Science.gov

Sample records for time-series satellite images

  1. Discovering significant evolution patterns from satellite image time series.

    PubMed

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  2. Detecting Anomaly Regions in Satellite Image Time Series Based on Sesaonal Autocorrelation Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1) it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2) it is flexible to meet some requirement (e.g., z-value or significance level) of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3) it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  3. Spatio-Temporal Mining of PolSAR Satellite Image Time Series

    NASA Astrophysics Data System (ADS)

    Julea, A.; Meger, N.; Trouve, E.; Bolon, Ph.; Rigotti, C.; Fallourd, R.; Nicolas, J.-M.; Vasile, G.; Gay, M.; Harant, O.; Ferro-Famil, L.

    2010-12-01

    This paper presents an original data mining approach for describing Satellite Image Time Series (SITS) spatially and temporally. It relies on pixel-based evolution and sub-evolution extraction. These evolutions, namely the frequent grouped sequential patterns, are required to cover a minimum surface and to affect pixels that are sufficiently connected. These spatial constraints are actively used to face large data volumes and to select evolutions making sense for end-users. In this paper, a specific application to fully polarimetric SAR image time series is presented. Preliminary experiments performed on a RADARSAT-2 SITS covering the Chamonix Mont-Blanc test-site are used to illustrate the proposed approach.

  4. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    NASA Astrophysics Data System (ADS)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  5. Global near real-time disturbance monitoring using MODIS satellite image time series

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Kalomenopoulos, M.; de Jong, R.; Zeileis, A.; Herold, M.

    2012-12-01

    Global disturbance monitoring in forested ecosystems is critical to retrieve information on carbon storage dynamics, biodiversity, and other socio-ecological processes. Satellite remote sensing provides a means for cost-effective monitoring at frequent time steps over large areas. However, for information about current change processes, it is required to analyse image time series in a fast and accurate manner and to detect abnormal change in near real time. An increasing number of change detection techniques have become available that are able to process historical satellite image time series data to detect changes in the past. However, methods that detect changes near real-time, i.e. analysing newly acquired data with respect to the historical series, are lacking. We propose a statistical technique for monitoring change in near-real time by comparing current data with a seasonal-trend model fitted onto the historical time series. As such, identification of consistent and abnormal change in near-real time becomes possible as soon as new image data is captured. The method is based on the "Break For Additive Seasonal Trend" (BFAST) concept (http://bfast.r-forge.r-project.org/). Disturbances are detected by analysing 16-daily MODIS combined vegetation and temperature indices. Validation is carried out by comparing the detected disturbances with available disturbance data sets (e.g. deforestation in Brazil and MODIS fire products). Preliminary results demonstrated that abrupt changes at the end of time series can be successfully detected while the method remains robust for strong seasonality and atmospheric noise. Cloud masking, however, was identified as a critical issue since periods of persistent cloudiness can be detected as abnormal change. The proposed method is an automatic and robust change detection approach that can be applied on different types of data (e.g. future sensors like the Sentinel constellation that provide higher spatial resolution at regular time

  6. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  7. Towards Time-Series Processing of Vhr Satellite Images for Surface Deformation Detecton and Measurements

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Delacourt, C.; Malet, J. P.

    2015-08-01

    The increasing fleet of VHR optical satellites (e.g. Pléiades, Spot 6/7, WorldView-3) offers new opportunities for the monitoring of surface deformation resulting from gravitational (e.g. glaciers, landslides) or tectonic forces (coseismic slip). Image correlation techniques have been developed and successfully employed in many geoscientific studies to quantify horizontal surface deformation at sub-pixel precision. The analysis of time-series, however, has received less attention in this context and there is still a lack of techniques that fully exploit archived image time-series and the increasing flux of incoming data. This study targets the development of an image correlation processing chain that relies on multiple pair-wise matching to exploit the redundancy of deformation measurements recorded at different view angles and over multiple time steps. The proposed processing chain is based on a hierarchical image correlation scheme that readily uses parallel processing. Since pair-wise matching can be performed independently the distribution of individual tasks is straightforward and yields to significant reductions of the overall runtime scaling with the available HPC infrastructure. We find that it is more convenient to implement experimental analytical tasks in a high-level programming language (i.e. R) and explore the use of parallel programming to compensate for performance bottlenecks of the interpreted language. Preliminary comparisons against maps from domain expert suggest that the proposed methodology is suitable to eliminate false detections and, thereby, enhances the reliability of correlation-based detections of surface deformation.

  8. Feasibility of anomaly occurrence in aerosols time series obtained from MODIS satellite images during hazardous earthquakes

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, Mehdi; Jahani Chehrebargh, Fatemeh

    2016-09-01

    Earthquake is one of the most devastating natural disasters that its prediction has not materialized comprehensive. Remote sensing data can be used to access information which is closely related to an earthquake. The unusual variations of lithosphere, atmosphere and ionosphere parameters before the main earthquakes are considered as earthquake precursors. To date the different precursors have been proposed. This paper examines one of the parameters which can be derived from satellite imagery. The mentioned parameter is Aerosol Optical Depth (AOD) that this article reviews its relationship with earthquake. Aerosol parameter can be achieved through various methods such as AERONET ground stations or using satellite images via algorithms such as the DDV (Dark Dense Vegetation), Deep Blue Algorithm and SYNTAM (SYNergy of Terra and Aqua Modis). In this paper, by analyzing AOD's time series (derived from MODIS sensor on the TERRA platform) for 16 major earthquakes, seismic anomalies were observed before and after earthquakes. Before large earthquakes, rate of AOD increases due to the pre-seismic changes before the strong earthquake, which produces gaseous molecules and therefore AOD increases. Also because of aftershocks after the earthquake there is a significant change in AOD due to gaseous molecules and dust. These behaviors suggest that there is a close relationship between earthquakes and the unusual AOD variations. Therefore the unusual AOD variations around the time of earthquakes can be introduced as an earthquake precursor.

  9. Automatic Cloud Detection from Multi-Temporal Satellite Images: Towards the Use of PLÉIADES Time Series

    NASA Astrophysics Data System (ADS)

    Champion, N.

    2012-08-01

    Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images) and is based on a region-growing procedure. Seeds (corresponding to clouds) are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images). Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011). In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  10. Connectivity constraint-based sequential pattern extraction from Satellite Image Time Series (SITS)

    NASA Astrophysics Data System (ADS)

    Julea, Andreea; Méger, Nicolas

    2013-10-01

    The temporal evolution of pixel values in Satellite Image Time Series (SITS) is considered as criterion for the characterization, discrimination and identification of terrestrial objects and phenomena. Due to the exponential behavior of sequences number with specialization, Sequential Data Mining (SDM) techniques need to be applied. The huge search and solution spaces imply the use of constraints according to the user's knowledge, interest and expectation. The spatial aspect of the data was taken into account by the introduction of connectivity measures that characterize the pixels tendency to form objects. These measures can highlight stratifications in data structure, can be useful for shape recognition and offer a base for post-processing operations similar to those from mathematical morphology (dilation, erosion etc.). The conjunction of corresponding Connectivity Constraints (CC) with the Support Constraint (SC) leads to the extraction of Grouped Frequent Sequential Patterns (GFSP), a concept with proved capability for preliminary description and localization of terrestrial events. This work is focused on efficient SITS extraction of evolutions that fulfill SC and CC. Different types of extractions using anti-monotone constraints are analyzed. Experiments performed on two interferometric SITS are used to illustrate the potential of the approach to find interesting evolution patterns.

  11. A method for monitoring land-cover disturbance using satellite time series images

    NASA Astrophysics Data System (ADS)

    Zhou, Zengguang; Tang, Ping; Zhang, Zheng

    2014-11-01

    Land cover disturbance is an abrupt ecosystem change that occurs over a short time period, such as flood, fire, drought and deforestation. It is crucial to monitor disturbances for rapid response. In this paper, we propose a time series analysis method for monitoring of land-cover disturbance with high confidence level. The method integrates procedures including (1) modeling of a piece of history time series data with season-trend model and (2) forecasting with the fitted model and monitoring disturbances based on significance of prediction errors. The method is tested using 16-day MODIS NDVI time series to monitor abnormally inundated areas of the Tongjiang section of Heilongjiang River of China, where had extreme floods and bank break in summer 2013. The test results show that the method could detect the time and areas of disturbances for each image with no detection delay and with high specified confidence level. The method has few parameters to be specified and less computation complexity so that it could be developed for monitoring of land-cover disturbance on large scales.

  12. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments.

    PubMed

    Wang, Xuelei; Wang, Qiao; Yang, Shengtian; Zheng, Donghai; Wu, Chuanqing; Mannaerts, C M

    2011-06-01

    Nitrogen (N) removal by vegetation uptake is one of the most important functions of riparian buffer zones in preventing non-point source pollution (NSP), and many studies about N uptake at the river reach scale have proven the effectiveness of plants in controlling nutrient pollution. However, at the watershed level, the riparian zones form dendritic networks and, as such, may be the predominant spatially structured feature in catchments and landscapes. Thus, assessing the functions of riparian system at the basin scale is important. In this study, a new method coupling remote sensing and ecological models was used to assess the N removal by riparian vegetation on a large spatial scale. The study site is located around the Guanting reservoir in Beijing, China, which was abandoned as the source water system for Beijing due to serious NSP in 1997. SPOT 5 data was used to map the land cover, and Landsat-5 TM time series images were used to retrieve land surface parameters. A modified forest nutrient cycling and biomass model (ForNBM) was used to simulate N removal, and the modified net primary productivity (NPP) module was driven by remote sensing image time series. Besides the remote sensing data, the necessary database included meteorological data, soil chemical and physical data and plant nutrient data. Pot and plot experiments were used to calibrate and validate the simulations. Our study has proven that, by coupling remote sensing data and parameters retrieval techniques to plant growth process models, catchment scale estimations of nitrogen uptake rates can be improved by spatial pixel-based modelling.

  13. Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia.

    PubMed

    Skakun, Sergii; Kussul, Nataliia; Shelestov, Andrii; Kussul, Olga

    2014-08-01

    In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood-prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov-Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat-5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values.

  14. Monitoring the Water Quality of Lake Koronia Using Long Time-Series of Multispectral Satellite Images

    NASA Astrophysics Data System (ADS)

    Perivolioti, Triantafyllia-Maria; Mouratidis, Antonios; Doxani, Georgia; Bobori, Dimitra

    2016-08-01

    In this study, a comprehensive 30-year (1984-2016) water quality parameter database for lake Koronia - one of the most important Ramsar wetlands of Greece - was compiled from Landsat imagery. The reliability of the data was evaluated by comparing water Quality Element (QE) values computed from Landsat data against in-situ data. Water quality algorithms developed from previous studies, specifically for the determination of Water Temperature, pH, Transparency/Secchi Disk Depth (SDD), Chlorophyll a and Conductivity, were applied to Landsat images. In addition, Water Depth, as well as the distribution of floating vegetation and cyanobacterial blooms were mapped. The performed comprehensive analysis posed certain questions, regarding the applicability of single empirical models across multi- temporal, multi-sensor datasets, towards the accurate prediction of key water quality indicators for shallow inland systems. This assessment demonstrates that satellite imagery can provide an accurate method for obtaining comprehensive spatial and temporal coverage of key water quality characteristics.

  15. Quantifying post-fire recovery of forest canopy structure and its environmental drivers using satellite image time-series

    NASA Astrophysics Data System (ADS)

    Khanal, Shiva; Duursma, Remko; Boer, Matthias

    2014-05-01

    Fire is a recurring disturbance in most of Australia's forests. Depending on fire severity, impacts on forest canopies vary from light scorching to complete defoliation, with related variation in the magnitude and duration of post-fire gas exchange by that canopy. Estimates of fire impacts on forest canopy structure and carbon uptake for south-eastern Australia's forests do not exist. Here, we use 8-day composite measurements of the fraction of Absorbed Photosynthetically Active radiation (FPAR) as recorded by the Moderate-resolution Imaging Spectroradiometer (MODIS) to characterise forest canopies before and after fire and to compare burnt and unburnt sites. FPAR is a key biophysical canopy variable and primary input for estimating Gross Primary Productivity (GPP). Post-fire FPAR loss was quantified for all forest areas burnt between 2001 and 2010, showing good agreement with independent assessments of fire severity patterns of 2009 Black Saturday fires. A new method was developed to determine the duration of post-fire recovery from MODIS-FPAR time-series. The method involves a spatial-mode principal component analysis on full FPAR time series followed by a K-means clustering to group pixels based on similarity in temporal patterns. Using fire history data, time series of FPAR for burnt and unburnt pixels in each cluster were then compared to quantify the duration of the post-fire recovery period, which ranged from less than 1 to 8 years. The results show that time series of MODIS FPAR are well suited to detect and quantify disturbances of forest canopy structure and function in large areas of highly variable climate and phenology. Finally, the role of post-fire climate conditions and previous fire history on the duration of the post-fire recovery of the forest canopy was examined using generalized additive models.

  16. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    NASA Technical Reports Server (NTRS)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  17. Results of analysis of human impact on environment using the time series of vegetation satellite images around large industrial centers

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, A.; Vysotskaya, G.; Sukhinin, A.; Frolikova, O.; Tchernetsky, M.

    The paper shows the efficiency of an application of the vegetation index image time series to determine long-term vegetation dynamics. The influence of large industrial centers of Siberia on the near-by vegetation is demonstrated. The analysis of the data shows that the influence of industrial waste is stronger in the Siberian North. These regions are characterized by critical conditions for vegetation existence. In the south of the Krasnoyarsk region, human impact is also important, but the possibility of vegetation self-rehabilitation is higher. The present-day economic situation in Russia is unique, with a temporary abrupt fall of industrial production and its following increase. Thus, we managed to analyze the degree of human impact on the environment within a relatively short-time interval.

  18. A radar image time series

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Fuchs, H.; Ford, J. P.

    1981-01-01

    A set of ten side-looking radar images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to radar images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the radar images are compared with a Landsat image and with aerial photographs. Effects of radar system parameters on radar images are briefly reviewed.

  19. IDP camp evolvement analysis in Darfur using VHSR optical satellite image time series and scientific visualization on virtual globes

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    2010-11-01

    In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.

  20. IDP camp evolvement analysis in Darfur using VHSR optical satellite image time series and scientific visualization on virtual globes

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    2009-09-01

    In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.

  1. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis.

    PubMed

    Hutchinson, J M S; Jacquin, A; Hutchinson, S L; Verbesselt, J

    2015-03-01

    Given the significant land holdings of the U.S. Department of Defense, and the importance of those lands to support a variety of inherently damaging activities, application of sound natural resource conservation principles and proactive monitoring practices are necessary to manage military training lands in a sustainable manner. This study explores a method for, and the utility of, analyzing vegetation condition and trends as sustainability indicators for use by military commanders and land managers, at both the national and local levels, in identifying when and where vegetation-related environmental impacts might exist. The BFAST time series decomposition method was applied to a ten-year MODIS NDVI time series dataset for the Fort Riley military installation and Konza Prairie Biological Station (KPBS) in northeastern Kansas. Imagery selected for time-series analysis were 16-day MODIS NDVI (MOD13Q1 Collection 5) composites capable of characterizing vegetation change induced by human activities and climate variability. Three indicators related to gradual interannual or abrupt intraannual vegetation change for each pixel were calculated from the trend component resulting from the BFAST decomposition. Assessment of gradual interannual NDVI trends showed the majority of Fort Riley experienced browning between 2001 and 2010. This result is supported by validation using high spatial resolution imagery. The observed versus expected frequency of linear trends detected at Fort Riley and KPBS were significantly different and suggest a causal link between military training activities and/or land management practices. While both sites were similar with regards to overall disturbance frequency and the relative spatial extents of monotonic or interrupted trends, vegetation trajectories after disturbance were significantly different. This suggests that the type and magnitude of disturbances characteristic of each location result in distinct post-disturbance vegetation responses

  2. Satellite time series analysis using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.

  3. Challenges to Deriving Climate Time Series From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wentz, F. J.; Mears, C. A.

    2005-12-01

    Satellites have been observing the Earth's weather and climate since the launch of TIROS-1 in 1960. As satellite and sensor technology advanced over the next two decades, the accuracy of the satellite observations improved to the point of being useful for climate monitoring. The launch of the first Microwave Sounding Unit (MSU) in October 1978 and the first Special Sensor Microwave Imager (SSM/I) in June 1987 mark the beginning of research-quality time series for several important climate state variables, including tropospheric temperature and water vapor, cloud and rain water, and ocean surface winds. In this talk, we will illustrate the many obstacles that must be overcome to convert raw satellite measurements into climate data records. Probably the most pivotal issue is sensor calibration. Although an on-board self-calibrating apparatus is part of each satellite sensor, the accuracy of the calibration system is limited and in some cases unexpected calibration problems occurred on-orbit. The lack of exact calibration leads to a second problem: merging sensors flying on many different satellites into one consistent decadal time series. Also drifts in the satellites' orbits, both in altitude and local time of day, must be carefully taken into account else spurious signals will enter the time series. In addition to these technical difficulties, programmatic problems present a different set of hurdles that must be overcome. The maintenance of a long-term climate record may necessitate sustaining a long-term research activity requiring continuity in both expert staffing and funding. The alternative of computing climate records in an operational rather than research environment creates a new set of problems. As the satellite sensor technology continues to advance into the next decade, new challenges will arise. The new sensors will have different channel sets, viewing geometries, and orbital characteristics. Their complexity will be an order of magnitude greater than

  4. Effect of spatial image support in detecting long-term vegetation change from satellite time-series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context Arid rangelands have been severely degraded over the past century. Multi-temporal remote sensing techniques are ideally suited to detect significant changes in ecosystem state; however, considerable uncertainty exists regarding the effects of changing image resolution on their ability to de...

  5. Monitoring agricultural crop growth: comparison of high spatial-temporal satellite imagery versus UAV-based imaging spectrometer time series measurements

    NASA Astrophysics Data System (ADS)

    Mucher, Sander; Roerink, Gerbert; Franke, Jappe; Suomalainen, Juha; Kooistra, Lammert

    2014-05-01

    providers are involved in the consortium. First results show that the Greenmonitor is much more suitable for comparison in growth between fields at regional scale, while UAV based imagery is much more suitable for mapping variation in crop biochemistry (i.e., chlorophyll, nitrogen) within the fields, which requires in the Netherlands a spatial resolution of a few meters. Finally, the spatial and spectral dimension of satellite and UAV derived vegetation indices (i.e., weighted difference vegetation index, chlorophyll red-edge index) to evaluate to which extent UAV based image acquisition could be adopted to complement missing data in satellite time-series.

  6. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  7. Crop growth dynamics modeling using time-series satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Yu

    2014-11-01

    In modern agriculture, remote sensing technology plays an essential role in monitoring crop growth and crop yield prediction. To monitor crop growth and predict crop yield, accurate and timely crop growth information is significant, in particularly for large scale farming. As the high cost and low data availability of high-resolution satellite images such as RapidEye, we focus on the time-series low resolution satellite imagery. In this research, NDVI curve, which was retrieved from satellite images of MODIS 8-days 250m surface reflectance, was applied to monitor soybean's yield. Conventional model and vegetation index for yield prediction has problems on describing the growth basic processes affecting yield component formation. In our research, a novel method is developed to well model the Crop Growth Dynamics (CGD) and generate CGD index to describe the soybean's yield component formation. We analyze the standard growth stage of soybean and to model the growth process, we have two key calculate process. The first is normalization of the NDVI-curve coordinate and division of the crop growth based on the standard development stages using EAT (Effective accumulated temperature).The second is modeling the biological growth on each development stage through analyzing the factors of yield component formation. The evaluation was performed through the soybean yield prediction using the CGD Index in the growth stage when the whole dataset for modeling is available and we got precision of 88.5% which is about 10% higher than the conventional method. The validation results showed that prediction accuracy using our CGD modeling is satisfied and can be applied in practice of large scale soybean yield monitoring.

  8. Least Squares Time-Series Synchronization in Image Acquisition Systems.

    PubMed

    Piazzo, Lorenzo; Raguso, Maria Carmela; Calzoletti, Luca; Seu, Roberto; Altieri, Bruno

    2016-07-18

    We consider an acquisition system constituted by an array of sensors scanning an image. Each sensor produces a sequence of readouts, called a time-series. In this framework, we discuss the image estimation problem when the time-series are affected by noise and by a time shift. In particular, we introduce an appropriate data model and consider the Least Squares (LS) estimate, showing that it has no closed form. However, the LS problem has a structure that can be exploited to simplify the solution. In particular, based on two known techniques, namely Separable Nonlinear Least Squares (SNLS) and Alternating Least Squares (ALS), we propose and analyze several practical estimation methods. As an additional contribution, we discuss the application of these methods to the data of the Photodetector Array Camera and Spectrometer (PACS), which is an infrared photometer onboard the Herschel satellite. In this context, we investigate the accuracy and the computational complexity of the methods, using both true and simulated data.

  9. Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images: a case study of Mt. Kenya region.

    PubMed

    Song, Youngkeun; Njoroge, John B; Morimoto, Yukihiro

    2013-05-01

    Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E ~ 1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.

  10. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  11. Time series of Essential Climate Variables from Satellite Data

    NASA Astrophysics Data System (ADS)

    Werscheck, M.

    2010-09-01

    Climate change is a fact. We need to know how the climate system will develop in future and how this will affect workaday life. To do this we need climate models for prediction of the future on all time scales, and models to assess the impact of the prediction results to the various sectors of social and economic life. With this knowledge we can take measures to mitigate the causes and adapt to changes. Prerequisite for this is a careful and thorough monitoring of the climate systems. Satellite data are an increasing & valuable source of information to observe the climate system. For many decades now satellite data are available to derive information about our planet earth. EUMETSAT is the European Organisation in charge of the exploitation of satellite data for meteorology and (since the year 2000) climatology. Within the EUMETSAT Satellite Application Facility (SAF) Network, comprising 8 initiatives to derive geophysical parameters from satellite, the Satellite Application Facility on Climate Monitoring (CM SAF) is especially dedicated to provide climate relevant information from satellite data. Many products as e.g. water vapour, radiation at surface and top of atmosphere, cloud properties are available, some of these for more then 2 decades. Just recently the European Space Agency (ESA) launched the Climate Change Initiative (CCI) to derive Essential Climate Variables (ECVs) from satellite data, including e.g. cloud properties, aerosol, ozone, sea surface temperature etc.. The presentation will give an overview on some relevant European activities to derive Essential Climate Variables from satellite data and the links to Global Climate Observing System (GCOS), the Global Satellite Intercalibration System (GSICS) as well as the Sustained Co-ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE CM).

  12. De-noising of microwave satellite soil moisture time series

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Western, Andrew; Wagner, Wolfgang

    2013-04-01

    The use of satellite soil moisture data for scientific and operational hydrologic, meteorological and climatological applications is advancing rapidly due to increasing capability and temporal coverage of current and future missions. However evaluation studies of various existing remotely-sensed soil moisture products from these space-borne microwave sensors, which include AMSR-E (Advanced Microwave Scanning Radiometer) on Aqua satellite, SMOS (Soil Moisture and Ocean Salinity) mission and ASCAT (Advanced Scatterometer) on MetOp-A satellite, found them to be significantly different from in-situ observations, showing large biases and different dynamic ranges and temporal patterns (e.g., Albergel et al., 2012; Su et al., 2012). Moreover they can have different error profiles in terms of bias, variance and correlations and their performance varies with land surface characteristics (Su et al., 2012). These severely impede the effort to use soil moisture retrievals from multiple sensors concurrently in land surface modelling, cross-validation and multi-satellite blending. The issue of systematic errors present in data sets should be addressed prior to renormalisation of the data for blending and data assimilation. Triple collocation estimation technique has successfully yielded realistic error estimates (Scipal et al., 2008), but this method relies on availability of large number of coincident data from multiple independent satellite data sets. In this work, we propose, i) a conceptual framework for distinguishing systematic periodic errors in the form of false spectral resonances from non-systematic errors (stochastic noise) in remotely-sensed soil moisture data in the frequency domain; and ii) the use of digital filters to reduce the variance- and correlation-related errors in satellite data. In this work, we focus on the VUA-NASA (Vrije Universiteit Amsterdam with NASA) AMSR-E, CATDS (Centre National d'Etudes Spatiales, CNES) SMOS and TUWIEN (Vienna University of

  13. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  14. Climate Change Impacts and Vulnerabilities Assessment on Forest Vegetation Through Time-Series Multisensor Satellite Data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Savastru, Dan; Dida, Adrian

    2016-08-01

    Sustaining forest resources in Romania requires a better understanding of forest ecosystem processes, and how management decisions and climate and anthropogenic change may affect these processes in the future. Spatio- temporal forest vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI LAI satellite images over 2000 - 2015 period for a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, from MODIS Terra/Aqua, LANDSAT TM/ETM and Sentinel satellite and meteorological data. For investigated test area, considerable NDVI decline was observed for drought events during 2003, 2007 and 2010 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. EO-based estimates of forest biophysical variables were shown to be similar to predictions derived from forest field inventories.

  15. Extracting dune mobility time series from sequences of optical satellite imagery

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Leprince, S.

    2012-12-01

    COSI-Corr (Co-registration of Optically Sensed Images and Correlation) is an exciting new tool for the automatic detection and quantification of Earth surface movement from pairs of satellite imagery. The program was originally developed by geophysicists interested in earthquakes, but has quickly found applications in geomorphology, including the study of glaciers, landslides, and sand dunes both on Earth and, recently, on Mars. Given two optical images of the same dune area taken at different times, COSI-Corr calculates the displacement field that maximizes the correlation between the two exposures. Temporal changes of dune celerity can serve as a sensitive proxy for the windiness of desert areas. It can be shown that any change in shear velocity (u*) causes a three times larger change in dune celerity (v): ∂ {v}/{v} = 3 ∂ {u*}/{u_*} We have developed an algorithm to use COSI-Corr to compare a sequence multiple satellite images in order to extract time series of dune celerity and monitor the windiness of remote field locations devoid of weather stations and anemometers. The algorithm involves the following steps: Georeference, orthorectify and resample the images to a common resolution. Measure the displacement field for each time step with COSI-Corr. Destripe the raw correlation results to remove uncorrected attitude effects. `Warp' the destriped displacement fields back to a common reference, e.g. the first image in the sequence. `Clean' the correlation results using a combination of two filters, requiring the displacements to (a) have a high signal-to-noise ratio and (b) move in a consistent direction with time. Connect the `surviving' pixels of the displacement map and track them across the image with time, yielding a map-view of dune migration paths. Project the stepwise displacements of each dune track on the resultant migration direction to obtain the cumulative displacements. Select those pixels with a total displacement near the mode of this

  16. Change detection from very high resolution satellite time series with variable off-nadir angle

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Brumana, Raffaella; Cuca, Branka; Previtali, Mattia

    2015-06-01

    Very high resolution (VHR) satellite images have the potential for revealing changes occurred overtime with a superior level of detail. However, their use for metric purposes requires accurate geo-localization with ancillary DEMs and GCPs to achieve sub-pixel terrain correction, in order to obtain images useful for mapping applications. Change detection with a time series of VHS images is not a simple task because images acquired with different off-nadir angles have a lack of pixel-to-pixel image correspondence, even after accurate geo-correction. This paper presents a procedure for automatic change detection able to deal with variable off-nadir angles. The case study concerns the identification of damaged buildings from pre- and post-event images acquired on the historic center of L'Aquila (Italy), which was struck by an earthquake in April 2009. The developed procedure is a multi-step approach where (i) classes are assigned to both images via object-based classification, (ii) an initial alignment is provided with an automated tile-based rubber sheeting interpolation on the extracted layers, and (iii) change detection is carried out removing residual mis-registration issues resulting in elongated features close to building edges. The method is fully automated except for some thresholds that can be interactively set to improve the visualization of the damaged buildings. The experimental results proved that damages can be automatically found without additional information, such as digital surface models, SAR data, or thematic vector layers.

  17. Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Justina, Diego Della; Kazama, Yoriko; Rocha, Jansle Vieira; Graziano, Paulo Sergio; Lamparelli, Rubens Augusto Camargo

    2016-10-01

    Sugarcane, as one of the most mainstay crop in Brazil, plays an essential role in ethanol production. To monitor sugarcane crop growth and predict sugarcane sucrose content, remote sensing technology plays an essential role while accurate and timely crop growth information is significant, in particularly for large scale farming. We focused on the issues of sugarcane sucrose content estimation using time-series satellite image. Firstly, we calculated the spectral features and vegetation indices to make them be correspondence to the sucrose accumulation biological mechanism. Secondly, we improved the statistical regression model considering more other factors. The evaluation was performed and we got precision of 90% which is about 20% higher than the conventional method. The validation results showed that prediction accuracy using our sugarcane growth modeling and improved mix model is satisfied.

  18. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final

  19. Satellite time series analysis to study the ephemeral nature of archaeological marks

    NASA Astrophysics Data System (ADS)

    Stewart, Chris

    2014-05-01

    Archaeological structures buried beneath the ground often leave traces at the surface. These traces can be in the form of differences in soil moisture and composition, or vegetation growth caused for example by increased soil water retention over a buried ditch, or by insufficient soil depth over a buried wall for vegetation to place deep roots. Buried structures also often leave subtle topographic traces at the surface. Analyses is carried out on the ephemeral characteristics of buried archaeological crop and soil marks over a number of sites around the city of Rome using satellite data from both optical and SAR (Synthetic Aperture Radar) sensors, including Kompsat-2, ALOS PRISM and COSMO SkyMed. The sensitivity of topographic satellite data, obtained by optical photogrammetry and interferometric SAR, is also analysed over the same sites, as well as other sites in Egypt. The analysis includes a study of the interferometric coherence of successive pairs of a time series of SAR data over sites containing buried structuresto better understand the nature of the vegetated or bare soil surface. To understand the ephemeral nature of archaeological crop and soil marks, the spectral reflectance characteristics of areas where such marks sometimes appear are extracted from a time series of optical multispectral and panchromatic imagery, and their backscatter characteristics extracted from a time series of SAR backscatter amplitude data. The results of this analysis is then compared with the results of the coherence analysis to see if any link can be established between the appearance of archaeological structures and the nature of ground cover. Results show that archaeological marks in the study areas are more present in SAR backscatter data over vegetated surfaces, rather than bare soil surfaces, but sometimes appear also in bare soil conditions. In the study areas, crop marks appear more distinctly in optical data after long periods without rainfall. The topographic

  20. The CACAO Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in Satellite Time Series

    NASA Technical Reports Server (NTRS)

    Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.

    2013-01-01

    Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.

  1. Advanced tools for astronomical time series and image analysis

    NASA Astrophysics Data System (ADS)

    Scargle, Jeffrey D.

    The algorithms described here, which I have developed for applications in X-ray and γ-ray astronomy, will hopefully be of use in other ways, perhaps aiding in the exploration of modern astronomy's data cornucopia. The goal is to describe principled approaches to some ubiquitous problems, such as detection and characterization of periodic and aperiodic signals, estimation of time delays between multiple time series, and source detection in noisy images with noisy backgrounds. The latter problem is related to detection of clusters in data spaces of various dimensions. A goal of this work is to achieve a unifying view of several related topics: signal detection and characterization, cluster identification, classification, density estimation, and multivariate regression. In addition to being useful for analysis of data from space-based and ground-based missions, these algorithms may be a basis for a future automatic science discovery facility, and in turn provide analysis tools for the Virtual Observatory. This chapter has ties to those by Larry Bretthorst, Tom Loredo, Alanna Connors, Fionn Murtagh, Jim Berger, David van Dyk, Vicent Martinez & Enn Saar.

  2. Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series

    PubMed Central

    Bajocco, Sofia; Dragoz, Eleni; Gitas, Ioannis; Smiraglia, Daniela; Salvati, Luca; Ricotta, Carlo

    2015-01-01

    Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies. PMID:25822505

  3. Ground Deformation Monitoring in Qingdao Coastal Areas by Time-Series Terrasar-X Images

    NASA Astrophysics Data System (ADS)

    Hou, A. Y.; Qiao, X.; Li, D.

    2016-06-01

    As a new generation of high resolution and short revisit period of radar satellite, TerraSAR-X is not only able to meet the requirements of monitoring large scale surface subsidence, but also make it possible to monitor the small deformation of the short period. This articles takes the coastal areas of the west coast of Qingdao as the research object. With Small baselines subsets interferometry synthetic aperture radar (SBASI), this paper obtained the period the average annual rate of change from the time series analysis of TerraSAR-X data from April 2015 to October 2014.In order to enrich the historical deformation data of the study area, it analyse the time series of ALOS images from December 2010 to October 2008 with the same method. Finally,it analyse and demonstrate the experimental results.

  4. Geodetic imaging with time series persistent scatterer InSAR

    NASA Astrophysics Data System (ADS)

    Zebker, H. A.; Shanker, A. P.

    2008-12-01

    present here examples of methods we are developing to unwrap these data, so that PS analysis can successfully retrieve time series deformation records. Of particular promise are fusion methods using principles of SBAS reduction to constrain the PS phase unwrapping

  5. Consistent Long-Time Series of GPS Satellite Antenna Phase Center Corrections

    NASA Astrophysics Data System (ADS)

    Steigenberger, P.; Schmid, R.; Rothacher, M.

    2004-12-01

    The current IGS processing strategy disregards satellite antenna phase center variations (pcvs) depending on the nadir angle and applies block-specific phase center offsets only. However, the transition from relative to absolute receiver antenna corrections presently under discussion necessitates the consideration of satellite antenna pcvs. Moreover, studies of several groups have shown that the offsets are not homogeneous within a satellite block. Manufacturer specifications seem to confirm this assumption. In order to get best possible antenna corrections, consistent ten-year time series (1994-2004) of satellite-specific pcvs and offsets were generated. This challenging effort became possible as part of the reprocessing of a global GPS network currently performed by the Technical Universities of Munich and Dresden. The data of about 160 stations since the official start of the IGS in 1994 have been reprocessed, as today's GPS time series are mostly inhomogeneous and inconsistent due to continuous improvements in the processing strategies and modeling of global GPS solutions. An analysis of the signals contained in the time series of the phase center offsets demonstrates amplitudes on the decimeter level, at least one order of magnitude worse than the desired accuracy. The periods partly arise from the GPS orbit configuration, as the orientation of the orbit planes with regard to the inertial system repeats after about 350 days due to the rotation of the ascending nodes. In addition, the rms values of the X- and Y-offsets show a high correlation with the angle between the orbit plane and the direction to the sun. The time series of the pcvs mainly point at the correlation with the global terrestrial scale. Solutions with relative and absolute phase center corrections, with block- and satellite-specific satellite antenna corrections demonstrate the effect of this parameter group on other global GPS parameters such as the terrestrial scale, station velocities, the

  6. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    NASA Astrophysics Data System (ADS)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  7. Coastal changes in the Sendai area from the impact of the 2011 Tōhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations

    NASA Astrophysics Data System (ADS)

    Tappin, David R.; Evans, Hannah M.; Jordan, Colm J.; Richmond, Bruce; Sugawara, Daisuke; Goto, Kazuhisa

    2012-12-01

    A combination of time-series satellite imagery, helicopter-borne video footage and field observation is used to identify the impact of a major tsunami on a low-lying coastal zone located in eastern Japan. A comparison is made between the coast protected by armoured 'engineered' sea walls and the coast without. Changes are mapped from before and after imagery, and sedimentary processes identified from the video footage. The results are validated by field observations. The impact along a 'natural' coast, with minimal defences, is erosion focussed on the back beach. Along coasts with hard engineered protection constructed to defend against erosion, the presence of three to six metre high concrete-faced embankments results in severe erosion on their landward faces. The erosion is due to the tsunami wave accelerating through a hydraulic jump as it passes over the embankment, resulting in the formation of a ditch into which the foundations collapse. Engineered coastal defences are thus found to be small defence against highly energetic tsunami waves that overtop them. There is little erosion (or sedimentation) of the whole beach, and where active, it mainly forms V-shaped channels. These channels are probably initiated during tsunami inflow and then further developed during tsunami backflow. Tsunami backflow on such a low lying area takes place energetically as sheet flow immediately after tsunami flooding has ceased. Subsequently, when the water level landward of the coastal dune ridges falls below their elevation, flow becomes confined to rivers and breaches in the coast formed during tsunami inflow. Enigmatic, short lived, 'strand lines' are attributed to the slow fall of sea level after such a major tsunami. Immediately after the tsunami coastal reconstruction begins, sourced from the sediment recently flushed into the sea by tsunami backflow.

  8. Measuring vertical deformation in the Seattle, WA urban corridor with satellite radar interferometry time series analysis

    NASA Astrophysics Data System (ADS)

    Finnegan, N. J.; Pritchard, M. E.; Lohman, R.; Lundgren, P. R.

    2007-12-01

    Satellite radar interferometry (InSAR) time series analysis (e.g., Lundgren et al., 2001) can reveal rich patterns of deformation in both time and space. As the technique is sensitive to mm-scale vertical deformation over large and spatially extensive regions, it provides a useful geodetic tool where satellite coverage and radar phase coherence permit. Here we apply InSAR time series techniques based on the Small BAseline Subset Algorithm (SBAS) (Berardino et al., 2002) using data from three satellites (ERS 1, ERS2, and RADARSAT) to the urban corridor between Tacoma, Seattle and Everett, WA, over the time period 1992 - 2007. The target of our work is to better characterize the nature of active faulting and deep-seated landsliding within the densely populated study area. Additionally, we seek to independently quantify how localized short-wavelength deformation is contaminating data collected from the ~ 12 GPS stations in the eastern Puget Sound region. Comparisons of InSAR time series inversions to data from 4 GPS stations temporally and spatially overlapping the available InSAR observations reveal that surface displacement computed from InSAR matches the GPS deformation within the range of error reported for vertical GPS data (~ 4mm). Contemporaneous surface velocity maps generated via linear regression to two independent time series inversions from overlapping ERS satellite tracks 428 and 156 show striking agreement in the pattern of surface velocity, and effectively resolve rates as low as 1 mm/yr. Based on the results of our velocity mapping, we provide new constraints on surface deformation in the Seattle metro region. First, between 1992 and 2007 we document subsidence (~ 1-3 mm/yr) over much of the region characterized by Holocene infilling of the Puget Sound by lahar and floodplain sedimentation. This deformation is consistent with subsidence due to sediment compaction and de-watering. Second, between 1992 and 2007 we document no slow landslide deformation

  9. Cloud Removal from SENTINEL-2 Image Time Series Through Sparse Reconstruction from Random Samples

    NASA Astrophysics Data System (ADS)

    Cerra, D.; Bieniarz, J.; Müller, R.; Reinartz, P.

    2016-06-01

    In this paper we propose a cloud removal algorithm for scenes within a Sentinel-2 satellite image time series based on synthetisation of the affected areas via sparse reconstruction. For this purpose, a clouds and clouds shadow mask must be given. With respect to previous works, the process has an increased automation degree. Several dictionaries, on the basis of which the data are reconstructed, are selected randomly from cloud-free areas around the cloud, and for each pixel the dictionary yielding the smallest reconstruction error in non-corrupted images is chosen for the restoration. The values below a cloudy area are therefore estimated by observing the spectral evolution in time of the non-corrupted pixels around it. The proposed restoration algorithm is fast and efficient, requires minimal supervision and yield results with low overall radiometric and spectral distortions.

  10. MODVOLC2: A Hybrid Time Series Analysis for Detecting Thermal Anomalies Applied to Thermal Infrared Satellite Data

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Wright, R.; Pilger, E.

    2009-12-01

    We developed and tested a new, automated algorithm, MODVOLC2, which analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes, fires, and gas flares. MODVOLC2 combines two previously developed algorithms, a simple point operation algorithm (MODVOLC) and a more complex time series analysis (Robust AVHRR Techniques, or RAT) to overcome the limitations of using each approach alone. MODVOLC2 has four main steps: (1) it uses the original MODVOLC algorithm to process the satellite data on a pixel-by-pixel basis and remove thermal outliers, (2) it uses the remaining data to calculate reference and variability images for each calendar month, (3) it compares the original satellite data and any newly acquired data to the reference images normalized by their variability, and it detects pixels that fall outside the envelope of normal thermal behavior, (4) it adds any pixels detected by MODVOLC to those detected in the time series analysis. Using test sites at Anatahan and Kilauea volcanoes, we show that MODVOLC2 was able to detect ~15% more thermal anomalies than using MODVOLC alone, with very few, if any, known false detections. Using gas flares from the Cantarell oil field in the Gulf of Mexico, we show that MODVOLC2 provided results that were unattainable using a time series-only approach. Some thermal anomalies (e.g., Cantarell oil field flares) are so persistent that an additional, semi-automated 12-µm correction must be applied in order to correctly estimate both the number of anomalies and the total excess radiance being emitted by them. Although all available data should be included to make the best possible reference and variability images necessary for the MODVOLC2, we estimate that at least 80 images per calendar month are required to generate relatively good statistics from which to run MODVOLC2, a condition now globally met by a decade of MODIS observations. We also found

  11. Spatiotemporal densification of river water level time series by multimission satellite altimetry

    NASA Astrophysics Data System (ADS)

    Tourian, M. J.; Tarpanelli, A.; Elmi, O.; Qin, T.; Brocca, L.; Moramarco, T.; Sneeuw, N.

    2016-02-01

    Limitations of satellite radar altimetry for operational hydrology include its spatial and temporal sampling as well as measurement problems caused by local topography and heterogeneity of the reflecting surface. In this study, we develop an approach that eliminates most of these limitations to produce an approximately 3 day temporal resolution water level time series from the original typically (sub)monthly data sets for the Po River in detail, and for Congo, Mississippi, and Danube Rivers. We follow a geodetic approach by which, after estimating and removing intersatellite biases, all virtual stations of several satellite altimeters are connected hydraulically and statistically to produce water level time series at any location along the river. We test different data-selection strategies and validate our method against the extensive available in situ data over the Po River, resulting in an average correlation of 0.7, Root-Mean-Square Error of 0.8 m, bias of -0.4 m, and Nash-Sutcliffe Efficiency coefficient of 0.5. We validate the transferability of our method by applying it to the Congo, Mississippi, and Danube Rivers, which have very different geomorphological and climatic conditions. The methodology yields correlations above 0.75 and Nash-Sutcliffe coefficients of 0.84 (Congo), 0.34 (Mississippi), and 0.35 (Danube).

  12. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    NASA Technical Reports Server (NTRS)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  13. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kahru, M.; Elmgren, R.

    2014-07-01

    Cyanobacteria, primarily of the species Nodularia spumigena, form extensive surface accumulations in the Baltic Sea in July and August, ranging from diffuse flakes to dense surface scums. The area of these accumulations can reach ~ 200 000 km2. We describe the compilation of a 35-year-long time series (1979-2013) of cyanobacteria surface accumulations in the Baltic Sea using multiple satellite sensors. This appears to be one of the longest satellite-based time series in biological oceanography. The satellite algorithm is based on remote sensing reflectance of the water in the red band, a measure of turbidity. Validation of the satellite algorithm using horizontal transects from a ship of opportunity showed the strongest relationship with phycocyanin fluorescence (an indicator of cyanobacteria), followed by turbidity and then by chlorophyll a fluorescence. The areal fraction with cyanobacteria accumulations (FCA) and the total accumulated area affected (TA) were used to characterize the intensity and extent of the accumulations. The fraction with cyanobacteria accumulations was calculated as the ratio of the number of detected accumulations to the number of cloud-free sea-surface views per pixel during the season (July-August). The total accumulated area affected was calculated by adding the area of pixels where accumulations were detected at least once during the season. The fraction with cyanobacteria accumulations and TA were correlated (R2 = 0.55) and both showed large interannual and decadal-scale variations. The average FCA was significantly higher for the second half of the time series (13.8%, 1997-2013) than for the first half (8.6%, 1979-1996). However, that does not seem to represent a long-term trend but decadal-scale oscillations. Cyanobacteria accumulations were common in the 1970s and early 1980s (FCA between 11-17%), but rare (FCA below 4%) during 1985-1990; they increased again starting in 1991 and particularly in 1999, reaching maxima in FCA (~ 25

  14. Satellite detection of multi-decadal time series of cyanobacteria accumulations in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kahru, M.; Elmgren, R.

    2014-02-01

    Cyanobacteria, primarily of the species Nodularia spumigena, form extensive surface accumulations in the Baltic Sea in July and August, ranging from diffuse flakes to dense surface scum. We describe the compilation of a 35 year (1979-2013) long time series of cyanobacteria surface accumulations in the Baltic Sea using multiple satellite sensors. This appears to be one of the longest satellite-based time series in biological oceanography. The satellite algorithm is based on increased remote sensing reflectance of the water in the red band, a measure of turbidity. Validation of the satellite algorithm using horizontal transects from a ship of opportunity showed the strongest relationship with phycocyanin fluorescence (an indicator of cyanobacteria), followed by turbidity and then by chlorophyll a fluorescence. The areal fraction with cyanobacteria accumulations (FCA) and the total accumulated area affected (TA) were used to characterize the intensity and extent of the accumulations. FCA was calculated as the ratio of the number of detected accumulations to the number of cloud free sea-surface views per pixel during the season (July-August). TA was calculated by adding the area of pixels where accumulations were detected at least once during the season. FCA and TA were correlated (R2 = 0.55) and both showed large interannual and decadal-scale variations. The average FCA was significantly higher for the 2nd half of the time series (13.8%, 1997-2013) than for the first half (8.6%, 1979-1996). However, that does not seem to represent a long-term trend but decadal-scale oscillations. Cyanobacteria accumulations were common in the 1970s and early 1980s (FCA between 11-17%), but rare (FCA below 4%) from 1985 to 1990; they increased again from 1991 and particularly from 1999, reaching maxima in FCA (~ 25%) and TA (~ 210 000 km2) in 2005 and 2008. After 2008 FCA declined to more moderate levels (6-17%). The timing of the accumulations has become earlier in the season, at a

  15. Correcting incompatible DN values and geometric errors in nighttime lights time series images

    SciTech Connect

    Zhao, Naizhuo; Zhou, Yuyu; Samson, Eric L.

    2014-09-19

    The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multi-year quantitative research. In this study we extend and improve previous studies on inter-calibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time series (NLT) image data for China and the United States (US) through four steps: inter-calibration, geometric correction, steady increase adjustment, and population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008 respectively and the US suffered from nighttime lights decay in large areas after 2001.

  16. TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change

    USGS Publications Warehouse

    ,

    2008-01-01

    TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).

  17. Trend analysis of time-series phenology derived from satellite data

    USGS Publications Warehouse

    Reed, B.C.; Brown, J.F.

    2005-01-01

    Remote sensing information has been used in studies of the seasonal dynamics (phenology) of the land surface for the past 15 years. While our understanding of remote sensing phenology is still in development, it is regarded as a key to understanding land surface processes over large areas. Repeat observations from satellite-borne multispectral sensors provide a mechanism to move from plant-specific to regional scale studies of phenology. In addition, we now have sufficient time-series (since 1982 at 8-km resolution covering the globe and since 1989 at 1-km resolution over the conterminous US) to study seasonal and interannual trends from satellite data. Phenology metrics including start of season, end of season, duration of season, and seasonally integrated greenness were derived from 8 km AVHRR data over North America spanning the years 1982-2003. Trend analysis was performed on the annual summaries of the metrics to determine areas with increasing or decreasing trends for the time period under study. Results show only small areas of changing start of season, but the end of season is coming later over well defined areas of New England and SE Canada, principally as a result of land use changes. The total greenness metric is most striking at the shrub/tundra boundary of North America, indicating increasing vegetation vigor or possible vegetation conversion as a result of warming. ?? 2005 IEEE.

  18. A snow extent time series assimilation using MODIS images and temperature data, case study Koohrang, Iran

    NASA Astrophysics Data System (ADS)

    Abdollahi, K.; Batelaan, O.

    2012-04-01

    A unique advantage of satellite data is the possibility for delineation of snow line and calculation of snow cover area. Recent availability of remote sensing data offers promise for better performance of hydrological models, which contain a snow component. The near-daily coverage of Moderate Resolution Imaging Spectrometer (MODIS) data and its moderate resolution provide a powerful capability for time series analysis of snow cover area. However, because of several reasons like cloud cover, technical problems, etc., images are not available or usable. This paper suggests a regional solution to fill the gap of missing data for purpose of snow cover assessment. In this study 27 images of MODIS from NASA have been used to calculate basin scale snow cover area by applying NDSI technique. Also a temperature dataset was collected from the Koohrang station, which was measured by the Iranian meteorological organization for the period 2004-2008. The elevation of the Koohrang station is 2285 m above sea level and geographically it is located at latitude 32 26' and longitude 50 07'. The study considered snow cover derived from satellite imagery as dependent variable and temperature as independent variable. To find a relationship between snow extent and temperature we used the CURVEEXPERT 1.4 package. This program uses the Levenberg-Marquardt algorithm to solve nonlinear regressions by combination of steepest-descent method and a Taylor series technique. Our methodology is applied each time when snow extent is not available and it estimates snow extend based on the remaining data. A wide range of built in models were tested for this purpose but finally a Logistic, Exponential, Richards, Gompertz, Linear Fit and Exponential model were adopted because of high correlation relationship and low variance.

  19. Spatiotemporal Mining of Time-Series Remote Sensing Images Based on Sequential Pattern Mining

    NASA Astrophysics Data System (ADS)

    Liu, H. C.; He, G. J.; Zhang, X. M.; Jiang, W.; Ling, S. G.

    2015-07-01

    With the continuous development of satellite techniques, it is now possible to acquire a regular series of images concerning a given geographical zone with both high accuracy and low cost. Research on how best to effectively process huge volumes of observational data obtained on different dates for a specific geographical zone, and to exploit the valuable information regarding land cover contained in these images has received increasing interest from the remote sensing community. In contrast to traditional land cover change measures using pair-wise comparisons that emphasize the compositional or configurational changes between dates, this research focuses on the analysis of the temporal sequence of land cover dynamics, which refers to the succession of land cover types for a given area over more than two observational periods. Using a time series of classified Landsat images, ranging from 2006 to 2011, a sequential pattern mining method was extended to this spatiotemporal context to extract sets of connected pixels sharing similar temporal evolutions. The resultant sequential patterns could be selected (or not) based on the range of support values. These selected patterns were used to explore the spatial compositions and temporal evolutions of land cover change within the study region. Experimental results showed that continuous patterns that represent consistent land cover over time appeared as quite homogeneous zones, which agreed with our domain knowledge. Discontinuous patterns that represent land cover change trajectories were dominated by the transition from vegetation to bare land, especially during 2009-2010. This approach quantified land cover changes in terms of the percentage area affected and mapped the spatial distribution of these changes. Sequential pattern mining has been used for string mining or itemset mining in transactions analysis. The expected novel significance of this study is the generalization of the application of the sequential pattern

  20. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    SciTech Connect

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  1. Earthquake signature revealed by time series satellite and ground-based data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2016-10-01

    This paper presents observations based on in-situ and time series MODIS Terra/Aqua and NOAA-AVHRR satellite data on derived anomalies of multi geophysical parameters (land surface temperature -LST, outgoing long-wave radiation- OLR, and mean air temperature- AT for some seismic events recorded in Vrancea seismic region in Romania. Starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (°C) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. A developed Lithosphere-Surfacesphere-Atmosphere-Ionosphere Coupling (LSAIC) model can explain most of these presignals as a synergy between different anomalies of geophysical/geochemical parameters. These anomalies prior to medium to strong earthquakes are attributed to the thermodynamic, degassing and ionization processes in the Earth- Atmosphere system and micro-fracturing in the rocks especially along area's active faults. The main outcome of this paper is an unified concept for systematic validation of different types of earthquake precursors of which Land Surface Temperature (LST), outgoing Long wave Radiation (OLR), Air Temperature (AT), radon gas concentration, are the most reliable parameters within the chain of the processes described by a LSAIC model.

  2. Using satellite time series for remote sensing based investigations of ancient acqueduct systems: the case of the Nasca puquios

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.; Masini, N.

    2012-04-01

    Satellite time series can provide valuable information to reconstruct ancient environmental changes, still fossilized in the present landscape. In particular, satellite derived moisture content and moisture patter variations over the seasons and years may facilitate the identification of areas involved in early environmental manipulation. Up to now, only a few number of archaeological studies on spatial patterns of moisture have been carried out through the world using satellite optical data. We focus on Landsat and ASTER multitemporal data acquired for some areas near Nasca basin (Peru) to extract information on ancient irrigation systems and artificial wet agro-ecosystems. The study area is particularly interesting mainly because it was populated since millennia ago despite its drought and critical environment conditions presented serious obstacles to human occupation. Considering this extreme drought, which characterizes this area today as several centuries ago, ancient populations of the Nasca River valley devised an efficient system for retrieval water and to face the drought conditions. This system was based on underground aqueducts called puquios, which in part are still used today. Archaeological record put in evidence that during the Nasca flourishing period, the number and spatial distribution of puquios were larger than today. On the basis of satellite multitemporal moisture maps, Unknown puquios were identified and confirmed by ground survey. This information can be a basic The successful results achieved in the Nasca Basin area may be also rejoined in similar environmental conditions (in Meso-America, Middle East, North Africa, Asia) where ancient populations devised aqueducts to face drought and retrieve water for domestic, ritual and agricultural needs. Reference Lasaponara R., Masini N., Following the Ancient Nasca Puquios from Space, in Lasaponara R. and Masini N. (Eds), Satellite Remote Sensing: A New Tool for Archaeology (Remote Sensing and

  3. Identifying and monitoring urban heat island in Bucharest using satellite time series and low cost meteorological sensors

    NASA Astrophysics Data System (ADS)

    Sandric, Ionut; Onose, Diana; Vanau, Gabriel; Ioja, Cristian

    2016-04-01

    The present study is focusing on the identification of urban heat island in Bucharest using both remote sensing products and low cost temperature sensors. The urban heat island in Bucharest was analyzed through a network of sensors located in 56 points (47 inside the administrative boundary of the city, 9 outside) 2009-2011. The network lost progressively its initial density, but was reformed during a new phase, 2013-2015. Time series satellite images from MODIS were intersected with the sensors for both phases. Statistical analysis were conducted to identify the temporal and spatial pattern of extreme temperatures in Bucharest. Several environmental factors like albedou, presence and absence of vegetation were used to fit a regression model between MODIS satellite products sensors in order to upscale the temperatures values recorded by MODIS For Bucharest, an important role for air temperature values in urban environments proved to have the local environmental conditions that leads to differences in air temperature at Bucharest city scale between 3-5 °C (both in the summer and in the winter). The UHI maps shows a good correlation with the presence of green areas. Differences in air temperature between higher tree density areas and isolated trees can reach much higher values, averages over 24 h periods still are in the 3-5 °C range The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-DevelopmentInnovation for Space Technology and Advanced Research (STAR), administrated by the Romanian Space Agency Keywords: time series, urban heat island

  4. Satellite time-series data for vegetation phenology detection and environmental assessment in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Suepa, Tanita

    The relationship between temporal and spatial data is considered the major advantage of remote sensing in research related to biophysical characteristics. With temporally formatted remote sensing products, it is possible to monitor environmental changes as well as global climate change through time and space by analyzing vegetation phenology. Although a number of different methods have been developed to determine the seasonal cycle using time series of vegetation indices, these methods were not designed to explore and monitor changes and trends of vegetation phenology in Southeast Asia (SEA). SEA is adversely affected by impacts of climate change, which causes considerable environmental problems, and the increase in agricultural land conversion and intensification also adds to those problems. Consequently, exploring and monitoring phenological change and environmental impacts are necessary for a better understanding of the ecosystem dynamics and environmental change in this region. This research aimed to investigate inter-annual variability of vegetation phenology and rainfall seasonality, analyze the possible drivers of phenological changes from both climatic and anthropogenic factors, assess the environmental impacts in agricultural areas, and develop an enhanced visualization method for phenological information dissemination. In this research, spatio-temporal patterns of vegetation phenology were analyzed by using MODIS-EVI time series data over the period of 2001-2010. Rainfall seasonality was derived from TRMM daily rainfall rate. Additionally, this research assessed environmental impacts of GHG emissions by using the environmental model (DNDC) to quantify emissions from rice fields in Thailand. Furthermore, a web mapping application was developed to present the output of phenological and environmental analysis with interactive functions. The results revealed that satellite time-series data provided a great opportunity to study regional vegetation variability

  5. A Time-Series of Surface Oil Distribution Detected by Satellite SAR During the Deepwater Horizon Blowout

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Solow, A.; Daneshgar, S.; Beet, A.

    2013-12-01

    Oil discharged as a result of the Deepwater Horizon disaster was detected on the surface of the Gulf of Mexico by synthetic aperture radar satellites from 25 April 2010 until 4 August 2010. SAR images were not restricted by daylight or cloud-cover. Distribution of this material is a tracer for potential environmental impacts and an indicator of impact mitigation due to response efforts and physical forcing factors. We used a texture classifying neural network algorithm for semi-supervised processing of 176 SAR images from the ENVISAT, RADARSAT I, and COSMO-SKYMED satellites. This yielded an estimate the proportion of oil-covered water within the region sampled by each image with a nominal resolution of 10,000 sq m (100m pixels), which was compiled as a 5-km equal area grid covering the northern Gulf of Mexico. Few images covered the entire impact area, so analysis was required to compile a regular time-series of the oil cover. A Gaussian kernel using a bandwidth of 2 d was used to estimate oil cover percent in each grid at noon and midnight throughout the interval. Variance and confidence intervals were calculated for each grid and for the global 12-h totals. Results animated across the impact region show the spread of oil under the influence of physical factors. Oil cover reached an early peak of 17032.26 sq km (sd 460.077) on 18 May, decreasing to 27% of this total on 4 June, following by sharp increase to an overall maximum of 18424.56 sq km (sd 424.726) on 19 June. There was a significant negative correlation between average wind stress and the total area of oil cover throughout the time-series. Correlation between response efforts including aerial and subsurface application of dispersants and burning of gathered oil was negative, positive, or indeterminate at different time segments during the event. Daily totals for oil-covered surface waters of the Gulf of Mexico during 25 April - 9 August 2010 with upper and lower 0.95 confidence limits on estimate. (No oil

  6. Tools for Generating Useful Time-series Data from PhenoCam Images

    NASA Astrophysics Data System (ADS)

    Milliman, T. E.; Friedl, M. A.; Frolking, S.; Hufkens, K.; Klosterman, S.; Richardson, A. D.; Toomey, M. P.

    2012-12-01

    The PhenoCam project (http://phenocam.unh.edu/) is tasked with acquiring, processing, and archiving digital repeat photography to be used for scientific studies of vegetation phenological processes. Over the past 5 years the PhenoCam project has collected over 2 million time series images for a total over 700 GB of image data. Several papers have been published describing derived "vegetation indices" (such as green-chromatic-coordinate or gcc) which can be compared to standard measures such as NDVI or EVI. Imagery from our archive is available for download but converting series of images for a particular camera into useful scientific data, while simple in principle, is complicated by a variety of factors. Cameras are often exposed to harsh weather conditions (high wind, rain, ice, snow pile up), which result in images where the field of view (FOV) is partially obscured or completely blocked for periods of time. The FOV can also change for other reasons (mount failures, tower maintenance, etc.) Some of the relatively inexpensive cameras that are being used can also temporarily lose color balance or exposure controls resulting in loss of imagery. All these factors negatively influence the automated analysis of the image time series making this a non-trivial task. Here we discuss the challenges of processing PhenoCam image time-series for vegetation monitoring and the associated data management tasks. We describe our current processing framework and a simple standardized output format for the resulting time-series data. The time-series data in this format will be generated for specific "regions of interest" (ROI's) for each of the cameras in the PhenoCam network. This standardized output (which will be updated daily) can be considered 'the pulse' of a particular camera and will provide a default phenological dynamic for said camera. The time-series data can also be viewed as a higher level product which can be used to generate "vegetation indices", like gcc, for

  7. Image/Time Series Mining Algorithms: Applications to Developmental Biology, Document Processing and Data Streams

    ERIC Educational Resources Information Center

    Tataw, Oben Moses

    2013-01-01

    Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…

  8. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  9. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2014-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  10. Use of Model-Segmentation Criteria in Clustering and Segmentation of Time Series and Digital Images.

    DTIC Science & Technology

    1983-05-05

    DANS LAS REPARTITION? ET LA SEGMENTATION DES SERIES TEMPORELLES ET DES IMAGES NUMtRICALES Cet article traite le d~veloppement et l’utilisation des...multidimensionnelles et du no-bre des classes des segments dans la segmentation des series temporelles et des imaqes numericales. Les criteres comme ceux de Akaike...NATIONAL BURCAU OF STAND)AROS 1963 A USE OF MODEL-SEGMENTATION CRITERIA IN CLUSTERING AND SEGMENTATION OF TIME SERIES AND DIGITAL IMAGES by STANLEY L

  11. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.

    PubMed

    Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark

    2016-01-01

    Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.

  12. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data

    NASA Astrophysics Data System (ADS)

    Alcantara, Camilo; Kuemmerle, Tobias; Baumann, Matthias; Bragina, Eugenia V.; Griffiths, Patrick; Hostert, Patrick; Knorn, Jan; Müller, Daniel; Prishchepov, Alexander V.; Schierhorn, Florian; Sieber, Anika; Radeloff, Volker C.

    2013-09-01

    The demand for agricultural products continues to grow rapidly, but further agricultural expansion entails substantial environmental costs, making recultivating currently unused farmland an interesting alternative. The collapse of the Soviet Union in 1991 led to widespread abandonment of agricultural lands, but the extent and spatial patterns of abandonment are unclear. We quantified the extent of abandoned farmland, both croplands and pastures, across the region using MODIS NDVI satellite image time series from 2004 to 2006 and support vector machine classifications. Abandoned farmland was widespread, totaling 52.5 Mha, particularly in temperate European Russia (32 Mha), northern and western Ukraine, and Belarus. Differences in abandonment rates among countries were striking, suggesting that institutional and socio-economic factors were more important in determining the amount of abandonment than biophysical conditions. Indeed, much abandoned farmland occurred in areas without major constraints for agriculture. Our map provides a basis for assessing the potential of Central and Eastern Europe’s abandoned agricultural lands to contribute to food or bioenergy production, or carbon storage, as well as the environmental trade-offs and social constraints of recultivation.

  13. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs.

  14. A tool for NDVI time series extraction from wide-swath remotely sensed images

    NASA Astrophysics Data System (ADS)

    Li, Zhishan; Shi, Runhe; Zhou, Cong

    2015-09-01

    Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.

  15. Mapping crop key phenological stages in the North China Plain using NOAA time series images

    NASA Astrophysics Data System (ADS)

    Xin, Jingfeng; Yu, Zhenrong; van Leeuwen, Louise; Driessen, Paul M.

    2002-11-01

    Six key phenological stages were defined based on NOAA/AVHRR NDVI time series data collected in the Huang-Huai-Hai (HHH) Plain of China from 1990 through 2000. In a winter wheat-summer maize rotation, the recovering, heading and maturity stages of winter wheat and the emergence, tasseling and maturity stages of summer maize were recorded using 6 km resolution 10-day composite NDVI. The satellite-derived data proved to be consistent with the 'green wave' moving through the HHH Plain in spring. The recovering stage of winter wheat recorded by satellite was closely correlated to the temperatures measured in February whereas summer maize yields (at zone level) were correlated well with the satellite-derived length of the crop cycle. Comparison with synchronous phenological observations on the ground confirmed the coherence of satellite-derived phenology data. It is expected that satellite data with greater spatial and temporal resolutions and improved smoothing methods will increase the precision of the estimated data still further.

  16. DAHITI - An Innovative Approach for Estimating Water Level Time Series over Inland Water using Multi-Mission Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Schwatke, Christian; Dettmering, Denise

    2016-04-01

    Satellite altimetry has been designed for sea level monitoring over open ocean areas. However, for some years, this technology has also been used to retrieve water levels from lakes, reservoirs, rivers, wetlands and in general any inland water body. In this contribution, a new approach for the estimation of inland water level time series is presented. The method is the basis for the computation of time series of rivers and lakes available through the web service 'Database for Hydrological Time Series over Inland Water' (DAHITI). It is based on an extended outlier rejection and a Kalman filter approach incorporating cross-calibrated multi-mission altimeter data from Envisat, ERS-2, Jason-1, Jason-2, Topex/Poseidon, and SARAL/AltiKa, including their uncertainties. The new approach yields RMS differences with respect to in situ data between 4 cm and 36 cm for lakes and 8 cm and 114 cm for rivers, respectively. Within this presentation, the new approach will be introduced and examples for water level time series for a variety of lakes and rivers will be shown featuring different characteristics such as shape, lake extent, river width, and data coverage. A comprehensive validation is performed by comparisons with in situ gauge data and results from external inland altimeter databases.

  17. Kalman filter approach for estimating water level time series over inland water using multi-mission satellite altimetry

    NASA Astrophysics Data System (ADS)

    Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F.

    2015-05-01

    Satellite altimetry has been designed for sea level monitoring over open ocean areas. However, since some years, this technology is also used for observing inland water levels of lakes and rivers. In this paper, a new approach for the estimation of inland water level time series is described. It is used for the computation of time series available through the web service "Database for Hydrological Time Series over Inland Water" (DAHITI). The method is based on a Kalman filter approach incorporating multi-mission altimeter observations and their uncertainties. As input data, cross-calibrated altimeter data from Envisat, ERS-2, Jason-1, Jason-2, Topex/Poseidon, and SARAL/AltiKa are used. The paper presents water level time series for a variety of lakes and rivers in North and South America featuring different characteristics such as shape, lake extent, river width, and data coverage. A comprehensive validation is performed by comparison with in-situ gauge data and results from external inland altimeter databases. The new approach yields RMS differences with respect to in-situ data between 4 and 38 cm for lakes and 12 and 139 cm for rivers, respectively. For most study cases, more accurate height information than from available other altimeter data bases can be achieved.

  18. DAHITI - an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry

    NASA Astrophysics Data System (ADS)

    Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F.

    2015-10-01

    Satellite altimetry has been designed for sea level monitoring over open ocean areas. However, for some years, this technology has also been used to retrieve water levels from reservoirs, wetlands and in general any inland water body, although the radar altimetry technique has been especially applied to rivers and lakes. In this paper, a new approach for the estimation of inland water level time series is described. It is used for the computation of time series of rivers and lakes available through the web service "Database for Hydrological Time Series over Inland Waters" (DAHITI). The new method is based on an extended outlier rejection and a Kalman filter approach incorporating cross-calibrated multi-mission altimeter data from Envisat, ERS-2, Jason-1, Jason-2, TOPEX/Poseidon, and SARAL/AltiKa, including their uncertainties. The paper presents water level time series for a variety of lakes and rivers in North and South America featuring different characteristics such as shape, lake extent, river width, and data coverage. A comprehensive validation is performed by comparisons with in situ gauge data and results from external inland altimeter databases. The new approach yields rms differences with respect to in situ data between 4 and 36 cm for lakes and 8 and 114 cm for rivers. For most study cases, more accurate height information than from other available altimeter databases can be achieved.

  19. Use of spectral channels and vegetation indices from satellite VEGETATION time series for the Post-Fire vegetation recovery estimation

    NASA Astrophysics Data System (ADS)

    Coluzzi, Rosa; Lasaponara, Rosa; Montesano, Tiziana; Lanorte, Antonio; de Santis, Fortunato

    2010-05-01

    Satellite data can help monitoring the dynamics of vegetation in burned and unburned areas. Several methods can be used to perform such kind of analysis. This paper is focused on the use of different satellite-based parameters for fire recovery monitoring. In particular, time series of single spectral channels and vegetation indices from SPOT-VEGETATION have investigated. The test areas is the Mediterranean ecosystems of Southern Italy. For this study we considered: 1) the most widely used index to follow the process of recovery after fire: normalized difference vegetation index (NDVI) obtained from the visible (Red) and near infrared (NIR) by using the following formula NDVI = (NIR_Red)/(NIR + Red), 2) moisture index MSI obtained from the near infrared and Mir for characterization of leaf and canopy water content. 3) NDWI obtained from the near infrared and Mir as in the case of MSI, but with the normalization (as the NDVI) to reduce the atmospheric effects. All analysis for this work was performed on ten-daily normalized difference vegetation index (NDVI) image composites (S10) from the SPOT- VEGETATION (VGT) sensor. The final data set consisted of 279 ten-daily, 1 km resolution NDVI S1O composites for the period 1 April 1998 to 31 December 2005 with additional surface reflectance values in the blue (B; 0.43-0.47,um), red (R; 0.61-0.68,um), near-infrared (NIR; 0.78-0.89,um) and shortwave-infrared (SWIR; 1.58-1.75,um) spectral bands, and information on the viewing geometry and pixel status. Preprocessing of the data was performed by the Vlaamse Instelling voor Technologisch Onderzoek (VITO) in the framework of the Global Vegetation Monitoring (GLOVEG) preprocessing chain. It consisted of the Simplified Method for Atmospheric Correction (SMAC) and compositing at ten-day intervals based on the Maximum Value Compositing (MVC) criterion. All the satellite time series were analysed using the Detrended Fluctuation Analysis (DFA) to estimate post fire vegetation recovery

  20. Measuring Mars Sand Flux Seasonality from a Time Series of Hirise Images

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Avouac, J.; Bridges, N. T.; Leprince, S.; Lucas, A.

    2012-12-01

    The volumetric transport rate of sand, or flux, is a fundamental quantity that relates to the rate of landscape evolution through surface deposition and erosion. Measuring this quantity on Mars is particularly relevant as wind is the dominant geomorphic agent active at present on the planet. Measuring sand flux on Mars has been made possible thanks to the availability of times series of high resolution images acquired by the High Resolution Imaging Science Experiment (HiRISE) and precise image registration and correlation methods which permits the quantification of movement to sub-pixel precision. In this study, focused on the Nili Patera dune field, we first measured the migration rate of sand ripples and dune lee fronts over 105 days, using a pair of HiRISE images acquired in 2007, correlated and co-registered with COSI-Corr. From these measurements and the estimation of the ripple and dune heights, we derived the reptation and saltation sand fluxes. We next applied the same methodology to a time-series of eight images acquired in 2010-2011 covering one Mars year. Pairs of sequential images, were processed with COSI-Corr yielding a times series of 8 displacement maps. A Principal Component Analysis (PCA) was applied to the time-series to quantify more robustly the time evolution of the signal and filter out noise, in particular due to misalignment of CCDs. Using the first two components, which account for 84% of the variance, the seasonal variation of the ripple migration rate was estimated. We clearly observe continuously active migration throughout the year with a strong seasonal quasi-sinusoidal variation which peaks at perihelion. Ripple displacement orientation is stable in time, toward ~N115°E. The wind direction is thus relatively constant in this area, a finding consistent with the barchan morphology and orientation of the dunes. The dataset require that sand moving winds must occur daily to weekly throughout the year. The amplitude of the seasonal

  1. Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data.

    PubMed

    Pareeth, Sajid; Bresciani, Mariano; Buzzi, Fabio; Leoni, Barbara; Lepori, Fabio; Ludovisi, Alessandro; Morabito, Giuseppe; Adrian, Rita; Neteler, Markus; Salmaso, Nico

    2017-02-01

    The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study, we developed new time series of LSWT for five large lakes in Italy and evaluated the product with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual and summer trends, the temporal coherence of mean LSWT between the lakes, and studied the intra-annual variations and long-term trends from the newly developed LSWT time series. We found a regional warming trend at a rate of 0.017°Cyr(-1) annually and 0.032°Cyr(-1) during summer. Mean annual and summer LSWT temporal patterns in these lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally, it is important to understand the long-term variations of surface temperature at a regional scale. This study contributes a new method to derive long-term accurate LSWT for lakes with sparse in-situ data thereby facilitating understanding of regional level changes in lake's surface temperature.

  2. DORIS satellite antenna maps derived from long-term residuals time series

    NASA Technical Reports Server (NTRS)

    Willis, Pascal R.; Desai, S. D.; Bertiger, W. I.; Haines, B. J.; Auriol, A.

    2004-01-01

    Recent studies have shown that phase pattern models for the Jason-1 GPS antenna significantly benefit GPS-based precise orbit determination (POD) for the satellite. We have used a similar technique to derive DORIS receiver antenna maps, using all available DORIS tracking data over long time periods (from 1993.0 to 2004.0). We demonstrate that the derived correction models are satellite specific. For a given satellite, year-to-year estimations show clear systematic patterns. Some of these systematic patterns are attributable to the derivative of the multi-path effects in the direction of the satellite velocity. For early SPOT data, the patterns can be explained by an offset in the TAI time tagging (typically 8 (mu)s). In a second step, we have applied the SPOT2 antenna correction models in precise orbit determination and in the positioning of ground beacons. Preliminary results on DORIS/SPOT2 show that application of the DORIS antenna maps lead to a slight improvement of the derived POD and geodetic results (typically less than 5%).

  3. AQUAdexIM: highly efficient in-memory indexing and querying of astronomy time series images

    NASA Astrophysics Data System (ADS)

    Hong, Zhi; Yu, Ce; Wang, Jie; Xiao, Jian; Cui, Chenzhou; Sun, Jizhou

    2016-12-01

    Astronomy has always been, and will continue to be, a data-based science, and astronomers nowadays are faced with increasingly massive datasets, one key problem of which is to efficiently retrieve the desired cup of data from the ocean. AQUAdexIM, an innovative spatial indexing and querying method, performs highly efficient on-the-fly queries under users' request to search for Time Series Images from existing observation data on the server side and only return the desired FITS images to users, so users no longer need to download entire datasets to their local machines, which will only become more and more impractical as the data size keeps increasing. Moreover, AQUAdexIM manages to keep a very low storage space overhead and its specially designed in-memory index structure enables it to search for Time Series Images of a given area of the sky 10 times faster than using Redis, a state-of-the-art in-memory database.

  4. Mapping the birch and grass pollen seasons in the UK using satellite sensor time-series.

    PubMed

    Khwarahm, Nabaz R; Dash, Jadunandan; Skjøth, C A; Newnham, R M; Adams-Groom, B; Head, K; Caulton, Eric; Atkinson, Peter M

    2017-02-01

    Grass and birch pollen are two major causes of seasonal allergic rhinitis (hay fever) in the UK and parts of Europe affecting around 15-20% of the population. Current prediction of these allergens in the UK is based on (i) measurements of pollen concentrations at a limited number of monitoring stations across the country and (ii) general information about the phenological status of the vegetation. Thus, the current prediction methodology provides information at a coarse spatial resolution only. Most station-based approaches take into account only local observations of flowering, while only a small number of approaches take into account remote observations of land surface phenology. The systematic gathering of detailed information about vegetation status nationwide would therefore be of great potential utility. In particular, there exists an opportunity to use remote sensing to estimate phenological variables that are related to the flowering phenophase and, thus, pollen release. In turn, these estimates can be used to predict pollen release at a fine spatial resolution. In this study, time-series of MERIS Terrestrial Chlorophyll Index (MTCI) data were used to predict two key phenological variables: the start of season and peak of season. A technique was then developed to estimate the flowering phenophase of birch and grass from the MTCI time-series. For birch, the timing of flowering was defined as the time after the start of the growing season when the MTCI value reached 25% of the maximum. Similarly, for grass this was defined as the time when the MTCI value reached 75% of the maximum. The predicted pollen release dates were validated with data from nine pollen monitoring stations in the UK. For both birch and grass, we obtained large positive correlations between the MTCI-derived start of pollen season and the start of the pollen season defined using station data, with a slightly larger correlation observed for birch than for grass. The technique was applied to

  5. Time series comparisons of satellite and rocketsonde temperatures in 1978-1979

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.; Bhatt, Praful P.; Schmidlin, Francis J.

    1994-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) experiment on Nimbus 7 yielded temperature-versus-pressure (T(p)) profiles for each radiance scan. The present report describes time series comparisons between LIMS and rocketsonde T(p) values at rocketsonde station locations. Sample size has increased up to 665 by this new approach, leading to better statistics for a T(p) validation. The results indicate no clearly significant bias for LIMS versus Datasonde from 10 kPa at low and mid latitudes. There is a positive LIMS bias of 2 to 3 K in the upper stratosphere at high latitudes for the Northern Hemisphere in both winter and spring. LIMS is progressively colder than Datasonde from 0.4 kPa (about -3 K) to 0.1 kPa (about -9 K) at all latitudes. A similar comparison between LIMS and the more accurate falling sphere measurements reveals an equivalent mid-latitude LIMS bias at 0.4 kPa but a much smaller bias at 0.1 kPa (-4.6 K). Because the biases do not vary noticeably with season, it is concluded that they are not a function of atmospheric state. This result confirms the robustness of the LIMS temperature retrieval technique.

  6. Time-series measurements of hydrothermal plume volume flux with imaging sonar

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2012-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor the outputs of deep-sea hydrothermal vent clusters for both high-temperature focused vents and diffuse flows. In September 2010, COVIS was connected to the NEPTUNE Canada underwater ocean observatory network (http://www.NEPTUNEcanada.ca) at the Grotto vent cluster at the Main Endeavour Field on the Endeavour Segment of the Juan de Fuca Ridge. Since then, COVIS has been monitoring the hydrothermal plumes above Grotto by transmitting high-frequency (400 kHz), pulsed acoustic waves towards the plumes and recording the backscattered signals from each pulse, except for a one-year hiatus due to the power-off of the NEPTUNE Canada network between November 2010 and September 2011. The received backscatter signals are transmitted via the NEPTUNE Canada network to the land-based servers in real time, where a combination of automatic and manual data analyses produces a plume volume-flux and flow-rate time series using both the intensity and Doppler shift of the backscatter signals. The initial 30-day time series (Sep-Oct 2010) was presented in AGU Fall meeting, 2011. Evident short-term temporal variations (< 2 days) have been observed, which indicates significant interaction between the plume and the ambient tidal current oscillations. To further investigate such interaction and capture long-term patterns of the system, we present a 10-month time series (since the resumption of COVIS in September 2011 until present) of the volume flux and flow rate of the plume discharging from the North Tower of Grotto. The new time series, with a 3-hour sampling rate and long duration, can reveal the variations of the plume on a wide range of time scales (< 2 days ~ months). Compared with its predecessor, the new time series provides a better chance to capture the episodic events (e.g. geologically driven), low-frequency periodic (e.g. seasonal) oscillations, and long-term trend in

  7. Urban green spatio- temporal changes assessment through time-series satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2015-10-01

    Understanding spatio-temporal changes of urban environments is essential for regional and local planning and environmental management. With the rapid changes of Bucharest city in Romania during past decades, green spaces have been fragmented and dispersed causing impairment and dysfunction of these urban elements. The main goal of this study is to address these tasks in synergy with in-situ data and new analytical methods. Spatio- temporal monitoring of urban vegetation land cover changes is important for policy decisions, regulatory actions and subsequent land use activities. This study explored the use of time-series MODIS Terra/Aqua Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Land Surface Temperature (LST) and evapotranspiration (ET) data to provide vegetation change detection information for metropolitan area of Bucharest. Training and validation are based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2002- 2014 was assessed to be of 87%, with a reasonable balance between change commission errors (20.24%), change omission errors (25.65%), and Kappa coefficient of 0.72. Annual change detection rates across the urban/periurban areas over the study period (2002-2014) were estimated at 0.79% per annum in the range of 0.46% (2002) to 0.77% (2014).Vegetation dynamics in urban areas at seasonal and longer timescales reflect large-scale interactions between the terrestrial biosphere and the climate system. Extracted green space areas were further analyzed quantitatively in relation with air quality data and extreme climate events. The results have been analyzed in terms of environmental impacts and future climate trends.

  8. Time Series of Snow Covered Area for Hydrologic Response Units of the Tom River Basin, Russia, from Satellite Imagery, 1980-1985

    NASA Astrophysics Data System (ADS)

    Saini, A.; Brubaker, K. L.; Jasinski, M. F.; Stoll, J.

    2003-12-01

    The seasonal snowpack dynamics of the Eurasian mountains and Siberian plains play a critical role in the freshwater fluxes of northern rivers into the Arctic Ocean. This study is part of a larger project whose goal is to analyze the freshwater discharge of the Ob' River (Russia) to the Arctic, using satellite remote sensing and hydrologic modeling on a daily time step. Using AVHRR Polar Pathfinder imagery obtained from the National Snow and Ice Data Center (NSIDC), time series of snow cover (accumulation through depletion) are created for hydrologic response units (HRUs) of the Tom River, a tributary of the Ob'. Sub-watersheds and HRUs of the Tom watershed are delineated using digital elevation and land use/land cover data within a Geographical Information System. All digital data are reprojected to the equal area azimuthal EASE-Grid of the NSIDC imagery. Daily remotely-sensed snow images for 1980 to 1985 are overlaid on the HRUs to give time series of percent snow cover for each HRU. These time series are compared with model-generated HRU snow cover, allowing us to evaluate the performance of the model's snow sub-routines in a spatially distributed manner. This study will contribute to better modeling and understanding of snow accumulation and depletion processes, which serve as important and climate-sensitive controls on the fresh water fluxes of Arctic river basins.

  9. ANALYSIS OF YEAR 2002 SEASONAL FOREST DYNAMICS USING TIME SERIES IN SITU LAI MEASUREMENTS AND MODIS LAI SATELLITE PRODUCTS

    EPA Science Inventory

    Multitemporal satellite images are the standard basis for regional-scale land-cover (LC) change detection. However, embedded in the data are the confounding effects of vegetation dynamics (phenology). As photosynthetic vegetation progresses through its annual cycle, the spectral ...

  10. Time series analysis of satellite multi-sensors imagery to study the recursive abnormal grow of floating macrophyte in the lake victoria (central Africa)

    NASA Astrophysics Data System (ADS)

    Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico

    2010-05-01

    Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The

  11. Estimating the population local wavelet spectrum with application to non-stationary functional magnetic resonance imaging time series.

    PubMed

    Gott, Aimee N; Eckley, Idris A; Aston, John A D

    2015-12-20

    Functional magnetic resonance imaging (fMRI) is a dynamic four-dimensional imaging modality. However, in almost all fMRI analyses, the time series elements of this data are assumed to be second-order stationary. In this paper, we examine, using time series spectral methods, whether such stationary assumptions can be made and whether estimates of non-stationarity can be used to gain understanding into fMRI experiments. A non-stationary version of replicated stationary time series analysis is proposed that takes into account the replicated time series that are available from nearby voxels in a region of interest (ROI). These are used to investigate non-stationarities in both the ROI itself and the variations within the ROI. The proposed techniques are applied to simulated data and to an anxiety-inducing fMRI experiment.

  12. Cerebral blood flow imaging using time-series analysis of indocyanine green molecular dynamics in mice

    NASA Astrophysics Data System (ADS)

    Ku, Taeyun; Lee, Jungsul; Choi, Chulhee

    2010-02-01

    Measurement of cerebral perfusion is important for study of various brain disorders such as stroke, epilepsy, and vascular dementia; however, efficient and convenient methods which can provide quantitative information about cerebral blood flow are not developed. Here we propose an optical imaging method using time-series analysis of dynamics of indocyanine green (ICG) fluorescence to generate cerebral blood flow maps. In scalp-removed mice, ICG was injected intravenously, and 740nm LED light was illuminated for fluorescence emission signals around 820nm acquired by cooled-CCD. Time-lapse 2-dimensional images were analyzed by custom-built software, and the maximal time point of fluorescent influx in each pixel was processed as a blood flow-related parameter. The generated map exactly reflected the shape of the brain without any interference of the skull, the dura mater, and other soft tissues. This method may be further applicable for study of other disease models in which the cerebral hemodynamics is changed either acutely or chronically.

  13. Using Landsat image time series to study a small water body in Northern Spain.

    PubMed

    Chao Rodríguez, Y; el Anjoumi, A; Domínguez Gómez, J A; Rodríguez Pérez, D; Rico, E

    2014-06-01

    Ramsar Convention and EU Water Framework Directive are two international agreements focused on the conservation and achievement of good ecological and chemical status of wetlands. Wetlands are important ecosystems holding many plant and animal communities. Their environmental status can be characterised by the quality of their water bodies. Water quality can be assessed from biophysical parameters (such as Chlorophyll-a concentration ([Chla]), water surface temperature and transparency) in the deeper or lacustrine zone, or from bioindicators (as submerged aquatic vegetation) in the shallow or palustrine zone. This paper proves the use of Landsat time series to measure the evolution of water quality parameters and the environmental dynamics of a small water body (6.57 ha) in a Ramsar wetland (Arreo Lake in the North of Spain). Our results show that Landsat TM images can be used to describe periodic behaviours such as the water surface temperature or the phenologic state of the submerged vegetation (through normalized difference vegetation index, NDVI) and thus detect anomalous events. We also show how [Chla] and transparency can be measured in the lacustrine zone using Landsat TM images and an algorithm adjusted for mesotrophic Spanish lakes, and the resulting values vary in time in accordance with field measurements (although these were not synchronous with the images). The availability of this algorithm also highlights anomalies in the field data series that are found to be related with the concentration of suspended matter. All this potential of Landsat imagery to monitor small water bodies in wetlands can be used for hindcasting of past evolution of these wetlands (dating back to 1970s) and will be also useful in the future thanks to the Landsat continuity mission and the Operational Land Imager.

  14. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  15. Constructing new satellite-only time series of global mean, sea surface temperature data for climate from ATSR data

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Remedios, John; Ghent, Darren

    2013-04-01

    The Along Track Scanning Radiometers (ATSRs) have provided a near-continuous record of sea surface temperature (SST) data for climate from the launch of ATSR-1 in 1991 to the loss of the Advanced ATSR (AATSR) in April 2012. The intention was always to provide an SST record, independent of in situ data, to corroborate and improve climate data records in recent times. We show that the ATSR record provides a very suitable data set with which to study the recent climate record, particularly during the ATSR-2 and AATSR periods (1995 to 2012) in three major respects. First, ATSR climate time series achieve anomaly accuracies of better than 0.05 K (and high stability). Second, the overlap between instruments allows for excellent determination and removal of biases; between ATSR-2 and AATSR, these are less than 0.05 K for the highest accuracy SST data. Finally, uncertainties on global monthly mean data are less than 0.02 K and hence comparable to those achieved by in situ analyses such as HadSST3. A particular hallmark of the ATSR instruments was their exceptional design for accuracy incorporating high accuracy radiometric calibration, dual-view of the Earth's surface and the use of three thermal emission channels; additional channels are included for cloud clearing in this context. The use of dual-view and multiple thermnal wavelengths allows a number of combinations for retrievals of SST, the most accurate being the dual-view, three-channel retrieval (D3) at nighttime. This restriction is due to the use of the 3.7 micron channel which is sensitive to solar radiation during the day. Extensive work has resulted in a major advances recently resulting in both an operational V2.0 SST product and a further improved ATSR Re-analysis for Climate (ARC) product, a particular feature of the latter being the development of a depth SST product in addition to the skin SST directly determined from satellite data. We will discuss the characteristics of these data sets in terms of

  16. Using Landsat 8 Image Time Series for Crop Mapping in a Region of Cerrado, Brazil

    NASA Astrophysics Data System (ADS)

    Bendini, H.; Sanches, I. D.; Körting, T. S.; Fonseca, L. M. G.; Luiz, A. J. B.; Formaggio, A. R.

    2016-06-01

    The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification.

  17. Application of Time Series Landsat Images to Examining Land-use/Land-cover Dynamic Change

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio; Li, Guiying

    2013-01-01

    A hierarchical-based classification method was designed to develop time series land-use/land-cover datasets from Landsat images between 1977 and 2008 in Lucas do Rio Verde, Mato Grosso, Brazil. A post-classification comparison approach was used to examine land-use/land-cover change trajectories, which emphasis is on the conversions from vegetation or agropasture to impervious surface area, from vegetation to agropasture, and from agropasture to regenerating vegetation. Results of this research indicated that increase in impervious surface area mainly resulted from the loss of cerrado in the initial decade of the study period and from loss of agricultural lands in the last two decades. Increase in agropasture was mainly at the expense of losing cerrado in the first two decades and relatively evenly from the loss of primary forest and cerrado in the last decade. When impervious surface area was less than approximately 40 km2 before 1999, impervious surface area was negatively related to cerrado and forest, and positively related to agropasture areas, but after impervious surface area reached 40 km2 in 1999, no obvious relationship exists between them. PMID:25328256

  18. Remote sensing evaluation of ecosystem service value of gas regulation with time series Landsat images

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Guo, Wei; Wang, Yancang; Yang, Guijun

    2014-10-01

    Gas regulation is one of the important ecological service functions of ecosystem. Plants transform solar energy into biotic energy through photosynthesis, fixing CO2 and releasing O2, which plays an irreplaceable role in maintaining the CO2/O2 balance and mitigating greenhouse gases emissions. The ecosystem service value of gas regulation can be evaluated from the amount of CO2 and releasing O2. Taken the net primary productivity (NPP) of ecosystem as transition parameter, the value of gas regulation service in Beijing city in recent 30 years was evaluated and mapped with time series LandSat images, which was used to analyze the spatial patterns and driving forces. Results showed that he order of ecosystem service value of gas regulation in Beijing area was 1978 < 1992 < 2000 < 2010, which was consistent with the order of NPP. The contribution order for gas regulation service of six ecosystems from1978 to 2010 was basically stable. The forest and farmland played important roles of gas regulation, of which the proportion reached 80% and varied with the area from 1978 to 2010. It indicated that increasing the area of forest and farmland was helpful for enhance the ecosystem service value of gas regulation.

  19. Gradient pattern analysis of short nonstationary time series: an application to Lagrangian data from satellite tracked drifters

    NASA Astrophysics Data System (ADS)

    Assireu, A. T.; Rosa, R. R.; Vijaykumar, N. L.; Lorenzzetti, J. A.; Rempel, E. L.; Ramos, F. M.; Abreu Sá, L. D.; Bolzan, M. J. A.; Zanandrea, A.

    2002-08-01

    Based on the gradient pattern analysis (GPA) technique we introduce a new methodology for analyzing short nonstationary time series. Using the asymmetric amplitude fragmentation (AAF) operator from GPA we analyze Lagrangian data observed as velocity time series for ocean flow. The results show that quasi-periodic, chaotic and turbulent regimes can be well characterized by means of this new geometrical approach.

  20. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  1. Time-series MODIS satellite and in-situ data for spatio-temporal distribution of aerosol pollution assessment over Bucharest metropolitan area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.

    2015-10-01

    With the increasing industrialization and urbanization, especially in the metropolis regions, aerosol pollution has highly negative effects on environment. Urbanization is responsible of three major changes that may have impact on the urban atmosphere: replacement of the natural surfaces with buildings and impermeable pavements, heat of anthropogenic origin and air pollution. The importance of aerosols for radiative and atmospheric chemical processes is widely recognized. They can scatter and/or absorb solar radiation leading to changes of the radiation budget. Also, the so-called indirect effect of aerosols describes the cloud-aerosol interactions, which can modify the chemical and physical processes in the atmosphere. Their high spatial variability and short lifetime make spaceborne sensors especially well suited for their observation. Remote sensing is a key application in global-change science and urban climatology. Since the launch of the MODerate resolution Imaging Spectroradiometer (MODIS) there is detailed global aerosol information available, both over land and oceans The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The objective of this work was to document the seasonal and inter-annual patterns of the aerosol pollution particulate matter in two size fractions (PM10 and PM2.5) loading and air quality index (AQI) over Bucharest metropolitan area in Romania based on in-situ and MODIS (Terra-Moderate Resolution Imaging Spectoradiometer) satellite time series data over 2010-2012 period. Accurate information of urban air pollution is required for environmental and health policy, but also to act as a basis for designing and stratifying future monitoring networks.

  2. The BEYOND center of excellence for the effective exploitation of satellite time series towards natural disasters monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Kontoes, Charalampos; Papoutsis, Ioannis; Amiridis, Vassilis; Balasis, George; Keramitsoglou, Iphigenia; Herekakis, Themistocles; Christia, Eleni

    2014-05-01

    analysis of the satellite time series from this diverse EO based monitoring network facilities established at NOA covers a broad spectrum of research activities. Indicatively using Landsat TM/ETM+ imagery we have developed algorithms for the automatic diachronic mapping of burnt areas over Greece since 1984 and we have been using MSG/SEVIRI data to detect forest wildfires in Greece since 2007, analyze their temporal and geographical signatures and store these events for further analysis in relation with auxiliary geo-information layers for risk assessment applications. In the field of geophysics we have been employing sophisticated radar interferometry techniques using SAR sensor diversity with multi-frequency, multi-resolution and multi-temporal datasets (e.g. ERS1/ERS2, ENVISAT, TerraSAR-X, COSMO-SkyMED) to map diachronic surface deformation associated with volcanic activity, tectonic stress accumulation and urban subsidence. In the field of atmospheric research, we have developed a 3-dimentional global climatology of aerosol and cloud distributions using the CALIPSO dataset. The database, called LIVAS, will continue utilizing CALIPSO observations but also datasets from the upcoming ADM-Aeolus and EarthCARE ESA missions in order to provide a unique historical dataset of global aerosol and cloud vertical distributions, as well as respective trends in cloud cover, aerosol/cloud amount and variability of the natural and anthropogenic aerosol component. Additionally, our team is involved in Swarm magnetic field constellation, a new Earth Explorer mission in ESA's Living Planet Programme launched on November 22, 2013, as member of the validation team of the mission. Finally, assessment of heat wave risk and hazards is carried out systematically using MODIS satellite data.

  3. Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling

    PubMed Central

    Zhou, Fuqun; Zhang, Aining

    2016-01-01

    Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2–3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests’ features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data. PMID:27792152

  4. Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling.

    PubMed

    Zhou, Fuqun; Zhang, Aining

    2016-10-25

    Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2-3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests' features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data.

  5. Measuring Mars sand flux seasonality from a time series of HiRISE images and calibrating the threshold for sand mobility

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Avouac, J.; Newman, C. E.; Richardson, M. I.; Lucas, A.; Leprince, S.; Bridges, N. T.

    2013-12-01

    In this study, focused on the Nili Patera dune field on Mars, we measured the temporal variation of the migration rate of sand ripples from the correlation of a time-series of HiRISE images using COSI-Corr. The time-series covers approximately 1.5 Mars year which allows us to observe seasonal migration rate variability as well as taking an early glimpse on yearly variation. A Principal Component Analysis (PCA) was applied to the time-series to quantify more robustly the time evolution of the signal and filter out noise, in particular due to unrecorded satellite jitter. Using the first two components, which account for 82% of the variance, the seasonal variation of the ripple migration rate was estimated. We clearly observe continuously active migration throughout the year with a strong seasonal quasi-sinusoidal variation which peaks at perihelion. Coupling between surface winds and sand transport is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is likely crucial for both erosion of the surface and for the emission of finer (dust) particles into the atmosphere. Analysis of the distinctive seasonal variation of sand flux with an atmospheric model is used to infer an effective threshold for sand motion. This is the first direct estimate of the stress threshold at Mars on spatial scales relevant for dynamical atmospheric modeling of sand transport, surface erosion, and dust lifting.

  6. Effective Interpolation of Incomplete Satellite-Derived Leaf-Area Index Time Series for the Continental United States

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Borak, Jordan S.

    2008-01-01

    Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.

  7. Monitoring irrigation volumes using high-resolution NDVI image time series: calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, S.; Simonneaux, V.; Boulet, G.; Mougenot, B.; Lili Chabaane, Z.

    2015-10-01

    The increasing availability of high resolution high repetitively VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be launched in 2015, offers unprecedented opportunity to improve agricultural monitoring. In this study, regional evapotranspiration and crop water consumption were estimated over an irrigated area located in the Kairouan plain (central Tunisia) using the FAO-56 dual crop coefficient water balance model combined with NDVI image time series providing estimates of the actual basal crop coefficient (Kcb) and vegetation fraction cover. Three time series of high-resolution SPOT5 images have been acquired for the 2008-2009, 2011-2012 and 2012-2013 hydrological years. We also benefited from a SPOT4 time series acquired in the frame of the SPOT4-Take5 experiment. The SPOT5 images were radiometrically corrected, first, using the SMAC6s Algorithm, and then improved using invariant objects located on the scene. The method was first calibrated using ground measurements of evapotranspiration achieved using eddy-correlation devices installed on irrigated wheat and barley plots. For other crops for which no calibration data was available, parameters were taken from bibliography. Then, the model was run to spatialize irrigation over the whole area and a validation was done using cumulated seasonal water volumes obtained from ground survey for three irrigated perimeters. In a subsequent step, evapotranspiration estimates were obtained using a large aperture scintillometer and were used for an additional validation of the model outputs.

  8. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images

    NASA Astrophysics Data System (ADS)

    Fujiki, Shogoro; Okada, Kei-ichi; Nishio, Shogo; Kitayama, Kanehiro

    2016-09-01

    We developed a new method to estimate stand ages of secondary vegetation in the Bornean montane zone, where local people conduct traditional shifting cultivation and protected areas are surrounded by patches of recovering secondary vegetation of various ages. Identifying stand ages at the landscape level is critical to improve conservation policies. We combined a high-resolution satellite image (WorldView-2) with time-series Landsat images. We extracted stand ages (the time elapsed since the most recent slash and burn) from a change-detection analysis with Landsat time-series images and superimposed the derived stand ages on the segments classified by object-based image analysis using WorldView-2. We regarded stand ages as a response variable, and object-based metrics as independent variables, to develop regression models that explain stand ages. Subsequently, we classified the vegetation of the target area into six age units and one rubber plantation unit (1-3 yr, 3-5 yr, 5-7 yr, 7-30 yr, 30-50 yr, >50 yr and 'rubber plantation') using regression models and linear discriminant analyses. Validation demonstrated an accuracy of 84.3%. Our approach is particularly effective in classifying highly dynamic pioneer vegetation younger than 7 years into 2-yr intervals, suggesting that rapid changes in vegetation canopies can be detected with high accuracy. The combination of a spectral time-series analysis and object-based metrics based on high-resolution imagery enabled the classification of dynamic vegetation under intensive shifting cultivation and yielded an informative land cover map based on stand ages.

  9. Crop Identification Using Time Series of Landsat-8 and Radarsat-2 Images: Application in a Groundwater Irrigated Region, South India

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Hubert-Moy, L.; Betbederet, J.; Ruiz, L.; Sekhar, M.; Corgne, S.

    2016-08-01

    Monitoring land use and land cover and more particularly irrigated cropland dynamics is of great importance for water resources management and land use planning. The objective of this study was to evaluate the combined use of multi-temporal optical and radar data with a high spatial resolution in order to improve the precision of irrigated crop identification by taking into account information on crop phenological stages. SAR and optical parameters were derived from time- series of seven quad-pol RADARSAT-2 and four Landsat-8 images which were acquired on the Berambadi catchment, South India, during the monsoon crop season at the growth stages of turmeric crop. To select the best parameter to discriminate turmeric crops, an analysis of covariance (ANCOVA) was applied on all the time-series parameters and the most discriminant ones were classified using the Support Vector Machine (SVM) technique. Results show that in absence of optical images, polarimetric parameters derived from SAR time-series can be used for the turmeric area estimates and that the combined use of SAR and optical parameters can improve the classification accuracy to identify turmeric.

  10. Detection of non-uniform multi-body motion in image time-series using saccades-enhanced phase correlation

    NASA Astrophysics Data System (ADS)

    Gladilin, Evgeny; Eils, Roland

    2009-02-01

    Unsupervised analysis of time-series of live-cell images is one of the important tools of quantitative biology. Due to permanent cell motility or displacements of subcellular structures, microscopic images exhibit intrinsic non-uniform motion. In this article, we present a novel approach for detection of non-uniform multi-body motion which is based on combination of the Fourier-phase correlation with iterative probing target and background image regions similar to the strategy known from saccadic eye movements. We derive theoretical expressions that yield plausible explanation why this strategy turns out to be advantageous for tracking particular image pattern. Our experiments with synthetic and live-cell images demonstrate that the proposed approach is capable of accurately detecting non-uniform motion in synthetic and live-cell images.

  11. A 16-year time series of 1 km AVHRR satellite data of the conterminous United States and Alaska

    USGS Publications Warehouse

    Eidenshink, Jeff

    2006-01-01

    The U.S. Geological Survey (USGS) has developed a 16-year time series of vegetation condition information for the conterminous United States and Alaska using 1 km Advanced Very High Resolution Radiometer (AVHRR) data. The AVHRR data have been processed using consistent methods that account for radiometric variability due to calibration uncertainty, the effects of the atmosphere on surface radiometric measurements obtained from wide field-of-view observations, and the geometric registration accuracy. The conterminous United States and Alaska data sets have an atmospheric correction for water vapor, ozone, and Rayleigh scattering and include a cloud mask derived using the Clouds from AVHRR (CLAVR) algorithm. In comparison with other AVHRR time series data sets, the conterminous United States and Alaska data are processed using similar techniques. The primary difference is that the conterminous United States and Alaska data are at 1 km resolution, while others are at 8 km resolution. The time series consists of weekly and biweekly maximum normalized difference vegetation index (NDVI) composites.

  12. Analysis of Satellite sea surface temperature time series in the Brazil-Malvinas Current confluence region: Dominance of the annual and semiannual periods

    NASA Astrophysics Data System (ADS)

    Provost, Christine; Garcia, Omar; GarçOn, VéRonique

    1992-11-01

    We study the dominant periodic variations of sea surface temperature (SST) in the Brazil-Malvinas Confluence region from a satellite-derived data set compiled by Olson et al. (1988). This data set is composed of 202 sea surface temperature images with a 4 × 4 km resolution and extends over 3 years (from July 1984 to July 1987). Each image is a 5-day composite. The dominant signal, as already observed by Podesta et al. (1991), has a 1-year period. We first fit a single-frequency sinusoidal model of the annual cycle in order to estimate mean temperature, amplitude, and phase at 159 points uniformly distributed over the region. The residuals are generally small (less than 2°C). The largest departures from this cycle are located either in the Brazil-Malvinas frontal region or in the southeastern part of the region. Other periods in SST variations are identified by means of periodograms of the 159 residual time series in which the annual cycle has been substracted. The periodograms show that a semiannual frequency signal is present at almost every location. The ratio of the semiannual amplitude to the annual amplitude increases southward from 0% at 30°S to reach up to 45% at 50°S. In the south the semiannual signal creates an asymmetry, and the resulting (total) annual cycle has a cold period (winter) longer than the warm one (summer). In the frontal region the annual and semiannual signals have an important interannual variation. This semiannual frequency is associated with the semiannual wave present in the atmospheric forcing of the southern hemisphere. Differential heating over the mid-latitude oceans and the high-latitude ice-covered Antarctic Continent has been suggested as the cause of this semiannual wave (Van Loon, 1967).

  13. Identifying drought-induced correlations in the satellite time series of hot pixels recorded in the Brazilian Amazon by means of the detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Stosic, Tatijana; Telesca, Luciano; Lemos da Costa, Simara Lúcia; Stosic, Borko

    2016-02-01

    In this work we study the long-term correlations in the satellite daily number of hot pixels recorded in the Brazilian Amazon during the period 1999-2012. While the highest peak in daily hot pixel frequencies occurred in 2007, coincident with a severe drought, for other intense droughts such as that occurred in 2005 (one-in-a-hundred year event for its high severity) and 2010, the corresponding number of hot pixels recorded was compatible or lower than that reached during e.g. 2004, with no reported severe drought. On the other hand, we find that the most severe droughts coincide with the peaks of the Detrended Fluctuation Analysis (DFA) scaling exponent of the time series of the daily anomalies in hot pixels. This finding is striking because it highlights the effectiveness of the DFA in disclosing that long-term hot pixel anomaly correlations are clearly associated with the drought events, that were not identifiable by examining hot pixel frequencies of the original time series. The dynamics of the time series of daily anomalies in hot pixels is, therefore, influenced by drought events. The coincidence of the peaks of the scaling exponent with drought events suggests the increase of the persistence of the hot pixel time series during the driest periods.

  14. Grouped frequent sequential patterns derived from terrestrial image time series to monitor landslide behaviour - Application to the dynamics of the Sanières/Roche Plombée rockslide.

    NASA Astrophysics Data System (ADS)

    Péricault, Youen; Pothier, Catherine; Méger, Nicolas; Trouvé, Emmanuel; Vernier, Flavien; Rigotti, Christophe; Malet, Jean-Philippe

    2016-04-01

    Image time series acquired with remote sensing methods based on optical terrestrial photogrammetry have great potential for understanding and monitoring the Earth surface dynamics at local scale, and are particularly interesting for landslide monitoring. Image correlation techniques can be applied to calculate the displacement fields, in either the image geometry or the terrain geometry if orthorectification procedures are applied. The resulting products are times series of displacement vectors for each epoch in which knowledge extraction techniques can be applied to discover relevant movement patterns in space and time. We used an unsupervised method (Grouped Frequent Sequential patterns / GFS-patterns) based on the mining of the displacement field. The method was originally developed for the analysis of time series of satellite images. It involves the extraction of trends / sub-trends affecting each pixel covering at least a minimum surface area and sufficiently connected to each other. The results of the mining are presented in spatio-temporal location maps (STL-map) of each GFS-pattern. In these maps, the spatial information is given by the pixel locations and the time information is displayed using a color ramp. The method is tested on a time series of 36 optical terrestrial images of the Sanières/Roche Plombée rockslide (South East French Alps) from 28 of July to 1 September 2014. From this series 35 2D displacement fields were calculated for epochs of three days, and the time series of vector magnitude and direction were analysed with GFS-patterns / STL-map. The method allowed identifying several patterns corresponding to different kinematical behaviour of the rockslide (long-term creep at the top of the slope, surficial movement of the debris at the base of the slope). The unsupervised knowledge extraction method GFS-pattern / STL-map, originally developed to analyse time series of satellite images showed in this study real possibilities of use for

  15. Multispectral Photoacoustic Imaging Artifact Removal and Denoising Using Time Series Model-Based Spectral Noise Estimation.

    PubMed

    Kazakeviciute, Agne; Ho, Chris Jun Hui; Olivo, Malini

    2016-09-01

    The aim of this study is to solve a problem of denoising and artifact removal from in vivo multispectral photoacoustic imaging when the level of noise is not known a priori. The study analyzes Wiener filtering in Fourier domain when a family of anisotropic shape filters is considered. The unknown noise and signal power spectral densities are estimated using spectral information of images and the autoregressive of the power 1 ( AR(1)) model. Edge preservation is achieved by detecting image edges in the original and the denoised image and superimposing a weighted contribution of the two edge images to the resulting denoised image. The method is tested on multispectral photoacoustic images from simulations, a tissue-mimicking phantom, as well as in vivo imaging of the mouse, with its performance compared against that of the standard Wiener filtering in Fourier domain. The results reveal better denoising and fine details preservation capabilities of the proposed method when compared to that of the standard Wiener filtering in Fourier domain, suggesting that this could be a useful denoising technique for other multispectral photoacoustic studies.

  16. Quantifying Forest and Coastal Disturbance from Industrial Mining Using Satellite Time Series Analysis Under Very Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Van Den Hoek, J.; Ahmed, N.

    2015-12-01

    The open-pit Grasberg mine, located in the highlands of Western Papua, Indonesia, and operated by PT Freeport Indonesia (PT-FI), is among the world's largest in terms of copper and gold production. Over the last 27 years, PT-FI has used the Ajkwa River to transport an estimated 1.3 billion tons of tailings from the mine into the so-called Ajkwa Deposition Area (ADA). The ADA is the product of aggradation and lateral expansion of the Ajkwa River into the surrounding lowland rainforest and mangroves, which include species important to the livelihoods of indigenous Papuans. Mine tailings that do not settle in the ADA disperse into the Arafura Sea where they increase levels of suspended particulate matter (SPM) and associated concentrations of dissolved copper. Despite the mine's large-scale operations, ecological impact of mine tailings deposition on the forest and estuarial ecosystems have received minimal formal study. While ground-based inquiries are nearly impossible due to access restrictions, assessment via satellite remote sensing is promising but hindered by extreme cloud cover. In this study, we characterize ridgeline-to-coast environmental impacts along the Ajkwa River, from the Grasberg mine to the Arafura Sea between 1987 and 2014. We use "all available" Landsat TM and ETM+ images collected over this time period to both track pixel-level vegetation disturbance and monitor changes in coastal SPM levels. Existing temporal segmentation algorithms are unable to assess both acute and protracted trajectories of vegetation change due to pervasive cloud cover. In response, we employ robust, piecewise linear regression on noisy vegetation index (NDVI) data in a manner that is relatively insensitive to atmospheric contamination. Using this disturbance detection technique we constructed land cover histories for every pixel, based on 199 image dates, to differentiate processes of vegetation decline, disturbance, and regrowth. Using annual reports from PT-FI, we show

  17. Classification of agricultural fields using time series of dual polarimetry TerraSAR-X images

    NASA Astrophysics Data System (ADS)

    Mirzaee, S.; Motagh, M.; Arefi, H.; Nooryazdan, M.

    2014-10-01

    Due to its special imaging characteristics, Synthetic Aperture Radar (SAR) has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM) classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.

  18. Dynamic Agricultural Land Unit Profile Database Generation using Landsat Time Series Images

    NASA Astrophysics Data System (ADS)

    Torres-Rua, A. F.; McKee, M.

    2012-12-01

    government efforts for a given occurrence at the land unit level, and affecting the potential economic trade-off level in the area. In this study a framework is proposed to create and continuously update a land unit profile database using historical Landsat satellite imagery records. An experimental test is implemented for the agricultural lands in Central Utah. This location was selected because of their success in increasing the efficiency of water use and control along the entire irrigation system. A set of crop health metrics from the literature (NDVI, LAI, NDWI) is calculated and evaluated to measure crop response to farm management for its evaluation in time. The resulting land unit profile database is then tested to determine land unit profile groups based on land unit management characteristics. Comparison with essential inputs (water availability and climate conditions) and crop type (outputs) on a year basis is provided.

  19. Time-series Doppler imaging of the red giant HD 208472. Active longitudes and differential rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Carroll, T. A.; Künstler, A.; Strassmeier, K. G.; Evren, S.; Weber, M.; Granzer, T.

    2016-10-01

    Context. HD 208472 is among the most active RS CVn binaries with cool starspots. Decade-long photometry has shown that the spots seem to change their longitudinal appearance with a period of about six years, coherent with brightness variations. Aims: Our aim is to spatially resolve the stellar surface of HD 208472 and relate the photometric results to the true longitudinal and latitudinal spot appearance. Furthermore, we investigate the surface differential rotation pattern of the star. Methods: We employed three years of high-resolution spectroscopic data with a high signal-to-noise ratio (S/N) from the STELLA robotic observatory and determined new and more precise stellar physical parameters. Precalculated synthetic spectra were fit to each of these spectra, and we provide new spot-corrected orbital elements. A sample of 34 absorption lines per spectrum was used to calculate mean line profiles with a S/N of several hundred. A total of 13 temperature Doppler images were reconstructed from these line profiles with the inversion code iMap. Differential rotation was investigated by cross-correlating successive Doppler images in each observing season. Results: Spots on HD 208472 are distributed preferably at high latitudes and less frequently around mid-to-low latitudes. No polar-cap like structure is seen at any epoch. We observed a flip-flop event between 2009 and 2010, manifested as a flip of the spot activity from phase 0.0 to phase 0.5, while the overall brightness of the star continued to increase and reached an all-time maximum in 2014. Cross-correlation of successive Doppler images suggests a solar-like differential rotation that is ≈15 times weaker than that of the Sun. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.Radial velocity measurements are only available at the

  20. Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis

    PubMed Central

    Alonzo, Michael; Van Den Hoek, Jamon; Ahmed, Nabil

    2016-01-01

    The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world’s largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to “peer through” atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson’s r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events. PMID:27725748

  1. Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis

    NASA Astrophysics Data System (ADS)

    Alonzo, Michael; van den Hoek, Jamon; Ahmed, Nabil

    2016-10-01

    The socio-ecological impacts of large scale resource extraction are frequently underreported in underdeveloped regions. The open-pit Grasberg mine in Papua, Indonesia, is one of the world’s largest copper and gold extraction operations. Grasberg mine tailings are discharged into the lowland Ajkwa River deposition area (ADA) leading to forest inundation and degradation of water bodies critical to indigenous peoples. The extent of the changes and temporal linkages with mining activities are difficult to establish given restricted access to the region and persistent cloud cover. Here, we introduce remote sensing methods to “peer through” atmospheric contamination using a dense Landsat time series to simultaneously quantify forest loss and increases in estuarial suspended particulate matter (SPM) concentration. We identified 138 km2 of forest loss between 1987 and 2014, an area >42 times larger than the mine itself. Between 1987 and 1998, the rate of disturbance was highly correlated (Pearson’s r = 0.96) with mining activity. Following mine expansion and levee construction along the ADA in the mid-1990s, we recorded significantly (p < 0.05) higher SPM in the Ajkwa Estuary compared to neighboring estuaries. This research provides a means to quantify multiple modes of ecological damage from mine waste disposal or other disturbance events.

  2. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images.

    PubMed

    Wang, Jing; Huang, Jing-feng; Wang, Xiu-zhen; Jin, Meng-ting; Zhou, Zhen; Guo, Qiao-ying; Zhao, Zhe-wen; Huang, Wei-jiao; Zhang, Yao; Song, Xiao-dong

    2015-10-01

    Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we integrate the data of HJ-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS), and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological parameters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are the bottleneck but where complementary data are occasionally available.

  3. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images*

    PubMed Central

    Wang, Jing; Huang, Jing-Feng; Wang, Xiu-Zhen; Jin, Meng-Ting; Zhou, Zhen; Guo, Qiao-Ying; Zhao, Zhe-Wen; Huang, Wei-Jiao; Zhang, Yao; Song, Xiao-Dong

    2015-01-01

    Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we integrate the data of HJ-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS), and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological parameters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are the bottleneck but where complementary data are occasionally available. PMID:26465131

  4. Modelling Temporal Stability of EPI Time Series Using Magnitude Images Acquired with Multi-Channel Receiver Coils

    PubMed Central

    Hutton, Chloe; Balteau, Evelyne; Lutti, Antoine; Josephs, Oliver; Weiskopf, Nikolaus

    2012-01-01

    In 2001, Krueger and Glover introduced a model describing the temporal SNR (tSNR) of an EPI time series as a function of image SNR (SNR0). This model has been used to study physiological noise in fMRI, to optimize fMRI acquisition parameters, and to estimate maximum attainable tSNR for a given set of MR image acquisition and processing parameters. In its current form, this noise model requires the accurate estimation of image SNR. For multi-channel receiver coils, this is not straightforward because it requires export and reconstruction of large amounts of k-space raw data and detailed, custom-made image reconstruction methods. Here we present a simple extension to the model that allows characterization of the temporal noise properties of EPI time series acquired with multi-channel receiver coils, and reconstructed with standard root-sum-of-squares combination, without the need for raw data or custom-made image reconstruction. The proposed extended model includes an additional parameter κ which reflects the impact of noise correlations between receiver channels on the data and scales an apparent image SNR (SNR′0) measured directly from root-sum-of-squares reconstructed magnitude images so that κ = SNR′0/SNR0 (under the condition of SNR0>50 and number of channels ≤32). Using Monte Carlo simulations we show that the extended model parameters can be estimated with high accuracy. The estimation of the parameter κ was validated using an independent measure of the actual SNR0 for non-accelerated phantom data acquired at 3T with a 32-channel receiver coil. We also demonstrate that compared to the original model the extended model results in an improved fit to human task-free non-accelerated fMRI data acquired at 7T with a 24-channel receiver coil. In particular, the extended model improves the prediction of low to medium tSNR values and so can play an important role in the optimization of high-resolution fMRI experiments at lower SNR levels. PMID:23284874

  5. Satellite Based Assessment of the NSRDB Site Irradiances and Time Series from NASA and SUNY/Albany Algorithms

    SciTech Connect

    Stackhouse, P. W., Jr.; Zhang, T.; Chandler, W. S.; Whitlock, C. H.; Hoell, J. M.; Westberg, D. J.; Perez, R.; Wilcox, S.

    2008-01-01

    In April, 2007, the National Solar Radiation Database (NSRDB) of the National Renewable Energy Laboratory was updated for the period from 1991 to 2005. NSRDB includes monthly averaged summary statistics from 221 Class I sites spanning the entire time period with least uncertainty. In 2008, the NASA GEWEX Surface Radiation Budget (SRB) project updated its satellite-derived solar surface irradiance to Release 3.0. This dataset spans July 1983 to June 2006 at a 1ox1o resolution. In this paper, we compare the NSRDB data monthly average summary statistics to NASA SRB data that has been validated favorably against the BSRN, SURFRAD, WRDC and GEBA datasets. The SRB-NSRDB comparison reveals reasonably good agreement of the two datasets.

  6. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant

  7. On the evaluation of vegetation resilience in Southern Italy by using satellite VEGETATION, MODIS, TM time series

    NASA Astrophysics Data System (ADS)

    Coluzzi, C.; Didonna, I.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Therefore variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 1998 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different type of environmenta diturbances (drought, salinity, pollution, etc). Our objective is to characterize quantitatively the resilient effect of vegetation cover at different temporal and

  8. On the evaluation of vegetation resilience in Southern Italy by using VEGETATION, MODIS, TM satellite time series

    NASA Astrophysics Data System (ADS)

    Didonna, I.; Coluzzi, R.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 2000 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION, MODIS and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different types of environmental diturbances (drought, salinity, pollution, etc). Our objective was to characterize quantitatively the resilient effect of vegetation cover at differen temporal and

  9. Modeling urban expansion in Yangon, Myanmar using Landsat time-series and stereo GeoEye Images

    NASA Astrophysics Data System (ADS)

    Sritarapipat, Tanakorn; Takeuchi, Wataru

    2016-06-01

    This research proposed a methodology to model the urban expansion based dynamic statistical model using Landsat and GeoEye Images. Landsat Time-Series from 1978 to 2010 have been applied to extract land covers from the past to the present. Stereo GeoEye Images have been employed to obtain the height of the building. The class translation was obtained by observing land cover from the past to the present. The height of the building can be used to detect the center of the urban area (mainly commercial area). It was assumed that the class translation and the distance of multi-centers of the urban area also the distance of the roads affect the urban growth. The urban expansion model based on the dynamic statistical model was defined to refer to three factors; (1) the class translation, (2) the distance of the multicenters of the urban areas, and (3) the distance from the roads. Estimation and prediction of urban expansion by using our model were formulated and expressed in this research. The experimental area was set up in Yangon, Myanmar. Since it is the major of country's economic with more than five million population and the urban areas have rapidly increased. The experimental results indicated that our model of urban expansion estimated urban growth in both estimation and prediction steps in efficiency.

  10. Remote Sensing Time Series Product Tool

    NASA Technical Reports Server (NTRS)

    Predos, Don; Ryan, Robert E.; Ross, Kenton W.

    2006-01-01

    The TSPT (Time Series Product Tool) software was custom-designed for NASA to rapidly create and display single-band and band-combination time series, such as NDVI (Normalized Difference Vegetation Index) images, for wide-area crop surveillance and for other time-critical applications. The TSPT, developed in MATLAB, allows users to create and display various MODIS (Moderate Resolution Imaging Spectroradiometer) or simulated VIIRS (Visible/Infrared Imager Radiometer Suite) products as single images, as time series plots at a selected location, or as temporally processed image videos. Manually creating these types of products is extremely labor intensive; however, the TSPT development tool makes the process simplified and efficient. MODIS is ideal for monitoring large crop areas because of its wide swath (2330 km), its relatively small ground sample distance (250 m), and its high temporal revisit time (twice daily). Furthermore, because MODIS imagery is acquired daily, rapid changes in vegetative health can potentially be detected. The new TSPT technology provides users with the ability to temporally process high-revisit-rate satellite imagery, such as that acquired from MODIS and from its successor, the VIIRS. The TSPT features the important capability of fusing data from both MODIS instruments onboard the Terra and Aqua satellites, which drastically improves cloud statistics. With the TSPT, MODIS metadata is used to find and optionally remove bad and suspect data. Noise removal and temporal processing techniques allow users to create low-noise time series plots and image videos and to select settings and thresholds that tailor particular output products. The TSPT GUI (graphical user interface) provides an interactive environment for crafting what-if scenarios by enabling a user to repeat product generation using different settings and thresholds. The TSPT Application Programming Interface provides more fine-tuned control of product generation, allowing experienced

  11. Reduction of Influences of the Earth's Surface Fluid Loads on GPS Site Coordinate Time Series and Global Satellite Laser Ranging Analysis

    NASA Astrophysics Data System (ADS)

    Takiguchi, H.; Otsubo, T.; Fukuda, Y.

    2006-12-01

    Temporal change of surface loadings due to the mass redistribution of the fluid envelope of the Earth, deform the Earth and cause the coordinate changes of the observation sites. We estimated the crustal displacements due to the atmospheric load (AL), the non-tidal ocean load (NTOL), the continental water load (CWL) and the snow load (SL) influences using the several meteorological data and model. And then, we tried to eliminate the load influences from the GPS site coordinate time series and global Satellite Laser Ranging (SLR) analysis. As the time series of GPS site coordinates, we employed a solution of IGS which was calculated by using GIPSY-OASIS II (Heflin et al., 2002) by the Jet Propulsion Laboratory (JPL) and the routine solution of GEONET called F2 solution which was calculated by Bernese version 4.2 software (Hatanaka et al., 2003) by the Geographical Survey Institute. To eliminate periodic signals of the loading effects, we calculated Corrected GPS = GPS - (Load1 + Load2 + . . . . . + Loadn). The results show that a combination of atmospheric, non-tidal ocean, continental water, and snow loads can eliminate about 20% of the annual signal in the coordinate time series for vertical components. We applied the loading correction to the data of the 1997 Bungo channel slow slip event and showed that the correction can benefit the analysis of such a non-periodic event. Next, we applied the time series of NTOL and CWL to precise SLR analysis that used the "concerto" program version 4 developed by the National Institute of Information and Communications Technology (NICT). The LAGEOS orbit analysis reveals that the Estimating the Circulation and Climate of the Ocean (ECCO) model makes the root mean square (RMS) of the range residual 0.2% smaller, and that the CWL makes it 0.8% smaller, compared with the case where loading displacement is neglected. On the other hand, with the NTOL derived from Topex/Poseidon altimetry data, the SLR orbit fit is not improved.

  12. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series

    NASA Astrophysics Data System (ADS)

    Nitze, Ingmar; Barrett, Brian; Cawkwell, Fiona

    2015-02-01

    The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8-10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of

  13. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  14. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  15. Subsidence history of the city of Morelia, Mexico based on InSAR images processed as time series

    NASA Astrophysics Data System (ADS)

    Jaramillo, S. H.; Suárez, G.; López-Quiroz, P.

    2012-04-01

    The city of Morelia in central Mexico sits on lacustrine and fluvio-lacustrine deposits. Subsidence due to the extraction of water from the subsoil is evidenced by the presence of differential soil compaction, causing faulting and cracking of the ground and adjacent constructions. In order to study the subsidence history of the past nine years, twenty-eight ENVISAT Synthetic Aperture Radar (SAR) images acquired between May 2003 and September 2010 were processed using ROI_PAC. All scenes are descending orbit images. The resulting interferograms were filtered using an adaptive filter and, in order to increase coherence and signal-to-noise ratio, they were unwrapped using the "branch-cut" algorithm. A subset of the resulting interferograms was selected based on the following criteria. Only interferograms with spatial baseline of less than 400 m and a temporal baseline of less than 420 days were considered. The primary objective of our work was to determine the temporal evolution of the subsidence in different parts of the city. To this end, selected pixels are inverted in an independent manner from neighbouring pixels using a time series analysis. Preliminary results suggest that the central part of the basin, near the fault known as the "Central Camionera", the subsidence is almost constant with a value of 3 to 4 cm/yr until 2008. From this date on, the subsidence rates increase to values with an average of 7 to 8 cm/yr. This increase in the subsidence rate is clearly appreciated in the appearance of two clearly visible circular patterns from 2008 to 2010. Currently, an inversion is being conducted to obtain the overall subsidence history of the basin.

  16. Fire Monitoring - The use of medium resolution satellites (AVHRR, MODIS, TET) for long time series processing and the implementation in User Driven Applications and Services

    NASA Astrophysics Data System (ADS)

    Fuchs, E.-M.; Stein, E.; Strunz, G.; Strobl, C.; Frey, C.

    2015-04-01

    This paper introduces fire monitoring works of two different projects, namely TIMELINE (TIMe Series Processing of Medium Resolution Earth Observation Data assessing Long -Term Dynamics In our Natural Environment) and PHAROS (Project on a Multi-Hazard Open Platform for Satellite Based Downstream Services). It describes the evolution from algorithm development from in applied research to the implementation in user driven applications and systems. Concerning TIMELINE, the focus of the work lies on hot spot detection. A detailed description of the choice of a suitable algorithm (round robin approach) will be given. Moreover, strengths and weaknesses of the AVHRR sensor for hot spot detection, a literature review, the study areas and the selected approach will be highlighted. The evaluation showed that the contextual algorithm performed best, and will therefore be used for final implementation. Concerning the PHAROS project, the key aspect is on the use of satellite-based information to provide valuable support to all phases of disaster management. The project focuses on developing a pre-operational sustainable service platform that integrates space-based EO (Earth Observation), terrestrial sensors and communication and navigation assets to enhance the availability of services and products following a multi-hazard approach.

  17. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.

    PubMed

    Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan

    2015-05-01

    Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins.

  18. Classification of Satellite Derived Chlorophyll a Space-Time Series by Means of Quantile Regression: An Application to the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Girardi, P.; Pastres, R.; Gaetan, C.; Mangin, A.; Taji, M. A.

    2015-12-01

    In this paper, we present the results of a classification of Adriatic waters, based on spatial time series of remotely sensed Chlorophyll type-a. The study was carried out using a clustering procedure combining quantile smoothing and an agglomerative clustering algorithms. The smoothing function includes a seasonal term, thus allowing one to classify areas according to “similar” seasonal evolution, as well as according to “similar” trends. This methodology, which is here applied for the first time to Ocean Colour data, is more robust with respect to other classical methods, as it does not require any assumption on the probability distribution of the data. This approach was applied to the classification of an eleven year long time series, from January 2002 to December 2012, of monthly values of Chlorophyll type-a concentrations covering the whole Adriatic Sea. The data set was made available by ACRI (http://hermes.acri.fr) in the framework of the Glob-Colour Project (http://www.globcolour.info). Data were obtained by calibrating Ocean Colour data provided by different satellite missions, such as MERIS, SeaWiFS and MODIS. The results clearly show the presence of North-South and West-East gradient in the level of Chlorophyll, which is consistent with literature findings. This analysis could provide a sound basis for the identification of “water bodies” and of Chlorophyll type-a thresholds which define their Good Ecological Status, in terms of trophic level, as required by the implementation of the Marine Strategy Framework Directive. The forthcoming availability of Sentinel-3 OLCI data, in continuity of the previous missions, and with perspective of more than a 15-year monitoring system, offers a real opportunity of expansion of our study as a strong support to the implementation of both the EU Marine Strategy Framework Directive and the UNEP-MAP Ecosystem Approach in the Mediterranean.

  19. Satellite Retrievals of Vegetation Optical Depth Using Time-Series of Dual-Polarized and Single Look-Angle Global Microwave Observations

    NASA Astrophysics Data System (ADS)

    Piles, M.; Konings, A. G.; Mccoll, K. A.; Chan, S.; Entekhabi, D.

    2014-12-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged. Vegetation biomass is an important carbon sink that varies significantly over annual and inter-annual timescales. At global scales, the only feasible approach for monitoring vegetation biomass is satellite remote sensing. In this regard, existing passive microwave missions have the potential of estimating Vegetation Optical Depth (VOD), an indicator of total aboveground vegetation water content, closely related to vegetation biomass. Present approaches provide VOD as a soil moisture inversion residual at every time step and are therefore highly contaminated by residuals from model error. This work presents a novel technique for retrieving VOD using time-series of dual-polarized microwave observations. Taking advantage of the slow-time dynamics of VOD, a number of consecutive observations are used to estimate a single VOD. The soil dielectric constant of each observation is also retrieved simultaneously and later used as a consistency check. The method has been applied to two years of L-band passive observations from the NASA's Aquarius sensor. Results show global VOD distribution follows general gradients of climate and canopy biomass conditions, with characteristic seasonal variability among the major land cover classes. Satellite retrievals of microwave VOD provide independent but complementary information to other remote sensing vegetation metrics such as fluorescence and optical-infrared indices. The method presented here could be used in satellite missions such as SMOS and SMAP to decouple soil effects from vegetation, for the benefit of soil moisture retrievals. Also, it could be used to generate a new observational record of vegetation water content for a more comprehensive view of land surface phenology and terrestrial ecology.

  20. Timely monitoring of Asian Migratory locust habitats in the Amudarya delta, Uzbekistan using time series of satellite remote sensing vegetation index.

    PubMed

    Löw, Fabian; Waldner, François; Latchininsky, Alexandre; Biradar, Chandrashekhar; Bolkart, Maximilian; Colditz, René R

    2016-12-01

    The Asian Migratory locust (Locusta migratoria migratoria L.) is a pest that continuously threatens crops in the Amudarya River delta near the Aral Sea in Uzbekistan, Central Asia. Its development coincides with the growing period of its main food plant, a tall reed grass (Phragmites australis), which represents the predominant vegetation in the delta and which cover vast areas of the former Aral Sea, which is desiccating since the 1960s. Current locust survey methods and control practices would tremendously benefit from accurate and timely spatially explicit information on the potential locust habitat distribution. To that aim, satellite observation from the MODIS Terra/Aqua satellites and in-situ observations were combined to monitor potential locust habitats according to their corresponding risk of infestations along the growing season. A Random Forest (RF) algorithm was applied for classifying time series of MODIS enhanced vegetation index (EVI) from 2003 to 2014 at an 8-day interval. Based on an independent ground truth data set, classification accuracies of reeds posing a medium or high risk of locust infestation exceeded 89% on average. For the 12-year period covered in this study, an average of 7504 km(2) (28% of the observed area) was flagged as potential locust habitat and 5% represents a permanent high risk of locust infestation. Results are instrumental for predicting potential locust outbreaks and developing well-targeted management plans. The method offers positive perspectives for locust management and treatment of infested sites because it is able to deliver risk maps in near real time, with an accuracy of 80% in April-May which coincides with both locust hatching and the first control surveys. Such maps could help in rapid decision-making regarding control interventions against the initial locust congregations, and thus the efficiency of survey teams and the chemical treatments could be increased, thus potentially reducing environmental pollution

  1. Time Series Explorer

    NASA Astrophysics Data System (ADS)

    Scargle, J.

    With the generation of long, precise, and finely sampled time series the Age of Digital Astronomy is uncovering and elucidating energetic dynamical processes throughout the Universe. Fulfilling these opportunities requires data effective analysis techniques rapidly and automatically implementing advanced concepts. The Time Series Explorer, under development in collaboration with Tom Loredo, provides tools ranging from simple but optimal histograms to time and frequency domain analysis for arbitrary data modes with any time sampling. Examples of application of these tools for automated time series discovery will be given.

  2. Time Series Explorer

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas

    The key, central objectives of the proposed Time Series Explorer project are to develop an organized collection of software tools for analysis of time series data in current and future NASA astrophysics data archives, and to make the tools available in two ways: as a library (the Time Series Toolbox) that individual science users can use to write their own data analysis pipelines, and as an application (the Time Series Automaton) providing an accessible, data-ready interface to many Toolbox algorithms, facilitating rapid exploration and automatic processing of time series databases. A number of time series analysis methods will be implemented, including techniques that range from standard ones to state-of-the-art developments by the proposers and others. Most of the algorithms will be able to handle time series data subject to real-world problems such as data gaps, sampling that is otherwise irregular, asynchronous sampling (in multi-wavelength settings), and data with non-Gaussian measurement errors. The proposed research responds to the ADAP element supporting the development of tools for mining the vast reservoir of information residing in NASA databases. The tools that will be provided to the community of astronomers studying variability of astronomical objects (from nearby stars and extrasolar planets, through galactic and extragalactic sources) will revolutionize the quality of timing analyses that can be carried out, and greatly enhance the scientific throughput of all NASA astrophysics missions past, present, and future. The Automaton will let scientists explore time series - individual records or large data bases -- with the most informative and useful analysis methods available, without having to develop the tools themselves or understand the computational details. Both elements, the Toolbox and the Automaton, will enable deep but efficient exploratory time series data analysis, which is why we have named the project the Time Series Explorer. Science

  3. Thirty Years of Vegetation Change in the Coastal Santa Cruz Mountains of Northern California Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Results from Landsat satellite image times series analysis since 1983 of this study area showed gradual, statistically significant increases in the normalized difference vegetation index (NDVI) in more than 90% of the (predominantly second-growth) evergreen forest locations sampled.

  4. Analysis of Forest Fire Disturbance in the Western United States Using Landsat Time Series Images: 1985 to 2005

    NASA Astrophysics Data System (ADS)

    Wicklein, H. F.; Collatz, G. J.; Masek, J.; Williams, C.

    2008-12-01

    In this study we used two different disturbance maps (both utilizing 30 m resolution Landsat imagery) to assess disturbance trends in Western US forests. The first are maps developed by the NAFD project (North American Forest Dynamics). Each NAFD data cube contains an annual-biennial record of forest disturbance events from 1984-2005. We complimented the NAFD maps with MTBS maps (Monitoring Trends in Burn Severity). MTBS solely maps fire disturbance, recording historical (1985-2005) and contemporary burn severity and fire perimeter across the United States. We used Landsat time series stacks for four locations: Oregon (Landsat path 45 row 29), California (p43r33), Idaho (p41r29), and Utah (p32r37). In all four stacks, fire was a relatively small percentage of the total forest disturbance (ranging from 8% in Utah to 27% in Oregon for the entire 20 year period). We also found that the years with greatest burned area were years with a high aridity index (lower precipitation and higher temperatures), a condition necessary, but not sufficient for fire activity. To assess post-disturbance vegetation regrowth we used two spectral indices, the Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR). Both indices are sensitive to well-defined spectral paths that forests follow during and after disturbance. As expected, NDVI and NBR were lowest (highest) for the highest (lowest) severity class burned area. However, NBR and NDVI only appear to respond to vegetative reflectance in the first decade after a burn. Therefore, they give useful information on location, timing, and magnitude of disturbance, but direct measurement of biomass with other sensors would be necessary to obtain additional ecological information.

  5. Random time series in astronomy.

    PubMed

    Vaughan, Simon

    2013-02-13

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle and over time (usually called light curves by astronomers). In the time domain, we see transient events such as supernovae, gamma-ray bursts and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars and pulsations of stars in nearby galaxies; and we see persistent aperiodic variations ('noise') from powerful systems such as accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of time domain astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher order properties of accreting black holes, and time delays and correlations in multi-variate time series.

  6. Pattern Recognition in Time Series

    NASA Astrophysics Data System (ADS)

    Lin, Jessica; Williamson, Sheri; Borne, Kirk D.; DeBarr, David

    2012-03-01

    Perhaps the most commonly encountered data types are time series, touching almost every aspect of human life, including astronomy. One obvious problem of handling time-series databases concerns with its typically massive size—gigabytes or even terabytes are common, with more and more databases reaching the petabyte scale. For example, in telecommunication, large companies like AT&T produce several hundred millions long-distance records per day [Cort00]. In astronomy, time-domain surveys are relatively new—these are surveys that cover a significant fraction of the sky with many repeat observations, thereby producing time series for millions or billions of objects. Several such time-domain sky surveys are now completed, such as the MACHO [Alco01],OGLE [Szym05], SDSS Stripe 82 [Bram08], SuperMACHO [Garg08], and Berkeley’s Transients Classification Pipeline (TCP) [Star08] projects. The Pan-STARRS project is an active sky survey—it began in 2010, a 3-year survey covering three-fourths of the sky with ˜60 observations of each field [Kais04]. The Large Synoptic Survey Telescope (LSST) project proposes to survey 50% of the visible sky repeatedly approximately 1000 times over a 10-year period, creating a 100-petabyte image archive and a 20-petabyte science database (http://www.lsst.org/). The LSST science database will include time series of over 100 scientific parameters for each of approximately 50 billion astronomical sources—this will be the largest data collection (and certainly the largest time series database) ever assembled in astronomy, and it rivals any other discipline’s massive data collections for sheer size and complexity. More common in astronomy are time series of flux measurements. As a consequence of many decades of observations (and in some cases, hundreds of years), a large variety of flux variations have been detected in astronomical objects, including periodic variations (e.g., pulsating stars, rotators, pulsars, eclipsing binaries

  7. Simulation scheme of dusk scene using piece-wise multiple regression based on time-series color-block images

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Chung; Yang, Chih-Chao

    2010-09-01

    Dusk and dawn are usually the most beautiful moments of the day, and are almost always too short for busy people nowadays to witness their coming. In this work, an efficient strategy for simulating a dusk scene of an outdoor scene image taken at other times before the sunset is presented. The strategy is a hybrid approach combining the piece-wise multiple regression (PMR) of data, discrete cosine transformation (DCT), and a look-up table algorithm. The process begins using a series of color-block images taken in the afternoon of a day. The best fitting functions of PMR for these color block images exist on separate planes (red, green, and blue) in the DCT domain individually. The reference databases of the DCT coefficients varying with respect to time are then established according to the best fitting functions of PMR. Finally, the dusk scene of an outdoor scene taken in the afternoon is synthesized by querying the reference database. The experiment results show that the presented algorithm can precisely simulate the desired dusk scene from a scene image taken in the afternoon.

  8. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  9. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  10. Longitudinal Analysis of Image Time Series with Diffeomorphic Deformations: A Computational Framework Based on Stationary Velocity Fields

    PubMed Central

    Hadj-Hamou, Mehdi; Lorenzi, Marco; Ayache, Nicholas; Pennec, Xavier

    2016-01-01

    We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts. The pipeline is exemplified on the longitudinal Open Access Series of Imaging Studies (OASIS) database and all the parameters values are given so that the study can be reproduced. We investigate the group-wise differences between the patients with Alzheimer's disease and the healthy control group, and show that the proposed pipeline increases the sensitivity with no decrease in the specificity of the statistical study done on the longitudinal deformations. PMID:27375408

  11. Characterizing Methane Emissions at Local Scales with a 20 Year Total Hydrocarbon Time Series, Imaging Spectrometry, and Web Facilitated Analysis

    NASA Astrophysics Data System (ADS)

    Bradley, Eliza Swan

    Methane is an important greenhouse gas for which uncertainty in local emission strengths necessitates improved source characterizations. Although CH4 plume mapping did not motivate the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) design and municipal air quality monitoring stations were not intended for studying marine geological seepage, these assets have capabilities that can make them viable for studying concentrated (high flux, highly heterogeneous) CH4 sources, such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. Hourly total hydrocarbon (THC) data, spanning 1990 to 2008 from an air pollution station located near COP, were analyzed and showed geologic CH4 emissions as the dominant local source. A band ratio approach was developed and applied to high glint AVIRIS data over COP, resulting in local-scale mapping of natural atmospheric CH4 plumes. A Cluster-Tuned Matched Filter (CTMF) technique was applied to Gulf of Mexico AVIRIS data to detect CH4 venting from offshore platforms. Review of 744 platform-centered CTMF subsets was facilitated through a flexible PHP-based web portal. This dissertation demonstrates the value of investigating municipal air quality data and imaging spectrometry for gathering insight into concentrated methane source emissions and highlights how flexible web-based solutions can help facilitate remote sensing research.

  12. Time-series Doppler images and surface differential rotation of the effectively single, rapidly rotating K-giant KU Pegasi

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Künstler, A.; Strassmeier, K. G.; Carroll, T. A.; Weber, M.; Kriskovics, L.; Oláh, K.; Vida, K.; Granzer, T.

    2016-11-01

    Context. According to most stellar dynamo theories, differential rotation (DR) plays a crucial role in the generation of toroidal magnetic fields. Numerical models predict surface differential rotation to be anti-solar for rapidly rotating giant stars, i.e. their surface angular velocity could increase with stellar latitude. However, surface differential rotation has been derived only for a handful of individual giant stars to date. Aims: The spotted surface of the K-giant KU Pegasi is investigated in order to detect its time evolution and to quantify the surface differential rotation. Methods: We present 11 Doppler images from spectroscopic data collected with the robotic telescope STELLA between 2006 and 2011. All maps are obtained with the surface reconstruction code iMap. Differential rotation is extracted from these images by detecting systematic (latitude-dependent) spot displacements. We apply a cross-correlation technique to find the best differential rotation law. Results: The surface of KU Peg shows cool spots at all latitudes and one persistent warm spot at high latitude. A small cool polar spot exists for most but not all of the epochs. Re-identification of spots in at least two consecutive maps is mostly possible only at middle and high latitudes and thus restricts the differential-rotation determination mainly to these latitudes. Our cross-correlation analysis reveals solar-like differential rotation with a surface shear of α = + 0.040 ± 0.006, i.e., approximately five times weaker than on the Sun. We also derive a more accurate and consistent set of stellar parameters for KU Peg including a small Li abundance of ten times less than solar. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  13. Evaluating the Impact of Abrupt Changes in Forest Policy and Management Practices on Landscape Dynamics: Analysis of a Landsat Image Time Series in the Atlantic Northern Forest

    PubMed Central

    Legaard, Kasey R.; Sader, Steven A.; Simons-Legaard, Erin M.

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to

  14. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: analysis of a Landsat image time series in the Atlantic Northern Forest.

    PubMed

    Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to

  15. Seasonal shifts in satellite time series portend vegetation state change - verification using long-term data in an arid grassland ecosyste

    NASA Astrophysics Data System (ADS)

    Browning, D. M.; Maynard, J. J.; Karl, J.; Peters, D. C.

    2014-12-01

    The frequency and severity of drought is forecasted to increase in the 21st century. The need to understand how managed ecosystems respond to climate is intensified by uncertainty associated with knowing when, where, and how long drought conditions will manifest. Analysis of broad scale patterns in ecosystem productivity can inform our understanding of ecosystem dynamics and improve predictions for responses to climate extremes. We leveraged observations of plant biomass at a long-term ecological research site in southern New Mexico to verify the use of NDVI time-series as a proxy for landscape productivity from 13 years of MODIS data. The period between 2000 and 2013 encompassed years of sustained drought (2000-2003) and record-breaking high rainfall (2006 and 2008) that yielded decreases followed by increases in biomass with a restructuring of plant communities. We decomposed patterns derived from the 250m MODIS NDVI product over this period into contributions from the long-term trend, seasonal cycle, and unexplained variance using the Breaks For Additive Seasonal and Trend (BFAST) model to identify significant deviations from the modelled trend and seasonal components. Observed breakpoints in NDVI trend and seasonal components were verified with field estimates of species-specific biomass data at 15 sites. We found that breaks in the trend reflected large changes in mean biomass and seasonal breaks reflected changes in dominance of perennial grasses, shrubs, and/or annual grasses. The BFAST method proved useful for detecting observed state changes in this arid ecosystem. The ability to distinguish between long-term phenological change and temporal variability is strongly needed in water-limited ecosystems with high inter-annual variability in primary productivity. We demonstrate that time-series analysis of NDVI data holds potential for monitoring landscape condition at spatial scales needed to generate indicators for ecosystem responses to changing climate.

  16. Automated Satellite Image Navigation

    DTIC Science & Technology

    1992-12-01

    3b TIME . Master’s Thesis I . December 1992 16 SUPPIEMENoARY NOATIO; The views expressed in this thesis are those of the author and do not reflect...demand greater navigational accuracy. At the same time there is an increasing operational requirement to attain this greater accuracy via a method that is...resolution of Advanced Very High Resolution Radiometer (AVHRR) images (1.1 km) can be achieved. This "optimal" navigation has been achieved by the

  17. MODIS Vegetation Indices time series improvement considering real acquisition dates

    NASA Astrophysics Data System (ADS)

    Testa, S.; Borgogno Mondino, E.

    2013-12-01

    Satellite Vegetation Indices (VI) time series images are widely used for the characterization phenology, which requires a high temporal accuracy of the satellite data. The present work is based on the MODerate resolution Imaging Spectroradiometer (MODIS) MOD13Q1 product - Vegetation Indices 16-Day L3 Global 250m, which is generated through a maximum value compositing process that reduces the number of cloudy pixels and excludes, when possible, off-nadir ones. Because of its 16-days compositing period, the distance between two adjacent-in-time values within each pixel NDVI time series can range from 1 to 32 days, thus not acceptable for phenologic studies. Moreover, most of the available smoothing algorithms, which are widely used for phenology characterization, assume that data points are equidistant in time and contemporary over the image. The objective of this work was to assess temporal features of NDVI time series over a test area, composed by Castanea sativa (chestnut) and Fagus sylvatica (beech) pure pixels within the Piemonte region in Northwestern Italy. Firstly, NDVI, Pixel Reliability (PR) and Composite Day of the Year (CDOY) data ranging from 2000 to 2011 were extracted from MOD13Q1 and corresponding time series were generated (in further computations, 2000 was not considered since it is not complete because acquisition began in February and calibration is unreliable until October). Analysis of CDOY time series (containing the actual reference date of each NDVI value) over the selected study areas showed NDVI values to be prevalently generated from data acquired at the centre of each 16-days period (the 9th day), at least constantly along the year. This leads to consider each original NDVI value nominally placed to the centre of its 16-days reference period. Then, a new NDVI time series was generated: a) moving each NDVI value to its actual "acquisition" date, b) interpolating the obtained temporary time series through SPLINE functions, c) sampling such

  18. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  19. Developing consistent time series landsat data products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Landsat series satellite has provided earth observation data record continuously since early 1970s. There are increasing demands on having a consistent time series of Landsat data products. In this presentation, I will summarize the work supported by the USGS Landsat Science Team project from 20...

  20. User-guided automated segmentation of time-series ultrasound images for measuring vasoreactivity of the brachial artery induced by flow mediation

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kao, Yen H.; Cary, Ted W.; Arger, Peter H.; Mohler, Emile R.

    2005-04-01

    Endothelial dysfunction in response to vasoactive stimuli is closely associated with diseases such as atherosclerosis, hypertension and congestive heart failure. The current method of using ultrasound to image the brachial artery along the longitudinal axis is insensitive for measuring the small vasodilatation that occurs in response to flow mediation. The goal of this study is to overcome this limitation by using cross-sectional imaging of the brachial artery in conjunction with the User-Guided Automated Boundary Detection (UGABD) algorithm for extracting arterial boundaries. High-resolution ultrasound imaging was performed on rigid plastic tubing, on elastic rubber tubing phantoms with steady and pulsatile flow, and on the brachial artery of a healthy volunteer undergoing reactive hyperemia. The area of cross section of time-series images was analyzed by UGABD by propagating the boundary from one frame to the next. The UGABD results were compared by linear correlation with those obtained by manual tracing. UGABD measured the cross-sectional area of the phantom tubing to within 5% of the true area. The algorithm correctly detected pulsatile vasomotion in phantoms and in the brachial artery. A comparison of area measurements made using UGABD with those made by manual tracings yielded a correlation of 0.9 and 0.8 for phantoms and arteries, respectively. The peak vasodilatation due to reactive hyperemia was two orders of magnitude greater in pixel count than that measured by longitudinal imaging. Cross-sectional imaging is more sensitive than longitudinal imaging for measuring flow-mediated dilatation of brachial artery, and thus may be more suitable for evaluating endothelial dysfunction.

  1. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  2. Collecting and Animating Online Satellite Images.

    ERIC Educational Resources Information Center

    Irons, Ralph

    1995-01-01

    Describes how to generate automated classroom resources from the Internet. Topics covered include viewing animated satellite weather images using file transfer protocol (FTP); sources of images on the Internet; shareware available for viewing images; software for automating image retrieval; procedures for animating satellite images; and storing…

  3. Mapping crop based on phenological characteristics using time-series NDVI of operational land imager data in Tadla irrigated perimeter, Morocco

    NASA Astrophysics Data System (ADS)

    Ouzemou, Jamal-eddine; El Harti, Abderrazak; EL Moujahid, Ali; Bouch, Naima; El Ouazzani, Rabii; Lhissou, Rachid; Bachaoui, El Mostafa

    2015-10-01

    Morocco is a primarily arid to semi-arid country. These climatic conditions make irrigation an imperative and inevitable technique. Especially, agriculture has a paramount importance for the national economy. Retrieving of crops and their location as well as their spatial extent is useful information for agricultural planning and better management of irrigation water resource. Remote sensing technology was often used in management and agricultural research. Indeed, it's allows crops extraction and mapping based on phenological characteristics, as well as yield estimation. The study area of this work is the Tadla irrigated perimeter which is characterized by heterogeneous areas and extremely small size fields. Our principal objectives are: (1) the delimitation of the major crops for a good water management, (2) the insulation of sugar beet parcels for modeling its yields. To achieve the traced goals, we have used Landsat-8 OLI (Operational Land Imager) data pan-sharpened to 15 m. Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) classifications were applied to the Normalized Difference Vegetation Index (NDVI) time-series of 10 periods. Classifications were calculated for a site of more than 124000 ha. This site was divided into two parts: the first part for selecting, training datasets and the second one for validating the classification results. The SVM and SAM methods classified the principal crops with overall accuracies of 85.27% and 57.17% respectively, and kappa coefficient of 80% and 43% respectively. The study showed the potential of using time-series OLI NDVI data for mapping different crops in irrigated, heterogeneous and undersized parcels in arid and semi-arid environment.

  4. Observing Changes of Surface Solar Irradiance in Oregon: A Comparison of Satellite and Ground-Based Long-Term Time-Series

    NASA Astrophysics Data System (ADS)

    Riihimaki, L. D.; Vignola, F. E.; Lohmann, S.; Meyer, R.

    2005-12-01

    Significant increases over time are found in direct normal irradiance (DNI) in Oregon using both ground and satellite-derived measurements of DNI. Linear regression of all locations in both data sets shows strong positive trends of .4% to .6% per year. Ground measurements are analyzed from 1980 (and at one site from 1978) until 2004. These 25 years of ground measurements come from three climatically diverse sites in the state of Oregon using an Eppley Normal Incidence Pyrheliometer (NIP). The NIP is a good candidate for long term trend analysis as its responsivity remains consistent over time. The sensitivity of the Eppley Precision Spectral Pyranometer (PSP) which measures total radiation, on the other hand, degrades over time, approximately .5% to 2% per year. This uniquely long data set is compared to DNI calculated from the International Satellite Cloud Climatology Project (ISCCP). The ISCCP D series applied here has 280 km x 280 km boxes, each of which includes one of the ground based sites, giving cloud and atmospheric input data from 1983 until 2001. Radiative transfer calculations are done using the two-stream method from the library for radiative transfer (libRadtran). The three hourly satellite observations allow comparison of different time integration periods. Besides annual average comparisons, monthly averages are examined to look for seasonal variation and confirm that the observations show a regional trend. Ground measurements of DNI for this length of time are rare, making this study a unique opportunity to test the capability to calculate direct normal irradiance based on ISCCP results. The agreement of the ISCCP derived irradiances to the measurements is very good: the trends differ between .08 and .3 W/m{2 depending on the site. From 1998 through 2002 satellite data were used to produce a solar radiation database on a 0.1i° grid. Comparisons between the modeled beam irradiance for the coordinates of the ground based station will be compared to

  5. Permutations and time series analysis.

    PubMed

    Cánovas, Jose S; Guillamón, Antonio

    2009-12-01

    The main aim of this paper is to show how the use of permutations can be useful in the study of time series analysis. In particular, we introduce a test for checking the independence of a time series which is based on the number of admissible permutations on it. The main improvement in our tests is that we are able to give a theoretical distribution for independent time series.

  6. Large scale variability, long-term trends and extreme events in total ozone over the northern mid-latitudes based on satellite time series

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Davison, A. C.

    2009-04-01

    Various generations of satellites (e.g. TOMS, GOME, OMI) made spatial datasets of column ozone available to the scientific community. This study has a special focus on column ozone over the northern mid-latitudes. Tools from geostatistics and extreme value theory are applied to analyze variability, long-term trends and frequency distributions of extreme events in total ozone. In a recent case study (Rieder et al., 2009) new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone. Within the current study this analysis is extended to satellite datasets for the northern mid-latitudes. Further special emphasis is given on patterns and spatial correlations and the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  7. 13 years time series of stratospheric and mesospheric ozone profiles measured by the NDACC microwave radiometer SOMORA over Switzerland: comparison to radiosonde and MLS/AURA satellite ozone profiles.

    NASA Astrophysics Data System (ADS)

    Maillard Barras, Eliane; Haefele, Alexander; Ruffieux, Dominique; Kämpfer, Niklaus

    2014-05-01

    The microwave radiometer SOMORA measures ozone volume mixing ratio in the stratosphere and lower mesosphere since January 2000 with a time resolution of 30 min. The ozone vertical distribution is calculated from the measurement of the rotational emission line of ozone at 142.17 GHz. Ozone profiles are retrieved using ARTS/Qpack, a general environment for radiative transfer simulation and retrieval of ozone profiles based on the optimal estimation method (OEM) of Rodgers. SOMORA is an instrument of the NDACC.The measurement time series has been influenced by the upgrade from an acousto optical spectrometer (AOS) setup to a digital FFT spectrometer setup in 2010. The ozone profiles dataset measured by the AOS (2000-2010) and FFT spectrometer (since 2010) is then homogenized using one year parallel measurements by adding an altitude dependent offset to the AOS ozone profiles. The ozone profiles measured by AOS show a slightly better vertical resolution above 55 km than the ozone profiles measured by FFT due to the higher spectral resolution.The homogenized 13 years SOMORA time series has been validated against Payerne radiosonde (RS) ozone profiles, GROMOS microwave radiometer ozone profiles of Bern, another NDACC instrument, and MLS/AURA satellite simultaneous ozones profiles, and the results will be shown. For the whole period of respective common measurements, SOMORA ozone profiles are within 5% of Payerne RS, 15% of GROMOS and 10% of MLS ozone profiles.

  8. Spot evolution on the red giant star XX Triangulum. A starspot-decay analysis based on time-series Doppler imaging

    NASA Astrophysics Data System (ADS)

    Künstler, A.; Carroll, T. A.; Strassmeier, K. G.

    2015-06-01

    Context. Solar spots appear to decay linearly proportional to their size. The decay rate of solar spots is directly related to magnetic diffusivity, which itself is a key quantity for the length of a magnetic-activity cycle. Is a linear spot decay also seen on other stars, and is this in agreement with the large range of solar and stellar activity cycle lengths? Aims: We investigate the evolution of starspots on the rapidly-rotating (Prot≈24 d) K0 giant XX Tri, using consecutive time-series Doppler images. Our aim is to obtain a well-sampled movie of the stellar surface over many years, and thereby detect and quantify a starspot decay law for further comparison with the Sun. Methods: We obtained continuous high-resolution and phase-resolved spectroscopy with the 1.2-m robotic STELLA telescope on Tenerife over six years, and these observations are ongoing. For each observing season, we obtained between 5 to 7 independent Doppler images, one per stellar rotation, making up a total of 36 maps. All images were reconstructed with our line-profile inversion code iMap. A wavelet analysis was implemented for denoising the line profiles. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte Carlo approach. Results: It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various timescales and morphology, such as spot fragmentation and spot merging as well as spot decay and formation. An average linear decay of D = -0.022 ± 0.002 SH/day is inferred. We found evidence of an active longitude in phase toward the (unseen) companion star. Furthermore, we detect a weak solar-like differential rotation with a surface shear of α = 0.016 ± 0.003. From the decay rate, we determine a turbulent diffusivity of ηT = (6.3 ± 0.5) × 1014 cm2/s and

  9. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  10. FROG: Time-series analysis

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair

    2014-06-01

    FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

  11. Langevin equations from time series.

    PubMed

    Racca, E; Porporato, A

    2005-02-01

    We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin equations from time series, and Pope and Ching's relationship for stationary signals. The two approaches are based on different interpretations of conditional averages of the time derivatives of the time series at given levels. The analysis provides a useful indication for the correct application of Pope and Ching's relationship to obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for nondifferentiable processes originating from Langevin equations.

  12. Time series with tailored nonlinearities

    NASA Astrophysics Data System (ADS)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  13. Satellite image maps of Pakistan

    USGS Publications Warehouse

    ,

    1997-01-01

    Georeferenced Landsat satellite image maps of Pakistan are now being made available for purchase from the U.S. Geological Survey (USGS). The first maps to be released are a series of Multi-Spectral Scanner (MSS) color image maps compiled from Landsat scenes taken before 1979. The Pakistan image maps were originally developed by USGS as an aid for geologic and general terrain mapping in support of the Coal Resource Exploration and Development Program in Pakistan (COALREAP). COALREAP, a cooperative program between the USGS, the United States Agency for International Development, and the Geological Survey of Pakistan, was in effect from 1985 through 1994. The Pakistan MSS image maps (bands 1, 2, and 4) are available as a full-country mosaic of 72 Landsat scenes at a scale of 1:2,000,000, and in 7 regional sheets covering various portions of the entire country at a scale of 1:500,000. The scenes used to compile the maps were selected from imagery available at the Eros Data Center (EDC), Sioux Falls, S. Dak. Where possible, preference was given to cloud-free and snow-free scenes that displayed similar stages of seasonal vegetation development. The data for the MSS scenes were resampled from the original 80-meter resolution to 50-meter picture elements (pixels) and digitally transformed to a geometrically corrected Lambert conformal conic projection. The cubic convolution algorithm was used during rotation and resampling. The 50-meter pixel size allows for such data to be imaged at a scale of 1:250,000 without degradation; for cost and convenience considerations, however, the maps were printed at 1:500,000 scale. The seven regional sheets have been named according to the main province or area covered. The 50-meter data were averaged to 150-meter pixels to generate the country image on a single sheet at 1:2,000,000 scale

  14. Mapping impervious surface expansion using medium resolution satellite image time series: A case study in Yangtze river delta, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the rapid growth of population and economic development in the developing countries, more people are now living in the cities than in the rural areas in the world for the first time in human history. As a result, cities are sprawling rapidly into their surroundings. A characteristic change as...

  15. Progress on the calibration of channel geometry and friction parameters of the LISFLOOD-FP hydraulic model using time series of SAR flood images

    NASA Astrophysics Data System (ADS)

    Wood, M.; Neal, J. C.; Hostache, R.; Corato, G.; Bates, P. D.; Chini, M.; Giustarini, L.; Matgen, P.; Wagener, T.

    2014-12-01

    The objective of this work is to calibrate channel depth and roughness parameters of the LISFLOOD-FP Sub-Grid 2D hydraulic model using SAR image-derived flood extent maps. The aim is to reduce uncertainty in flood model predictions for those rivers where channel geometry is unknown and/or cannot be easily measured. In particular we consider the effectiveness of using real SAR data for calibration and whether the number and timings of SAR acquisitions is of benefit to the final result. Terrain data are processed from 2m LiDAR images and inflows to the model are taken from gauged data. As a test case we applied the method to the River Severn between Worcester and Tewkesbury. We firstly applied the automatic flood mapping algorithm of Giustarini[1] et al. (2013) to ENVISAT ASAR (wide swath mode) flood images; generating a series of flood maps. We then created an ensemble of flood extent maps with the hydraulic model (each model representing a unique parameter set). Where there is a favourable comparison between the modelled flood map and the SAR obtained flood map we may suggest an optimal parameter set. Applying the method to a sequence of SAR acquisitions provides insight into the advantages, disadvantages and limitations of using series of acquired images. To complete the investigation we simultaneously explore parameter 'identifiabilty' within a sequence of available satellite observations by adopting the DYNIA method proposed by Wagener[2] et al. (2003). We show where we might most easily detect the depth and roughness parameters within the SAR acquisition sequence. [1] Giustarini. 2013. 'A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X'. IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4. [2] Wagener. 2003. 'Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis'. Hydrol. Process. 17, 455-476.

  16. Time series modeling for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Sokolnikov, Andre

    2012-05-01

    Time series modeling is proposed for identification of targets whose images are not clearly seen. The model building takes into account air turbulence, precipitation, fog, smoke and other factors obscuring and distorting the image. The complex of library data (of images, etc.) serving as a basis for identification provides the deterministic part of the identification process, while the partial image features, distorted parts, irrelevant pieces and absence of particular features comprise the stochastic part of the target identification. The missing data approach is elaborated that helps the prediction process for the image creation or reconstruction. The results are provided.

  17. Determining the type and starting time of land cover and land use change in Ghana based on discrete analysis of dense Landsat image time series

    NASA Astrophysics Data System (ADS)

    Shih, Hsiao-chien

    Accra, Ghana and environs have experienced extensive land cover and land use change, which warrants more frequent monitoring. In the study I develop and test approaches for semi-automatically identifying the type and date of land cover and land use change from multi-temporal series of Landsat ETM+ imagery from 2000 to 2014. Clouds, cloud shadows, and scan line corrector-off creates missing or null data in the ETM+ images. Forty-one dates of ETM+ images that partially contain missing data were used in this study. The general approach is to conduct a per-pixel supervised classification on each date of image after masking null data based on stable training sites. Spatial, temporal, and logical filters are applied to correct for misclassification and missing data. Each image is classified into three general classes: Built, Natural Vegetation, and Agricultural, with expansion of Built being our main focus. Reference data for Change-to-Built were independently selected from all available high spatial resolution satellite images, and the beginning time of change was recorded. The change product was used to characterize the urban expansion around Accra. The result shows that the temporal-filtered product identified both the location and the start of Change-to-Built more precisely and accurately. Based on reference data derived from visual imagery analysis, 40% of the Change-to-Built samples were correctly identified without filtering, whereas 80% were correctly identified when applying temporal filter with low amounts of false positive Change-to-Built pixels. The temporal-filtered products have the highest precision and accuracy in identifying the start of Change-to-Built: the identified Change-to-Built samples are on average 2.1 years difference with the reference data. Under the limitation of frequent cloud effect and limited historical archives of high resolution images, a discrete classification approach to LCLUC mapping is shown to be successful by this study, but

  18. Time-Series Analysis: A Cautionary Tale

    NASA Technical Reports Server (NTRS)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  19. Providing web-based tools for time series access and analysis

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Time series information is widely used in environmental change analyses and is also an essential information for stakeholders and governmental agencies. However, a challenging issue is the processing of raw data and the execution of time series analysis. In most cases, data has to be found, downloaded, processed and even converted in the correct data format prior to executing time series analysis tools. Data has to be prepared to use it in different existing software packages. Several packages like TIMESAT (Jönnson & Eklundh, 2004) for phenological studies, BFAST (Verbesselt et al., 2010) for breakpoint detection, and GreenBrown (Forkel et al., 2013) for trend calculations are provided as open-source software and can be executed from the command line. This is needed if data pre-processing and time series analysis is being automated. To bring both parts, automated data access and data analysis, together, a web-based system was developed to provide access to satellite based time series data and access to above mentioned analysis tools. Users of the web portal are able to specify a point or a polygon and an available dataset (e.g., Vegetation Indices and Land Surface Temperature datasets from NASA MODIS). The data is then being processed and provided as a time series CSV file. Afterwards the user can select an analysis tool that is being executed on the server. The final data (CSV, plot images, GeoTIFFs) is visualized in the web portal and can be downloaded for further usage. As a first use case, we built up a complimentary web-based system with NASA MODIS products for Germany and parts of Siberia based on the Earth Observation Monitor (www.earth-observation-monitor.net). The aim of this work is to make time series analysis with existing tools as easy as possible that users can focus on the interpretation of the results. References: Jönnson, P. and L. Eklundh (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30

  20. Cross-sensor comparisons between Landsat 5 TM and IRS-P6 AWiFS and disturbance detection using integrated Landsat and AWiFS time-series images

    USGS Publications Warehouse

    Chen, Xuexia; Vogelmann, James E.; Chander, Gyanesh; Ji, Lei; Tolk, Brian; Huang, Chengquan; Rollins, Matthew

    2013-01-01

    Routine acquisition of Landsat 5 Thematic Mapper (TM) data was discontinued recently and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) has an ongoing problem with the scan line corrector (SLC), thereby creating spatial gaps when covering images obtained during the process. Since temporal and spatial discontinuities of Landsat data are now imminent, it is therefore important to investigate other potential satellite data that can be used to replace Landsat data. We thus cross-compared two near-simultaneous images obtained from Landsat 5 TM and the Indian Remote Sensing (IRS)-P6 Advanced Wide Field Sensor (AWiFS), both captured on 29 May 2007 over Los Angeles, CA. TM and AWiFS reflectances were compared for the green, red, near-infrared (NIR), and shortwave infrared (SWIR) bands, as well as the normalized difference vegetation index (NDVI) based on manually selected polygons in homogeneous areas. All R2 values of linear regressions were found to be higher than 0.99. The temporally invariant cluster (TIC) method was used to calculate the NDVI correlation between the TM and AWiFS images. The NDVI regression line derived from selected polygons passed through several invariant cluster centres of the TIC density maps and demonstrated that both the scene-dependent polygon regression method and TIC method can generate accurate radiometric normalization. A scene-independent normalization method was also used to normalize the AWiFS data. Image agreement assessment demonstrated that the scene-dependent normalization using homogeneous polygons provided slightly higher accuracy values than those obtained by the scene-independent method. Finally, the non-normalized and relatively normalized ‘Landsat-like’ AWiFS 2007 images were integrated into 1984 to 2010 Landsat time-series stacks (LTSS) for disturbance detection using the Vegetation Change Tracker (VCT) model. Both scene-dependent and scene-independent normalized AWiFS data sets could generate disturbance maps similar to

  1. Economic Time-Series Page.

    ERIC Educational Resources Information Center

    Bos, Theodore; Culver, Sarah E.

    2000-01-01

    Describes the Economagic Web site, a comprehensive site of free economic time-series data that can be used for research and instruction. Explains that it contains 100,000+ economic data series from sources such as the Federal Reserve Banking System, the Census Bureau, and the Department of Commerce. (CMK)

  2. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  3. Use of time series of optical and SAR images in the estimation of snow cover for the optimization of water use in the Andes of Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Salinas de Salmuni, Graciela; Cabezas Cartes, Ricardo; Menicocci, Felix

    2014-05-01

    This paper describes the progress in the bilateral cooperation project between academic and water resources management institutions from the Andes region of Argentina and Chile. The study zone is located in fragile ecosystems and mountain areas of the Andes (limit zone between the Province of San Juan, Argentina, and the IV Region of Coquimbo, Chile), with arid climate, where snow precipitates in the headwaters of watershed feed the rivers of the region by melting, which are the only source of water for human use, productive and energetic activities, as well as the native flora and fauna. CONAE, the Argentine Space Agency, participates in the Project through the provision of satellite data to the users and by this it contributes to ensuring the continuity of the results of the project. Also, it provides training in digital image processing. The project also includes the participation of water resource management institutions like Secretaria de Recursos Hidricos of Argentina and the Centro de Información de Recursos Naturales de Chile (CIREN), and of academic institution like the University of San Juan (Argentina) and University of La Serena (Chile). These institutions benefit from the incorporation of new methodologies advanced digital image processing and training of staff (researcher, lecturers, PhD Students and technical). Objectives: 1-Improve water distribution incorporating space technology for application in the prediction models of the stream flow. 2- Conduct an inventory of glaciers as well as studies in selected watersheds in the Andean region, aiming to know the water resource, its availability and potential risks to communities in the region. 3. Contribute to vulnerability studies in biodiversity Andean watersheds. Results: For estimation Snow cover Area, the MODIS images are appropriate due their high temporal resolution and allows for monitoring large areas (greater than 10 km) The proposed methodology (Use of snow index, NSDI) is appropriate for

  4. Cloudsat Satellite Images of Amanda

    NASA Video Gallery

    NASA's CloudSat satellite flew over Hurricane Amanda on May 25, at 5 p.m. EDT and saw a deep area of moderate to heavy-moderate precipitation below the freezing level (where precipitation changes f...

  5. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  6. Haystack Ultrawideband Satellite Imaging Radar

    DTIC Science & Technology

    2014-09-01

    www.ll.mit.edu September 2014 Since the launch of satellites into Earth orbits more than 50 years ago, space has become crowded. Commercial and military...satellites, both active and defunct, share the space environment with an assort- ment of space debris , such as remnants of damaged spacecraft and...spent rocket boosters. This profusion of orbiting objects could seriously threaten space assets, such as the International Space Station or NASA’s

  7. Inductive time series modeling program

    SciTech Connect

    Kirk, B.L.; Rust, B.W.

    1985-10-01

    A number of features that comprise environmental time series share a common mathematical behavior. Analysis of the Mauna Loa carbon dioxide record and other time series is aimed at constructing mathematical functions which describe as many major features of the data as possible. A trend function is fit to the data, removed, and the resulting residuals analyzed for any significant behavior. This is repeated until the residuals are driven to white noise. In the following discussion, the concept of trend will include cyclic components. The mathematical tools and program packages used are VARPRO (Golub and Pereyra 1973), for the least squares fit, and a modified version of our spectral analysis program (Kirk et al. 1979), for spectrum and noise analysis. The program is written in FORTRAN. All computations are done in double precision, except for the plotting calls where the DISSPLA package is used. The core requirement varies between 600 K and 700 K. The program is implemented on the IBM 360/370. Currently, the program can analyze up to five different time series where each series contains no more than 300 points. 12 refs.

  8. Modeling North Pacific Time Series

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Percival, D. B.; Mofjeld, H. O.

    2002-05-01

    We present a case study in modeling the North Pacific (NP) index, a time series of the wintertime Aleutian low sea level pressure from 1900 to 1999. We consider three statistical models, namely, a Gaussian stationary autoregressive process, a Gaussian fractionally difference (FD) or ``long-memory" process, and a ``signal plus noise" process consisting of a square wave oscillation with a pentadecadal period embedded in Gaussian white noise. Each model depends upon three parameters, so all three models are equally simple. The shortness of the time series makes it unrealistic to formally prefer one model over the other: we estimate it would take a 300 year record to differentiate between the models. Although the models fit equally well, they have quite different implications for the long-term behavior of the NP index, e.g. generation of regimes of characteristic lengths. Additional information and physical arguments may add support for a particular model. The FD - ``long memory" process suggests multiple physical contributions with different damping constants many North Pacific biological time series which are influenced by atmospheric and oceanic processes, show regime-like ecosystem reorganizations.

  9. Data compression for satellite images

    NASA Technical Reports Server (NTRS)

    Chen, P. H.; Wintz, P. A.

    1976-01-01

    An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.

  10. Database for Hydrological Time Series of Inland Waters (DAHITI)

    NASA Astrophysics Data System (ADS)

    Schwatke, Christian; Dettmering, Denise

    2016-04-01

    Satellite altimetry was designed for ocean applications. However, since some years, satellite altimetry is also used over inland water to estimate water level time series of lakes, rivers and wetlands. The resulting water level time series can help to understand the water cycle of system earth and makes altimetry to a very useful instrument for hydrological applications. In this poster, we introduce the "Database for Hydrological Time Series of Inland Waters" (DAHITI). Currently, the database contains about 350 water level time series of lakes, reservoirs, rivers, and wetlands which are freely available after a short registration process via http://dahiti.dgfi.tum.de. In this poster, we introduce the product of DAHITI and the functionality of the DAHITI web service. Furthermore, selected examples of inland water targets are presented in detail. DAHITI provides time series of water level heights of inland water bodies and their formal errors . These time series are available within the period of 1992-2015 and have varying temporal resolutions depending on the data coverage of the investigated water body. The accuracies of the water level time series depend mainly on the extent of the investigated water body and the quality of the altimeter measurements. Hereby, an external validation with in-situ data reveals RMS differences between 5 cm and 40 cm for lakes and 10 cm and 140 cm for rivers, respectively.

  11. Time series analysis of injuries.

    PubMed

    Martinez-Schnell, B; Zaidi, A

    1989-12-01

    We used time series models in the exploratory and confirmatory analysis of selected fatal injuries in the United States from 1972 to 1983. We built autoregressive integrated moving average (ARIMA) models for monthly, weekly, and daily series of deaths and used these models to generate hypotheses. These deaths resulted from six causes of injuries: motor vehicles, suicides, homicides, falls, drownings, and residential fires. For each cause of injury, we estimated calendar effects on the monthly death counts. We confirmed the significant effect of vehicle miles travelled on motor vehicle fatalities with a transfer function model. Finally, we applied intervention analysis to deaths due to motor vehicles.

  12. Introduction to Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1986-01-01

    The field of time series analysis is explored from its logical foundations to the most modern data analysis techniques. The presentation is developed, as far as possible, for continuous data, so that the inevitable use of discrete mathematics is postponed until the reader has gained some familiarity with the concepts. The monograph seeks to provide the reader with both the theoretical overview and the practical details necessary to correctly apply the full range of these powerful techniques. In addition, the last chapter introduces many specialized areas where research is currently in progress.

  13. Multiple Indicator Stationary Time Series Models.

    ERIC Educational Resources Information Center

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  14. Albedo Pattern Recognition and Time-Series Analyses in Malaysia

    NASA Astrophysics Data System (ADS)

    Salleh, S. A.; Abd Latif, Z.; Mohd, W. M. N. Wan; Chan, A.

    2012-07-01

    Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000-2009) MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools). There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI) and aerosol optical depth (AOD). There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high negative linear

  15. It's time for a crisper image of the Face of the Earth: Landsat and climate time series for massive land cover & climate change mapping at detailed resolution.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal

    2014-05-01

    Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of

  16. Algorithm for Compressing Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  17. Detecting chaos from time series

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Gong; Lai, C. H.

    2000-02-01

    In this paper, an entirely data-based method to detect chaos from the time series is developed by introducing icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points (the p -steps icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> -neighbour points). We demonstrate that for deterministic chaotic systems, there exists a linear relationship between the logarithm of the average number of icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points, lnn p ,icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> , and the time step, p . The coefficient can be related to the KS entropy of the system. The effects of the embedding dimension and noise are also discussed.

  18. A Star Image Extractor for Small Satellites

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Yamauchi, Masahiro; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Nakasuka, Shinichi; Sako, Nobutada; Inamori, Takaya

    We have developed a Star Image Extractor (SIE) which works as an on-board real-time image processor. It is a logic circuit written on an FPGA(Field Programmable Gate Array) device. It detects and extracts only an object data from raw image data. SIE will be required with the Nano-JASMINE 1) satellite. Nano-JASMINE is the small astrometry satellite that observes objects in our galaxy. It will be launched in 2010 and needs two years mission period. Nano-JASMINE observes an object with the TDI (Time Delayed Integration) observation mode. TDI is one of operation modes of CCD detector. Data is obtained, by rotating the imaging system including CCD at a rated synchronized with a vertical charge transfer of CCD. Obtained image data is sent through SIE to the Mission-controller.

  19. Aerial photographs and satellite images

    USGS Publications Warehouse

    ,

    1995-01-01

    Because photographs and images taken from the air or from space are acquired without direct contact with the ground, they are referred to as remotely sensed images. The U.S. Geological Survey (USGS) has used remote sensing from the early years of the 20th century to support earth science studies and for mapping purposes.

  20. Integrated Ground-Based LiDAR and Global Fiducials Program Satellite Imagery Time Series Analysis of the Terminus of Bering Glacier, Alaska During the 2008-2011 Surge

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Molnia, B. F.; Howle, J.; Bond, S.; Angeli, K.; Shuchman, R. A.

    2012-12-01

    Satellite imagery from the Global Fiducials Program (GFP: classified satellite imagery released to the general public for science use: http://gfl.usgs.gov) tracked the 2008-2011 surge of the Bering Glacier, the largest and longest glacier in North America. The terminus displacement began in late 2010, with maximum velocities of greater than 20 meters per day by late January 2011, as measured using feature tracking with GFP imagery. By July, the velocities had decreased to less than 10 m/d. We used the GFP imagery to locate three helicopter accessible targets on the terminus of the Bering Glacier to collect high-resolution (0.5-4 cm spot spacing) 4D time-series tripod/terrestrial LiDAR (T-LiDAR) data. During the week of July 24, 2011 we collected hourly and daily T-LiDAR data to resolve spatially and temporally varied advancement rates at each of the sites. The first site was located on the west side of Tashalich arm on the western side of the Bering Lobe terminus proximal to the region where the maximum GFP velocities had previously been measured. Using the T-LiDAR data, we found that the terminus advanced 5.4 m over 76 hours of observation. The hourly advancement rates for the same location are a very consistent 4.2 cm/h during our daylight hours of observation (0900-1800 local) and when daily rate are extrapolated to the full 76 hours, we should have measured 3.2 m of horizontal displacement: this is a discrepancy between the total and hourly measured displacements of an additional 2.2 m of motion during the night and early morning hours (1800-0900 local). The additional motion may be explained by accelerated terminus velocity associated with daily thermal heating and resulting melt. Motion may also be explained by rain on the second day of the survey that "lubricated" the glacier bed thereby allowing it to advance at a faster velocity. The second site was on Arrowhead Island, located on the eastern side of the terminus where the vertical relieve of the glacier

  1. Removing shadows from Google Earth satellite images

    NASA Astrophysics Data System (ADS)

    Guo, Jianhong; Gong, Peng; Liang, Lu

    2007-06-01

    June 2005, Google has released its geographic search tool "Google earth", a new application that combines local search with satellite images and maps from around the globe. It is designed to make every person owned a computer easily "fly" to aerial views of many locations on the planet. However, just as ordinary satellite images, there inevitably exist shadows in it, made some ground objects obscure, even unidentifiable. According to the basic thinking of Radiative Transfer Theory, this paper built a image shadow removal model, which using the Radiative Transfer Theory combined with preknowledge to compensate the lost shadow area information. The results shows: shadows in images were successfully removed and the target objects were returned to their original scenes.

  2. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  3. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  4. Satellite Imaging in the Study of Pennsylvania's Environmental Issues.

    ERIC Educational Resources Information Center

    Nous, Albert P.

    This document focuses on using satellite images from space in the classroom. There are two types of environmental satellites routinely broadcasting: (1) Polar-Orbiting Operational Environmental Satellites (POES), and (2) Geostationary Operational Environmental Satellites (GOES). Imaging and visualization techniques provide students with a better…

  5. United States Forest Disturbance Trends Observed Using Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Goward, Samuel N.; Kennedy, Robert E.; Cohen, Warren B.; Moisen, Gretchen G.; Schleeweis, Karen; Huang, Chengquan

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing U.S. land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest disturbance across the conterminous United States for 1985-2005. The geographic sample design used a probability-based scheme to encompass major forest types and maximize geographic dispersion. For each sample location disturbance was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm. The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed annually, representing 1.09%/yr of US forestland. These satellite-based national disturbance rates estimates tend to be lower than those derived from land management inventories, reflecting both methodological and definitional differences. In particular the VCT approach used with a biennial time step has limited sensitivity to low-intensity disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by nearly a factor of two between high and low years. High western US disturbance rates were associated with active fire years and insect activity, while variability in the east is more strongly related to harvest rates in managed forests. We note that generating a geographic sample based on representing forest type and variability may be problematic since the spatial pattern of disturbance does not necessarily correlate with forest type. We also find that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the application of a biennial geographic sample problematic. Future satellite-based studies of disturbance at regional and national scales should focus on wall-to-wall analyses with annual time step for improved accuracy.

  6. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  7. Change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Thonnessen, U.; Hofele, G.; Middelmann, W.

    2005-05-01

    Change detection plays an important role in different military areas as strategic reconnaissance, verification of armament and disarmament control and damage assessment. It is the process of identifying differences in the state of an object or phenomenon by observing it at different times. The availability of spaceborne reconnaissance systems with high spatial resolution, multi spectral capabilities, and short revisit times offer new perspectives for change detection. Before performing any kind of change detection it is necessary to separate changes of interest from changes caused by differences in data acquisition parameters. In these cases it is necessary to perform a pre-processing to correct the data or to normalize it. Image registration and, corresponding to this task, the ortho-rectification of the image data is a further prerequisite for change detection. If feasible, a 1-to-1 geometric correspondence should be aspired for. Change detection on an iconic level with a succeeding interpretation of the changes by the observer is often proposed; nevertheless an automatic knowledge-based analysis delivering the interpretation of the changes on a semantic level should be the aim of the future. We present first results of change detection on a structural level concerning urban areas. After pre-processing, the images are segmented in areas of interest and structural analysis is applied to these regions to extract descriptions of urban infrastructure like buildings, roads and tanks of refineries. These descriptions are matched to detect changes and similarities.

  8. Adaptive median filtering for preprocessing of time series measurements

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.

  9. Voxel-Wise Time-Series Analysis of Quantitative MRI in Relapsing-Remitting MS: Dynamic Imaging Metrics of Disease Activity Including Pre-Lesional Changes

    DTIC Science & Technology

    2015-12-01

    T1 with high- speed incorporation of radiofrequency (RF) field inhomogeneities (DESPOT1-HIFI) (24), and a dual TR SPGR acquisition termed actual flip...efficient optimization methods utilizing a C-code imple- mentation or commodity graphics processing unit hard- ware (44). An additional speed up is...354. 12. Ordidge RJ, Gibbs P, Chapman B, Stehling MK, Mansfield P. High- speed multislice T1 mapping using inversion-recovery echo-planar imaging. Magn

  10. Impact of Sensor Degradation on the MODIS NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Wang, Dongdong; Morton, Douglas; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2011-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, we evaluated the impact of sensor degradation on trend detection using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004/yr decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in NDVI trends over vegetation.

  11. Impact of Sensor Degradation on the MODIS NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  12. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  13. Sparse Representation for Time-Series Classification

    DTIC Science & Technology

    2015-02-08

    February 8, 2015 16:49 World Scientific Review Volume - 9in x 6in ” time - series classification” page 1 Chapter 1 Sparse Representation for Time - Series ...studies the problem of time - series classification and presents an overview of recent developments in the area of feature extraction and information...problem of target classification, and more generally time - series classification, in two main directions, feature extraction and information fusion. 1

  14. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  15. A neuromorphic approach to satellite image understanding

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Perakakis, Manolis

    2014-05-01

    Remote sensing satellite imagery provides high altitude, top viewing aspects of large geographic regions and as such the depicted features are not always easily recognizable. Nevertheless, geoscientists familiar to remote sensing data, gradually gain experience and enhance their satellite image interpretation skills. The aim of this study is to devise a novel computational neuro-centered classification approach for feature extraction and image understanding. Object recognition through image processing practices is related to a series of known image/feature based attributes including size, shape, association, texture, etc. The objective of the study is to weight these attribute values towards the enhancement of feature recognition. The key cognitive experimentation concern is to define the point when a user recognizes a feature as it varies in terms of the above mentioned attributes and relate it with their corresponding values. Towards this end, we have set up an experimentation methodology that utilizes cognitive data from brain signals (EEG) and eye gaze data (eye tracking) of subjects watching satellite images of varying attributes; this allows the collection of rich real-time data that will be used for designing the image classifier. Since the data are already labeled by users (using an input device) a first step is to compare the performance of various machine-learning algorithms on the collected data. On the long-run, the aim of this work would be to investigate the automatic classification of unlabeled images (unsupervised learning) based purely on image attributes. The outcome of this innovative process is twofold: First, in an abundance of remote sensing image datasets we may define the essential image specifications in order to collect the appropriate data for each application and improve processing and resource efficiency. E.g. for a fault extraction application in a given scale a medium resolution 4-band image, may be more effective than costly

  16. Regenerating time series from ordinal networks.

    PubMed

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  17. Regenerating time series from ordinal networks

    NASA Astrophysics Data System (ADS)

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  18. Imaging artificial satellites: An observational challenge

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  19. Detecting weathered oil from the Deepwater Horizon incident in the wetlands of Barataria Bay, Louisiana, using a time series of AVIRIS imaging spectrometer data (Invited)

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.; Couvillion, B. R.; Holloway, J. M.; Roberts, D. A.; Ustin, S.; Peterson, S. H.; Khanna, S.; Piazza, S.

    2013-12-01

    From April to July 2010 oil flowed from the Macondo well into the Gulf of Mexico. The USA shoreline was contaminated along hundreds of kilometers of beach and coastal wetland ecosystems. As part of the emergency response to the incident, data from the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) were collected on several data in 2010, 2011, and 2012. These collections were made over impacted coasts from high altitude and low altitude aircraft, acquiring data with 4.4 to 20 meter pixel size, dependent on flight altitude. Spectroscopic methods were applied to these data to delineate the most heavily impacted areas, characterize the physical and chemical impacts of the oil on the ecosystem, and evaluate short-term vegetation response. The challenges to detecting oil contamination in this heavily vegetated area will be discussed, including requirements for atmospheric correction, impacts of clouds, discrimination of oil from spectrally similar materials, and the observed limit of detection.

  20. A Review of Subsequence Time Series Clustering

    PubMed Central

    Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332

  1. A review of subsequence time series clustering.

    PubMed

    Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

  2. Quantifying the Physical Composition of Urban Morphology throughout Wales by analysing a Time Series (1989-2011) of Landsat TM/ETM+ images and Supporting GIS data

    NASA Astrophysics Data System (ADS)

    Scott, Douglas; Petropoulos, George

    2014-05-01

    Knowledge of impervious surface areas (ISA) and on their changes in magnitude, location, geometry and morphology over time is significant for a range of practical applications and research alike from local to global scale. It is a key indicator of global environmental change and is also important parameter for urban planning and environmental resources management, especially within a European context due to the policy recommendations given to the European Commission by the Austrian Environment Agency in 2011. Despite this, use of Earth Observation (EO) technology in mapping ISAs within the European Union (EU) and in particular in the UK is inadequate. In the present study, selected study sites across Wales have been used to test the use of freely distributed EO data from Landsat TM/ETM+ sensors in retrieving ISA for improving the current European estimations of international urbanization and soil sealing. A traditional classifier and a linear spectral mixture analysis (LSMA) were both applied to a series of Landsat TM/ETM+ images acquired over a period spanning 22 years to extract ISA. Aerial photography with a spatial resolution of 0.4m, acquired over the summer period in 2005 was used for validation purposes. The Welsh study areas provided a unique chance to detect largely dispersed urban morphology within an urban-rural frontier context. The study also presents an innovative method for detecting clouds and cloud shadow layers, detected with an overall accuracy of around 97%. The process tree built and presented in this study is important in terms of moving forward into a biennial program for the Welsh Government and is comparable to currently existing products. This EO-based product also offers a much less subjectively static and more objectively dynamic estimation of ISA cover. Our methodology not only inaugurates the local retrieval of ISA for Wales but also meliorates the existing EU international figures, and expands relatively stationary 'global' US

  3. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  4. Integration of Multisensor Remote Sensing Data for the Retrieval of Consistent Times Series of High-Resolution NDVI Images for Crop Monitoring in Landscapes Dominated By Small-Scale Farming Agricultural

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Kempeneers, P.

    2014-12-01

    There is a need for timely and accurate information of food supply and early warnings of production shortfalls. Crop growth models commonly rely on information on vegetation dynamics from low and moderate spatial resolution remote sensing imagery. While the short revisit period of these sensors captures the temporal dynamics of crops, they are not able to monitor small-scale farming areas where environmental factors, crop type and management practices often vary at subpixel level. Although better suited to retrieve fine spatial structure, time series of higher resolution imagery (circa 30 m) are often incomplete due to larger revisit periods and persistent cloud coverage. However, as the Landsat archive expands and more fine resolution Earth observation sensors become available, the possibilities of multisensor integration to monitor crop dynamics with higher level of spatial detail are expanding. We have integrated remote sensing imagery from two moderate resolution sensors (MODIS and PROBA-V) and three medium resolution platforms (Landsat 7- 8; and DMC) to improve the characterization of vegetation dynamics in agricultural landscapes dominated by small-scale farms. We applied a data assimilation method to produce complete temporal sequences of synthetic medium-resolution NDVI images. The method implements a Kalman filter recursive algorithm that incorporates models, observations and their respective uncertainties to generate medium-resolution images at time steps for which only moderate-resolution imagery is available. The results for the study sites show that the time series of synthetic NDVI images captured seasonal vegetation dynamics and maintained the spatial structure of the landscape at higher spatial resolution. A more detailed characterization of spatiotemporal dynamics of vegetation in agricultural systems has the potential to improve the estimates of crop growth models and allow a more precise monitoring and forecasting of crop productivity.

  5. Developing Geostationary Satellite Imaging at Lowell Observatory

    NASA Astrophysics Data System (ADS)

    van Belle, G.

    2016-09-01

    Lowell Observatory operates the Navy Precision Optical Interferometer (NPOI), and owns & operates the Discovery Channel Telescope (DCT). This unique & necessary combination of facilities positions Lowell to develop a robust program of observing geostationary, GPS-plane, and other high-altitude (&1000mi) satellites. NPOI is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is supported by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates year-round in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and imaging technology development. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, an ongoing program of facility upgrades will be outlined. These upgrades include AO-assisted 1.0-m apertures feeding each beam line, and new near-infrared instrumentation on the back end. The large apertures will enable `at-will' observations of objects brighter than mK = 8:3 in the near-IR, corresponding to brighter than mV = 11:3 in the visible. At its core, the system is enabled by a `wavelength-baseline bootstrapping' approach discussed herein. A complementary pilot imaging study of visible speckle and aperture masked imaging at Lowell's 4.3-m DCT, for constraining the low-spatial frequency imaging information, is also outlined.

  6. Fusion of Hyperspectral Hyperion and Multispectral Landsat Time Series Imagery to Improve Results and Capabilities

    NASA Astrophysics Data System (ADS)

    Franks, S.; Neigh, C. S. R.; Campell, P. K.; Sun, G.; Zhang, Q.; Middleton, E.

    2015-12-01

    Since the opening of the USGS archive to no cost Landsat data distribution, time series analysis has grown immensely. With this new era of possibilities, people are able to do science in ways that were never able to be done. The aim of this project is to explore how EO-1 Hyperion data can add value to an already valuable resource. We used a region of interest that had Landsat time series data and coincident Hyperion data to determine how Landsat classifications can be improved by using hyperspectral data with much greater spectral resolution. We hope to find innovative ways to fuse the data sources and come up with new and improved ways to study our changing Earth. With the HyspIRI (Hyperspectral Infrared Imager) satellite being launched shortly, this provides an opportunity to evaluate potential benefits that it may provide when in conjunction with other technologies and missions.

  7. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  8. Embedded Implementation of VHR Satellite Image Segmentation.

    PubMed

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-05-27

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage.

  9. Imaging of the outer planets and satellites.

    NASA Technical Reports Server (NTRS)

    Murray, B. C.

    1973-01-01

    Imaging is the most widely applicable single means of exploring the outer planets and their satellites and also complements other planet-oriented instruments. Photography of Jupiter from terrestrial telescopes has revealed features which were neither predictable or predicted. Close-up imaging from fly-bys and orbiters affords the opportunity for discovery of atmospheric phenomena on the outer planets forever beyond the reach of terrestrial laboratories and intuition. On the other hand, a large number of specific applications of close-up imaging to study the giant planets are suggested by experience in photography from Earth and Mars orbit, and by ground-based telescopic studies of Jupiter and Saturn. The satellites of the outer planets actually constitute three distinct classes: lunar-sized objects, asteroidal-sized objects, and particulate rings. Imaging promises to be the primary observational tool for each category with results that could impact scientific thinking in the late 70's and 80's as significantly as has close-up photography of Mars and the Moon in the last 10 yr.

  10. TSAN: a package for time series analysis.

    PubMed

    Wang, D C; Vagnucci, A H

    1980-04-01

    Many biomedical data are in the form of time series. Analyses of these data include: (1) search for any biorhythm; (2) test of homogeneity of several time series; (3) assessment of stationarity; (4) test of normality of the time series histogram; (5) evaluation of dependence between data points. In this paper we present a subroutine package called TSAN. It is developed to accomplish these tasks. Computational methods, as well as flowcharts, for these subroutines are described. Two sample runs are demonstrated.

  11. Association mining of dependency between time series

    NASA Astrophysics Data System (ADS)

    Hafez, Alaaeldin

    2001-03-01

    Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.

  12. The Theory of Standardized Time Series.

    DTIC Science & Technology

    1985-04-01

    3.1)),’the method of standardized time series produces asymptotically valid confidence intevals for steady7&tepi1Tsmneters. However, these intervals...the method of standardized time series produces asymptotically valid confidence intevals for steady-state parameters. However, these intervals are...fa o & s d ......ary O W f, . .d by W eek m b o ), Da~cn an o~simulation output analysis confidence intervals standardized time series functional

  13. Landslide monitoring using airphotos time series and GIS

    NASA Astrophysics Data System (ADS)

    Kavoura, Katerina; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos

    2014-10-01

    Western Greece is suffering by landslides. The term landslide includes a wide range of ground movement, such as slides, falls, flows etc. mainly based on gravity with the aid of many conditioning and triggering factors. Landslides provoke enormous changes to the natural and artificial relief. The annual cost of repairing the damage amounts to millions of euros. In this paper a combined use of airphotos time series, high resolution remote sensing data and GIS for the landslide monitoring is presented. Analog and digital air-photos used covered a period of almost 70 years from 1945 until 2012. Classical analog airphotos covered the period from 1945 to 2000, while digital airphotos and satellite images covered the 2008-2012 period. The air photos have been orthorectified using the Leica Photogrammetry Suite. Ground control points and a high accuracy DSM were used for the orthorectification of the air photos. The 2008 digital air photo mosaic from the Greek Cadastral with a spatial resolution of 25 cm and the respective DSM was used as the base map for all the others data sets. The RMS error was less than 0.5 pixel. Changes to the artificial constructions provoked by the landslideswere digitized and then implemented in an ARCGIS database. The results are presented in this paper.

  14. Generation of artificial helioseismic time-series

    NASA Technical Reports Server (NTRS)

    Schou, J.; Brown, T. M.

    1993-01-01

    We present an outline of an algorithm to generate artificial helioseismic time-series, taking into account as much as possible of the knowledge we have on solar oscillations. The hope is that it will be possible to find the causes of some of the systematic errors in analysis algorithms by testing them with such artificial time-series.

  15. Forecasting Enrollments with Fuzzy Time Series.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  16. Linear Relations in Time Series Models. I.

    ERIC Educational Resources Information Center

    Villegas, C.

    1976-01-01

    A multiple time series is defined as the sum of an autoregressive process on a line and independent Gaussian white noise or a hyperplane that goes through the origin and intersects the line at a single point. This process is a multiple autoregressive time series in which the regression matrices satisfy suitable conditions. For a related article…

  17. Star sightings by satellite for image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Ekman, Donald E. (Inventor); Savides, John (Inventor); Zwirn, Gerald J. (Inventor)

    1988-01-01

    Stars are sensed by one or more instruments (1, 2) on board a three-axis stabilized satellite, for purposes of assisting in image navigation. A star acquistion computer (64), which may be located on the earth, commands the instrument mirror (33, 32) to slew just outside the limb of the earth or other celestial body around which the satellite is orbiting, to look for stars that have been cataloged in a star map stored within the computer (64). The instrument (1, 2) is commanded to dwell for a period of time equal to a star search window time, plus the maximum time the instrument (1, 2) takes to complete a current scan, plus the maximum time it takes for the mirror (33, 32) to slew to the star. When the satellite is first placed in orbit, and following first stationkeeping and eclipse, a special operation is performed in which the star-seeking instrument (1, 2) FOV is broadened. The elevation dimension can be broadened by performing repetitive star seeks; the azimuth dimension can be broadened by lengthening the commanded dwell times.

  18. Statistical criteria for characterizing irradiance time series.

    SciTech Connect

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  19. Estimating GATE rainfall with geosynchronous satellite images

    NASA Technical Reports Server (NTRS)

    Stout, J. E.; Martin, D. W.; Sikdar, D. N.

    1979-01-01

    A method of estimating GATE rainfall from either visible or infrared images of geosynchronous satellites is described. Rain is estimated from cumulonimbus cloud area by the equation R = a sub 0 A + a sub 1 dA/dt, where R is volumetric rainfall, A cloud area, t time, and a sub 0 and a sub 1 are constants. Rainfall, calculated from 5.3 cm ship radar, and cloud area are measured from clouds in the tropical North Atlantic. The constants a sub 0 and a sub 1 are fit to these measurements by the least-squares method. Hourly estimates by the infrared version of this technique correlate well (correlation coefficient of 0.84) with rain totals derived from composited radar for an area of 100,000 sq km. The accuracy of this method is described and compared to that of another technique using geosynchronous satellite images. It is concluded that this technique provides useful estimates of tropical oceanic rainfall on a convective scale.

  20. Long GPS coordinate time series: multipath and geometry effects

    NASA Astrophysics Data System (ADS)

    King, M. A.; Watson, C. S.

    2009-04-01

    Within analyses of Global Positioning System (GPS) observations, unmodelled sub-daily signals are known to propagate into long-period signals via a number of different mechanisms. In this paper, we investigate the effects of time-variable satellite geometry and the propagation of an unmodelled multipath signal that is analogous to a change in the elevation dependant phase centre of the receiving antenna. Multipath reflectors at H=0.1 m, 0.2 m and 1.5 m below the antenna are modeled and their effects on GPS coordinate time series are examined. Simulated time series at 20 global IGS sites for 2000-2008 were derived using the satellite geometry as defined by daily broadcast orbits, in addition to that defined using a perfectly repeating synthetic orbit. For the simulations generated using the broadcast orbits with a perfectly clear horizon, we observe the introduction of a time variable bias in the time series of up to several centimeters. Considerable site to site variability of the frequency and magnitude of the signal is observed, in addition to variation as a function of multipath source. When adopting realistic GPS observation geometries obtained from real data (e.g., those that include the effects of tracking outages, local obstructions, etc.), we observe concerning levels of temporal coordinate variation in the presence of the multipath signals. In these cases, we observe spurious signals across the frequency domain, in addition to what appears as offsets and secular trends. Velocity biases of more than 1mm/yr are evident at some few sites. The propagated signal in the vertical component is consistent with a noise model with a spectral index marginally above flicker noise (mean index -1.4), with some sites exhibiting power law magnitudes at comparable levels to actual height time series generated in GIPSY. The propagated signal also shows clear spectral peaks across all coordinate components at harmonics of the draconitic year for a GPS satellite (351.4 days

  1. Long GPS coordinate time series: multipath and geometry effects

    NASA Astrophysics Data System (ADS)

    King, M.; Watson, C. S.

    2009-12-01

    Within analyses of Global Positioning System (GPS) observations, unmodelled sub-daily signals are known to propagate into long-period signals via a number of different mechanisms. We report on the effects of time-variable satellite geometry and the propagation of an unmodelled multipath signal. Multipath reflectors at H=0.1 m, 0.2 m and 1.5 m below the antenna are modeled and their effects on GPS coordinate time series are examined. Simulated time series at 20 global IGS sites for 2000-2008 were derived using the satellite geometry as defined by daily broadcast orbits, in addition to that defined using a perfectly repeating synthetic orbit. For the simulations generated using the broadcast orbits with a perfectly clear horizon, we observe the introduction of a time variable bias in the time series of up to several centimeters. Considerable site to site variability of the frequency and magnitude of the signal is observed, in addition to variation as a function of multipath source. When adopting realistic GPS observation geometries obtained from real data (e.g., those that include the effects of tracking outages, local obstructions, etc.), we observe concerning levels of temporal coordinate variation in the presence of the multipath signals. In these cases, we observe spurious signals across the frequency domain, in addition to what appears as offsets and secular trends. Velocity biases of more than 1mm/yr are evident at some few sites. The propagated signal in the vertical component is consistent with a noise model with a spectral index marginally above flicker noise (mean index -1.4), with some sites exhibiting power law magnitudes at comparable levels to actual height time series generated in GIPSY. The propagated signal also shows clear spectral peaks across all coordinate components at harmonics of the draconitic year for a GPS satellite (351.2 days). When a perfectly repeating synthetic GPS constellation is used, the simulations show near-negligible power law

  2. Automatic Approach to Vhr Satellite Image Classification

    NASA Astrophysics Data System (ADS)

    Kupidura, P.; Osińska-Skotak, K.; Pluto-Kossakowska, J.

    2016-06-01

    In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture), which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the preliminary step

  3. Network structure of multivariate time series

    PubMed Central

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-01-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040

  4. Homogenising time series: beliefs, dogmas and facts

    NASA Astrophysics Data System (ADS)

    Domonkos, P.

    2011-06-01

    In the recent decades various homogenisation methods have been developed, but the real effects of their application on time series are still not known sufficiently. The ongoing COST action HOME (COST ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher confidence than earlier. As a part of the COST activity, a benchmark dataset was built whose characteristics approach well the characteristics of real networks of observed time series. This dataset offers much better opportunity than ever before to test the wide variety of homogenisation methods, and analyse the real effects of selected theoretical recommendations. Empirical results show that real observed time series usually include several inhomogeneities of different sizes. Small inhomogeneities often have similar statistical characteristics than natural changes caused by climatic variability, thus the pure application of the classic theory that change-points of observed time series can be found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal changes and long-term fluctuations of time series are usually much closer to the reality than in raw time series. Some problems around detecting multiple structures of inhomogeneities, as well as that of time series comparisons within homogenisation procedures are discussed briefly in the study.

  5. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  6. Managing an archive of weather satellite images

    NASA Technical Reports Server (NTRS)

    Seaman, R. L.

    1992-01-01

    The author's experiences of building and maintaining an archive of hourly weather satellite pictures at NOAO are described. This archive has proven very popular with visiting and staff astronomers - especially on windy days and cloudy nights. Given access to a source of such pictures, a suite of simple shell and IRAF CL scripts can provide a great deal of robust functionality with little effort. These pictures and associated data products such as surface analysis (radar) maps and National Weather Service forecasts are updated hourly at anonymous ftp sites on the Internet, although your local Atsmospheric Sciences Department may prove to be a more reliable source. The raw image formats are unfamiliar to most astronomers, but reading them into IRAF is straightforward. Techniques for performing this format conversion at the host computer level are described which may prove useful for other chores. Pointers are given to sources of data and of software, including a package of example tools. These tools include shell and Perl scripts for downloading pictures, maps, and forecasts, as well as IRAF scripts and host level programs for translating the images into IRAF and GIF formats and for slicing & dicing the resulting images. Hints for displaying the images and for making hardcopies are given.

  7. Studies of soundings and imagings measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.

  8. An approach to constructing a homogeneous time series of soil mositure using SMOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overlapping soil moisture time series derived from two satellite microwave radiometers (SMOS, Soil Moisture and Ocean Salinity; AMSR-E, Advanced Microwave Scanning Radiometer - Earth Observing System) are used to generate a soil moisture time series from 2003 to 2010. Two statistical methodologies f...

  9. Spectra: Time series power spectrum calculator

    NASA Astrophysics Data System (ADS)

    Gallardo, Tabaré

    2017-01-01

    Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

  10. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  11. Complex network approach to fractional time series

    SciTech Connect

    Manshour, Pouya

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  12. Improving Intercomparability of Marine Biogeochemical Time Series

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Telszewski, Maciej; Lorenzoni, Laura

    2013-04-01

    Shipboard biogeochemical time series represent one of the most valuable tools scientists have to quantify marine elemental fluxes and associated biogeochemical processes and to understand their links to changing climate. They provide the long, temporally resolved data sets needed to characterize ocean climate, biogeochemistry, and ecosystem variability and change. However, to monitor and differentiate natural cycles and human-driven changes in the global oceans, time series methodologies must be transparent and intercomparable when possible. To review current shipboard biogeochemical time series sampling and analytical methods, the International Ocean Carbon Coordination Project (IOCCP; http://www.ioccp.org/) and the Ocean Carbon and Biogeochemistry Program (http://www.us-ocb.org/) convened an international ocean time series workshop at the Bermuda Institute for Ocean Sciences.

  13. Detecting nonlinear structure in time series

    SciTech Connect

    Theiler, J.

    1991-01-01

    We describe an approach for evaluating the statistical significance of evidence for nonlinearity in a time series. The formal application of our method requires the careful statement of a null hypothesis which characterizes a candidate linear process, the generation of an ensemble of surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against the null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. While some data sets very cleanly exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. We hope to provide a framework within which such claims of nonlinearity can be evaluated. 5 refs., 4 figs.

  14. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  15. Nonlinear Analysis of Surface EMG Time Series

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-04-01

    Applications of nonlinear analysis of surface electromyography time series of patients with and without low back pain are presented. Limitations of the standard methods based on the power spectrum are discussed.

  16. On reconstruction of time series in climatology

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Gluhovsky, A.

    2015-10-01

    The approach to time series reconstruction in climatology based upon cross-correlation coefficients and regression equations is mathematically incorrect because it ignores the dependence of time series upon their past. The proper method described here for the bivariate case requires the autoregressive time- and frequency domains modeling of the time series which contains simultaneous observations of both scalar series with subsequent application of the model to restore the shorter one into the past. The method presents further development of previous efforts taken by a number of authors starting from A. Douglass who introduced some concepts of time series analysis into paleoclimatology. The method is applied to the monthly data of total solar irradiance (TSI), 1979-2014, and sunspot numbers (SSN), 1749-2014, to restore the TSI data over 1749-1978. The results of the reconstruction are in statistical agreement with observations.

  17. Wide swath and high resolution optical imaging satellite of Japan

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu

    2016-05-01

    The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.

  18. Earthshots: Satellite images of environmental change – Chernobyl, Ukraine

    USGS Publications Warehouse

    ,

    2013-01-01

    The Landsat 5 image from April 29, 1986, was the first satellite image of the accident. The data from Landsat were used to help confirm that an explosion had happened at Chernobyl and that the plant had been shut down.

  19. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  20. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    PubMed

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  1. Highly comparative time-series analysis: the empirical structure of time series and their methods

    PubMed Central

    Fulcher, Ben D.; Little, Max A.; Jones, Nick S.

    2013-01-01

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344

  2. Measuring earthquakes from optical satellite images.

    PubMed

    Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J

    2000-07-10

    Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.

  3. Homogenising time series: Beliefs, dogmas and facts

    NASA Astrophysics Data System (ADS)

    Domonkos, P.

    2010-09-01

    For obtaining reliable information about climate change and climate variability the use of high quality data series is essentially important, and one basic tool of quality improvements is the statistical homogenisation of observed time series. In the recent decades large number of homogenisation methods has been developed, but the real effects of their application on time series are still not known entirely. The ongoing COST HOME project (COST ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher confidence than earlier. As part of the COST activity, a benchmark dataset was built whose characteristics approach well the characteristics of real networks of observed time series. This dataset offers much better opportunity than ever to test the wide variety of homogenisation methods, and analyse the real effects of selected theoretical recommendations. The author believes that several old theoretical rules have to be re-evaluated. Some examples of the hot questions, a) Statistically detected change-points can be accepted only with the confirmation of metadata information? b) Do semi-hierarchic algorithms for detecting multiple change-points in time series function effectively in practise? c) Is it good to limit the spatial comparison of candidate series with up to five other series in the neighbourhood? Empirical results - those from the COST benchmark, and other experiments too - show that real observed time series usually include several inhomogeneities of different sizes. Small inhomogeneities seem like part of the climatic variability, thus the pure application of classic theory that change-points of observed time series can be found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal changes and long-term fluctuations of time series are usually much closer to the reality, than in raw time series. The developers and users of homogenisation methods have to bear in mind that

  4. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  5. Visibility Graph Based Time Series Analysis.

    PubMed

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  6. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  7. Monitoring forest dynamics with multi-scale and time series imagery.

    PubMed

    Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong

    2016-05-01

    To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.

  8. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  9. Complex network analysis of time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Small, Michael; Kurths, Jürgen

    2016-12-01

    Revealing complicated behaviors from time series constitutes a fundamental problem of continuing interest and it has attracted a great deal of attention from a wide variety of fields on account of its significant importance. The past decade has witnessed a rapid development of complex network studies, which allow to characterize many types of systems in nature and technology that contain a large number of components interacting with each other in a complicated manner. Recently, the complex network theory has been incorporated into the analysis of time series and fruitful achievements have been obtained. Complex network analysis of time series opens up new venues to address interdisciplinary challenges in climate dynamics, multiphase flow, brain functions, ECG dynamics, economics and traffic systems.

  10. Learning time series for intelligent monitoring

    NASA Technical Reports Server (NTRS)

    Manganaris, Stefanos; Fisher, Doug

    1994-01-01

    We address the problem of classifying time series according to their morphological features in the time domain. In a supervised machine-learning framework, we induce a classification procedure from a set of preclassified examples. For each class, we infer a model that captures its morphological features using Bayesian model induction and the minimum message length approach to assign priors. In the performance task, we classify a time series in one of the learned classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. We report results from experiments in a monitoring domain of interest to NASA.

  11. Predicting road accidents: Structural time series approach

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-07-01

    In this paper, the model for occurrence of road accidents in Malaysia between the years of 1970 to 2010 was developed and throughout this model the number of road accidents have been predicted by using the structural time series approach. The models are developed by using stepwise method and the residual of each step has been analyzed. The accuracy of the model is analyzed by using the mean absolute percentage error (MAPE) and the best model is chosen based on the smallest Akaike information criterion (AIC) value. A structural time series approach found that local linear trend model is the best model to represent the road accidents. This model allows level and slope component to be varied over time. In addition, this approach also provides useful information on improving the conventional time series method.

  12. A Star Image Extractor for the Nano-JASMINE satellite

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Gouda, N.; Kobayashi, Y.; Tsujimoto, T.; Yano, T.; Suganuma, M.; Yamada, Y.; Nakasuka, S.; Sako, N.

    2008-07-01

    We have developped a software of Star-Image-Extractor (SIE) which works as the on-board real-time image processor. It detects and extracts only the object data from raw image data. SIE has two functions: reducing image data and providing data for the satellite's high accuracy attitude control system.

  13. Clustering Short Time-Series Microarray

    NASA Astrophysics Data System (ADS)

    Ping, Loh Wei; Hasan, Yahya Abu

    2008-01-01

    Most microarray analyses are carried out on static gene expressions. However, the dynamical study of microarrays has lately gained more attention. Most researches on time-series microarray emphasize on the bioscience and medical aspects but few from the numerical aspect. This study attempts to analyze short time-series microarray mathematically using STEM clustering tool which formally preprocess data followed by clustering. We next introduce the Circular Mould Distance (CMD) algorithm with combinations of both preprocessing and clustering analysis. Both methods are subsequently compared in terms of efficiencies.

  14. Detecting long-term vegetation change in an arid rangeland ecosystem: Investigating effects of spatial image support within satellite time-series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid rangelands within the southwestern United States have been severely degraded over the past century due to intensive land-use practices (e.g., livestock overgrazing, recreation) and the increasing effects of drought and climate change. Consequently, there is a critical need to develop monitoring...

  15. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  16. Circulant Matrices and Time-Series Analysis

    ERIC Educational Resources Information Center

    Pollock, D. S. G.

    2002-01-01

    This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…

  17. Layered Ensemble Architecture for Time Series Forecasting.

    PubMed

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  18. Modelling of nonlinear filtering Poisson time series

    NASA Astrophysics Data System (ADS)

    Bochkarev, Vladimir V.; Belashova, Inna A.

    2016-08-01

    In this article, algorithms of non-linear filtering of Poisson time series are tested using statistical modelling. The objective is to find a representation of a time series as a wavelet series with a small number of non-linear coefficients, which allows distinguishing statistically significant details. There are well-known efficient algorithms of non-linear wavelet filtering for the case when the values of a time series have a normal distribution. However, if the distribution is not normal, good results can be expected using the maximum likelihood estimations. The filtration is studied according to the criterion of maximum likelihood by the example of Poisson time series. For direct optimisation of the likelihood function, different stochastic (genetic algorithms, annealing method) and deterministic optimization algorithms are used. Testing of the algorithm using both simulated series and empirical data (series of rare words frequencies according to the Google Books Ngram data were used) showed that filtering based on the criterion of maximum likelihood has a great advantage over well-known algorithms for the case of Poisson series. Also, the most perspective methods of optimisation were selected for this problem.

  19. Nonlinear Time Series Analysis via Neural Networks

    NASA Astrophysics Data System (ADS)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  20. Three Analysis Examples for Time Series Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With improvements in instrumentation and the automation of data collection, plot level repeated measures and time series data are increasingly available to monitor and assess selected variables throughout the duration of an experiment or project. Records and metadata on variables of interest alone o...

  1. Modeling Time Series Data for Supervised Learning

    ERIC Educational Resources Information Center

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  2. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  3. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  4. Directionality volatility in electroencephalogram time series

    NASA Astrophysics Data System (ADS)

    Mansor, Mahayaudin M.; Green, David A.; Metcalfe, Andrew V.

    2016-06-01

    We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from three different recording regions of pre-surgical diagnosis: hippocampal, epileptogenic and seizure zone. The comparisons for these 5 categories are in terms of deviations from linear time series models with constant variance Gaussian white noise error inputs. One feature investigated is directionality, and how this can be modelled by either non-linear threshold autoregressive models or non-Gaussian errors. A second feature is volatility, which is modelled by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) processes. Other features include the proportion of variability accounted for by time series models, and the skewness and the kurtosis of the residuals. The results suggest these comparisons may have diagnostic potential for epilepsy and provide early warning of seizures.

  5. Determinism test for very short time series.

    PubMed

    Binder, P-M; Igarashi, Ryu; Seymour, William; Takeishi, Candy

    2005-03-01

    A test for determinism suitable for time series shorter than 100 points is presented, and applied to numerical and observed data. The method exploits the linear d(d(0)) dependence in the expression d(t) approximately d(0)e(lambda t) which describes the growth of small separations between trajectories in chaotic systems.

  6. Using Image Tour to Explore Multiangle, Multispectral Satellite Image

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Wegman, Edward J.; Martinez, Wendy; Symanzik, Juergen; Wallet, Brad

    2006-01-01

    This viewgraph presentation reviews the use of Image Tour to explore the multiangle, multispectral satellite imagery. Remote sensing data are spatial arrays of p-dimensional vectors where each component corresponds to one of p variables. Applying the same R(exp p) to R(exp d) projection to all pixels creates new images, which may be easier to analyze than the original because d < p. Image grand tour (IGT) steps through the space of projections, and d=3 outputs a sequence of RGB images, one for each step. In this talk, we apply IGT to multiangle, multispectral data from NASA's MISR instrument. MISR views each pixel in four spectral bands at nine view angles. Multiple views detect photon scattering in different directions and are indicative of physical properties of the scene. IGT allows us to explore MISR's data structure while maintaining spatial context; a key requirement for physical interpretation. We report results highlighting the uniqueness of multiangle data and how IGT can exploit it.

  7. Offset detection in GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Gazeaux, J.; King, M. A.; Williams, S. D.

    2013-12-01

    Global Positioning System (GPS) time series are commonly affected by offsets of unknown magnitude and the large volume of data globally warrants investigation of automated detection approaches. The Detection of Offsets in GPS Experiment (DOGEx) showed that accuracy of Global Positioning System (GPS) time series can be significantly improved by applying statistical offset detection methods (see Gazeaux et al. (2013)). However, the best of these approaches did not perform as well as manual detection by expert analysts. Many of the features of GPS coordinates time series have not yet been fully taken into account in existing methods. Here, we apply Bayesian theory in order to make use of prior knowledge of the site noise characteristics and metadata in an attempt to make the offset detection more accurate. In the past decades, Bayesian theory has shown relevant results for a widespread range of applications, but has not yet been applied to GPS coordinates time series. Such methods incorporate different inputs such as a dynamic model (linear trend, periodic signal..) and a-priori information in a process that provides the best estimate of parameters (velocity, phase and amplitude of periodic signals...) based on all the available information. We test the new method on the DOGEx simulated dataset and compare it to previous solutions, and to Monte-Carlo method to test the accuracy of the procedure. We make a preliminary extension of the DOGEx dataset to introduce metadata information, allowing us to test the value of this data type in detecting offsets. The flexibility, robustness and limitations of the new approach are discussed. Gazeaux, J. Williams, S., King, M., Bos, M., Dach, R., Deo, M.,Moore, A.W., Ostini, L., Petrie, E., Roggero, M., Teferle, F.N., Olivares, G.,Webb, F.H. 2013. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth 118. 5. pp:2169-9356. Keywords : GPS

  8. Lake Chapala change detection using time series

    NASA Astrophysics Data System (ADS)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  9. Studies of soundings and imaging measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements obtained from geostationary satellites for the period 1 Nov. 1972 to 31 Jan. 1973 are reported. The subjects discussed are: (1) investigation of meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate, and (4) comparative studies in satellite stability.

  10. TerraSAR-X dual-pol time-series for mapping of wetland vegetation

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Rapinel, Sébastien; Corgne, Samuel; Pottier, Eric; Hubert-Moy, Laurence

    2015-09-01

    Mapping vegetation formations at a fine scale is crucial for assessing wetland functions and for better landscape management. Identification and characterization of vegetation formations is generally conducted at a fine scale using ecological ground surveys, which are limited to small areas. While optical remotely sensed imagery is limited to cloud-free periods, SAR time-series are used more extensively for wetland mapping and characterization using the relationship between distribution of vegetation formations and flood duration. The aim of this study was to determine the optimal number and key dates of SAR images to be classified to map wetland vegetation formations at a 1:10,000 scale. A series of eight dual-polarization TerraSAR-X images (HH/VV) was acquired in 2013 during dry and wet seasons in temperate climate conditions. One polarimetric parameter was extracted first, the Shannon entropy, which varies with wetland flooding status and vegetation roughness. Classification runs of all the possible combinations of SAR images using different k (number of images) subsets were performed to determine the best combinations of the Shannon entropy images to identify wetland vegetation formations. The classification runs were performed using Support Vector Machine techniques and were then analyzed using the McNemar test to investigate significant differences in the accuracy of all classification runs based on the different image subsets. The results highlight the relevant periods (i.e. late winter, spring and beginning of summer) for mapping vegetation formations, in accordance with ecological studies. They also indicate that a relationship can be established between vegetation formations and hydrodynamic processes with a short time-series of satellite images (i.e. 5 dates). This study introduces a new approach for herbaceous wetland monitoring using SAR polarimetric imagery. This approach estimates the number and key dates required for wetland management (e

  11. Satellite image collection modeling for large area hazard emergency response

    NASA Astrophysics Data System (ADS)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  12. Mixed Spectrum Analysis on fMRI Time-Series.

    PubMed

    Kumar, Arun; Lin, Feng; Rajapakse, Jagath C

    2016-06-01

    Temporal autocorrelation present in functional magnetic resonance image (fMRI) data poses challenges to its analysis. The existing approaches handling autocorrelation in fMRI time-series often presume a specific model of autocorrelation such as an auto-regressive model. The main limitation here is that the correlation structure of voxels is generally unknown and varies in different brain regions because of different levels of neurogenic noises and pulsatile effects. Enforcing a universal model on all brain regions leads to bias and loss of efficiency in the analysis. In this paper, we propose the mixed spectrum analysis of the voxel time-series to separate the discrete component corresponding to input stimuli and the continuous component carrying temporal autocorrelation. A mixed spectral analysis technique based on M-spectral estimator is proposed, which effectively removes autocorrelation effects from voxel time-series and identify significant peaks of the spectrum. As the proposed method does not assume any prior model for the autocorrelation effect in voxel time-series, varying correlation structure among the brain regions does not affect its performance. We have modified the standard M-spectral method for an application on a spatial set of time-series by incorporating the contextual information related to the continuous spectrum of neighborhood voxels, thus reducing considerably the computation cost. Likelihood of the activation is predicted by comparing the amplitude of discrete component at stimulus frequency of voxels across the brain by using normal distribution and modeling spatial correlations among the likelihood with a conditional random field. We also demonstrate the application of the proposed method in detecting other desired frequencies.

  13. Multivariate Voronoi Outlier Detection for Time Series.

    PubMed

    Zwilling, Chris E; Wang, Michelle Yongmei

    2014-10-01

    Outlier detection is a primary step in many data mining and analysis applications, including healthcare and medical research. This paper presents a general method to identify outliers in multivariate time series based on a Voronoi diagram, which we call Multivariate Voronoi Outlier Detection (MVOD). The approach copes with outliers in a multivariate framework, via designing and extracting effective attributes or features from the data that can take parametric or nonparametric forms. Voronoi diagrams allow for automatic configuration of the neighborhood relationship of the data points, which facilitates the differentiation of outliers and non-outliers. Experimental evaluation demonstrates that our MVOD is an accurate, sensitive, and robust method for detecting outliers in multivariate time series data.

  14. Detecting anomalous phase synchronization from time series

    SciTech Connect

    Tokuda, Isao T.; Kumar Dana, Syamal; Kurths, Juergen

    2008-06-15

    Modeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown. Two approaches are examined; one is a phase equational modeling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled chaotic oscillators. Application to prototypical models such as two interacting predator-prey systems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous structure from only a few sets of time series. Experimental data from two coupled Chua circuits shows its applicability to real experimental system.

  15. Regularization of Nutation Time Series at GSFC

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Bolotin, S.

    2012-12-01

    VLBI is unique in its ability to measure all five Earth orientation parameters. In this paper we focus on the two nutation parameters which characterize the orientation of the Earth's rotation axis in space. We look at the periodicities and the spectral characteristics of these parameters for both R1 and R4 sessions independently. The study of the most significant periodic signals for periods shorter than 600 days is common for these four time series (period of 450 days), and the type of noise determined by the Allan variance is a white noise for the four series. To investigate methods of regularizing the series, we look at a Singular Spectrum Analysis-derived method and at the Kalman filter. The two methods adequately reproduce the tendency of the nutation time series, but the resulting series are noisier using the Singular Spectrum Analysis-derived method.

  16. Modelling population change from time series data

    USGS Publications Warehouse

    Barker, R.J.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Information on change in population size over time is among the most basic inputs for population management. Unfortunately, population changes are generally difficult to identify, and once identified difficult to explain. Sources of variald (patterns) in population data include: changes in environment that affect carrying capaciyy and produce trend, autocorrelative processes, irregular environmentally induced perturbations, and stochasticity arising from population processes. In addition. populations are almost never censused and many surveys (e.g., the North American Breeding Bird Survey) produce multiple, incomplete time series of population indices, providing further sampling complications. We suggest that each source of pattern should be used to address specific hypotheses regarding population change, but that failure to correctly model each source can lead to false conclusions about the dynamics of populations. We consider hypothesis tests based on each source of pattern, and the effects of autocorrelated observations and sampling error. We identify important constraints on analyses of time series that limit their use in identifying underlying relationships.

  17. Intrinsic superstatistical components of financial time series

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2014-12-01

    Time series generated by a complex hierarchical system exhibit various types of dynamics at different time scales. A financial time series is an example of such a multiscale structure with time scales ranging from minutes to several years. In this paper we decompose the volatility of financial indices into five intrinsic components and we show that it has a heterogeneous scale structure. The small-scale components have a stochastic nature and they are independent 99% of the time, becoming synchronized during financial crashes and enhancing the heavy tails of the volatility distribution. The deterministic behavior of the large-scale components is related to the nonstationarity of the financial markets evolution. Our decomposition of the financial volatility is a superstatistical model more complex than those usually limited to a superposition of two independent statistics at well-separated time scales.

  18. Delay Differential Analysis of Time Series

    PubMed Central

    Lainscsek, Claudia; Sejnowski, Terrence J.

    2015-01-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  19. Delay differential analysis of time series.

    PubMed

    Lainscsek, Claudia; Sejnowski, Terrence J

    2015-03-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  20. Aggregated Indexing of Biomedical Time Series Data.

    PubMed

    Woodbridge, Jonathan; Mortazavi, Bobak; Sarrafzadeh, Majid; Bui, Alex A T

    2012-09-01

    Remote and wearable medical sensing has the potential to create very large and high dimensional datasets. Medical time series databases must be able to efficiently store, index, and mine these datasets to enable medical professionals to effectively analyze data collected from their patients. Conventional high dimensional indexing methods are a two stage process. First, a superset of the true matches is efficiently extracted from the database. Second, supersets are pruned by comparing each of their objects to the query object and rejecting any objects falling outside a predetermined radius. This pruning stage heavily dominates the computational complexity of most conventional search algorithms. Therefore, indexing algorithms can be significantly improved by reducing the amount of pruning. This paper presents an online algorithm to aggregate biomedical times series data to significantly reduce the search space (index size) without compromising the quality of search results. This algorithm is built on the observation that biomedical time series signals are composed of cyclical and often similar patterns. This algorithm takes in a stream of segments and groups them to highly concentrated collections. Locality Sensitive Hashing (LSH) is used to reduce the overall complexity of the algorithm, allowing it to run online. The output of this aggregation is used to populate an index. The proposed algorithm yields logarithmic growth of the index (with respect to the total number of objects) while keeping sensitivity and specificity simultaneously above 98%. Both memory and runtime complexities of time series search are improved when using aggregated indexes. In addition, data mining tasks, such as clustering, exhibit runtimes that are orders of magnitudes faster when run on aggregated indexes.

  1. Turbulencelike Behavior of Seismic Time Series

    SciTech Connect

    Manshour, P.; Saberi, S.; Sahimi, Muhammad; Peinke, J.; Pacheco, Amalio F.; Rahimi Tabar, M. Reza

    2009-01-09

    We report on a stochastic analysis of Earth's vertical velocity time series by using methods originally developed for complex hierarchical systems and, in particular, for turbulent flows. Analysis of the fluctuations of the detrended increments of the series reveals a pronounced transition in their probability density function from Gaussian to non-Gaussian. The transition occurs 5-10 hours prior to a moderate or large earthquake, hence representing a new and reliable precursor for detecting such earthquakes.

  2. Pseudotime estimation: deconfounding single cell time series

    PubMed Central

    Reid, John E.; Wernisch, Lorenz

    2016-01-01

    Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. Results: We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method’s utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Availability and Implementation: Our method is available on CRAN in the DeLorean package. Contact: john.reid@mrc-bsu.cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318198

  3. Analysis of Polyphonic Musical Time Series

    NASA Astrophysics Data System (ADS)

    Sommer, Katrin; Weihs, Claus

    A general model for pitch tracking of polyphonic musical time series will be introduced. Based on a model of Davy and Godsill (Bayesian harmonic models for musical pitch estimation and analysis, Technical Report 431, Cambridge University Engineering Department, 2002) Davy and Godsill (2002) the different pitches of the musical sound are estimated with MCMC methods simultaneously. Additionally a preprocessing step is designed to improve the estimation of the fundamental frequencies (A comparative study on polyphonic musical time series using MCMC methods. In C. Preisach et al., editors, Data Analysis, Machine Learning, and Applications, Springer, Berlin, 2008). The preprocessing step compares real audio data with an alphabet constructed from the McGill Master Samples (Opolko and Wapnick, McGill University Master Samples [Compact disc], McGill University, Montreal, 1987) and consists of tones of different instruments. The tones with minimal Itakura-Saito distortion (Gray et al., Transactions on Acoustics, Speech, and Signal Processing ASSP-28(4):367-376, 1980) are chosen as first estimates and as starting points for the MCMC algorithms. Furthermore the implementation of the alphabet is an approach for the recognition of the instruments generating the musical time series. Results are presented for mixed monophonic data from McGill and for self recorded polyphonic audio data.

  4. Measuring nonlinear behavior in time series data

    NASA Astrophysics Data System (ADS)

    Wai, Phoong Seuk; Ismail, Mohd Tahir

    2014-12-01

    Stationary Test is an important test in detect the time series behavior since financial and economic data series always have missing data, structural change as well as jumps or breaks in the data set. Moreover, stationary test is able to transform the nonlinear time series variable to become stationary by taking difference-stationary process or trend-stationary process. Two different types of hypothesis testing of stationary tests that are Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Philips-Schmidt-Shin (KPSS) test are examine in this paper to describe the properties of the time series variables in financial model. Besides, Least Square method is used in Augmented Dickey-Fuller test to detect the changes of the series and Lagrange multiplier is used in Kwiatkowski-Philips-Schmidt-Shin test to examine the properties of oil price, gold price and Malaysia stock market. Moreover, Quandt-Andrews, Bai-Perron and Chow tests are also use to detect the existence of break in the data series. The monthly index data are ranging from December 1989 until May 2012. Result is shown that these three series exhibit nonlinear properties but are able to transform to stationary series after taking first difference process.

  5. Monitoring Forest Regrowth Using a Multi-Platform Time Series

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Gillespie, Alan R.; Tucker, Compton J.

    1996-01-01

    Over the past 50 years, the forests of western Washington and Oregon have been extensively harvested for timber. This has resulted in a heterogeneous mosaic of remaining mature forests, clear-cuts, new plantations, and second-growth stands that now occur in areas that formerly were dominated by extensive old-growth forests and younger forests resulting from fire disturbance. Traditionally, determination of seral stage and stand condition have been made using aerial photography and spot field observations, a methodology that is not only time- and resource-intensive, but falls short of providing current information on a regional scale. These limitations may be solved, in part, through the use of multispectral images which can cover large areas at spatial resolutions in the order of tens of meters. The use of multiple images comprising a time series potentially can be used to monitor land use (e.g. cutting and replanting), and to observe natural processes such as regeneration, maturation and phenologic change. These processes are more likely to be spectrally observed in a time series composed of images taken during different seasons over a long period of time. Therefore, for many areas, it may be necessary to use a variety of images taken with different imaging systems. A common framework for interpretation is needed that reduces topographic, atmospheric, instrumental, effects as well as differences in lighting geometry between images. The present state of remote-sensing technology in general use does not realize the full potential of the multispectral data in areas of high topographic relief. For example, the primary method for analyzing images of forested landscapes in the Northwest has been with statistical classifiers (e.g. parallelepiped, nearest-neighbor, maximum likelihood, etc.), often applied to uncalibrated multispectral data. Although this approach has produced useful information from individual images in some areas, landcover classes defined by these

  6. Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhang, S.

    2015-12-01

    Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.

  7. Characterization of aggressive prostate cancer using ultrasound RF time series

    NASA Astrophysics Data System (ADS)

    Khojaste, Amir; Imani, Farhad; Moradi, Mehdi; Berman, David; Siemens, D. Robert; Sauerberi, Eric E.; Boag, Alexander H.; Abolmaesumi, Purang; Mousavi, Parvin

    2015-03-01

    Prostate cancer is the most prevalently diagnosed and the second cause of cancer-related death in North American men. Several approaches have been proposed to augment detection of prostate cancer using different imaging modalities. Due to advantages of ultrasound imaging, these approaches have been the subject of several recent studies. This paper presents the results of a feasibility study on differentiating between lower and higher grade prostate cancer using ultrasound RF time series data. We also propose new spectral features of RF time series to highlight aggressive prostate cancer in small ROIs of size 1 mm × 1 mm in a cohort of 19 ex vivo specimens of human prostate tissue. In leave-one-patient-out cross-validation strategy, an area under accumulated ROC curve of 0.8 has been achieved with overall sensitivity and specificity of 81% and 80%, respectively. The current method shows promising results on differentiating between lower and higher grade of prostate cancer using ultrasound RF time series.

  8. Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data.

    PubMed

    Hadjimitsis, Diofantos G; Clayton, Chris

    2009-12-01

    Although there have been many studies conducted on the use of satellite remote sensing for water quality monitoring and assessment in inland water bodies, relatively few studies have considered the problem of atmospheric intervention of the satellite signal. The problem is especially significant when using time series multi-spectral satellite data to monitor water quality surveillance in inland waters such as reservoirs, lakes, and dams because atmospheric effects constitute the majority of the at-satellite reflectance over water. For the assessment of temporal variations of water quality, the use of multi-date satellite images is required so atmospheric corrected image data must be determined. The aim of this study is to provide a simple way of monitoring and assessing temporal variations of water quality in a set of inland water bodies using an earth observation- based approach. The proposed methodology is based on the development of an image-based algorithm which consists of a selection of sampling area on the image (outlet), application of masking and convolution image processing filter, and application of the darkest pixel atmospheric correction. The proposed method has been applied in two different geographical areas, in UK and Cyprus. Mainly, the method has been applied to a series of eight archived Landsat-5 TM images acquired from March 1985 up to November 1985 of the Lower Thames Valley area in the West London (UK) consisting of large water treatment reservoirs. Finally, the method is further tested to the Kourris Dam in Cyprus. It has been found that atmospheric correction is essential in water quality assessment studies using satellite remotely sensed imagery since it improves significantly the water reflectance enabling effective water quality assessment to be made.

  9. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.; ,

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data

  10. Gwilym Jenkins, Experimental Design and Time Series.

    DTIC Science & Technology

    1984-04-01

    of a changing process. This led to studies of discrete dynamic models and control problems and finally to work on time series and forecasting. A4S...practice based on sound -2- I theory in a never-ending iteration. The results of this mode of thinking come through strongly for example in his book with...arrival in Princeton marked the beginning of a long and happy collaboration between us which later resulted in much visiting to and from between England and

  11. Consistency of IVS nutation time series

    NASA Astrophysics Data System (ADS)

    Gattano, César; Lambert, Sébastien; Bizouard, Christian

    2016-04-01

    We give a review of the various VLBI-derived nutation time series provided by the different operational analysis centers of the IVS and three combination centers (IVS, IERS EOP Center, and Rapid Service/Prediction Center). We focus on the stability of small nutation amplitudes, including the free core nutation and other atmospherically-driven nutations, that are of interest for improving Earth models. We discuss the possible origins of the differences (software packaged, inversion methods, analysis configuration including a priori and estimation strategy) and the consequences for scientific exploitation of the data, especially in terms of nutation modeling and inference of the Earth's internal structure.

  12. Modeling stylized facts for financial time series

    NASA Astrophysics Data System (ADS)

    Krivoruchenko, M. I.; Alessio, E.; Frappietro, V.; Streckert, L. J.

    2004-12-01

    Multivariate probability density functions of returns are constructed in order to model the empirical behavior of returns in a financial time series. They describe the well-established deviations from the Gaussian random walk, such as an approximate scaling and heavy tails of the return distributions, long-ranged volatility-volatility correlations (volatility clustering) and return-volatility correlations (leverage effect). The model is tested successfully to fit joint distributions of the 100+ years of daily price returns of the Dow Jones 30 Industrial Average.

  13. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Simons, M.; Hetland, E. A.; Muse, P.; Lin, Y.; Dicaprio, C. J.

    2009-12-01

    We describe progress in the development of MInTS (Multiscale analysis of InSAR Time Series), an approach to constructed self-consistent time-dependent deformation observations from repeated satellite-based InSAR images of a given region. MInTS relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. In essence, MInTS allows one to considers all data at the same time as opposed to one pixel at a time, thereby taking advantage of both spatial and temporal characteristics of the deformation field. This approach also permits a consistent treatment of all data independent of the presence of localized holes due to unwrapping issues in any given interferogram. Specifically, the presence of holes is accounted for through a weighting scheme that accounts for the extent of actual data versus the area of holes associated with any given wavelet. In terms of the temporal representation, we have the flexibility to explicitly parametrize known processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). Our approach also allows for the temporal parametrization to include a set of general functions in order to account for unexpected processes. We allow for various forms of model regularization using a cross-validation approach to select penalty parameters. We also experiment with the use of sparsity inducing regularization as a way to select from a large dictionary of time functions. The multiscale analysis allows us to consider various contributions (e.g., orbit errors) that may affect specific scales but not others. The methods described here are all embarrassingly parallel and suitable for implementation on a cluster computer. We demonstrate the use of MInTS using a large suite of ERS-1/2 and Envisat interferograms for Long Valley Caldera, and validate

  14. Time-series animation techniques for visualizing urban growth

    USGS Publications Warehouse

    Acevedo, W.; Masuoka, P.

    1997-01-01

    Time-series animation is a visually intuitive way to display urban growth. Animations of landuse change for the Baltimore-Washington region were generated by showing a series of images one after the other in sequential order. Before creating an animation, various issues which will affect the appearance of the animation should be considered, including the number of original data frames to use, the optimal animation display speed, the number of intermediate frames to create between the known frames, and the output media on which the animations will be displayed. To create new frames between the known years of data, the change in each theme (i.e. urban development, water bodies, transportation routes) must be characterized and an algorithm developed to create the in-between frames. Example time-series animations were created using a temporal GIS database of the Baltimore-Washington area. Creating the animations involved generating raster images of the urban development, water bodies, and principal transportation routes; overlaying the raster images on a background image; and importing the frames to a movie file. Three-dimensional perspective animations were created by draping each image over digital elevation data prior to importing the frames to a movie file. ?? 1997 Elsevier Science Ltd.

  15. Some Defence Applications of Civilian Remote Sensing Satellite Images

    DTIC Science & Technology

    1993-11-01

    This report is on a pilot study to demonstrate some of the capabilities of remote sensing in intelligence gathering. A wide variety of issues, both...colour images. The procedure will be presented in a companion report. Remote sensing , Satellite imagery, Image analysis, Military applications, Military intelligence.

  16. Interactive Visualizer and Image Classifier for Satellites (IVICS)

    NASA Astrophysics Data System (ADS)

    Berendes, T. A.; Welch, R. M.; Nair, U. S.; Berendes, D. A.

    2001-05-01

    The Interactive Visualizer and Image Classifier for Satellites (IVICS) was developed as a visualization tool to facilitate selection of training samples from satellite images. It has evolved into a general purpose visualization system which supports MODIS, ASTER, AVHRR, VIRS, and MAS data. LANDSAT and GOES support is also planned. The IVICS system includes the Generalized Satellite Format (GSF) library which provides a programming interface to import other satellite data into GSF format for use with IVICS. Three channel color composite (RGB), colormap (discrete look up table), and colorbar (ranged value look up table) displays are available in multiple windows simultaneously. The user may select several different image views including a world map projection and an overview of the entire image. Channel values and other information about a specific pixel may be obtained with a single mouse click. Sample selection for image classification is one of the primary IVICS functions. Samples may be selected by dragging a box in one of the image displays. The Sample Editor window displays the sample image data along with interactive histograms and 2-D scatter plots. IVICS includes experimental neural network image classifiers for MODIS, ASTER, AVHRR, and VIRS data. The classifiers were trained with samples selected using IVICS. More information is available on the IVICS web site.

  17. Cassini imaging of Jupiter's atmosphere, satellites, and rings.

    PubMed

    Porco, Carolyn C; West, Robert A; McEwen, Alfred; Del Genio, Anthony D; Ingersoll, Andrew P; Thomas, Peter; Squyres, Steve; Dones, Luke; Murray, Carl D; Johnson, Torrence V; Burns, Joseph A; Brahic, Andre; Neukum, Gerhard; Veverka, Joseph; Barbara, John M; Denk, Tilmann; Evans, Michael; Ferrier, Joseph J; Geissler, Paul; Helfenstein, Paul; Roatsch, Thomas; Throop, Henry; Tiscareno, Matthew; Vasavada, Ashwin R

    2003-03-07

    The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.

  18. Texture-based forest segmentation in satellite images

    NASA Astrophysics Data System (ADS)

    Sai, S. V.; Mikhailov, E. V.

    2017-01-01

    NDVI images are often used to segment vegetation areas in satellite images. Unfortunately, NDVI lack information to effectively separate forest regions from grass regions, as it is computed basing solely on spectral characteristics of red and infrared bands, and both forest and grass display similar spectral characteristics. On the other hand, forest areas are visually distinguishable, as they contain a lot of small shadows or dark spots in satellite images, while grass areas look flat. In the paper, we use this observation by extracting simple texture features from the panchromatic band. In our case, it was enough to compute standard deviation for a sliding window to separate forest from grass.

  19. Preliminary Research on Radiance Fog Detection based on time series MTSAT data

    NASA Astrophysics Data System (ADS)

    Wen, X.; Li, Z.; Zhang, S.; Shen, S.; Hu, D.; Xiao, X.

    2015-04-01

    Fog is a kind of disastrous weather phenomenon. In this paper, the geostationary satellite MTSAT imagery is selected as the main data source to radiance fog detection. According to the unique feature of radiance fog from its generation to dissipation, especially considering the difference between clouds and fog during their lifecycle, the characteristics in frequency domain was constructed to discriminate fog from clouds, The time series MTSAT images were register with a modified Gauss Newton optimization method firstly, then, the Savitzky-Golay smoothing filter was applied to the time series remote sensing imageries to process the noises in the original signal, after that the non-orthogonal Haar wavelets was applied to convert the signal from time domain into frequency domain. The coefficient of high frequency component, including the properties: "max", "min", "the location of the min", "the interval length between the max and min", "the coefficient of linear fit for the high frequency", these properties are selected as the characteristic parameters to distinguish fog from clouds. The experiment shows that using the algorithm proposed in this paper, the radiance fog could be monitored effectively, and it is found that although it is difficult to calculate the thickness of the fog directly, while the duration of fog could be obtained by using the frequency feature.

  20. Phenomapping of rangelands in South Africa using time series of RapidEye data

    NASA Astrophysics Data System (ADS)

    Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen

    2016-12-01

    Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 2011⿿2012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.

  1. Pattern Recognition and Image Processing of Infrared Astronomical Satellite Images

    NASA Astrophysics Data System (ADS)

    He, Lun Xiong

    1996-01-01

    The Infrared Astronomical Satellite (IRAS) images with wavelengths of 60 mu m and 100 mu m contain mainly information on both extra-galactic sources and low-temperature interstellar media. The low-temperature interstellar media in the Milky Way impose a "cirrus" screen of IRAS images, especially in images with 100 mu m wavelength. This dissertation deals with the techniques of removing the "cirrus" clouds from the 100 mu m band in order to achieve accurate determinations of point sources and their intensities (fluxes). We employ an image filtering process which utilizes mathematical morphology and wavelet analysis as the key tools in removing the "cirrus" foreground emission. The filtering process consists of extraction and classification of the size information, and then using the classification results in removal of the cirrus component from each pixel of the image. Extraction of size information is the most important step in this process. It is achieved by either mathematical morphology or wavelet analysis. In the mathematical morphological method, extraction of size information is done using the "sieving" process. In the wavelet method, multi-resolution techniques are employed instead. The classification of size information distinguishes extra-galactic sources from cirrus using their averaged size information. The cirrus component for each pixel is then removed by using the averaged cirrus size information. The filtered image contains much less cirrus. Intensity alteration for extra-galactic sources in the filtered image are discussed. It is possible to retain the fluxes of the point sources when we weigh the cirrus component differently pixel by pixel. The importance of the uni-directional size information extractions are addressed in this dissertation. Such uni-directional extractions are achieved by constraining the structuring elements, or by constraining the sieving process to be sequential. The generalizations of mathematical morphology operations based

  2. Forecasting the Time Series of Sunspot Numbers

    NASA Astrophysics Data System (ADS)

    Aguirre, L. A.; Letellier, C.; Maquet, J.

    2008-05-01

    Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.

  3. Hurst exponents for short time series

    NASA Astrophysics Data System (ADS)

    Qi, Jingchao; Yang, Huijie

    2011-12-01

    A concept called balanced estimator of diffusion entropy is proposed to detect quantitatively scalings in short time series. The effectiveness is verified by detecting successfully scaling properties for a large number of artificial fractional Brownian motions. Calculations show that this method can give reliable scalings for short time series with length ˜102. It is also used to detect scalings in the Shanghai Stock Index, five stock catalogs, and a total of 134 stocks collected from the Shanghai Stock Exchange Market. The scaling exponent for each catalog is significantly larger compared with that for the stocks included in the catalog. Selecting a window with size 650, the evolution of scaling for the Shanghai Stock Index is obtained by the window's sliding along the series. Global patterns in the evolutionary process are captured from the smoothed evolutionary curve. By comparing the patterns with the important event list in the history of the considered stock market, the evolution of scaling is matched with the stock index series. We can find that the important events fit very well with global transitions of the scaling behaviors.

  4. Workshop on Satellite Meteorology. Part 2; Satellite Image Analysis and Interpretation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Workshop on Satellite Meteorology is co-sponsored by the Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University and the American Meteorological Society's Committee on Meteorological Aspects of Aerospace Systems. The workshop covers uses of satellite data in atmospheric science. It provides state-of-the-art information to those in Universities, research groups, and other users. One area of primary focus is to provide source material to university personnel for developing and augmenting courses in satellite meteorology and the atmospheric sciences. The items in the program include information on meteorological satellites and data sources, uses of satellite imagery for all scales of weather analysis and forecasting, uses of sounding data and other radiance information and research opportunities on interactive systems. Each session is presented by a group of experts in the field and includes an open discussion of the state-of-the-art and promising areas for future development. This pre-print volume is one of three parts on the workshop. The three parts are: PART I. Satellites and Their Data; PART II. Satellite Image Analysis and Interpretation; PART III. Satellite Soundings and Their Uses.

  5. An Operational Geodatabase Service for Disseminating Raster Time Series Data

    NASA Astrophysics Data System (ADS)

    Asante, K. O.

    2009-12-01

    The volume of raster time series data available for earth science applications is rapidly expanding with improvements in spatial and temporal resolution of earth imaging from remote sensing missions. Current dissemination systems are typically designed for mission efficiency rather than supporting the various needs of diverse user communities. This promotes the building of multiple archives of the same dataset by end users who acquire the skills needed to establish and maintain their own data streams. Such processing often becomes a barrier to the adoption of new datasets. This presentation describes the development of an operational geodatabase service for the dissemination of raster time series. The service combines innovative geocoding schemes with traditional database and geospatial capabilities to facilitate direct access to raster time series. It includes functionality such as search and retrieval, data segmentation, trend analysis and direct integration into third-party applications using predefined data schemas. The service allows end users to interact with data using simple web-based tools without the need for complex data processing skills. A live implementation of the service is demonstrated using sample global environmental datasets.

  6. Wavelet Analysis of Satellite Images for Coastal Watch

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Chang, Steve Y.-S.

    1997-01-01

    The two-dimensional wavelet transform is a very efficient bandpass filter, which can be used to separate various scales of processes and show their relative phase/location. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite imagery employing wavelet analysis are developed. The wavelet transform has been applied to satellite images, such as those from synthetic aperture radar (SAR), advanced very-high-resolution radiometer (AVHRR), and coastal zone color scanner (CZCS) for feature extraction. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ship wakes can be tracked by the wavelet analysis using satellite data from repeating paths. Several examples of the wavelet analysis applied to various satellite Images demonstrate the feasibility of this technique for coastal monitoring.

  7. Geospatial Visualization of Global Satellite Images with Vis-EROS

    SciTech Connect

    Standart, G. D.; Stulken, K. R.; Zhang, Xuesong; Zong, Ziliang

    2011-04-13

    The Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey is currently managing and maintaining the world largest satellite images distribution system, which provides 24/7 free download service for researchers all over the globe in many areas such as Geology, Hydrology, Climate Modeling, and Earth Sciences. A large amount of geospatial data contained in satellite images maintained by EROS is generated every day. However, this data is not well utilized due to the lack of efficient data visualization tools. This software implements a method for visualizing various characteristics of the global satellite image download requests. More specifically, Keyhole Markup Language (KML) files are generated which can be loaded into an earth browser such as Google Earth. Colored rectangles associated with stored satellite scenes are painted onto the earth browser; and the color and opacity of each rectangle is varied as a function of the popularity of the corresponding satellite image. An analysis of the geospatial information obtained relative to specified time constraints provides an ability to relate image download requests to environmental, political, and social events.

  8. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  9. Fast Algorithms for Mining Co-evolving Time Series

    DTIC Science & Technology

    2011-09-01

    resolution methods : Fourier and Wavelets . . . . . . . . . . . . . . . . . . 9 2.2.4 Time series forecasting...categorical data. Our work is based on two key properties in those co-evolving time series , dynamics and correlation. Dynamics captures the temporal...applications. 2.2 A survey on time series methods There is a lot of work on time series analysis , on indexing, dimensionality reduction, forecasting

  10. Singular spectrum analysis for time series with missing data

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2001-01-01

    Geophysical time series often contain missing data, which prevents analysis with many signal processing and multivariate tools. A modification of singular spectrum analysis for time series with missing data is developed and successfully tested with synthetic and actual incomplete time series of suspended-sediment concentration from San Francisco Bay. This method also can be used to low pass filter incomplete time series.

  11. Improved satellite image compression and reconstruction via genetic algorithms

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael; Lamont, Gary

    2008-10-01

    A wide variety of signal and image processing applications, including the US Federal Bureau of Investigation's fingerprint compression standard [3] and the JPEG-2000 image compression standard [26], utilize wavelets. This paper describes new research that demonstrates how a genetic algorithm (GA) may be used to evolve transforms that outperform wavelets for satellite image compression and reconstruction under conditions subject to quantization error. The new approach builds upon prior work by simultaneously evolving real-valued coefficients representing matched forward and inverse transform pairs at each of three levels of a multi-resolution analysis (MRA) transform. The training data for this investigation consists of actual satellite photographs of strategic urban areas. Test results show that a dramatic reduction in the error present in reconstructed satellite images may be achieved without sacrificing the compression capabilities of the forward transform. The transforms evolved during this research outperform previous start-of-the-art solutions, which optimized coefficients for the reconstruction transform only. These transforms also outperform wavelets, reducing error by more than 0.76 dB at a quantization level of 64. In addition, transforms trained using representative satellite images do not perform quite as well when subsequently tested against images from other classes (such as fingerprints or portraits). This result suggests that the GA developed for this research is automatically learning to exploit specific attributes common to the class of images represented in the training population.

  12. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations

    NASA Astrophysics Data System (ADS)

    Ovakoglou, George; Alexandridis, Thomas K.; Crisman, Thomas L.; Skoulikaris, Charalampos; Vergos, George S.

    2016-09-01

    Lake morphometry is essential for managing water resources and limnetic ecosystems. For reservoirs that receive high sediment loads, frequent morphometric mapping is necessary to define both the effective life of the reservoir and its water storage capacity for irrigation, power generation, flood control and domestic water supply. The current study presents a methodology for updating the digital depth model (DDM) of lakes and reservoirs with wide intra and interannual fluctuations of water levels using satellite remote sensing. A time series of Terra MODIS satellite images was used to map shorelines formed during the annual water level change cycle, and were validated with concurrent Landsat ETM+ satellite images. The shorelines were connected with in-situ observation of water levels and were treated as elevation contours to produce the DDM using spatial interpolation. The accuracy of the digitized shorelines is within the mapping accuracy of the satellite images, while the resulting DDM is validated using in-situ elevation measurements. Two versions of the DDM were produced to assess the influence of seasonal water fluctuation. Finally, the methodology was applied to Lake Kerkini (Greece) to produce an updated DDM, which was compared with the last available bathymetric survey (1991) and revealed changes in sediment distribution within the lake.

  13. Using Optical Interferometry for GEO Satellites Imaging: An Update

    DTIC Science & Technology

    2016-05-27

    solar -panel arrays are oriented north-south can glint brightly by specular reflection of sunlight. Because we see the Sun reflected by the panels...detection of a satellite. Keywords: geostationary satellites, optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to...adjust the internal optical paths in the interferometer, particularly because atmospheric turbulence over the array elements forces us to detect

  14. Shadow based building extraction from single satellite image

    NASA Astrophysics Data System (ADS)

    Singh, Gurshamnjot; Jouppi, Mark; Zhang, Zhuoran; Zakhor, Avideh

    2015-03-01

    Automatic building extraction in satellite imagery is an important problem. Existing approaches typically involve stereo processing two or more satellite views of the same region. In this paper, we use shadow analysis coupled with line segment detection and texture segmentation to construct rectangular building approximations from a single satellite image. In addition, we extract building heights to construct a rectilinear height profile for a single region. We characterize the performance of the system in rural and urban regions of Jordan, Philippines, and Australia and demonstrate a detection rate of 76.2 - 86.1% and a false alarm rate of 26.5 - 40.1%.

  15. Mapping Brazilian savanna vegetation gradients with Landsat time series

    NASA Astrophysics Data System (ADS)

    Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick

    2016-10-01

    Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important

  16. On-Line Change Monitoring with Transformed Multi-Spectral Time Series, a Study Case in Tropical Forest

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Hamunyela, Eliakim

    2016-10-01

    In recent years, the methods for detecting structural changes in time series have been adapted for forest disturbance monitoring using satellite data. The BFAST (Breaks For Additive Season and Trend) Monitor framework, which detects forest cover disturbances from satellite image time series based on empirical fluctuation tests, is particularly used for near real-time deforestation monitoring, and it has been shown to be robust in detecting forest disturbances. Typically, a vegetation index that is transformed from spectral bands into feature space (e.g. normalised difference vegetation index (NDVI)) is used as input for BFAST Monitor. However, using a vegetation index for deforestation monitoring is a major limitation because it is difficult to separate deforestation from multiple seasonality effects, noise, and other forest disturbance. In this study, we address such limitation by exploiting the multi-spectral band of satellite data. To demonstrate our approach, we carried out a case study in a deciduous tropical forest in Bolivia, South America. We reduce the dimensionality from spectral bands, space and time with projective methods particularly the Principal Component Analysis (PCA), resulting in a new index that is more suitable for change monitoring. Our results show significantly improved temporal delay in deforestation detection. With our approach, we achieved a median temporal lag of 6 observations, which was significantly shorter than the temporal lags from conventional approaches (14 to 21 observations).

  17. Antenna Automation For NOAA Satellite Images Reception

    NASA Astrophysics Data System (ADS)

    Rahal, W. L.; Benabadji, N.; Belbachir, A. H.

    2008-06-01

    In this paper, we present a novel, precise and efficient software tool (LAAR-TRACK) for Low Earth Orbit (LEO) Satellites orbit determination. It's based on using orbital elements, which are given by the NORAD (North American Aerospace Defence) by taking into considerations orbital perturbations due to the atmospheric drag, the influence of the moon and the sun and the geopotential field. The LAAR-TRACK gives the azimuth and the elevation that must have the antenna for pointing in real time the LEO satellites. This software is loaded on a computer directly connected, via the parallel port, to the tracking interface that we have developed, and which will be detailed in this paper. By this way the antenna can be automatically directed for receiving NOAA (National Oceanic and Atmospheric Administration) HRPT (High Resolution Picture Transmission) pictures.

  18. Time series analyses of global change data.

    PubMed

    Lane, L J; Nichols, M H; Osborn, H B

    1994-01-01

    The hypothesis that statistical analyses of historical time series data can be used to separate the influences of natural variations from anthropogenic sources on global climate change is tested. Point, regional, national, and global temperature data are analyzed. Trend analyses for the period 1901-1987 suggest mean annual temperatures increased (in degrees C per century) globally at the rate of about 0.5, in the USA at about 0.3, in the south-western USA desert region at about 1.2, and at the Walnut Gulch Experimental Watershed in south-eastern Arizona at about 0.8. However, the rates of temperature change are not constant but vary within the 87-year period. Serial correlation and spectral density analysis of the temperature time series showed weak periodicities at various frequencies. The only common periodicity among the temperature series is an apparent cycle of about 43 years. The temperature time series were correlated with the Wolf sunspot index, atmospheric CO(2) concentrations interpolated from the Siple ice core data, and atmospheric CO(2) concentration data from Mauna Loa measurements. Correlation analysis of temperature data with concurrent data on atmospheric CO(2) concentrations and the Wolf sunspot index support previously reported significant correlation over the 1901-1987 period. Correlation analysis between temperature, atmospheric CO(2) concentration, and the Wolf sunspot index for the shorter period, 1958-1987, when continuous Mauna Loa CO(2) data are available, suggest significant correlation between global warming and atmospheric CO(2) concentrations but no significant correlation between global warming and the Wolf sunspot index. This may be because the Wolf sunspot index apparently increased from 1901 until about 1960 and then decreased thereafter, while global warming apparently continued to increase through 1987. Correlation of sunspot activity with global warming may be spurious but additional analyses are required to test this hypothesis

  19. Time series analysis of temporal networks

    NASA Astrophysics Data System (ADS)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  20. Integrated satellite imaging and syndromic surveillance reveal ...

    EPA Pesticide Factsheets

    Rationale: Wildfire smoke often impacts rural areas without air quality monitors, limiting assessment of health impacts. A 2008 wildfire in Pocosin Lakes National Wildlife Refuge produced massive quantities of smoke affecting eastern NC, a rural area with limited air quality monitoring. To assess the association between smoke exposure and adverse health effects, we evaluated the rates of asthma-and other respiratory-related emergency department (ED) visits in the affected counties during and after the fire. Methods: Aerosol optical depth (AOD) from the Geostationary Operational Environmental Satellite was used to determine the location and extent of the smoke plume. Individual-level ED data, obtained from the NC Disease Event Tracking and Epidemiologic Collection Tool, included the visit date, list of chief complaints, up to 11 discharge ICD-9-CM codes, gender, age, and county of residence. We used Poisson regression to model the expected daily number of ED visits as a function of the dichotomous exposure predictor, adjusted for weekend and county-level disease rates. Results: Carbon particles in the smoke permitted satellite AOD to trace the plume. Exposure to wildfire smoke increased the relative risk for asthma-related ED visits by 12.4% (95% CI 0-26.4%) at lag 0 (today) and a 9.6% (95% CI 0-22%) at lag 1 (yesterday). Conclusions: Satellite data and syndromic surveillance can be combined to assess the health impacts of smoke in rural counties. Short-term

  1. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-11-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.

  2. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Muse, P.; Simons, M.; Lin, N.; Dicaprio, C. J.

    2010-12-01

    We present a technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale InSAR Time Series analysis), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. As opposed to single pixel InSAR time series techniques, MInTS takes advantage of both spatial and temporal characteristics of the deformation field. We use a weighting scheme which accounts for the presence of localized holes due to decorrelation or unwrapping errors in any given interferogram. We represent time-dependent deformation using a dictionary of general basis functions, capable of detecting both steady and transient processes. The estimation is regularized using a model resolution based smoothing so as to be able to capture rapid deformation where there are temporally dense radar acquisitions and to avoid oscillations during time periods devoid of acquisitions. MInTS also has the flexibility to explicitly parametrize known time-dependent processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). We use cross validation to choose the regularization penalty parameter in the inversion of for the time-dependent deformation field. We demonstrate MInTS using a set of 63 ERS-1/2 and 29 Envisat interferograms for Long Valley Caldera.

  3. Hybrid perturbation methods based on statistical time series models

    NASA Astrophysics Data System (ADS)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  4. Time-Series Analysis of Supergranule Characterstics at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean

    2013-01-01

    Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.

  5. Fractal fluctuations in cardiac time series

    NASA Technical Reports Server (NTRS)

    West, B. J.; Zhang, R.; Sanders, A. W.; Miniyar, S.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Human heart rate, controlled by complex feedback mechanisms, is a vital index of systematic circulation. However, it has been shown that beat-to-beat values of heart rate fluctuate continually over a wide range of time scales. Herein we use the relative dispersion, the ratio of the standard deviation to the mean, to show, by systematically aggregating the data, that the correlation in the beat-to-beat cardiac time series is a modulated inverse power law. This scaling property indicates the existence of long-time memory in the underlying cardiac control process and supports the conclusion that heart rate variability is a temporal fractal. We argue that the cardiac control system has allometric properties that enable it to respond to a dynamical environment through scaling.

  6. Normalizing the causality between time series

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  7. Using entropy to cut complex time series

    NASA Astrophysics Data System (ADS)

    Mertens, David; Poncela Casasnovas, Julia; Spring, Bonnie; Amaral, L. A. N.

    2013-03-01

    Using techniques from statistical physics, physicists have modeled and analyzed human phenomena varying from academic citation rates to disease spreading to vehicular traffic jams. The last decade's explosion of digital information and the growing ubiquity of smartphones has led to a wealth of human self-reported data. This wealth of data comes at a cost, including non-uniform sampling and statistically significant but physically insignificant correlations. In this talk I present our work using entropy to identify stationary sub-sequences of self-reported human weight from a weight management web site. Our entropic approach-inspired by the infomap network community detection algorithm-is far less biased by rare fluctuations than more traditional time series segmentation techniques. Supported by the Howard Hughes Medical Institute

  8. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  9. Tremor classification and tremor time series analysis

    NASA Astrophysics Data System (ADS)

    Deuschl, Günther; Lauk, Michael; Timmer, Jens

    1995-03-01

    The separation between physiologic tremor (PT) in normal subjects and the pathological tremors of essential tremor (ET) or Parkinson's disease (PD) was investigated on the basis of monoaxial accelerometric recordings of 35 s hand tremor epochs. Frequency and amplitude were insufficient to separate between these conditions, except for the trivial distinction between normal and pathologic tremors that is already defined on the basis of amplitude. We found that waveform analysis revealed highly significant differences between normal and pathologic tremors, and, more importantly, among different forms of pathologic tremors. We found in our group of 25 patients with PT and 15 with ET a reasonable distinction with the third momentum and the time reversal invariance. A nearly complete distinction between these two conditions on the basis of the asymmetric decay of the autocorrelation function. We conclude that time series analysis can probably be developed into a powerful tool for the objective analysis of tremors.

  10. Deconvolution of time series in the laboratory

    NASA Astrophysics Data System (ADS)

    John, Thomas; Pietschmann, Dirk; Becker, Volker; Wagner, Christian

    2016-10-01

    In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.

  11. Managing distribution changes in time series prediction

    NASA Astrophysics Data System (ADS)

    Matias, J. M.; Gonzalez-Manteiga, W.; Taboada, J.; Ordonez, C.

    2006-07-01

    When a problem is modeled statistically, a single distribution model is usually postulated that is assumed to be valid for the entire space. Nonetheless, this practice may be somewhat unrealistic in certain application areas, in which the conditions of the process that generates the data may change; as far as we are aware, however, no techniques have been developed to tackle this problem.This article proposes a technique for modeling and predicting this change in time series with a view to improving estimates and predictions. The technique is applied, among other models, to the hypernormal distribution recently proposed. When tested on real data from a range of stock market indices the technique produces better results that when a single distribution model is assumed to be valid for the entire period of time studied.Moreover, when a global model is postulated, it is highly recommended to select the hypernormal distribution parameter in the same likelihood maximization process.

  12. Time series for blind biosignal classification model.

    PubMed

    Wong, Derek F; Chao, Lidia S; Zeng, Xiaodong; Vai, Mang-I; Lam, Heng-Leong

    2014-11-01

    Biosignals such as electrocardiograms (ECG), electroencephalograms (EEG), and electromyograms (EMG), are important noninvasive measurements useful for making diagnostic decisions. Recently, considerable research has been conducted in order to potentially automate signal classification for assisting in disease diagnosis. However, the biosignal type (ECG, EEG, EMG or other) needs to be known prior to the classification process. If the given biosignal is of an unknown type, none of the existing methodologies can be utilized. In this paper, a blind biosignal classification model (B(2)SC Model) is proposed in order to identify the source biosignal type automatically, and thus ultimately benefit the diagnostic decision. The approach employs time series algorithms for constructing the model. It uses a dynamic time warping (DTW) algorithm with clustering to discover the similarity between two biosignals, and consequently classifies disease without prior knowledge of the source signal type. The empirical experiments presented in this paper demonstrate the effectiveness of the method as well as the scalability of the approach.

  13. Vehicle Detection and Classification from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  14. Ground-Truthing Moderate Resolution Satellite Imagery with Near-Surface Canopy Images in Hawai'i's Tropical Cloud Forests

    NASA Astrophysics Data System (ADS)

    Bergstrom, R.; Miura, T.; Lepczyk, C.; Giambelluca, T. W.; Nullet, M. A.; Nagai, S.

    2012-12-01

    Phenological studies are gaining importance globally as the onset of climate change is impacting the timing of green up and senescence in forest canopies and agricultural regions. Many studies use and analyze land surface phenology (LSP) derived from satellite vegetation index time series (VI's) such as those from Moderate Resolution Imaging Spectroradiometer (MODIS) to monitor changes in phenological events. Seasonality is expected in deciduous temperate forests, while tropical regions are predicted to show more static reflectance readings given their stable and steady state. Due to persistent cloud cover and atmospheric interference in tropical regions, satellite VI time series are often subject to uncertainties and thus require near surface vegetation monitoring systems for ground-truthing. This study has been designed to assess the precision of MODIS phenological signatures using above-canopy, down-looking digital cameras installed on flux towers on the Island of Hawai'i. The cameras are part of the expanding Phenological Eyes Network (PEN) which has been implementing a global network of above-canopy, hemispherical digital cameras for forest and agricultural phenological monitoring. Cameras have been installed at two locations in Hawaii - one on a flux tower in close proximity to the Thurston Lave Tube (HVT) in Hawai'i Volcanoes National Park and the other on a weather station in a section of the Hawaiian Tropical Experimental Forest in Laupaphoehoe (LEF). HVT consists primarily of a single canopy species, ohi'a lehua (Metrosideros polymorpha), with an understory of hapu'u ferns (Cibotium spp), while LEF is similarly comprised with an additional dominant species, Koa (Acacia Koa), included in the canopy structure. Given these species' characteristics, HVT is expected to show little seasonality, while LEF has the potential to deviate slightly during periods following dry and wet seasons. MODIS VI time series data are being analyzed and will be compared to images

  15. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Marlow, W.; Carlton, A.; Yoon, H.; Clark, J.; Haughwout, C.; Cahoy, K.; Males, J.; Close, L.; Morzinski, K.

    2016-09-01

    In this study, we assess the utility of using a maneuverable nanosatellite laser guidestar from a geostationary equatorial orbit to enable ground-based, adaptive optics imaging of geosynchronous satellites with next-generation extremely large telescopes. The concept for a satellite guide star was rst discussed in the literature by Greenaway in the early 1990s, and expanded upon by Albert in 2012. With a satellite-based laser as an adaptive optics guidestar, the source laser does not need to scatter, and is well above atmospheric turbulence. When viewed from the ground through a turbulent atmosphere, the angular size of the satellite guidestar is much smaller than a back-scattered source. Advances in small satellite technology and capability allow us to revisit the concept on a 6U CubeSat, measuring 10 cm by 20 cm by 30 cm. We show that a system that uses a satellite-based laser transmitter can be relatively low power (1 W transmit power), operated intermittently, and requires little propellant to relocate within the geosynchronous belt. We present results of a design study on the feasibility of a small satellite guidestar and highlight the potential benets to the space situational awareness community.

  16. Development of Time-Series Human Settlement Mapping System Using Historical Landsat Archive

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Nagai, M.; Shibasaki, R.

    2016-06-01

    Methodology of automated human settlement mapping is highly needed for utilization of historical satellite data archives for urgent issues of urban growth in global scale, such as disaster risk management, public health, food security, and urban management. As development of global data with spatial resolution of 10-100 m was achieved by some initiatives using ASTER, Landsat, and TerraSAR-X, next goal has targeted to development of time-series data which can contribute to studies urban development with background context of socioeconomy, disaster risk management, public health, transport and other development issues. We developed an automated algorithm to detect human settlement by classification of built-up and non-built-up in time-series Landsat images. A machine learning algorithm, Local and Global Consistency (LLGC), was applied with improvements for remote sensing data. The algorithm enables to use MCD12Q1, a MODIS-based global land cover map with 500-m resolution, as training data so that any manual process is not required for preparation of training data. In addition, we designed the method to composite multiple results of LLGC into a single output to reduce uncertainty. The LLGC results has a confidence value ranging 0.0 to 1.0 representing probability of built-up and non-built-up. The median value of the confidence for a certain period around a target time was expected to be a robust output of confidence to identify built-up or non-built-up areas against uncertainties in satellite data quality, such as cloud and haze contamination. Four scenes of Landsat data for each target years, 1990, 2000, 2005, and 2010, were chosen among the Landsat archive data with cloud contamination less than 20%.We developed a system with the algorithms on the Data Integration and Analysis System (DIAS) in the University of Tokyo and processed 5200 scenes of Landsat data for cities with more than one million people worldwide.

  17. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    NASA Technical Reports Server (NTRS)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  18. Jovian satellite positions from Hubble Space Telescope images

    NASA Astrophysics Data System (ADS)

    Mallama, Anthony; Aelion, Halley M.; Mallama, Celeste A.

    2004-02-01

    An accurate technique has been developed for measuring planetocentric positions of Jupiter's satellites from Wide Field/Planetary Camera images. Our method of finding the centers of the satellites and planet is based upon established limb-fitting techniques, but we have adapted those techniques to astrometry. We compare our limb-fitting results with previously published work and discuss its errors. A model ellipse is generated from the physical ephemeris of the planet including its phase defect. Then the planet center coordinates are computed by fitting the model to the limb observations using the method of least squares. A satellite position is determined similarly, and its offset from the planet is calculated. A total of 76 positions of the galileans satellites, the small moon Amalthea, and the shadows of Io and Ganymede cast on Jupiter have been measured on 61 images. Comparison between the observational results and JPL satellite ephemerides demonstrates the validity of this new method of analysis. The accuracy of the galilean satellite measurements is estimated to be 0.04 arcsec in right ascension and in declination.

  19. Satellite Jitter Estimation and Validation Using Parallax Images

    PubMed Central

    Pan, Jun; Che, Chengbang; Zhu, Ying; Wang, Mi

    2017-01-01

    Satellite jitter (SJ) is an important error source that affects the geometric accuracy of high resolution satellite imagery. In this paper, the quantitative relationship between the jitter displacement (image displacement caused by SJ) and relative registration error obtained from parallax images is deduced to be theoretical in detail, and the jitter displacement estimation model is built to estimate the jitter displacement. Then, a simulation experiment is carried out to validate the feasibility of using the built jitter displacement estimation model to estimate the jitter displacement. Finally, experiments with real images in DengFeng (China) including multispectral images of Ziyuan-3 (ZY-3) satellite and high resolution (HR) images of Ziyuan1-02C (ZY1-02C) satellite are used to validate the effectiveness of utilizing the built jitter displacement estimation model to do the jitter estimation. High accuracy ground reference data are further used to evaluate the accuracy of the estimation. Experimental results show that the average estimated error for jitter displacement of ZY-3 is 2.96% and 0.11% in amplitude and frequency respectively, and the estimated error for jitter displacement of ZY1-02C is 8.46% and 0.35% in amplitude and frequency, respectively. PMID:28045453

  20. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  1. The Mount Wilson Ca ii K Plage Index Time Series

    NASA Astrophysics Data System (ADS)

    Bertello, L.; Ulrich, R. K.; Boyden, J. E.

    2010-06-01

    It is well established that both total and spectral solar irradiance are modulated by variable magnetic activity on the solar surface. However, there is still disagreement about the contribution of individual solar features for changes in the solar output, in particular over decadal time scales. Ionized Ca ii K line spectroheliograms are one of the major resources for these long-term trend studies, mainly because such measurements have been available now for more than 100 years. In this paper we introduce a new Ca ii K plage and active network index time series derived from the digitization of almost 40 000 photographic solar images that were obtained at the 60-foot solar tower, between 1915 and 1985, as a part of the monitoring program of the Mount Wilson Observatory. We describe here the procedure we applied to calibrate the images and the properties of our new defined index, which is strongly correlated to the average fractional area of the visible solar disk occupied by plages and active network. We show that the long-term variation of this index is in an excellent agreement with the 11-year solar-cycle trend determined from the annual international sunspot numbers series. Our time series agrees also very well with similar indicators derived from a different reduction of the same data base and other Ca ii K spectroheliograms long-term synoptic programs, such as those at Kodaikanal Observatory (India), and at the National Solar Observatory at Sacramento Peak (USA). Finally, we show that using appropriate proxies it is possible to extend this time series up to date, making this data set one of the longest Ca ii K index series currently available.

  2. Simultaneous Fusion and Denoising of Panchromatic and Multispectral Satellite Images

    NASA Astrophysics Data System (ADS)

    Ragheb, Amr M.; Osman, Heba; Abbas, Alaa M.; Elkaffas, Saleh M.; El-Tobely, Tarek A.; Khamis, S.; Elhalawany, Mohamed E.; Nasr, Mohamed E.; Dessouky, Moawad I.; Al-Nuaimy, Waleed; Abd El-Samie, Fathi E.

    2012-12-01

    To identify objects in satellite images, multispectral (MS) images with high spectral resolution and low spatial resolution, and panchromatic (Pan) images with high spatial resolution and low spectral resolution need to be fused. Several fusion methods such as the intensity-hue-saturation (IHS), the discrete wavelet transform, the discrete wavelet frame transform (DWFT), and the principal component analysis have been proposed in recent years to obtain images with both high spectral and spatial resolutions. In this paper, a hybrid fusion method for satellite images comprising both the IHS transform and the DWFT is proposed. This method tries to achieve the highest possible spectral and spatial resolutions with as small distortion in the fused image as possible. A comparison study between the proposed hybrid method and the traditional methods is presented in this paper. Different MS and Pan images from Landsat-5, Spot, Landsat-7, and IKONOS satellites are used in this comparison. The effect of noise on the proposed hybrid fusion method as well as the traditional fusion methods is studied. Experimental results show the superiority of the proposed hybrid method to the traditional methods. The results show also that a wavelet denoising step is required when fusion is performed at low signal-to-noise ratios.

  3. An adaptive Gaussian model for satellite image deblurring.

    PubMed

    Jalobeanu, André; Blanc-Féraud, Laure; Zerubia, Josiane

    2004-04-01

    The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem, which can be regularized within a Bayesian context by using an a priori model of the reconstructed solution. Since real satellite data show spatially variant characteristics, we propose here to use an inhomogeneous model. We use the maximum likelihood estimator (MLE) to estimate its parameters and we show that the MLE computed on the corrupted image is not suitable for image deconvolution because it is not robust to noise. We then show that the estimation is correct only if it is made from the original image. Since this image is unknown, we need to compute an approximation of sufficiently good quality to provide useful estimation results. Such an approximation is provided by a wavelet-based deconvolution algorithm. Thus, a hybrid method is first used to estimate the space-variant parameters from this image and then to compute the regularized solution. The obtained results on high resolution satellite images simultaneously exhibit sharp edges, correctly restored textures, and a high SNR in homogeneous areas, since the proposed technique adapts to the local characteristics of the data.

  4. Comparative Analysis on Time Series with Included Structural Break

    NASA Astrophysics Data System (ADS)

    Andreeski, Cvetko J.; Vasant, Pandian

    2009-08-01

    The time series analysis (ARIMA models) is a good approach for identification of time series. But, if we have structural break in the time series, we cannot create only one model of time series. Further more, if we don't have enough data between two structural breaks, it's impossible to create valid time series models for identification of the time series. This paper explores the possibility of identification of the inflation process dynamics via of the system-theoretic, by means of both Box-Jenkins ARIMA methodologies and artificial neural networks.

  5. Correcting and combining time series forecasters.

    PubMed

    Firmino, Paulo Renato A; de Mattos Neto, Paulo S G; Ferreira, Tiago A E

    2014-02-01

    Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has been usual to suppose that each single model generates a residual or prediction error like a white noise. However, mostly because of disturbances not captured by each model, it is yet possible that such supposition is violated. The present paper introduces a two-step method for correcting and combining forecasting models. Firstly, the stochastic process underlying the bias of each predictive model is built according to a recursive ARIMA algorithm in order to achieve a white noise behavior. At each iteration of the algorithm the best ARIMA adjustment is determined according to a given information criterion (e.g. Akaike). Then, in the light of the corrected predictions, it is considered a maximum likelihood combined estimator. Applications involving single ARIMA and artificial neural networks models for Dow Jones Industrial Average Index, S&P500 Index, Google Stock Value, and Nasdaq Index series illustrate the usefulness of the proposed framework.

  6. Phase correlation of foreign exchange time series

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  7. Glacier Volume Change Estimation Using Time Series of Improved Aster Dems

    NASA Astrophysics Data System (ADS)

    Girod, Luc; Nuth, Christopher; Kääb, Andreas

    2016-06-01

    Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be

  8. Satellite Image Atlas of Glaciers of the World

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    2005-01-01

    In 1978, the USGS began the preparation of the 11-chapter USGS Professional Paper 1386, 'Satellite Image Atlas of Glaciers of the World'. Between 1979 and 1981, optimum satellite images were distributed to a team of 70 scientists, representing 25 nations and 45 institutions, who agreed to author sections of the Professional Paper concerning either a geographic area (chapters B-K) or a glaciological topic (included in Chapter A). The scientists used Landsat 1, 2, and 3 multispectral scanner (MSS) images and Landsat 2 and 3 return beam vidicon (RBV) images to inventory the areal occurrence of glacier ice on our planet within the boundaries of the spacecrafts' coverage (between about 82? north and south latitudes). Some later contributors also used Landsat 4 and 5 MSS and Thematic Mapper, Landsat 7 Enhanced Thematic Mapper-Plus (ETM+), and other satellite images. In addition to analyzing images of a specific geographic area, each author was asked to summarize up-to-date information about the glaciers within each area and compare their present-day areal distribution with reliable historical information (from published maps, reports, and photographs) about their past extent. Because of the limitations of Landsat images for delineating or monitoring small glaciers in some geographic areas (the result of inadequate spatial resolution, lack of suitable seasonal coverage, or absence of coverage), some information on the areal distribution of small glaciers was derived from ancillary sources, including other satellite images. Completion of the atlas will provide an accurate regional inventory of the areal extent of glaciers on our planet during a relatively narrow time interval (1972-1981).

  9. Analytical models integrated with satellite images for optimized pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interf...

  10. Satellite images for land cover monitoring - Navigating through the maze

    USGS Publications Warehouse

    Künzer, Claudia; Fosnight, Gene

    2001-01-01

    The focus of this publication is satellite systems for land cover monitoring. On the reverse is a table that compares a selection of these systems, whose data are globally available in a form suitable for land cover analysis. We hope the information presented will help you assess the utility of remotely sensed image to meet your needs.

  11. AVHRR, MODIS and Landsat Time Series for the Monitoring of Vegetation Changes Around the World (Invited)

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Owsley, B.; Julian, J.; Henebry, G. M.

    2013-12-01

    A confluence of computing power, cost of storage, ease of access to data, and ease of product delivery make it possible to harness the power of multiple remote sensing data streams to monitor land surface dynamics. Change detection has always been a fundamental remote sensing task, and there are myriad ways to perceive differences. From a statistical viewpoint, image time series of the vegetated land surface are complicated data to analyze. The time series are often seasonal and have high temporal autocorrelation. These characteristics result in the failure of the data to meet the assumption of most standard parametric statistical tests. Failure of statistical assumptions is not trivial and the use of inappropriate statistical methods may lead to the detection of spurious trends, while any actual trends and/or step changes might be overlooked. While the analysis of messy data, which can be influenced by discontinuity, missing observation, non-linearity and seasonality, is still developing within the remote sensing community, other scientific research areas routinely encounter similar problems and have developed statistically appropriate ways to deal with them. In this talk we describe the process of change analysis as a sequence of tasks: (1) detection of changes; (2) quantification of changes; (3) assessment of changes; (4) attribution of changes; and (5) projection of the potential consequences of changes. To detect, quantify, and assess the significance of broad scale land surface changes, we will first apply the nonparametric Seasonal Kendall (SK) trend test corrected for first-order temporal autocorrelation to MODIS image time series. We will then discuss three case studies, situated in the USA, Russia, and New Zealand in which we combine or fuse satellite data at two spatial resolutions (30m Landsat and 500m MODIS) to assess and attribute changes at fine spatial and temporal scales. In the USA we will investigate changes as a result of urban development, in

  12. High fidelity imaging of geosynchronous satellites with the MROI

    NASA Astrophysics Data System (ADS)

    Young, John; Haniff, Christopher; Buscher, David; Creech-Eakman, Michelle; Payne, Ifan

    2016-08-01

    Interferometry currently provides the only practicable way to image satellites in Geosynchronous Earth Orbit (GEO) with sub-meter spatial resolution. The Magdalena Ridge Observatory Interferometer (MROI) is being funded by the US Air Force Research Laboratory to demonstrate the 9.5 magnitude sensitivity (at 2.2 μm wavelength) and baseline-bootstrapping capability that will be needed to realize a useful turn-key GEO imaging capability. This program will utilize the central three telescopes of the MROI and will aim to validate routine acquisition of fringe data on faint well-resolved targets. In parallel with this effort, the University of Cambridge are investigating the spatial resolution and imaging fidelity that can be achieved with different numbers of array elements. We present preliminary simulations of snapshot GEO satellite imaging with the MROI. Our results indicate that faithful imaging of the main satellite components can be obtained with as few as 7 unit telescopes, and that increasing the number of telescopes to 10 improves the effective spatial resolution from 0.75 meter to 0.5 meter and enables imaging of more complex targets.

  13. Severe Thunderstorm Detection by Visual Learning Using Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wistar, Stephen; Li, Jia; Steinberg, Michael A.; Wang, James Z.

    2017-02-01

    Computers are widely utilized in today's weather forecasting as a powerful tool to leverage an enormous amount of data. Yet, despite the availability of such data, current techniques often fall short of producing reliable detailed storm forecasts. Each year severe thunderstorms cause significant damage and loss of life, some of which could be avoided if better forecasts were available. We propose a computer algorithm that analyzes satellite images from historical archives to locate visual signatures of severe thunderstorms for short-term predictions. While computers are involved in weather forecasts to solve numerical models based on sensory data, they are less competent in forecasting based on visual patterns from satellite images. In our system, we extract and summarize important visual storm evidence from satellite image sequences in the way that meteorologists interpret the images. In particular, the algorithm extracts and fits local cloud motion from image sequences to model the storm-related cloud patches. Image data from the year 2008 have been adopted to train the model, and historical thunderstorm reports in continental US from 2000 through 2013 have been used as the ground-truth and priors in the modeling process. Experiments demonstrate the usefulness and potential of the algorithm for producing more accurate thunderstorm forecasts.

  14. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  15. Evaluating fusion techniques for multi-sensor satellite image data

    SciTech Connect

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    Satellite image data fusion is a topic of interest in many areas including environmental monitoring, emergency response, and defense. Typically any single satellite sensor cannot provide all of the benefits offered by a combination of different sensors (e.g., high-spatial but low spectral resolution vs. low-spatial but high spectral, optical vs. SAR). Given the respective strengths and weaknesses of the different types of image data, it is beneficial to fuse many types of image data to extract as much information as possible from the data. Our work focuses on the fusion of multi-sensor image data into a unified representation that incorporates the potential strengths of a sensor in order to minimize classification error. Of particular interest is the fusion of optical and synthetic aperture radar (SAR) images into a single, multispectral image of the best possible spatial resolution. We explore various methods to optimally fuse these images and evaluate the quality of the image fusion by using K-means clustering to categorize regions in the fused images and comparing the accuracies of the resulting categorization maps.

  16. Satellite images analysis for shadow detection and building height estimation

    NASA Astrophysics Data System (ADS)

    Liasis, Gregoris; Stavrou, Stavros

    2016-09-01

    Satellite images can provide valuable information about the presented urban landscape scenes to remote sensing and telecommunication applications. Obtaining information from satellite images is difficult since all the objects and their surroundings are presented with feature complexity. The shadows cast by buildings in urban scenes can be processed and used for estimating building heights. Thus, a robust and accurate building shadow detection process is important. Region-based active contour models can be used for satellite image segmentation. However, spectral heterogeneity that usually exists in satellite images and the feature similarity representing the shadow and several non-shadow regions makes building shadow detection challenging. In this work, a new automated method for delineating building shadows is proposed. Initially, spectral and spatial features of the satellite image are utilized for designing a custom filter to enhance shadows and reduce intensity heterogeneity. An effective iterative procedure using intensity differences is developed for tuning and subsequently selecting the most appropriate filter settings, able to highlight the building shadows. The response of the filter is then used for automatically estimating the radiometric property of the shadows. The customized filter and the radiometric feature are utilized to form an optimized active contour model where the contours are biased to delineate shadow regions. Post-processing morphological operations are also developed and applied for removing misleading artefacts. Finally, building heights are approximated using shadow length and the predefined or estimated solar elevation angle. Qualitative and quantitative measures are used for evaluating the performance of the proposed method for both shadow detection and building height estimation.

  17. a New Approach for Optical and SAR Satellite Image Registration

    NASA Astrophysics Data System (ADS)

    Merkle, N.; Müller, R.; Schwind, P.; Palubinskas, G.; Reinartz, P.

    2015-03-01

    Over the last years several research studies have shown the high geometric accuracy of high resolution radar satellites like TerraSARX. Due to this fact, the impact of high resolution SAR images for image registration has increased. An aim of high accuracy image registration is the improvement of the absolute geometric accuracy of optical images by using SAR images as references. High accuracy image registration is required for different remote sensing applications and is an on-going research topic. The registration of images acquired by different sensor types, like optical and SAR images, is a challenging task. In our work, a novel approach is proposed, which is a combination of the classical feature-based and intensity-based registration approaches. In the first step of the method, spatial features, here roundabouts, are detected in the optical image. In the second step, the detected features are used to generate SAR like roundabout templates. In the third step, the templates are matched with the corresponding parts of the SAR image by using an intensitybased matching process. The proposed method is tested for a pair of TerraSAR-X and QuickBird images and a pair of TerraSAR-X and WorldView-2 images of a suburban area. The results show that the proposed method offers an alternative approach compared to the common optical and SAR images registration methods and it can be used for the geometric accuracy improvement of optical images.

  18. Automated time series forecasting for biosurveillance.

    PubMed

    Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit

    2007-09-30

    For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.

  19. Vegetation Dynamics of NW Mexico using MODIS time series data

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Bonifaz, R.; Pelaez, G.; Leyva Contreras, A.

    2010-12-01

    Northwestern Mexico is an area subjected to a combination of marine and continental climatic influences which produce a highly variable vegetation dynamics throughout time. Using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices data (NDVI and EVI) from 2001 to 2008, mean and standard deviation image values of the time series were calculated. Using this data, annual vegetation dynamics was characterized based on the different values for the different vegetation types. Annual mean values were compared and inter annual variations or anomalies were analyzed calculating departures of de mean. An anomaly was considered if the value was over or under two standard deviations. Using this procedure it was possible determine spatio-temporal patterns over the study area and relate them to climatic conditions.

  20. Impacts of Reprojection and Sampling of MODIS Satellite Images on Estimating Crop Evapotranspiration Using METRIC model

    NASA Astrophysics Data System (ADS)

    Pun, M.; Kilic, A.; Allen, R.

    2014-12-01

    Landsat satellite images have been used frequently to map evapotranspiration (ET) andbiophysical variables at the field scale with surface energy balance algorithms. Although Landsat images have high spatial resolution with 30m cell size, it has limitations for real time monitoring of crop ET by providing only two to four images per month for an area, which, when encountered with cloudy days, further deteriorates the availability of images and snapshots of ET behavior. Therefore real time monitoring essentially has to include near-daily thermal satellites such as MODIS/VIIRS into the time series. However, the challenge with field scale monitoring with these systems is the large size of the thermal band which is 375 m with VIIRS and 1000 meter with MODIS. To maximize the accuracy of ET estimates during infusion of MODIS products into land surface models for monitoring field scale ET, it is important to assess the geometric accuracy of the various MODIS products, for example, spatial correspondence among the 250 m red and near-infrared bands, the 500 m reflectance bands; and the 1000 m thermal bands and associated products. METRIC model was used with MODIS images to estimate ET from irrigated and rainfed fields in Nebraska. Our objective was to assess geometric accuracy of MODIS image layers and how to correctly handle these data for highest accuracy of estimated ET at the individual field scale during the extensive drought of 2012. For example, the particular tool used to subset and reproject MODIS swath images from level-1 and level-2 products (e.g., using the MRTSwath and other tools), the initial starting location (upper left hand corner), and the projection system all effect how pixel corners of the various resolution bands align. Depending on the approach used, origin of pixel corners can vary from image to image date and therefore impacts the pairing of ET information from multiple dates the consistency and accuracy of sampling ET from within field interiors

  1. MISR Browse Images: Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS)

    Atmospheric Science Data Center

    2016-06-13

    ... Images: Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS)   These MISR Browse images ... the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field campaign. CLAMS focused on understanding pieces of the ...

  2. Transmission of linear regression patterns between time series: From relationship in time series to complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  3. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  4. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  5. Stellar Source Selections for Image Validation of Earth Observation Satellite

    NASA Astrophysics Data System (ADS)

    Yu, Jiwoong; Park, Sang-Young; Lim, Dongwook; Lee, Dong-Han; Sohn, Young-Jong

    2011-12-01

    A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

  6. Detection of cavity migration risks using radar interferometric time series

    NASA Astrophysics Data System (ADS)

    Chang, L.; Hanssen, R. F.

    2012-12-01

    The upward migration of near-surface underground cavities can pose a major hazard for people and infrastructure. Being the major cause of sudden collapse-sinkholes, or causing a sudden lack of support of building foundations, a migrating cavity can cause the collapse of buildings, water defense systems, drainage of water bodies, or transport infrastructure. Cavity migration can occur naturally, e.g. in karst-massifs, but could also be caused by anthropogenic activities such as mining. The chief difficulty in the assessment of sinkhole risk is the lack of prior knowledge on the location of the cavity. Although in situ measurements such as gravimetry, seismic or EM-surveying or GPR are in principle able to detect an underground void, it is generally not economically possible to use these techniques over vast areas. Moreover, the risk of casualties is highest for urbanized areas, in which it is difficult to get close enough to perform these measurements. The second problem is that there is usually no data available prior to the collapse, to understand whether there is for example precursory motion, and how far ahead in time critical levels can be detected. Here we report on the catastrophic collapse of the foundation of an underground parking garage in Heerlen, the Netherlands. In December 2011, some pillars supporting the roof of the garage and the shopping mall above it suddenly subsided more than one meter. This caused the near collapse of a part of the shopping mall, the immediate evacuation of the building, and the decision of the authorities to eliminate the building. In the analysis of the event, several hypotheses were formulated on the driving mechanisms, such as subsurface water flows and karst. However, as the region was subject to coal mining in the last century, alternative hypotheses were cavity migration due to the mining, or rebound of the surface due to mine water. Our study jointly exploits the data archives of four imaging radar satellites, ERS-1

  7. Urban monitoring from infrared satellite images.

    PubMed

    Ghellere, M; Bellazzi, A; Belussi, L; Meroni, I

    2016-12-01

    Starting from an experimental campaign in Milan, the article describes how the infrared signal recorded by Landsat 8 sensors can be used to evaluate and monitor key urban scale environmental variables. The possibility of combining different spectral bands of the infrared signal with previously collected spectral bands is highlighted. The monitored variables have been mapped in geo-referenced images using Geographic Information System (GIS)instruments. In this way, a mapping database is created to be used as a benchmark to study urban heat islands and the environmental changes over the years.

  8. Low-Cost Satellite Infrared Imager Study

    DTIC Science & Technology

    2007-11-02

    Wavebands Instrument Mass GSD Swath Orbit Altitude Advanced Along-Track Scanning Radiometer (AATSR)* VIS, NIR, SWIR, MWIR, LWIR 101 kg 1 km 500 km 782...Spacecraft mass 8211 kg Payload mass 101 kg Pointing accuracy 0.5’ per axis Orbit altitude 800 km Imager Parameter Value Waveband (MWIR) 3.40 – 4.12...of the entire 92 kg spacecraft mass . The key mission objective of BIRD during it’s one year mission life, which began in October of 2001, was hot

  9. Identification of geostationary satellites using polarization data from unresolved images

    NASA Astrophysics Data System (ADS)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  10. Detecting inhomogeneities in pan evaporation time series

    NASA Astrophysics Data System (ADS)

    Kirono, D. G. C.

    2009-04-01

    There is increasingly growing demand for evaporation data for studies of surface water and energy fluxes, especially for studies which address the impacts of global warming. To serve this purpose, a homogeneous evaporation data are necessary. This paper describes the use of two tests for detecting and adjusting discontinuities in Class A pan evaporation time series for 28 stations across Australia, and illustrates the benefit of using corrected records in climate studies. The two tests being the bivariate test of Maronna and Yohai (1978), also known as the Potter method (WMO 2003), and the RHTest of Wang and Feng (2004). Overall, 58 per cent of the inhomogeneities detected by the bivariate test were also identified by the RHTest. The fact that the other 42 per cent of inhomogeneities were not consistently detected is due to different sensitivities of the two methods. Ninety-two per cent of the inhomogeneities detected by the bivariate test are consistent with documented changes that can be strongly associated with the discontinuity. Having identified inhomogeneities, the adjusments were only applied to records which contained inhomogeneities that could be verified as having a non-climatic origin. The benefit of using the original and adjusted pan evaporation records in a climate study were then investigated from two points of view: correlation analyses and trend analysis. As an illustration, the results show that the trend (1970-2004) in the all-stations average was -2.8±1.7 for the original data but only -0.7±1.6 mm/year/year for the adjusted data, demonstrating the importance of screening the data before their use in climate studies. References Maronna, R. and Yohai, V.J. 1978. A bivariate test for the detection of a systematic change in mean. J. Amer. Statis. Assoc., 73, 640-645. Wang, X.L. and Feng, Y. 2004. RHTest User manual. Available from http://cccma.seos.uvic.ca/ETCCDMI/RHTestUserManual.doc WMO. 2003. Guidelines on climate metadata and homogenization

  11. Carbon time series in the Norwegian sea

    NASA Astrophysics Data System (ADS)

    Gislefoss, Jorunn S.; Nydal, Reidar; Slagstad, Dag; Sonninen, Eloni; Holmén, Kim

    1998-02-01

    Depth profiles of carbon parameters were obtained monthly from 1991 to 1994 as the first time series from the weathership station M located in the Norwegian Sea at 66°N 2°E. CO 2 was extracted from acidified seawater by a flushing procedure, with nitrogen as the carrier gas. The pure CO 2 gas was measured using a manometric technique, and the gas was further used for 13C and 14C measurements. The precision of the dissolved inorganic carbon (DIC) was better than ±6‰. Satisfactory agreement was obtained with standard seawater from Scripps Institution of Oceanography. The partial pressure of CO 2 (pCO 2) was measured in the atmosphere and surface water, beginning in October 1991. The most visible seasonal variation in DIC, 13C and pCO 2 was due to the plankton bloom in the upper 50-100 m. Typical values for surface water in the winter were: 2.140±0.012 mmol kg -1 for DIC, 1.00±0.04‰ for δ 13C and 357±15 μatm for pCO 2, and the corresponding values in the summer were as low as 2.04 mmol kg -1, greater than 2.1‰, and as low as 270-300 μatm. The values for deep water are more constant during the year, with DIC values of about 2.17±0.01 mmol kg -1, and δ 13C values between 0.97 and 1.14‰. A simple one-dimensional biological model was applied in order to investigate possible short-term variability in DIC caused by the phytoplankton growth and depth variations of the wind-mixed layer. The simulated seasonal pattern was in reasonable agreement with the observed data, but there were significant temporal variations with shorter time interval than the monthly measurements. As a supplement to the measurements at station M, some representative profiles of DIC, δ 13C, Δ 14C, salinity and temperature from other locations in the Nordic Seas and the North Atlantic Ocean are also presented. The results are also compared with some data obtained ( Δ 14C) by the TTO expedition in 1981 and the GEOSECS expedition in 1972. The carbon profiles reflect the stable deep

  12. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  13. Noise reduction by recycling dynamically coupled time series.

    PubMed

    Mera, M Eugenia; Morán, Manuel

    2011-12-01

    We say that several scalar time series are dynamically coupled if they record the values of measurements of the state variables of the same smooth dynamical system. We show that much of the information lost due to measurement noise in a target time series can be recovered with a noise reduction algorithm by crossing the time series with another time series with which it is dynamically coupled. The method is particularly useful for reduction of measurement noise in short length time series with high uncertainties.

  14. Monterey Ocean Time-series and Observatory: Scientific Discoveries and Technical Challenges

    NASA Astrophysics Data System (ADS)

    Chavez, F. P.

    2006-05-01

    Ocean time-series stations like those at the Hawaii Ocean Time-series (HOT), Bermuda Atlantic Time Series (BATS) and the Monterey Ocean Time-series and Observatory (MOTO) have provided information that has rather clearly established the scientific and societal need for ocean observatories. Here we present a seventeen year time series (1989 - 2005) of shipboard, mooring, and more recently autonomous underwater vehicle (AUV), observations from Monterey Bay, Ca., and highlight diurnal, seasonal, interannual, and long- term variations in physical, chemical, and biological properties. Satellite data provide spatial and large-scale temporal context. Central California is a region of strong coastal upwelling where diatoms dominate biomass during the productive spring and summer months. Upwelling is driven by coastal winds, and this upwelling affects currents, temperature, nitrate, chlorophyll, and primary production. Such variations occur within the larger California Current System (CCS), which includes the California Current, Undercurrent, and Inshore Countercurrent. Encompassed in the time series are the 1992-1993 and 1997-1998 El Niños, events which contribute interannual variability. We have also identified a significant and long-lasting shift in North Pacific physical and ecosystem dynamics in the mid-1990s. Diurnal variability, estimated from high resolution moored measurements, suggest the potential for autonomous long-term measurement of primary production. Based on our experience we provide suggestions for how to overcome the technical challenges of long-term ocean observing.

  15. Convolutional neural network features based change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  16. Generation of long-term time series of remote sensing data using ESA's GPOD system

    NASA Astrophysics Data System (ADS)

    Rubio, M. A.; Colin, O.; Mathot, E.

    2009-04-01

    Several authors have shown that the analysis of time series of remote sensing data is able to characterize the properties of different earth systems. They have used different techniques, ARIMA, Fourier Analysis and others, to estimate cyclical and trend variations from the information stored in the time series. Most systems in earth cycle due to seasonal changes in the flow of energy and/or matter, ecosystems cycle due to seasonal changes in evapotranspiration, day length and temperature. Time series analysis can characterized the period, amplitude and offset of the cycle. Trend analysis, on the other hand, can be used to detect permanent changes in certain systems. Changes in sea surface temperature or the artic ice pack due to climate change would belong to this category. Performing this analysis requires data with a good temporal resolution, usually in the range of days and a good temporal extent, usually in the multiyear timescale. As a result users have to process a big set of satellite images, sometimes in the order of thousands, to extract the information required. This processing consumes a great amount of time and resources due to the big amount of data and computer power involved. To facilitate the generation of long-term time series of remote sensing data the European Space Agency has developed a system able to extract all the information available for a small area from the MEdium Resolution Imaging Spectrometer (MERIS) onboard ENVISAT in an easily accessible format. This service allows the user to specify an area of interest of rectangular or circular shape giving its geographical location and its size, specify the period of time that he is interested in and obtain several files with all the information available from the MERIS sensor for this location. For each MERIS product the information is given in two formats. One is highly portable following the XML standard. Output is also given in Google Earth and Excel formats allowing for a fast and easy

  17. A 45-year time series of Saharan dune mobility from remote sensing

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2012-04-01

    Decadal trends in the aeolian dust record of the Sahara affect the global climate system and the nutrient budget of the Atlantic Ocean. One proposed cause of these trends are changes in the frequency and intensity of dust storms, which have hitherto been hard to quantify. Because sand flux scales with the cube of wind speed, dune migration rates can be used as a proxy for storminess. Relative changes in the storminess of the Sahara can thus be monitored by tracking the migration rates of individual sand dunes over time. The Bodélé Depression of northern Chad was selected as a target area for this method, because it is the most important point-source of aeolian dust on the planet and features the largest and fastest dunes on Earth. A collection of co-registered Landsat, SPOT, and ASTER scenes, combined with declassified American spy satellite images was used to construct a 45 year record of dune migration in the Bodélé Depression. One unexpected outcome of the study was the observation of binary dune interactions in the imagery sequence, which reveals that when two barchan dunes collide, a transfer of mass occurs so that one dune appears to travel through the other unscathed, like a solitary wave. This confirms a controversial numerical model prediction and settles a decade-old debate in aeolian geomorphology. The COSI-Corr change detection method was used to measure the dune migration rates from 1984 until 1987, 1990, 1996, 2000, 2003, 2005, 2007, 2008, 2009, and 2010. An algorithm was developed to automatically warp the resulting displacement fields back to a common point in time. Thus, individual image pixels of a dune field were tracked over time, allowing the extraction of a time series from the co-registered satellite images without further human intervention. The automated analysis was extended further back into the past by comparison of the 1984 image with declassified American spy satellite (Corona) images from 1965 and 1970. Due to the presence of

  18. High-Resolution Imaging of Asteroids/Satellites with AO

    NASA Astrophysics Data System (ADS)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  19. Automatic Crowd Analysis from Very High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Reinartz, P.

    2011-04-01

    Recently automatic detection of people crowds from images became a very important research field, since it can provide crucial information especially for police departments and crisis management teams. Due to the importance of the topic, many researchers tried to solve this problem using street cameras. However, these cameras cannot be used to monitor very large outdoor public events. In order to bring a solution to the problem, herein we propose a novel approach to detect crowds automatically from remotely sensed images, and especially from very high resolution satellite images. To do so, we use a local feature based probabilistic framework. We extract local features from color components of the input image. In order to eliminate redundant local features coming from other objects in given scene, we apply a feature selection method. For feature selection purposes, we benefit from three different type of information; digital elevation model (DEM) of the region which is automatically generated using stereo satellite images, possible street segment which is obtained by segmentation, and shadow information. After eliminating redundant local features, remaining features are used to detect individual persons. Those local feature coordinates are also assumed as observations of the probability density function (pdf) of the crowds to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf which gives us information about dense crowd and people locations. We test our algorithm usingWorldview-2 satellite images over Cairo and Munich cities. Besides, we also provide test results on airborne images for comparison of the detection accuracy. Our experimental results indicate the possible usage of the proposed approach in real-life mass events.

  20. Seasonal and interannual variabilities of coccolithophore blooms in the Bay of Biscay and the Celtic Sea observed from a 18-year time-series of non-algal Suspended Particulate Matter images

    NASA Astrophysics Data System (ADS)

    Perrot, Laurie; Gohin, Francis; Ruiz-Pino, Diana; Lampert, Luis

    2016-04-01

    Coccolithophores belong to the nano-phytoplankton size-class and produce CaCO3 scales called coccoliths which form the «shell» of the algae cell. Coccoliths are in the size range of a few μm and can also be detached from the cell in the water. This phytoplankton group has an ubiquitous distribution in all oceans but blooms only in some oceanic regions, like the North East Atlantic ocean and the South Western Atlantic (Patagonian Sea). At a global scale coccolithopore blooms are studied in regard of CaCO3 production and three potential feedback on climate change: albedo modification by the way of dimethylsulfide (DMS) production and atmospheric CO2 source by calcification and a CO2 pump by photosynthesis. As the oceans are more and more acidified by anthropogenic CO2 emissions, coccolithophores generally are expected to be negatively affected. However, recent studies have shown an increase in coccolithophore occurrence in the North Atlantic. A poleward expansion of the coccolithophore Emiliana Huxleyi has also been pointed out. By using a simplified fuzzy method applied to a 18-year time series of SeaWiFS (1998-2002) and MODIS (2003-2015) spectral reflectance, we assessed the seasonal and inter-annual variability of coccolithophore blooms in the vicinity of the shelf break in the Bay of Biscay and the Celtic Sea After identification of the coccolith pixels by applying the fuzzy method, the abundance of coccoliths is assessed from a database of non-algal Suspended Particulate Matter (SPM). Although a regular pattern in the phenology of the blooms is observed, starting south in April in Biscay and moving northwards until July in Ireland, there is a high seasonal and interannual variability in the extent of the blooms. Year 2014 shows very low concentrations of detached coccoliths (twice less than average) from space and anomalies point out the maximum level in 2001. Non-algal SPM, derived from a procedure defined for the continental shelf, appears to be well

  1. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery

    USGS Publications Warehouse

    Hu, Xie; Wang, Teng; Pierson, Thomas C.; Lu, Zhong; Kim, Jin-Woo; Cecere, Thomas H.

    2016-01-01

    Detection of slow or limited landslide movement within broad areas of forested terrain has long been problematic, particularly for the Cascade landslide complex (Washington) located along the Columbia River Gorge. Although parts of the landslide complex have been found reactivated in recent years, the timing and magnitude of motion have not been systematically monitored or interpreted. Here we apply novel time-series strategies to study the spatial distribution and temporal behavior of the landslide movement between 2007 and 2011 using InSAR images from two overlapping L-band ALOS PALSAR-1 satellite tracks. Our results show that the reactivated part has moved approximately 700 mm downslope during the 4-year observation period, while other parts of the landslide complex have generally remained stable. However, we also detect about 300 mm of seasonal downslope creep in a terrain block upslope of the Cascade landslide complex—terrain previously thought to be stable. The temporal oscillation of the seasonal movement can be correlated with precipitation, implying that seasonal movement here is hydrology-driven. The seasonal movement also has a frequency similar to GPS-derived regional ground oscillations due to mass loading by stored rainfall and subsequent rebound but with much smaller magnitude, suggesting different hydrological loading effects. From the time-series amplitude information on terrain upslope of the headscarp, we also re-evaluate the incipient motion related to the 2008 Greenleaf Basin rock avalanche, not previously recognized by traditional SAR/InSAR methods. The approach used in this study can be used to identify active landslides in forested terrain, to track the seasonal movement of landslides, and to identify previously unknown landslide hazards.

  2. Mapping cropland-use intensity across Europe using MODIS NDVI time series

    NASA Astrophysics Data System (ADS)

    Estel, Stephan; Kuemmerle, Tobias; Levers, Christian; Baumann, Matthias; Hostert, Patrick

    2016-02-01

    Global agricultural production will likely need to increase in the future due to population growth, changing diets, and the rising importance of bioenergy. Intensifying already existing cropland is often considered more sustainable than converting more natural areas. Unfortunately, our understanding of cropping patterns and intensity is weak, especially at broad geographic scales. We characterized and mapped cropping systems in Europe, a region containing diverse cropping systems, using four indicators: (a) cropping frequency (number of cropped years), (b) multi-cropping (number of harvests per year), (c) fallow cycles, and (d) crop duration ratio (actual time under crops) based on the MODIS Normalized Difference Vegetation Index (NDVI) time series from 2000 to 2012. Second, we used these cropping indicators and self-organizing maps to identify typical cropping systems. The resulting six clusters correspond well with other indicators of agricultural intensity (e.g., nitrogen input, yields) and reveal substantial differences in cropping intensity across Europe. Cropping intensity was highest in Germany, Poland, and the eastern European Black Earth regions, characterized by high cropping frequency, multi-cropping and a high crop duration ratio. Contrarily, we found lowest cropping intensity in eastern Europe outside the Black Earth region, characterized by longer fallow cycles. Our approach highlights how satellite image time series can help to characterize spatial patterns in cropping intensity—information that is rarely surveyed on the ground and commonly not included in agricultural statistics: our clustering approach also shows a way forward to reduce complexity when measuring multiple indicators. The four cropping indicators we used could become part of continental-scale agricultural monitoring in order to identify target regions for sustainable intensification, where trade-offs between intensification and the environmental should be explored.

  3. Optimized satellite image compression and reconstruction via evolution strategies

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael

    2009-05-01

    This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.

  4. Targeting Villages for Rural Development Using Satellite Image Analysis.

    PubMed

    Varshney, Kush R; Chen, George H; Abelson, Brian; Nowocin, Kendall; Sakhrani, Vivek; Xu, Ling; Spatocco, Brian L

    2015-03-01

    Satellite imagery is a form of big data that can be harnessed for many social good applications, especially those focusing on rural areas. In this article, we describe the common problem of selecting sites for and planning rural development activities as informed by remote sensing and satellite image analysis. Effective planning in poor rural areas benefits from information that is not available and is difficult to obtain at any appreciable scale by any means other than algorithms for estimation and inference from remotely sensed images. We discuss two cases in depth: the targeting of unconditional cash transfers to extremely poor villages in sub-Saharan Africa and the siting and planning of solar-powered microgrids in remote villages in India. From these cases, we draw out some common lessons broadly applicable to informed rural development.

  5. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  6. Radar/Sonar and Time Series Analysis

    DTIC Science & Technology

    1991-04-08

    basic physics that gives therelation between the "object" and the measured scattered 2 pattern, 2) some of the harmonic analyisis that allows you to... polar format after appropriately being processed in a way that yields the radial profiles on the Fourier transform of the point reflectivity. The images

  7. Outlier detection using some methods of mathematical statistic in meteorological time-series

    NASA Astrophysics Data System (ADS)

    Elias, Michal; Dousa, Jan

    2016-06-01

    In many applications of Global Navigate Satellite Systems the meteorological time-series play a very important role, especially when representing source of input data for other calculations such as corrections for very precise positioning. We are interested in those corrections which are related to the troposphere delay modelling. Time-series might contain some non-homogeneities, depending on the type of the data source. In this paper the outlier detection is discussed. For investigation we used method based on the autoregressive model and the results of its application were compared with the regression model.

  8. Identification of periods of clear sky irradiance in time series of GHI measurements

    SciTech Connect

    Reno, Matthew J.; Hansen, Clifford W.

    2016-01-18

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from a clear sky detection algorithm, and with satellite and ground-based sky imagery.

  9. Satellite Image Processing for the Agulhas Retroflexion Region.

    DTIC Science & Technology

    1987-07-01

    tape and creating the IDIMS image related calibration file. Figures 1 and 2 represent the difference between SAFRAW and SAFEN - TER. The data was read...PRODUCED BY THE SATELLITE REMOTE SENSING CENTRE OF THE COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH L4 44 V 4z ~ DEFINITION OF THE TAPE FORMAT The...given in the format definition ,. It has to be ob- tained from other sources. For some file classes, variable length records have lengths defined in the

  10. The UV imager for the Israeli scientific satellite

    NASA Astrophysics Data System (ADS)

    Brosch, N.

    Israel will orbit a satellite dedicated to scientific research. One of the two experiments studied for deployment on this platform is a three-channel imager in the ultraviolet proposed by Tel Aviv University and designed jointly by staff of the Wise Observatory and of El-Op (Electro-Optical Industries, Ltd). The design provides very significant scientific returns in a small payload and for a moderate cost.

  11. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  12. A satellite imager for atmospheric X-rays

    NASA Astrophysics Data System (ADS)

    Calvert, W.; Voss, H. D.; Sanders, T. C.

    1985-02-01

    A high-sensitivity X-Ray Imaging Spectrometer (XRIS) was developed for measurements of atmospheric bremsstrahlung X-rays. The XRIS instrument flown on a 3-axis stabilized polar orbiting satellite (S81-1) employed a one-dimensional pinhole camera to acquire a 2-dimensional X-ray image as the satellite passed over an auroral scene. Using a position sensitive gas proportional counter, with an active area of 1200 sq cm divided into sixteen cross-track pixels, the instrument had a geometric factor of about 0.4 sq cm-steradian per pixel (6 sq cm-sr total) for X-rays of 4 to 40 keV. At an orbital altitude of 250 km, it provided a spatial resolution of 30 km and the temporal resolution was one-eighth of a second. Designed primarily to detect artificial electron precipitation at lower latitudes, the instrument also produced the first satellite X-ray images of the aurora during May and June, 1982. Special features of the instrument included a quadrupole broom magnet to reject energetic electrons, a multilayer plastic-on-tantalum shielding to suppress the bremsstrahlung X-rays generated from electrons which impact the instrument surface, and a new technique for position sensing within the detector, using signal division in a resistor array.

  13. The geostationary operational environmental satellite /GOES/ imaging communication system

    NASA Technical Reports Server (NTRS)

    Baker, W. L.; Savides, J.

    1975-01-01

    The SMS/GOES Satellite obtains day and night weather information from synchronous geostationary orbit by means of (1) earth imaging, (2) collection of environmental data from ground based sensors, platforms, and (3) monitoring of the space environment. SMS-1 and SMS-2 have been in orbit for 17 months and 8 months, respectively, and are presently taking full earth disk images in the visible and infrared every 30 minutes. SMS-1 is positioned to cover the eastern portion of the U.S. while SMS-2 is positioned to cover the western portion. This paper provides a general overview of the imaging communication portions of the SMS/GOES, related to the image data encoding and transmission as well as the method of the data time multiplexing and the manner in which the scan line to line synchronization is achieved.

  14. Urban Area Monitoring using MODIS Time Series Data

    NASA Astrophysics Data System (ADS)

    Devadiga, S.; Sarkar, S.; Mauoka, E.

    2015-12-01

    Growing urban sprawl and its impact on global climate due to urban heat island effects has been an active area of research over the recent years. This is especially significant in light of rapid urbanization that is happening in some of the first developing nations across the globe. But so far study of urban area growth has been largely restricted to local and regional scales, using high to medium resolution satellite observations, taken at distinct time periods. In this presentation we propose a new approach to detect and monitor urban area expansion using long time series of MODIS data. This work characterizes data points using a vector of several annual metrics computed from the MODIS 8-day and 16-day composite L3 data products, at 250M resolution and over several years and then uses a vector angle mapping classifier to detect and segment the urban area. The classifier is trained using a set of training points obtained from a reference vector point and polygon pre-filtered using the MODIS VI product. This work gains additional significance, given that, despite unprecedented urban growth since 2000, the area covered by the urban class in the MODIS Global Land Cover (MCD12Q1, MCDLCHKM and MCDLC1KM) product hasn't changed since the launch of Terra and Aqua. The proposed approach was applied to delineate the urban area around several cities in Asia known to have maximum growth in the last 15 years. Results were verified using high resolution Landsat data.

  15. Analysis of Decadal Vegetation Dynamics Using Multi-Scale Satellite Images

    NASA Astrophysics Data System (ADS)

    Chiang, Y.; Chen, K.

    2013-12-01

    This study aims at quantifying vegetation fractional cover (VFC) by incorporating multi-resolution satellite images, including Formosat-2(RSI), SPOT(HRV/HRG), Landsat (MSS/TM) and Terra/Aqua(MODIS), to investigate long-term and seasonal vegetation dynamics in Taiwan. We used 40-year NDVI records for derivation of VFC, with field campaigns routinely conducted to calibrate the critical NDVI threshold. Given different sensor capabilities in terms of their spatial and spectral properties, translation and infusion of NDVIs was used to assure NDVI coherence and to determine the fraction of vegetation cover at different spatio-temporal scales. Based on the proposed method, a bimodal sequence of intra-annual VFC which corresponds to the dual-cropping agriculture pattern was observed. Compared to seasonal VFC variation (78~90%), decadal VFC reveals moderate oscillations (81~86%), which were strongly linked with landuse changes and several major disturbances. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.

  16. Prospects of application of survey satellite image for meteorology

    NASA Astrophysics Data System (ADS)

    Kapochkina, A. B.; Kapochkin, B. B.; Kucherenko, N. V.

    The maximal interest is represented with the information from geostationary satellites. These satellites repeat shootings the chosen territories, allowing to study dynamics of images. Most interesting shootings in IR a range. Studying of survey image is applied to studying linear elements of clouds (LEC). It is established, that "LEC " arise only above breaks of an earth's crust. In research results of the complex analysis of the satellite data, hydrometeorological supervision, seismicity, supervision over deformations of a surface of the Earth are used. It is established that before formation "LEC " in a ground layer arise anomalies of temperature and humidity. The situation above Europe 16 May, 2001 is considered. "LEC " in Europe block carry of air weights from the west to the east. Synoptic conditions above the Great Britain July, 7-10, 2000 is considered. Moving "LEC" trace distribution of deformation waves to an earth's crust. Satellite shootings Europe before earthquake in Greece 14.08.2003 are considered. These days ground supervision were conducted and the data of the geostationary satellite were analyzed. During moving "LEC " occur failures (destruction houses & of gas mains), earthquake. The situation above Iberian peninsula 12-16.11.2001 is considered. "LEC" arose before flooding in Europe. The situation before flooding in Germany June, 6-8, 2002 and flooding on the river Kuban June, 16-23, 2002 is considered. In case of occurrence of tectonic compression of an earth's crust there are "LEC ", tracer intensive movements of air upwards and downwards above negative and positive anomalies of the form of a terrestrial surface, accordingly. Such meteorological situations are dangerous to flights of aircraft, the fast gravitational anomalies influencing into orbits of movement of satellites trace. The situation above equatorial Atlantic 26.03.2003 years is considered. At tectonic compression of continental scale overcast covers the whole continents for more

  17. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.

  18. On the Character and Mitigation of Atmospheric Noise in InSAR Time Series Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Fielding, E. J.; Fishbein, E.

    2013-12-01

    that we outline. The multispectral near-infrared (NIR) sensors provide high spatial resolution (~1 km) estimates of total column tropospheric water vapor by measuring the absorption of reflected solar illumination and provide may excellent estimates of wet delay. The Online Services for Correcting Atmosphere in Radar (OSCAR) project currently provides water vapor products through web services (http://oscar.jpl.nasa.gov). Unfortunately, such sensors require daytime and cloudless observations. Global and regional numerical weather models can provide an additional estimate of both the dry and atmospheric delays with spatial resolution of (3-100 km) and time scales of 1-3 hours, though these models are of lower accuracy than imaging observations and are benefited by independent observations from independent observations of atmospheric water vapor. Despite these issues, the integration of these techniques for InSAR correction and uncertainty estimation may contribute substantially to the reduction and rigorous characterization of uncertainty in InSAR time series analysis - helping to expand the range of tectonic displacements imaged with InSAR, to robustly constrain geophysical models, and to generate a-priori assessments of satellite acquisitions goals.

  19. Automated analysis of brachial ultrasound time series

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Browning, Roger L.; Lauer, Ronald M.; Sonka, Milan

    1998-07-01

    Atherosclerosis begins in childhood with the accumulation of lipid in the intima of arteries to form fatty streaks, advances through adult life when occlusive vascular disease may result in coronary heart disease, stroke and peripheral vascular disease. Non-invasive B-mode ultrasound has been found useful in studying risk factors in the symptom-free population. Large amount of data is acquired from continuous imaging of the vessels in a large study population. A high quality brachial vessel diameter measurement method is necessary such that accurate diameters can be measured consistently in all frames in a sequence, across different observers. Though human expert has the advantage over automated computer methods in recognizing noise during diameter measurement, manual measurement suffers from inter- and intra-observer variability. It is also time-consuming. An automated measurement method is presented in this paper which utilizes quality assurance approaches to adapt to specific image features, to recognize and minimize the noise effect. Experimental results showed the method's potential for clinical usage in the epidemiological studies.

  20. Time Series of North Pacific Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Worden, A. K.; Webley, P. W.

    2011-12-01

    The record of volcanic eruptions was gathered from the 1986 eruption of Augustine Volcano to present for Alaska, Kamchatka and the Kuriles Islands. In this time over 400 ash producing eruptions were noted, and many more events that produced some other activity, e.g. lava, lahar, small explosion, seismic crisis. This represents a minimum for the volcanic activity in this region. It is thought that the records for Alaska are complete for this time period, but it is possible that activity in the Kuriles and Kamchatka could have been overlooked, particularly smaller events. For the Alaska region, 19 different volcanoes have been active in this time. Mt. Cleveland shows the most activity over the time period (40 % likely to have activity in a 3 month period), followed closely by Pavlof (34% likely)volcano. In Kamchatka only 7 volcanoes have been active, Shiveluch is the most active (83% likely) followed by Bezymianny and Kliuchevskoi volcanoes (tied at 60%). The Kuriles only has had 4 active volcanoes, and only 6 known eruptions. Overall this region is one of the most active in the world, in any 3 month period there is a 77% likelihood of volcano activity. For well instrumented volcanoes, the majority of activity is preceded by significant seismicity. For just over half of the events, explosive activity is preceded by thermal signals in infrared satellite data. Rarely (only about 5% of the time) is a stand alone thermal signal not followed within 3 months by an explosive eruption. For remaining events where an ash plume begins the activity, over 90% of the cases show a thermal signal the eruption. The volcanoes with the most activity are the least likely to produce large ash plumes. Conversely the volcanoes that erupt rarely often begin with larger ash producing events. Though there appears to be a recurrent progression of volcanic activity down the chain from east to west, this may be an artifact of several independent systems, each working at their own rate, that

  1. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    PubMed

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  2. The determination of physical and dynamical parameters of Pluto/Charon and binary asteroids by least-square formation of a matched filter for a time series of images. I - The operational theory

    NASA Technical Reports Server (NTRS)

    Wildey, R. L.

    1985-01-01

    A theory is derived for the determination of the masses, radii, and orbital elements of the Pluto/Charon, or similar, system based on the prediction of an image distribution over space and time and its comparison with observation. The comparison may be ultimately through the theory of least squares or the application of a matched filter to the observations as a three-dimensional signal stream at an initial or intermediate state. The theory is an approximation correct to fifth order in the diameters of celestial bodies. The theory of astronomical seeing that is used is based on Kolmogorov turbulence in the long-exposure limit. The images must be photometric. Linear tracking errors that can be removed are preferable to either automatic or manual guiding, in the collection of candidate observations.

  3. Two algorithms to fill cloud gaps in LST time series

    NASA Astrophysics Data System (ADS)

    Frey, Corinne; Kuenzer, Claudia

    2013-04-01

    Cloud contamination is a challenge for optical remote sensing. This is especially true for the recording of a fast changing radiative quantity like land surface temperature (LST). The substitution of cloud contaminated pixels with estimated values - gap filling - is not straightforward but possible to a certain extent, as this research shows for medium-resolution time series of MODIS data. Area of interest is the Upper Mekong Delta (UMD). The background for this work is an analysis of the temporal development of 1-km LST in the context of the WISDOM project. The climate of the UMD is characterized by peak rainfalls in the summer months, which is also the time where cloud contamination is highest in the area. Average number of available daytime observations per pixel can go down to less than five for example in the month of June. In winter the average number may reach 25 observations a month. This situation is not appropriate to the calculation of longterm statistics; an adequate gap filling method should be used beforehand. In this research, two different algorithms were tested on an 11 year time series: 1) a gradient based algorithm and 2) a method based on ECMWF era interim re-analysis data. The first algorithm searches for stable inter-image gradients from a given environment and for a certain period of time. These gradients are then used to estimate LST for cloud contaminated pixels in each acquisition. The estimated LSTs are clear-sky LSTs and solely based on the MODIS LST time series. The second method estimates LST on the base of adapted ECMWF era interim skin temperatures and creates a set of expected LSTs. The estimated values were used to fill the gaps in the original dataset, creating two new daily, 1 km datasets. The maps filled with the gradient based method had more than the double amount of valid pixels than the original dataset. The second method (ECMWF era interim based) was able to fill all data gaps. From the gap filled data sets then monthly

  4. Efficient Algorithms for Segmentation of Item-Set Time Series

    NASA Astrophysics Data System (ADS)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  5. Measuring persistence in time series of temperature anomalies

    NASA Astrophysics Data System (ADS)

    Triacca, Umberto; Pasini, Antonello; Attanasio, Alessandro

    2014-11-01

    Studies on persistence are important for the clarification of statistical properties of the analyzed time series and for understanding the dynamics of the systems which create these series. In climatology, the analysis of the autocorrelation function has been the main tool to investigate the persistence of a time series. In this paper, we propose to use a more sophisticated econometric instrument. Using this tool, we obtain an estimate of the persistence in global land and ocean and hemispheric temperature time series.

  6. Scene Context Dependency of Pattern Constancy of Time Series Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2008-01-01

    A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.

  7. gatspy: General tools for Astronomical Time Series in Python

    NASA Astrophysics Data System (ADS)

    VanderPlas, Jake

    2016-10-01

    Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

  8. Apparatus for statistical time-series analysis of electrical signals

    NASA Technical Reports Server (NTRS)

    Stewart, C. H. (Inventor)

    1973-01-01

    An apparatus for performing statistical time-series analysis of complex electrical signal waveforms, permitting prompt and accurate determination of statistical characteristics of the signal is presented.

  9. Foot gait time series estimation based on support vector machine.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-01-01

    A new algorithm for the estimation of stride interval time series from foot gait signals is proposed. The algorithm is based on the detection of beginning of heel strikes in the signal by using the support vector machine. Morphological operations are used to enhance the accuracy of detection. By taking backward differences of the detected beginning of heel strikes, stride interval time series is estimated. Simulation results are presented which shows that the proposed algorithm yields fairly accurate estimation of stride interval time series where estimation error for mean and standard deviation of the time series is of the order of 10(-4).

  10. Using neural networks for dynamic light scattering time series processing

    NASA Astrophysics Data System (ADS)

    Chicea, Dan

    2017-04-01

    A basic experiment to record dynamic light scattering (DLS) time series was assembled using basic components. The DLS time series processing using the Lorentzian function fit was considered as reference. A Neural Network was designed and trained using simulated frequency spectra for spherical particles in the range 0–350 nm, assumed to be scattering centers, and the neural network design and training procedure are described in detail. The neural network output accuracy was tested both on simulated and on experimental time series. The match with the DLS results, considered as reference, was good serving as a proof of concept for using neural networks in fast DLS time series processing.

  11. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  12. Mackenzie River Delta morphological change based on Landsat time series

    NASA Astrophysics Data System (ADS)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied

  13. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  14. GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Dai, Wujiao; Santerre, Rock; Cai, Changsheng; Kuang, Cuilin

    2017-02-01

    Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China.

  15. Application of small baseline subsets D-InSAR technique to estimate time series land deformation of Jinan area, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiangtong; Cao, Qiuxiang; Xiong, Zhuguo; Yin, Haitao; Xiao, Genru

    2016-04-01

    Jinan, located in the South of the North China Plain, is an area where underground water has been exploited excessively. However, land deformation surveys only focus on the small district obtained by GPS and Leveling. Here, we use interferometric synthetic aperture radar (InSAR) time-series of ASAR data to resolve land subsidence in the entire Jinan region. In our research, we get 20 interferograms with a temporal threshold of 700 days and spatial-baseline threshold of 300 m from 14 ASAR satellite images on a descending orbit, and then get the surface displacement using Small Baseline InSAR (SBAS D-InSAR) retrained with a periodic model. Meanwhile, the accuracy of our work is proved by the results of GPS measurements. Finally, several settlement funnels are observed with extreme values of -20 cm, and their generation is related to massive groundwater extraction.

  16. Image processing in the BRITE nano-satellite mission

    NASA Astrophysics Data System (ADS)

    Popowicz, Adam

    2016-07-01

    The BRITE nano-satellite mission is an international Austrian-Canadian-Polish project of six small space tele- scopes measuring photometric variability of the brightest stars in the sky. Due to the limited space onboard and the weight constraints, the CCD detectors are poorly shielded and suffer from proton impact. Shortly after the launch, various CCD defects emerged, producing various sources of impulsive noise in the images. In this paper, the methods of BRITE data-processing are described and their efficiency evaluated. The proposed algorithm, developed by the BRITE photometric team, consists of three main parts: (1) image classification, (2) image processing with aperture photometry and (3) tunable optimization of parameters. The presented pipeline allows one to achieve milli-magnitude precision in photometry. Some first scientific results of the mission have just been published.

  17. Detection of Barchan Dunes in High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Azzaoui, M. A.; Adnani, M.; El Belrhiti, H.; Chaouki, I. E.; Masmoudi, C.

    2016-06-01

    Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden's J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  18. Spatial Data Exploring by Satellite Image Distributed Processing

    NASA Astrophysics Data System (ADS)

    Mihon, V. D.; Colceriu, V.; Bektas, F.; Allenbach, K.; Gvilava, M.; Gorgan, D.

    2012-04-01

    Our society needs and environmental predictions encourage the applications development, oriented on supervising and analyzing different Earth Science related phenomena. Satellite images could be explored for discovering information concerning land cover, hydrology, air quality, and water and soil pollution. Spatial and environment related data could be acquired by imagery classification consisting of data mining throughout the multispectral bands. The process takes in account a large set of variables such as satellite image types (e.g. MODIS, Landsat), particular geographic area, soil composition, vegetation cover, and generally the context (e.g. clouds, snow, and season). All these specific and variable conditions require flexible tools and applications to support an optimal search for the appropriate solutions, and high power computation resources. The research concerns with experiments on solutions of using the flexible and visual descriptions of the satellite image processing over distributed infrastructures (e.g. Grid, Cloud, and GPU clusters). This presentation highlights the Grid based implementation of the GreenLand application. The GreenLand application development is based on simple, but powerful, notions of mathematical operators and workflows that are used in distributed and parallel executions over the Grid infrastructure. Currently it is used in three major case studies concerning with Istanbul geographical area, Rioni River in Georgia, and Black Sea catchment region. The GreenLand application offers a friendly user interface for viewing and editing workflows and operators. The description involves the basic operators provided by GRASS [1] library as well as many other image related operators supported by the ESIP platform [2]. The processing workflows are represented as directed graphs giving the user a fast and easy way to describe complex parallel algorithms, without having any prior knowledge of any programming language or application commands

  19. Large Scale Time Series Microscopy of Neovessel Growth During Angiogenesis

    PubMed Central

    Utzinger, Urs; Baggett, Brenda; Weiss, Jeffrey A.; Hoying, James B.; Edgar, Lowell T.

    2016-01-01

    During angiogenesis, growing neovessels must effectively navigate through the tissue space as they elongate and subsequently integrate into a microvascular network. While time series microscopy has provided insight into the cell activities within single growing neovessel sprouts, less in known concerning neovascular dynamics within a large angiogenic tissue bed. Here we developed a time lapse imaging technique that allowed visualization and quantification of sprouting neovessels as they form and grow away from adult parent microvessels in 3-dimensions over cubic millimeters of matrix volume, over the course of up to 5 days on the microscope. Using a new image acquisition procedure and novel morphometric analysis tools, we quantified the elongation dynamics of growing neovessels and found an episodic growth pattern accompanied by fluctuations in neovessel diameter. Average elongation rate was 5 microns/hour for individual vessels, but we also observed considerable dynamic variability in growth character including retraction and complete regression of entire neovessels. We observed neovessel-to-neovessel directed growth over tens to hundreds of microns preceding tip-to-tip inosculation. As we have previously described via static 3D imaging at discrete time points, we identified different collagen fibril structures associated with the growing neovessel tip and stalk, and observed the coordinated alignment of growing neovessels in a deforming matrix. Overall analysis of the entire image volumes demonstrated that although individual neovessels exhibited episodic growth and regression, there was a monotonic increase in parameters associated with the entire vascular bed such as total network length and number of branch points. This new time-lapse imaging approach corroborated morphometric changes in individual neovessels described by us and others, as well as captured dynamic neovessel behaviors unique to days-long angiogenesis within the forming neovascular network. PMID

  20. Statistical self-calibration of SPOT satellite imaging instrument

    NASA Astrophysics Data System (ADS)

    Carfantan, H.; Idier, J.; Beghin, B.; Meygret, A.; Rougé, B.

    2001-05-01

    SPOT satellites imaging instruments acquire rows of up to 6000 elements using a CCD linear array. The other dimension is obtained by the column-wise scanning resulting from the motion of the satellite. In practice, the responses of the detectors are not strictly identical along the array, which generates a stripe effect in the direction of columns. Our aim is to perform the calibration of the detectors response from the observed image, without supervision, in the restricted case of perfectly linear responses. In a Bayesian framework, we rely on a first-order Markov model for the image and on a Gaussian model for the gains of the detector. The MAP estimate minimizes a criterion, quadratic, convex, or nonconvex according to the chosen Markov model. In the quadratic case, MAP computation amounts to solving a tridiagonal linear system. In the other cases, we take advantage of introducing an equivalent augmented half-quadratic criterion, which can be minimized by iterately solving tridiagonal linear systems. Minimizing nonconvex criteria provides the best results, although convergence towards the global minimizer is not ensured in this case. .

  1. NNIC—neural network image compressor for satellite positioning system

    NASA Astrophysics Data System (ADS)

    Danchenko, Pavel; Lifshits, Feodor; Orion, Itzhak; Koren, Sion; Solomon, Alan D.; Mark, Shlomo

    2007-04-01

    We have developed an algorithm, based on novel techniques of data compression and neural networks for the optimal positioning of a satellite. The algorithm is described in detail, and examples of its application are given. The heart of this algorithm is the program NNIC—neural network image compressor. This program was developed for compression color and grayscale images with artificial neural networks (ANNs). NNIC applies three different methods for compression. Two of them are based on neural networks architectures—multilayer perceptron and kohonen network. The third is based on a widely used method of discrete cosine transform, the basis for the JPEG standard. The program also serves as a tool for determining numerical and visual quality parameters of compression and comparison between different methods. A number of advantages and disadvantages of the compression using ANNs were discovered in the course of the present research, some of them presented in this report. The thrust of the report is the discussion of ANNs implementation problems for modern platforms, such as a satellite positioning system that include intensive image flowing and processing.

  2. Using Time-Series Regression to Predict Academic Library Circulations.

    ERIC Educational Resources Information Center

    Brooks, Terrence A.

    1984-01-01

    Four methods were used to forecast monthly circulation totals in 15 midwestern academic libraries: dummy time-series regression, lagged time-series regression, simple average (straight-line forecasting), monthly average (naive forecasting). In tests of forecasting accuracy, dummy regression method and monthly mean method exhibited smallest average…

  3. The Prediction of Teacher Turnover Employing Time Series Analysis.

    ERIC Educational Resources Information Center

    Costa, Crist H.

    The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…

  4. Investigation on gait time series by means of factorial moments

    NASA Astrophysics Data System (ADS)

    Yang, Huijie; Zhao, Fangcui; Zhuo, Yizhong; Wu, Xizhen; Li, Zhuxia

    2002-09-01

    By means of factorial moments (FM), the fractal structures embedded in gait time series are investigated. Intermittency is found in records for healthy objects. And this kind of intermittency is much sensitive to disease or outside influences. It is found that FM is an effective tool to deal with this kind of time series.

  5. Distance measure with improved lower bound for multivariate time series

    NASA Astrophysics Data System (ADS)

    Li, Hailin

    2017-02-01

    Lower bound function is one of the important techniques used to fast search and index time series data. Multivariate time series has two aspects of high dimensionality including the time-based dimension and the variable-based dimension. Due to the influence of variable-based dimension, a novel method is proposed to deal with the lower bound distance computation for multivariate time series. The proposed method like the traditional ones also reduces the dimensionality of time series in its first step and thus does not directly apply the lower bound function on the multivariate time series. The dimensionality reduction is that multivariate time series is reduced to univariate time series denoted as center sequences according to the principle of piecewise aggregate approximation. In addition, an extended lower bound function is designed to obtain good tightness and fast measure the distance between any two center sequences. The experimental results demonstrate that the proposed lower bound function has better tightness and improves the performance of similarity search in multivariate time series datasets.

  6. Time Series Analysis of Mother-Infant Interaction.

    ERIC Educational Resources Information Center

    Rosenfeld, Howard M.

    A method of studying attachment behavior in infants was devised using time series and time sequence analyses. Time series analysis refers to relationships between events coded over adjacent fixed-time units. Time sequence analysis refers to the distribution of exact times at which particular events happen. Using these techniques, multivariate…

  7. Improved singular spectrum analysis for time series with missing data

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Peng, F.; Li, B.

    2015-07-01

    Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution develops an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach is evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60 %, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30 % for the first four principal components, respectively. Both the mean absolute error and mean root mean squared error of the reconstructed time series by ISSA are also smaller than those by SSAM. The respective improvements are 34.45 and 33.91 % when the missing data accounts for 60 %. The results from real incomplete time series also show that the standard deviation (SD) derived by ISSA is 12.27 mg L-1, smaller than the 13.48 mg L-1 derived by SSAM.

  8. Improved singular spectrum analysis for time series with missing data

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Peng, F.; Li, B.

    2014-12-01

    Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution will develop an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach was evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60%, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30% for the first four principal components, respectively. Besides, both the mean absolute errors and mean root mean squared errors of the reconstructed time series by ISSA are also much smaller than those by SSAM. The respective improvements are 34.45 and 33.91% when the missing data accounts for 60%. The results from real incomplete time series also show that the SD derived by ISSA is 12.27 mg L-1, smaller than 13.48 mg L-1 derived by SSAM.

  9. Measurements of spatial population synchrony: influence of time series transformations.

    PubMed

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  10. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  11. A Computer Evolution in Teaching Undergraduate Time Series

    ERIC Educational Resources Information Center

    Hodgess, Erin M.

    2004-01-01

    In teaching undergraduate time series courses, we have used a mixture of various statistical packages. We have finally been able to teach all of the applied concepts within one statistical package; R. This article describes the process that we use to conduct a thorough analysis of a time series. An example with a data set is provided. We compare…

  12. An entropy-based approach to automatic image segmentation of satellite images

    NASA Astrophysics Data System (ADS)

    Barbieri, Andre L.; de Arruda, G. F.; Rodrigues, Francisco A.; Bruno, Odemir M.; Costa, Luciano da Fontoura

    2011-02-01

    An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation.

  13. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series

    PubMed Central

    Fransson, Peter

    2016-01-01

    Abstract Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box–Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed. PMID:27784176

  14. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    PubMed

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  15. The scaling of time series size towards detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Gao, Xiaolei; Ren, Liwei; Shang, Pengjian; Feng, Guochen

    2016-06-01

    In this paper, we introduce a modification of detrended fluctuation analysis (DFA), called multivariate DFA (MNDFA) method, based on the scaling of time series size N. In traditional DFA method, we obtained the influence of the sequence segmentation interval s, and it inspires us to propose a new model MNDFA to discuss the scaling of time series size towards DFA. The effectiveness of the procedure is verified by numerical experiments with both artificial and stock returns series. Results show that the proposed MNDFA method contains more significant information of series compared to traditional DFA method. The scaling of time series size has an influence on the auto-correlation (AC) in time series. For certain series, we obtain an exponential relationship, and also calculate the slope through the fitting function. Our analysis and finite-size effect test demonstrate that an appropriate choice of the time series size can avoid unnecessary influences, and also make the testing results more accurate.

  16. Short time-series microarray analysis: Methods and challenges

    PubMed Central

    Wang, Xuewei; Wu, Ming; Li, Zheng; Chan, Christina

    2008-01-01

    The detection and analysis of steady-state gene expression has become routine. Time-series microarrays are of growing interest to systems biologists for deciphering the dynamic nature and complex regulation of biosystems. Most temporal microarray data only contain a limited number of time points, giving rise to short-time-series data, which imposes challenges for traditional methods of extracting meaningful information. To obtain useful information from the wealth of short-time series data requires addressing the problems that arise due to limited sampling. Current efforts have shown promise in improving the analysis of short time-series microarray data, although challenges remain. This commentary addresses recent advances in methods for short-time series analysis including simplification-based approaches and the integration of multi-source information. Nevertheless, further studies and development of computational methods are needed to provide practical solutions to fully exploit the potential of this data. PMID:18605994

  17. Earthshots: Satellite images of environmental change - Phoenix, Arizona, USA

    USGS Publications Warehouse

    Adamson, Thomas

    2013-01-01

    Phoenix doesn’t have many cloudy days, so it’s perfect for studying urban growth with satellite images. Scientists and city planners study population growth and urban expansion in fast-growing cities like Phoenix to determine the changes that have occurred over time and to see how those changes impact the surrounding environment, affect the availability of natural resources such as water, and alter the landscape and how it’s used. That information can help people plan for future changes as cities continue to grow.

  18. Biomass Accumulation Rates of Amazonian Secondary Forest and Biomass of Old-Growth Forests from Landsat Time Series and GLAS

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Lefsky, M. A.; Roberts, D.

    2009-12-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover

  19. Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Liu, Yongxue; Zhao, Saishuai; Zhou, Minxi; Yang, Yuhao; Li, Feixue

    2016-03-01

    Salt marshes are seen as the most dynamic and valuable ecosystems in coastal zones, and in these areas, it is crucial to obtain accurate remote sensing information on the spatial distributions of species over time. However, discriminating various types of salt marsh is rather difficult because of their strong spectral similarities. Previous salt marsh mapping studies have focused mainly on high spatial and spectral (i.e., hyperspectral) resolution images combined with auxiliary information; however, the results are often limited to small regions. With a high temporal and moderate spatial resolution, the Chinese HuanJing-1 (HJ-1) satellite optical imagery can be used not only to monitor phenological changes of salt marsh vegetation over short-time intervals, but also to obtain coverage of large areas. Here, we apply HJ-1 satellite imagery to the middle coast of Jiangsu in east China to monitor changes in saltmarsh vegetation cover. First, we constructed a monthly NDVI time-series to classify various types of salt marsh and then we tested the possibility of using compressed time-series continuously, to broaden the applicability of this particular approach. Our principal findings are as follows: (1) the overall accuracy of salt marsh mapping based on the monthly NDVI time-series was 90.3%, which was ∼16.0% higher than the single-phase classification strategy; (2) a compressed time-series, including NDVI from six key months (April, June-September, and November), demonstrated very little reduction (2.3%) in overall accuracy but led to obvious improvements in unstable regions; and (3) a simple rule for Spartina alterniflora identification was established using a scene solely from November, which may provide an effective way for regularly monitoring its distribution.

  20. A multiscale approach to InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Simons, M.; Hetland, E. A.; Muse, P.; Lin, Y. N.; Dicaprio, C.; Rickerby, A.

    2008-12-01

    We describe a new technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale analysis of InSAR Time Series), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. This approach also permits a consistent treatment of all data independent of the presence of localized holes in any given interferogram. In essence, MInTS allows one to considers all data at the same time (as opposed to one pixel at a time), thereby taking advantage of both spatial and temporal characteristics of the deformation field. In terms of the temporal representation, we have the flexibility to explicitly parametrize known processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). Our approach also allows for the temporal parametrization to includes a set of general functions (e.g., splines) in order to account for unexpected processes. We allow for various forms of model regularization using a cross-validation approach to select penalty parameters. The multiscale analysis allows us to consider various contributions (e.g., orbit errors) that may affect specific scales but not others. The methods described here are all embarrassingly parallel and suitable for implementation on a cluster computer. We demonstrate the use of MInTS using a large suite of ERS-1/2 and Envisat interferograms for Long Valley Caldera, and validate our results by comparing with ground-based observations.

  1. Multiscale/Multitemporal Urban pattern morphology monitoring in southern Italy by using Landsat TM time series

    NASA Astrophysics Data System (ADS)

    Coluzzi, R.; Didonna, I.

    2009-04-01

    The size distribution and the dynamic expansion of urban areas is a key issue for the management of city growth and mitigation of negative impacts on environment and ecosystems. Even if urban growth is perceived as necessary for a sustainable economy, uncontrolled or sprawling urban growth can cause various problems such as loss of open space, landscape alteration, environmental pollution, traffic congestion, infrastructure pressure, and other social and economical issues. To face these drawbacks, a continuous monitoring of the urban growth evolution in terms of type and extent of changes over time is essential for supporting planners and decision makers in future urban planning. The analysis of the city size distribution deals with different disciplines such as geography, economy, demography, ecology, physics, statistics because the evolution of a city is a dynamic process involving a number of different factors. The main issue of great importance in modelling urban growth includes spatial and temporal dynamics, scale dynamics, man-induced land use change. The understanding and the monitoring of urban expansion processes are a challenging issue concerning the availability of both (i) time-series data set and (ii) updated information relating to current urban spatial structure and city edges in order to define and locate the evolution trends. In such a context, an effective contribution can be offered by satellite remote sensing technologies, which are able to provide both historical data archive and up-to-date imagery. Satellite technologies represent a cost-effective mean for obtaining useful data that can be easily and systematically updated for the whole globe. The use of satellite imagery along with spatial analysis techniques can be used for the monitoring and planning purposes as these enable the reporting of ongoing trends of urban growth at a detailed level. This paper analyses the spatial characterization of urban expansion by using multidate

  2. Advanced DTM Generation from Very High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Perko, R.; Raggam, H.; Gutjahr, K. H.; Schardt, M.

    2015-03-01

    This work proposes a simple filtering approach that can be applied to digital surface models in order to extract digital terrain models. The method focusses on robustness and computational efficiency and is in particular tailored to filter DSMs that are extracted from satellite stereo images. It represents an evolution of an existing DTM generation method and includes distinct advancement through the integration of multi-directional processing as well as slope dependent filtering, thus denoted "MSD filtering". The DTM generation workflow is fully automatic and requires no user interaction. Exemplary results are presented for a DSM generated from a Pléiades tri-stereo image data set. Qualitative and quantitative evaluations with respect to highly accurate reference LiDAR data confirm the effectiveness of the proposed algorithm.

  3. Concepts for on-board satellite image registration, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.; Daluge, D. R.; Aanstoos, J. V.

    1980-01-01

    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite.

  4. Instrument calibration architecture of Radar Imaging Satellite (RISAT-1)

    NASA Astrophysics Data System (ADS)

    Misra, T.; Bhan, R.; Putrevu, D.; Mehrotra, P.; Nandy, P. S.; Shukla, S. D.; Rao, C. V. N.; Dave, D. B.; Desai, N. M.

    2016-05-01

    Radar Imaging Satellite (RISAT-1) payload system is configured to perform self-calibration of transmit and receive paths before and after imaging sessions through a special instrument calibration technique. Instrument calibration architecture of RISAT-1 supported ground verification and validation of payload including active array antenna. During on-ground validation of 126 beams of active array antenna which needed precise calibration of boresight pointing, a unique method called "collimation coefficient error estimation" was utilized. This method of antenna calibration was supported by special hardware and software calibration architecture of RISAT-1. This paper concentrates on RISAT-1 hardware and software architecture which supports in-orbit and on-ground instrument calibration. Efforts are also put here to highlight use of special calibration scheme of RISAT-1 instrument to evaluate system response during ground verification and validation.

  5. Developing Geostationary Satellite Imaging at the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    van Belle, G.; von Braun, K.; Armstrong, J. T.; Baines, E. K.; Schmitt, H. R.; Jorgensen, A. M.; Elias, N.; Mozurkewich, D.; Oppenheimer, R.; Restaino, S.

    The Navy Precision Optical Interferometer (NPOI) is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is operated by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates every night of the year (except holidays) in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and technology development for the partners. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, a program of facility upgrades will be outlined. These upgrades include AO-assisted large apertures feeding each beam line, new visible and near-infrared instrumentation on the back end, and infrastructure supporting baseline-wavelength bootstrapping which takes advantage of the spectral and morphological features of geosats. The large apertures will enable year-round observations of objects brighter than 10th magnitude in the near-IR. At its core, the system is enabled by a approach that tracks the low-resolution (and thus, high signal-to-noise), bright near-IR fringes between aperture pairs, allowing multi-aperture phasing for high-resolution visible light imaging. A complementary program of visible speckle and aperture masked imaging at Lowell's 4.3-m Discovery Channel Telescope, for constraining the low-spatial frequency imaging information, will also be outlined, including results from a pilot imaging study.

  6. A low cost thermal infrared hyperspectral imager for small satellites

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  7. A low cost thermal infrared hyperspectral imager for small satellites

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient t