities. Sources of these pathogens include runoff from urban, suburban, and agricultural point and non-point sources, but hazardous micr...

  4. Coil-to-coil physiological noise correlations and their impact on fMRI time-series SNR

    PubMed Central

    Triantafyllou, C.; Polimeni, J. R.; Keil, B.; Wald, L. L.

    2017-01-01

    Purpose Physiological nuisance fluctuations (“physiological noise”) are a major contribution to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. Theory and Methods We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal intensity vectors S. Results Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SSH. Conclusion Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. PMID:26756964

  5. Scaling properties of Polish rain series

    NASA Astrophysics Data System (ADS)

    Licznar, P.

    2009-04-01

    Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study implementation of double trace moment method allowed for estimation of local universal multifractal rainfall parameters (α=0.69; C1=0.34; H=-0.01). The research proved the fractal character of rainfall process support and multifractal character of the rainfall intensity values variability among analyzed time series. It is believed that scaling of local Wroclaw's rainfalls for timescales at the range from 24 hours up to 5 minutes opens the door for future research concerning for example random cascades implementation for daily precipitation totals disaggregation for smaller time intervals. The results of such a random cascades functioning in a form of 5 minute artificial rainfall scenarios could be of great practical usability for needs of urban hydrology, and design and hydrodynamic modeling of storm water and combined sewage conveyance systems.

  6. POD Model Reconstruction for Gray-Box Fault Detection

    NASA Technical Reports Server (NTRS)

    Park, Han; Zak, Michail

    2007-01-01

    Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.

  7. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  8. Coronal Mass Ejection Data Clustering and Visualization of Decision Trees

    NASA Astrophysics Data System (ADS)

    Ma, Ruizhe; Angryk, Rafal A.; Riley, Pete; Filali Boubrahimi, Soukaina

    2018-05-01

    Coronal mass ejections (CMEs) can be categorized as either “magnetic clouds” (MCs) or non-MCs. Features such as a large magnetic field, low plasma-beta, and low proton temperature suggest that a CME event is also an MC event; however, so far there is neither a definitive method nor an automatic process to distinguish the two. Human labeling is time-consuming, and results can fluctuate owing to the imprecise definition of such events. In this study, we approach the problem of MC and non-MC distinction from a time series data analysis perspective and show how clustering can shed some light on this problem. Although many algorithms exist for traditional data clustering in the Euclidean space, they are not well suited for time series data. Problems such as inadequate distance measure, inaccurate cluster center description, and lack of intuitive cluster representations need to be addressed for effective time series clustering. Our data analysis in this work is twofold: clustering and visualization. For clustering we compared the results from the popular hierarchical agglomerative clustering technique to a distance density clustering heuristic we developed previously for time series data clustering. In both cases, dynamic time warping will be used for similarity measure. For classification as well as visualization, we use decision trees to aggregate single-dimensional clustering results to form a multidimensional time series decision tree, with averaged time series to present each decision. In this study, we achieved modest accuracy and, more importantly, an intuitive interpretation of how different parameters contribute to an MC event.

  9. The analysis and forecasting of male cycling time trial records established within England and Wales.

    PubMed

    Dyer, Bryce; Hassani, Hossein; Shadi, Mehran

    2016-01-01

    The format of cycling time trials in England, Wales and Northern Ireland, involves riders competing individually over several fixed race distances of 10-100 miles in length and using time constrained formats of 12 and 24 h in duration. Drawing on data provided by the national governing body that covers the regions of England and Wales, an analysis of six male competition record progressions was undertaken to illustrate its progression. Future forecasts are then projected through use of the Singular Spectrum Analysis technique. This method has not been applied to sport-based time series data before. All six records have seen a progressive improvement and are non-linear in nature. Five records saw their highest level of record change during the 1950-1969 period. Whilst new record frequency generally has reduced since this period, the magnitude of performance improvement has generally increased. The Singular Spectrum Analysis technique successfully provided forecasted projections in the short to medium term with a high level of fit to the time series data.

  10. Time-series analysis of hepatitis A, B, C and E infections in a large Chinese city: application to prediction analysis.

    PubMed

    Sumi, A; Luo, T; Zhou, D; Yu, B; Kong, D; Kobayashi, N

    2013-05-01

    Viral hepatitis is recognized as one of the most frequently reported diseases, and especially in China, acute and chronic liver disease due to viral hepatitis has been a major public health problem. The present study aimed to analyse and predict surveillance data of infections of hepatitis A, B, C and E in Wuhan, China, by the method of time-series analysis (MemCalc, Suwa-Trast, Japan). On the basis of spectral analysis, fundamental modes explaining the underlying variation of the data for the years 2004-2008 were assigned. The model was calculated using the fundamental modes and the underlying variation of the data reproduced well. An extension of the model to the year 2009 could predict the data quantitatively. Our study suggests that the present method will allow us to model the temporal pattern of epidemics of viral hepatitis much more effectively than using the artificial neural network, which has been used previously.

  11. Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring

    NASA Astrophysics Data System (ADS)

    Rigozo, Nivaor Rodolfo

    1999-01-01

    Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.

  12. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: comparison of time-series and case-crossover analyses

    PubMed Central

    Ren, Meng; Li, Na; Wang, Zhan; Liu, Yisi; Chen, Xi; Chu, Yuanyuan; Li, Xiangyu; Zhu, Zhongmin; Tian, Liqiao; Xiang, Hao

    2017-01-01

    Few studies have compared different methods when exploring the short-term effects of air pollutants on respiratory disease mortality in Wuhan, China. This study assesses the association between air pollutants and respiratory disease mortality with both time-series and time-stratified–case-crossover designs. The generalized additive model (GAM) and the conditional logistic regression model were used to assess the short-term effects of air pollutants on respiratory disease mortality. Stratified analyses were performed by age, sex, and diseases. A 10 μg/m3 increment in SO2 level was associated with an increase in relative risk for all respiratory disease mortality of 2.4% and 1.9% in the case-crossover and time-series analyses in single pollutant models, respectively. Strong evidence of an association between NO2 and daily respiratory disease mortality among men or people older than 65 years was found in the case-crossover study. There was a positive association between air pollutants and respiratory disease mortality in Wuhan, China. Both time-series and case-crossover analyses consistently reveal the association between three air pollutants and respiratory disease mortality. The estimates of association between air pollution and respiratory disease mortality from the case–crossover analysis displayed greater variation than that from the time-series analysis. PMID:28084399

  13. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: comparison of time-series and case-crossover analyses.

    PubMed

    Ren, Meng; Li, Na; Wang, Zhan; Liu, Yisi; Chen, Xi; Chu, Yuanyuan; Li, Xiangyu; Zhu, Zhongmin; Tian, Liqiao; Xiang, Hao

    2017-01-13

    Few studies have compared different methods when exploring the short-term effects of air pollutants on respiratory disease mortality in Wuhan, China. This study assesses the association between air pollutants and respiratory disease mortality with both time-series and time-stratified-case-crossover designs. The generalized additive model (GAM) and the conditional logistic regression model were used to assess the short-term effects of air pollutants on respiratory disease mortality. Stratified analyses were performed by age, sex, and diseases. A 10 μg/m 3 increment in SO 2 level was associated with an increase in relative risk for all respiratory disease mortality of 2.4% and 1.9% in the case-crossover and time-series analyses in single pollutant models, respectively. Strong evidence of an association between NO 2 and daily respiratory disease mortality among men or people older than 65 years was found in the case-crossover study. There was a positive association between air pollutants and respiratory disease mortality in Wuhan, China. Both time-series and case-crossover analyses consistently reveal the association between three air pollutants and respiratory disease mortality. The estimates of association between air pollution and respiratory disease mortality from the case-crossover analysis displayed greater variation than that from the time-series analysis.

  14. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: comparison of time-series and case-crossover analyses

    NASA Astrophysics Data System (ADS)

    Ren, Meng; Li, Na; Wang, Zhan; Liu, Yisi; Chen, Xi; Chu, Yuanyuan; Li, Xiangyu; Zhu, Zhongmin; Tian, Liqiao; Xiang, Hao

    2017-01-01

    Few studies have compared different methods when exploring the short-term effects of air pollutants on respiratory disease mortality in Wuhan, China. This study assesses the association between air pollutants and respiratory disease mortality with both time-series and time-stratified-case-crossover designs. The generalized additive model (GAM) and the conditional logistic regression model were used to assess the short-term effects of air pollutants on respiratory disease mortality. Stratified analyses were performed by age, sex, and diseases. A 10 μg/m3 increment in SO2 level was associated with an increase in relative risk for all respiratory disease mortality of 2.4% and 1.9% in the case-crossover and time-series analyses in single pollutant models, respectively. Strong evidence of an association between NO2 and daily respiratory disease mortality among men or people older than 65 years was found in the case-crossover study. There was a positive association between air pollutants and respiratory disease mortality in Wuhan, China. Both time-series and case-crossover analyses consistently reveal the association between three air pollutants and respiratory disease mortality. The estimates of association between air pollution and respiratory disease mortality from the case-crossover analysis displayed greater variation than that from the time-series analysis.

  15. Using First Differences to Reduce Inhomogeneity in Radiosonde Temperature Datasets.

    NASA Astrophysics Data System (ADS)

    Free, Melissa; Angell, James K.; Durre, Imke; Lanzante, John; Peterson, Thomas C.; Seidel, Dian J.

    2004-11-01

    The utility of a “first difference” method for producing temporally homogeneous large-scale mean time series is assessed. Starting with monthly averages, the method involves dropping data around the time of suspected discontinuities and then calculating differences in temperature from one year to the next, resulting in a time series of year-to-year differences for each month at each station. These first difference time series are then combined to form large-scale means, and mean temperature time series are constructed from the first difference series. When applied to radiosonde temperature data, the method introduces random errors that decrease with the number of station time series used to create the large-scale time series and increase with the number of temporal gaps in the station time series. Root-mean-square errors for annual means of datasets produced with this method using over 500 stations are estimated at no more than 0.03 K, with errors in trends less than 0.02 K decade-1 for 1960 97 at 500 mb. For a 50-station dataset, errors in trends in annual global means introduced by the first differencing procedure may be as large as 0.06 K decade-1 (for six breaks per series), which is greater than the standard error of the trend. Although the first difference method offers significant resource and labor advantages over methods that attempt to adjust the data, it introduces an error in large-scale mean time series that may be unacceptable in some cases.


  16. Estimation of trends

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The application of statistical methods to recorded ozone measurements. The effects of a long term depletion of ozone at magnitudes predicted by the NAS is harmful to most forms of life. Empirical prewhitening filters the derivation of which is independent of the underlying physical mechanisms were analyzed. Statistical analysis performs a checks and balances effort. Time series filters variations into systematic and random parts, errors are uncorrelated, and significant phase lag dependencies are identified. The use of time series modeling to enhance the capability of detecting trends is discussed.

  17. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  18. Segmentation of time series with long-range fractal correlations.

    PubMed

    Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P

    2012-06-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.

  19. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  20. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar time series obtained from conventional observations of temperature.

  1. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  2. Trends in Average Living Children at the Time of Terminal Contraception: A Time Series Analysis Over 27 Years Using ARIMA (p, d, q) Nonseasonal Model.

    PubMed

    Mumbare, Sachin S; Gosavi, Shriram; Almale, Balaji; Patil, Aruna; Dhakane, Supriya; Kadu, Aniruddha

    2014-10-01

    India's National Family Welfare Programme is dominated by sterilization, particularly tubectomy. Sterilization, being a terminal method of contraception, decides the final number of children for that couple. Many studies have shown the declining trend in the average number of living children at the time of sterilization over a short period of time. So this study was planned to do time series analysis of the average children at the time of terminal contraception, to do forecasting till 2020 for the same and to compare the rates of change in various subgroups of the population. Data was preprocessed in MS Access 2007 by creating and running SQL queries. After testing stationarity of every series with augmented Dickey-Fuller test, time series analysis and forecasting was done using best-fit Box-Jenkins ARIMA (p, d, q) nonseasonal model. To compare the rates of change of average children in various subgroups, at sterilization, analysis of covariance (ANCOVA) was applied. Forecasting showed that the replacement level of 2.1 total fertility rate (TFR) will be achieved in 2018 for couples opting for sterilization. The same will be achieved in 2020, 2016, 2018, and 2019 for rural area, urban area, Hindu couples, and Buddhist couples, respectively. It will not be achieved till 2020 in Muslim couples. Every stratum of population showed the declining trend. The decline for male children and in rural area was significantly faster than the decline for female children and in urban area, respectively. The decline was not significantly different in Hindu, Muslim, and Buddhist couples.

  3. Using Time-Series Regression to Predict Academic Library Circulations.

    ERIC Educational Resources Information Center

    Brooks, Terrence A.

    1984-01-01

    Four methods were used to forecast monthly circulation totals in 15 midwestern academic libraries: dummy time-series regression, lagged time-series regression, simple average (straight-line forecasting), monthly average (naive forecasting). In tests of forecasting accuracy, dummy regression method and monthly mean method exhibited smallest average…

  4. Visual analysis as a method of interpretation of the results of satellite ionospheric measurements for exploratory problems

    NASA Astrophysics Data System (ADS)

    Korneva, N. N.; Mogilevskii, M. M.; Nazarov, V. N.

    2016-05-01

    Traditional methods of time series analysis of satellite ionospheric measurements have some limitations and disadvantages that are mainly associated with the complex nonstationary signal structure. In this paper, the possibility of identifying and studying the temporal characteristics of signals via visual analysis is considered. The proposed approach is illustrated by the example of the visual analysis of wave measurements on the DEMETER microsatellite during its passage over the HAARP facility.

  5. Urban Growth Detection Using Filtered Landsat Dense Time Trajectory in an Arid City

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Schneider, A.

    2014-12-01

    Among all remote sensing environment monitoring techniques, time series analysis of biophysical index is drawing increasing attention. Although many of them studied forest disturbance and land cover change detection, few focused on urban growth mapping at medium spatial resolution. As Landsat archive becomes open accessible, methods using Landsat time-series imagery to detect urban growth is possible. It is found that a time trajectory from a newly developed urban area shows a dramatic drop of vegetation index. This enable the utilization of time trajectory analysis to distinguish impervious surface and crop land that has a different temporal biophysical pattern. Also, the time of change can be estimated, yet many challenges remain. Landsat data has lower temporal resolution, which may be worse when cloud-contaminated pixels and SLC-off effect exist. It is difficult to tease apart intra-annual, inter-annual, and land cover difference in a time series. Here, several methods of time trajectory analysis are utilized and compared to find a computationally efficient and accurate way on urban growth detection. A case study city, Ankara, Turkey is chosen for its arid climate and various landscape distributions. For preliminary research, Landsat TM and ETM+ scenes from 1998 to 2002 are chosen. NDVI, EVI, and SAVI are selected as research biophysical indices. The procedure starts with a seasonality filtering. Only areas with seasonality need to be filtered so as to decompose seasonality and extract overall trend. Harmonic transform, wavelet transform, and a pre-defined bell shape filter are used to estimate the overall trend in the time trajectory for each pixel. The point with significant drop in the trajectory is tagged as change point. After an urban change is detected, forward and backward checking is undertaken to make sure it is really new urban expansion other than short time crop fallow or forest disturbance. The method proposed here can capture most of the urban growth during research time period, although the accuracy of time point determination is a bit lower than this. Results from several biophysical indices and filtering methods are similar. Some fallows and bare lands in arid area are easily confused with urban impervious surface.

  6. Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.

    PubMed

    Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru

    2017-01-01

    In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.

  7. Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis

    PubMed Central

    Chiba, Tomoaki; Akaho, Shotaro; Murata, Noboru

    2017-01-01

    In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group’s sales beat GM’s sales, which is a reasonable scenario. PMID:28076383

  8. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.

    PubMed

    Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego

    2015-01-01

    The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.

  9. Historical Data Analysis of Hospital Discharges Related to the Amerithrax Attack in Florida

    PubMed Central

    Burke, Lauralyn K.; Brown, C. Perry; Johnson, Tammie M.

    2016-01-01

    Interrupted time-series analysis (ITSA) can be used to identify, quantify, and evaluate the magnitude and direction of an event on the basis of time-series data. This study evaluates the impact of the bioterrorist anthrax attacks (“Amerithrax”) on hospital inpatient discharges in the metropolitan statistical area of Palm Beach, Broward, and Miami-Dade counties in the fourth quarter of 2001. Three statistical methods—standardized incidence ratio (SIR), segmented regression, and an autoregressive integrated moving average (ARIMA)—were used to determine whether Amerithrax influenced inpatient utilization. The SIR found a non–statistically significant 2 percent decrease in hospital discharges. Although the segmented regression test found a slight increase in the discharge rate during the fourth quarter, it was also not statistically significant; therefore, it could not be attributed to Amerithrax. Segmented regression diagnostics preparing for ARIMA indicated that the quarterly data time frame was not serially correlated and violated one of the assumptions for the use of the ARIMA method and therefore could not properly evaluate the impact on the time-series data. Lack of data granularity of the time frames hindered the successful evaluation of the impact by the three analytic methods. This study demonstrates that the granularity of the data points is as important as the number of data points in a time series. ITSA is important for the ability to evaluate the impact that any hazard may have on inpatient utilization. Knowledge of hospital utilization patterns during disasters offer healthcare and civic professionals valuable information to plan, respond, mitigate, and evaluate any outcomes stemming from biothreats. PMID:27843420

  10. Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action

    PubMed Central

    Wallot, Sebastian; Roepstorff, Andreas; Mønster, Dan

    2016-01-01

    We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool to analyze multidimensional time-series data. We show how MdRQA can be used to capture the dynamics of high-dimensional signals, and how MdRQA can be used to assess coupling between two or more variables. In particular, we describe applications of the method in research on joint and collective action, as it provides a coherent analysis framework to systematically investigate dynamics at different group levels—from individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The Appendix in Supplementary Material contains a software implementation in MATLAB to calculate MdRQA measures. PMID:27920748

  11. Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action.

    PubMed

    Wallot, Sebastian; Roepstorff, Andreas; Mønster, Dan

    2016-01-01

    We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool to analyze multidimensional time-series data. We show how MdRQA can be used to capture the dynamics of high-dimensional signals, and how MdRQA can be used to assess coupling between two or more variables. In particular, we describe applications of the method in research on joint and collective action, as it provides a coherent analysis framework to systematically investigate dynamics at different group levels-from individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The Appendix in Supplementary Material contains a software implementation in MATLAB to calculate MdRQA measures.

  12. A time-frequency analysis method to obtain stable estimates of magnetotelluric response function based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Cai, Jianhua

    2017-05-01

    The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.

  13. Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO2 and CH4

    NASA Astrophysics Data System (ADS)

    El Yazidi, Abdelhadi; Ramonet, Michel; Ciais, Philippe; Broquet, Gregoire; Pison, Isabelle; Abbaris, Amara; Brunner, Dominik; Conil, Sebastien; Delmotte, Marc; Gheusi, Francois; Guerin, Frederic; Hazan, Lynn; Kachroudi, Nesrine; Kouvarakis, Giorgos; Mihalopoulos, Nikolaos; Rivier, Leonard; Serça, Dominique

    2018-03-01

    This study deals with the problem of identifying atmospheric data influenced by local emissions that can result in spikes in time series of greenhouse gases and long-lived tracer measurements. We considered three spike detection methods known as coefficient of variation (COV), robust extraction of baseline signal (REBS) and standard deviation of the background (SD) to detect and filter positive spikes in continuous greenhouse gas time series from four monitoring stations representative of the European ICOS (Integrated Carbon Observation System) Research Infrastructure network. The results of the different methods are compared to each other and against a manual detection performed by station managers. Four stations were selected as test cases to apply the spike detection methods: a continental rural tower of 100 m height in eastern France (OPE), a high-mountain observatory in the south-west of France (PDM), a regional marine background site in Crete (FKL) and a marine clean-air background site in the Southern Hemisphere on Amsterdam Island (AMS). This selection allows us to address spike detection problems in time series with different variability. Two years of continuous measurements of CO2, CH4 and CO were analysed. All methods were found to be able to detect short-term spikes (lasting from a few seconds to a few minutes) in the time series. Analysis of the results of each method leads us to exclude the COV method due to the requirement to arbitrarily specify an a priori percentage of rejected data in the time series, which may over- or underestimate the actual number of spikes. The two other methods freely determine the number of spikes for a given set of parameters, and the values of these parameters were calibrated to provide the best match with spikes known to reflect local emissions episodes that are well documented by the station managers. More than 96 % of the spikes manually identified by station managers were successfully detected both in the SD and the REBS methods after the best adjustment of parameter values. At PDM, measurements made by two analyzers located 200 m from each other allow us to confirm that the CH4 spikes identified in one of the time series but not in the other correspond to a local source from a sewage treatment facility in one of the observatory buildings. From this experiment, we also found that the REBS method underestimates the number of positive anomalies in the CH4 data caused by local sewage emissions. As a conclusion, we recommend the use of the SD method, which also appears to be the easiest one to implement in automatic data processing, used for the operational filtering of spikes in greenhouse gases time series at global and regional monitoring stations of networks like that of the ICOS atmosphere network.

  14. System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uri, N.D.

    This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.

  15. Automated Analysis of Renewable Energy Datasets ('EE/RE Data Mining')

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian; Elmore, Ryan; Getman, Dan

    This poster illustrates methods to substantially improve the understanding of renewable energy data sets and the depth and efficiency of their analysis through the application of statistical learning methods ('data mining') in the intelligent processing of these often large and messy information sources. The six examples apply methods for anomaly detection, data cleansing, and pattern mining to time-series data (measurements from metering points in buildings) and spatiotemporal data (renewable energy resource datasets).

  16. Broadband Studies of Semsmic Sources at Regional and Teleseismic Distances Using Advanced Time Series Analysis Methods. Volume 1.

    DTIC Science & Technology

    1991-03-21

    discussion of spectral factorability and motivations for broadband analysis, the report is subdivided into four main sections. In Section 1.0, we...estimates. The motivation for developing our multi-channel deconvolution method was to gain information about seismic sources, most notably, nuclear...with complex constraints for estimating the rupture history. Such methods (applied mostly to data sets that also include strong rmotion data), were

  17. Dynamic Forecasting Conditional Probability of Bombing Attacks Based on Time-Series and Intervention Analysis.

    PubMed

    Li, Shuying; Zhuang, Jun; Shen, Shifei

    2017-07-01

    In recent years, various types of terrorist attacks occurred, causing worldwide catastrophes. According to the Global Terrorism Database (GTD), among all attack tactics, bombing attacks happened most frequently, followed by armed assaults. In this article, a model for analyzing and forecasting the conditional probability of bombing attacks (CPBAs) based on time-series methods is developed. In addition, intervention analysis is used to analyze the sudden increase in the time-series process. The results show that the CPBA increased dramatically at the end of 2011. During that time, the CPBA increased by 16.0% in a two-month period to reach the peak value, but still stays 9.0% greater than the predicted level after the temporary effect gradually decays. By contrast, no significant fluctuation can be found in the conditional probability process of armed assault. It can be inferred that some social unrest, such as America's troop withdrawal from Afghanistan and Iraq, could have led to the increase of the CPBA in Afghanistan, Iraq, and Pakistan. The integrated time-series and intervention model is used to forecast the monthly CPBA in 2014 and through 2064. The average relative error compared with the real data in 2014 is 3.5%. The model is also applied to the total number of attacks recorded by the GTD between 2004 and 2014. © 2016 Society for Risk Analysis.

  18. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-09-28

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums ofmore » cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.« less

  19. Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation.

    PubMed

    Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A

    2016-04-01

    We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.

  20. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

Top