Guaranteeing synchronous message deadlines with the timed token medium access control protocol
NASA Technical Reports Server (NTRS)
Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh
1992-01-01
We study the problem of guaranteeing synchronous message deadlines in token ring networks where the timed token medium access control protocol is employed. Synchronous capacity, defined as the maximum time for which a node can transmit its synchronous messages every time it receives the token, is a key parameter in the control of synchronous message transmission. To ensure the transmission of synchronous messages before their deadlines, synchronous capacities must be properly allocated to individual nodes. We address the issue of appropriate allocation of the synchronous capacities. Several synchronous capacity allocation schemes are analyzed in terms of their ability to satisfy deadline constraints of synchronous messages. We show that an inappropriate allocation of the synchronous capacities could cause message deadlines to be missed even if the synchronous traffic is extremely low. We propose a scheme called the normalized proportional allocation scheme which can guarantee the synchronous message deadlines for synchronous traffic of up to 33 percent of available utilization. To date, no other synchronous capacity allocation scheme has been reported to achieve such substantial performance. Another major contribution of this paper is an extension to the previous work on the bounded token rotation time. We prove that the time elapsed between any consecutive visits to a particular node is bounded by upsilon TTRT, where TTRT is the target token rotation time set up at system initialization time. The previous result by Johnson and Sevcik is a special case where upsilon = 2. We use this result in the analysis of various synchronous allocation schemes. It can also be applied in other similar studies.
Robust Synchronization Schemes for Dynamic Channel Environments
NASA Technical Reports Server (NTRS)
Xiong, Fugin
2003-01-01
Professor Xiong will investigate robust synchronization schemes for dynamic channel environment. A sliding window will be investigated for symbol timing synchronizer and an open loop carrier estimator for carrier synchronization. Matlab/Simulink will be used for modeling and simulations.
Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.
Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing
2015-04-01
This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.
Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.
He, Ping; Ma, Shu-Hua; Fan, Tao
2012-12-01
This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.
Robust Timing Synchronization in Aeronautical Mobile Communication Systems
NASA Technical Reports Server (NTRS)
Xiong, Fu-Qin; Pinchak, Stanley
2004-01-01
This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical communications system is the high-sample-rate Modified Sliding Window Synchronizer. By incorporating this synchronizer into their system, NASA can be assured that their system will be operational in extremely adverse conditions. The quick convergence time of the MSWS should allow the use of high-level protocols. However, if NASA feels that reduced system complexity is the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector would be the best choice.
Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach
Khan, Jawaad Ullah; Cho, Ho-Shin
2016-01-01
In this paper, we propose a data-gathering scheme for hierarchical underwater sensor networks, where multiple Autonomous Underwater Vehicles (AUVs) are deployed over large-scale coverage areas. The deployed AUVs constitute an intermittently connected multihop network through inter-AUV synchronization (in this paper, synchronization means an interconnection between nodes for communication) for forwarding data to the designated sink. In such a scenario, the performance of the multihop communication depends upon the synchronization among the vehicles. The mobility parameters of the vehicles vary continuously because of the constantly changing underwater currents. The variations in the AUV mobility parameters reduce the inter-AUV synchronization frequency contributing to delays in the multihop communication. The proposed scheme improves the AUV synchronization frequency by permitting neighboring AUVs to share their status information via a pre-selected node called an agent-node at the static layer of the network. We evaluate the proposed scheme in terms of the AUV synchronization frequency, vertical delay (node→AUV), horizontal delay (AUV→AUV), end-to-end delay, and the packet loss ratio. Simulation results show that the proposed scheme significantly reduces the aforementioned delays without the synchronization time-out process employed in conventional works. PMID:27706042
Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
Khan, Jawaad Ullah; Cho, Ho-Shin
2016-09-30
In this paper, we propose a data-gathering scheme for hierarchical underwater sensor networks, where multiple Autonomous Underwater Vehicles (AUVs) are deployed over large-scale coverage areas. The deployed AUVs constitute an intermittently connected multihop network through inter-AUV synchronization (in this paper, synchronization means an interconnection between nodes for communication) for forwarding data to the designated sink. In such a scenario, the performance of the multihop communication depends upon the synchronization among the vehicles. The mobility parameters of the vehicles vary continuously because of the constantly changing underwater currents. The variations in the AUV mobility parameters reduce the inter-AUV synchronization frequency contributing to delays in the multihop communication. The proposed scheme improves the AUV synchronization frequency by permitting neighboring AUVs to share their status information via a pre-selected node called an agent-node at the static layer of the network. We evaluate the proposed scheme in terms of the AUV synchronization frequency, vertical delay (node→AUV), horizontal delay (AUV→AUV), end-to-end delay, and the packet loss ratio. Simulation results show that the proposed scheme significantly reduces the aforementioned delays without the synchronization time-out process employed in conventional works.
Approximate Synchrony: An Abstraction for Distributed Almost Synchronous Systems
2015-05-29
finding bugs. Verification of the TSCH Protocol. Time Synchronized Channel Hopping (TSCH) is a Medium Access Control scheme that enables low power...allotted by the schedule and remain in sleep mode otherwise. In the ab- sence of precise time-synchronization, the time-slots across nodes would not be
Self-synchronization for spread spectrum audio watermarks after time scale modification
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Sharma, Gaurav
2014-02-01
De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.
New type of chaos synchronization in discrete-time systems: the F-M synchronization
NASA Astrophysics Data System (ADS)
Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh
2018-04-01
In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.
NASA Astrophysics Data System (ADS)
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
A scheme for synchronizing clocks connected by a packet communication network
NASA Astrophysics Data System (ADS)
dos Santos, R. V.; Monteiro, L. H. A.
2012-07-01
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.
Detecting unstable periodic orbits in chaotic time series using synchronization
NASA Astrophysics Data System (ADS)
Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold
2017-07-01
An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.
NASA Astrophysics Data System (ADS)
Yang, Yikang; Li, Xue; Liu, Lei
2009-12-01
Gravity field measurement for the interested planets and their moos in solar system, such as Luna and Mars, is one important task in the next step of deep-space mission. In this paper, Similar to GRACE mission, LLSST and DOWR technology of common-orbit master-slave satellites around task planet is inherited in this scheme. Furthermore, by intersatellite 2-way UQPSK-DSSS link, time synchronization and data processing are implemented autonomously by masterslave satellites instead of GPS and ground facilities supporting system. Conclusion is derived that the ISL DOWR based on 2-way incoherent time synchronization has the same precise level to GRACE DOWR based on GPS time synchronization. Moreover, because of inter-satellite link, the proposed scheme is rather autonomous for gravity field measurement of the task planet in deep-space mission.
Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks.
Wan, Ying; Cao, Jinde; Wen, Guanghui; Yu, Wenwu
2016-01-01
The fixed-time master-slave synchronization of Cohen-Grossberg neural networks with parameter uncertainties and time-varying delays is investigated. Compared with finite-time synchronization where the convergence time relies on the initial synchronization errors, the settling time of fixed-time synchronization can be adjusted to desired values regardless of initial conditions. Novel synchronization control strategy for the slave neural network is proposed. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, some sufficient schemes are provided for selecting the control parameters to ensure synchronization with required convergence time and in the presence of parameter uncertainties. Corresponding criteria for tuning control inputs are also derived for the finite-time synchronization. Finally, two numerical examples are given to illustrate the validity of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
ML Frame Synchronization for OFDM Systems Using a Known Pilot and Cyclic Prefixes
NASA Astrophysics Data System (ADS)
Huh, Heon
Orthogonal frequency-division multiplexing (OFDM) is a popular air interface technology that is adopted as a standard modulation scheme for 4G communication systems owing to its excellent spectral efficiency. For OFDM systems, synchronization problems have received much attention along with peak-to-average power ratio (PAPR) reduction. In addition to frequency offset estimation, frame synchronization is a challenging problem that must be solved to achieve optimal system performance. In this paper, we present a maximum likelihood (ML) frame synchronizer for OFDM systems. The synchronizer exploits a synchronization word and cyclic prefixes together to improve the synchronization performance. Numerical results show that the performance of the proposed frame synchronizer is better than that of conventional schemes. The proposed synchronizer can be used as a reference for evaluating the performance of other suboptimal frame synchronizers. We also modify the proposed frame synchronizer to reduce the implementation complexity and propose a near-ML synchronizer for time-varying fading channels.
NASA Astrophysics Data System (ADS)
Liu, Jian; Ruan, Xiaoe
2017-07-01
This paper develops two kinds of derivative-type networked iterative learning control (NILC) schemes for repetitive discrete-time systems with stochastic communication delay occurred in input and output channels and modelled as 0-1 Bernoulli-type stochastic variable. In the two schemes, the delayed signal of the current control input is replaced by the synchronous input utilised at the previous iteration, whilst for the delayed signal of the system output the one scheme substitutes it by the synchronous predetermined desired trajectory and the other takes it by the synchronous output at the previous operation, respectively. In virtue of the mathematical expectation, the tracking performance is analysed which exhibits that for both the linear time-invariant and nonlinear affine systems the two kinds of NILCs are convergent under the assumptions that the probabilities of communication delays are adequately constrained and the product of the input-output coupling matrices is full-column rank. Last, two illustrative examples are presented to demonstrate the effectiveness and validity of the proposed NILC schemes.
NASA Astrophysics Data System (ADS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
NASA Technical Reports Server (NTRS)
Xiong, Fugin
2003-01-01
One half of Professor Xiong's effort will investigate robust timing synchronization schemes for dynamically varying characteristics of aviation communication channels. The other half of his time will focus on efficient modulation and coding study for the emerging quantum communications.
Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings
NASA Astrophysics Data System (ADS)
Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang
2013-12-01
This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.
DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.
Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang
2018-05-25
Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.
A new chaotic communication scheme based on adaptive synchronization.
Xiang-Jun, Wu
2006-12-01
A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.
Aguilar-López, Ricardo; Mata-Machuca, Juan L
2016-01-01
This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme.
Aguilar-López, Ricardo
2016-01-01
This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme. PMID:27738651
Aurora Synchronization Improvement
1991-06-01
AURORA SYNCHRONIZATION IMPROVEMENT D. M. Weidenheimer, N. R. Pereira, and D. C. Judy* Berkeley Research Associates, Inc., PO Box 852, Springfield...Recently, synchronization of the four pulse-forming lines (PFLs) has been significantly improved over the original de- sign. The four parallel PFLs are...now synchronized to within 10 ns over 60% of the shots. This paper describes the current switching scheme, reports the current timing statistics, and
Selvaraj, P; Sakthivel, R; Kwon, O M
2018-06-07
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Zhang, Gang
2013-12-15
This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme ismore » confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.« less
Symbol Synchronization for Diffusion-Based Molecular Communications.
Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert
2017-12-01
Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol synchronization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my
This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.
Content-based intermedia synchronization
NASA Astrophysics Data System (ADS)
Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat
1995-03-01
Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.
Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.
Chen, Qiang; Ren, Xuemei; Na, Jing
2015-09-01
In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A new scheme of general hybrid projective complete dislocated synchronization
NASA Astrophysics Data System (ADS)
Chu, Yan-dong; Chang, Ying-Xiang; An, Xin-lei; Yu, Jian-Ning; Zhang, Jian-Gang
2011-03-01
Based on the Lyapunov stability theorem, a new type of chaos synchronization, general hybrid projective complete dislocated synchronization (GHPCDS), is proposed under the framework of drive-response systems. The difference between the GHPCDS and complete synchronization is that every state variable of drive system does not equal the corresponding state variable, but equal other ones of response system while evolving in time. The GHPCDS includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. As examples, the Lorenz chaotic system, Rössler chaotic system, hyperchaotic Chen system and hyperchaotic Lü system are discussed. Numerical simulations are given to show the effectiveness of these methods.
Receptors as a master key for synchronization of rhythms
NASA Astrophysics Data System (ADS)
Nagano, Seido
2004-03-01
A simple, but general scheme to achieve synchronization of rhythms was derived. The scheme has been inductively generalized from the modelling study of cellular slime mold. It was clarified that biological receptors work as apparatuses that can convert external stimulus to the form of nonlinear interaction within individual oscillators. Namely, the mathematical model receptor works as a nonlinear coupling apparatus between nonlinear oscillators. Thus, synchronization is achieved as a result of competition between two kinds of non-linearities, and to achieve synchronization, even a small external stimulation via model receptors can change the characteristics of individual oscillators significantly. The derived scheme is very simple mathematically, but it is a very powerful scheme as numerically demonstrated. The biological receptor scheme should significantly help understanding of synchronization phenomena in biology since groups of limit cycle oscillators and receptors are ubiquitous in biological systems. Reference: S. Nagano, Phys Rev. E67, 056215(2003)
NASA Astrophysics Data System (ADS)
Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry
2009-03-01
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.
A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing
NASA Astrophysics Data System (ADS)
Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai
2015-11-01
High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.
Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Lu, Li; He, Bing; Man, Chuntao; Wang, Shun
2015-04-01
In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved. By applying the Lyapunov-Krasovskii functional method and stochastic analysis, sufficient conditions are established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Inc. All rights reserved.
Design and Hardware Implementation of a New Chaotic Secure Communication Technique
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
Key management and encryption under the bounded storage model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.
2005-11-01
There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channelmore » using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.« less
Yang, Xinsong; Feng, Zhiguo; Feng, Jianwen; Cao, Jinde
2017-01-01
In this paper, synchronization in an array of discrete-time neural networks (DTNNs) with time-varying delays coupled by Markov jump topologies is considered. It is assumed that the switching information can be collected by a tracker with a certain probability and transmitted from the tracker to controller precisely. Then the controller selects suitable control gains based on the received switching information to synchronize the network. This new control scheme makes full use of received information and overcomes the shortcomings of mode-dependent and mode-independent control schemes. Moreover, the proposed control method includes both the mode-dependent and mode-independent control techniques as special cases. By using linear matrix inequality (LMI) method and designing new Lyapunov functionals, delay-dependent conditions are derived to guarantee that the DTNNs with Markov jump topologies to be asymptotically synchronized. Compared with existing results on Markov systems which are obtained by separately using mode-dependent and mode-independent methods, our result has great flexibility in practical applications. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.
Luo, Junhai; Fan, Liying
2017-03-30
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks
Luo, Junhai; Fan, Liying
2017-01-01
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342
NASA Astrophysics Data System (ADS)
Kumari, Komal; Donzis, Diego
2017-11-01
Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
NASA Astrophysics Data System (ADS)
Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
Adaptive elimination of synchronization in coupled oscillator
NASA Astrophysics Data System (ADS)
Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei
2017-08-01
We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.
NASA Astrophysics Data System (ADS)
Tang, Guoning; Xu, Kesheng; Jiang, Luoluo
2011-10-01
The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.
A discrete-time chaos synchronization system for electronic locking devices
NASA Astrophysics Data System (ADS)
Minero-Ramales, G.; López-Mancilla, D.; Castañeda, Carlos E.; Huerta Cuellar, G.; Chiu Z., R.; Hugo García López, J.; Jaimes Reátegui, R.; Villafaña Rauda, E.; Posadas-Castillo, C.
2016-11-01
This paper presents a novel electronic locking key based on discrete-time chaos synchronization. Two Chen chaos generators are synchronized using the Model-Matching Approach, from non-linear control theory, in order to perform the encryption/decryption of the signal to be transmitted. A model/transmitter system is designed, generating a key of chaotic pulses in discrete-time. A plant/receiver system uses the above mentioned key to unlock the mechanism. Two alternative schemes to transmit the private chaotic key are proposed. The first one utilizes two transmission channels. One channel is used to encrypt the chaotic key and the other is used to achieve output synchronization. The second alternative uses only one transmission channel for obtaining synchronization and encryption of the chaotic key. In both cases, the private chaotic key is encrypted again with chaos to solve secure communication-related problems. The results obtained via simulations contribute to enhance the electronic locking devices.
Iqbal, Muhammad; Rehan, Muhammad; Khaliq, Abdul; Saeed-ur-Rehman; Hong, Keum-Shik
2014-01-01
This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.
Synchronization of coupled metronomes on two layers
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang
2017-12-01
Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.
Step to improve neural cryptography against flipping attacks.
Zhou, Jiantao; Xu, Qinzhen; Pei, Wenjiang; He, Zhenya; Szu, Harold
2004-12-01
Synchronization of neural networks by mutual learning has been demonstrated to be possible for constructing key exchange protocol over public channel. However, the neural cryptography schemes presented so far are not the securest under regular flipping attack (RFA) and are completely insecure under majority flipping attack (MFA). We propose a scheme by splitting the mutual information and the training process to improve the security of neural cryptosystem against flipping attacks. Both analytical and simulation results show that the success probability of RFA on the proposed scheme can be decreased to the level of brute force attack (BFA) and the success probability of MFA still decays exponentially with the weights' level L. The synchronization time of the parties also remains polynomial with L. Moreover, we analyze the security under an advanced flipping attack.
NASA Astrophysics Data System (ADS)
Chen, Dechao; Zhang, Yunong
2017-10-01
Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.
Li, Jinqing; Qi, Hui; Cong, Ligang; Yang, Huamin
2017-01-01
Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN) response system and the 6th-order cellular neural network (CNN) drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme. PMID:28910349
Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen
2017-09-04
According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.
Active synchronization between two different chaotic dynamical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-15
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
On chaos synchronization and secure communication.
Kinzel, W; Englert, A; Kanter, I
2010-01-28
Chaos synchronization, in particular isochronal synchronization of two chaotic trajectories to each other, may be used to build a means of secure communication over a public channel. In this paper, we give an overview of coupling schemes of Bernoulli units deduced from chaotic laser systems, different ways to transmit information by chaos synchronization and the advantage of bidirectional over unidirectional coupling with respect to secure communication. We present the protocol for using dynamical private commutative filters for tap-proof transmission of information that maps the task of a passive attacker to the class of non-deterministic polynomial time-complete problems. This journal is © 2010 The Royal Society
Research on time synchronization scheme of MES systems in manufacturing enterprise
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Wu, Kun; Sui, Changhao; Gu, Jin
2018-04-01
With the popularity of information and automatic production in the manufacturing enterprise, data interaction between business systems is more and more frequent. Therefore, the accuracy of time is getting higher and higher. However, the NTP network time synchronization methods lack the corresponding redundancy and monitoring mechanisms. When failure occurs, it can only make up operations after the event, which has a great effect on production data and systems interaction. Based on this, the paper proposes a RHCS-based NTP server architecture, automatically detect NTP status and failover by script.
NASA Astrophysics Data System (ADS)
Wu, Wei; Cui, Bao-Tong
2007-07-01
In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.
Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo
2015-01-01
In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974
Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo
2015-07-28
In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.
Analytical minimization of synchronicity errors in stochastic identification
NASA Astrophysics Data System (ADS)
Bernal, D.
2018-01-01
An approach to minimize error due to synchronicity faults in stochastic system identification is presented. The scheme is based on shifting the time domain signals so the phases of the fundamental eigenvector estimated from the spectral density are zero. A threshold on the mean of the amplitude-weighted absolute value of these phases, above which signal shifting is deemed justified, is derived and found to be proportional to the first mode damping ratio. It is shown that synchronicity faults do not map precisely to phasor multiplications in subspace identification and that the accuracy of spectral density estimated eigenvectors, for inputs with arbitrary spectral density, decrease with increasing mode number. Selection of a corrective strategy based on signal alignment, instead of eigenvector adjustment using phasors, is shown to be the product of the foregoing observations. Simulations that include noise and non-classical damping suggest that the scheme can provide sufficient accuracy to be of practical value.
Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo
2013-12-15
We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delaymore » in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.« less
NASA Astrophysics Data System (ADS)
Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao
2013-04-01
According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Sivaganesh, G.; Daniel Sweetlin, M.; Arulgnanam, A.
2016-07-01
In this paper, we present a numerical investigation on the robust synchronization phenomenon observed in a unidirectionally-coupled quasiperiodically-forced simple nonlinear electronic circuit system exhibiting strange non-chaotic attractors (SNAs) in its dynamics. The SNA obtained in the simple quasiperiodic system is characterized for its SNA behavior. Then, we studied the nature of the synchronized state in unidirectionally coupled SNAs by using the Master-Slave approach. The stability of the synchronized state is studied through the master stability functions (MSF) obtained for coupling different state variables of the drive and response system. The property of robust synchronization is analyzed for one type of coupling of the state variables through phase portraits, conditional lyapunov exponents and the Kaplan-Yorke dimension. The phenomenon of complete synchronization of SNAs via a unidirectional coupling scheme is reported for the first time.
Physical-Layer Network Coding for VPN in TDM-PON
NASA Astrophysics Data System (ADS)
Wang, Qike; Tse, Kam-Hon; Chen, Lian-Kuan; Liew, Soung-Chang
2012-12-01
We experimentally demonstrate a novel optical physical-layer network coding (PNC) scheme over time-division multiplexing (TDM) passive optical network (PON). Full-duplex error-free communications between optical network units (ONUs) at 2.5 Gb/s are shown for all-optical virtual private network (VPN) applications. Compared to the conventional half-duplex communications set-up, our scheme can increase the capacity by 100% with power penalty smaller than 3 dB. Synchronization of two ONUs is not required for the proposed VPN scheme
High-order asynchrony-tolerant finite difference schemes for partial differential equations
NASA Astrophysics Data System (ADS)
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
Multiswitching compound antisynchronization of four chaotic systems
NASA Astrophysics Data System (ADS)
Khan, Ayub; Khattar, Dinesh; Prajapati, Nitish
2017-12-01
Based on three drive-one response system, in this article, the authors investigate a novel synchronization scheme for a class of chaotic systems. The new scheme, multiswitching compound antisynchronization (MSCoAS), is a notable extension of the earlier multiswitching schemes concerning only one drive-one response system model. The concept of multiswitching synchronization is extended to compound synchronization scheme such that the state variables of three drive systems antisynchronize with different state variables of the response system, simultaneously. The study involving multiswitching of three drive systems and one response system is first of its kind. Various switched modified function projective antisynchronization schemes are obtained as special cases of MSCoAS, for a suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of the presented method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krempasky, J.; Flechsig, U.; Korhonen, T.
Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network andmore » allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.« less
Cluster synchronization of community network with distributed time delays via impulsive control
NASA Astrophysics Data System (ADS)
Leng, Hui; Wu, Zhao-Yan
2016-11-01
Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).
Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E
2017-08-01
This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.
Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve
2016-10-01
In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly. PMID:28275216
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-16
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly.
Wang, Minlin; Ren, Xuemei; Chen, Qiang
2018-01-01
The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun
2018-06-01
This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.
Error function attack of chaos synchronization based encryption schemes.
Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu
2004-03-01
Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor. Copyright 2004 American Institute of Physics.
An Engineering Trade Space Analysis for a Space-Based Hyperspectral Chromotomographic Scanner
2009-03-26
The Hyperion’s EO-1 host satellite is in a polar, circular, sun -synchronous or- bit at 98.7 inclination . The orbit follows that of Landsat-7 by one...science orbit around Mars 13 months after launch. The orbit is a near circular (apogee of 320 km, perigee of 255 km), near polar, sun -synchronous orbit ...payload design, operating scheme and orbit to demonstrate this technology in low- earth orbit . This instrument promises the capability of adding a time
A Synchronous Digital Duplexing Technique for OFDMA-Based Indoor Communications
NASA Astrophysics Data System (ADS)
Park, Chang-Hwan; Ko, Yo-Han; Kim, Yeong-Jun; Park, Kyung-Won; Jeon, Won-Gi; Paik, Jong-Ho; Lee, Seok-Pil; Cho, Yong-Soo
In this paper, we propose a new digital duplexing scheme, called synchronous digital duplexing (SDD), which can increase data efficiency and flexibility of resource by transmitting uplink signal and downlink signal simultaneously in wireless communication. In order to transmit uplink and downlink signals simultaneously, the proposed SDD obtains mutual information among subscriber stations (SSs) with a mutual ranging symbol. This information is used for selection of transmission time, decision on cyclic suffix (CS) insertion, determination of CS length, and re-establishment of FFT starting point.
Synchronization for Optical PPM with Inter-Symbol Guard Times
NASA Astrophysics Data System (ADS)
Rogalin, R.; Srinivasan, M.
2017-05-01
Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.
Self-organizing plasma behavior in multiple grid IEC fusion devices for propulsion
NASA Astrophysics Data System (ADS)
McGuire, Thomas; Dietrich, Carl; Sedwick, Raymond
2004-11-01
Inertial Electrostatic Confinement, IEC, of charged particles for the purpose of producing fusion energy is a low mass alternative to more traditional magnetic and inertial confinement fusion schemes. Experimental fusion production and energy efficiency in IEC devices to date has been hindered by confinement limitations. Analysis of the major loss mechanisms suggests that the low pressure beam-beam interaction regime holds the most promise for improved efficiency operation. Numerical simulation of multiple grid schemes shows greatly increased confinement times over contemporary single grid designs by electrostatic focusing of the ion beams. An analytical model of this focusing is presented. With the increased confinement, beams self-organize from a uniform condition into bunches that oscillate at the bounce frequency. The bunches from neighboring beams are then observed to synchronize with each other. Analysis of the anisotropic collisional dynamics responsible for the synchronization is presented. The importance of focusing and density on the beam dynamics are examined. Further, this synchronization appears to modify the particle distribution so as to maintain the non-maxwellian, beam-like energy profile within a bunch. The ability of synchronization to modify and counter-act the thermalization process is examined analytically at the 2-body interaction level and as a conglomeration of particles via numerical simulation. Detailed description of the experiment under development at MIT to investigate the synchronization phenomenon is presented.
Robust relativistic bit commitment
NASA Astrophysics Data System (ADS)
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
Exploring synchronisation in nonlinear data assimilation
NASA Astrophysics Data System (ADS)
Rodrigues-Pinheiro, Flavia; van Leeuwen, Peter Jan
2016-04-01
Present-day data assimilation methods are based on linearizations and face serious problems in strongly nonlinear cases such as convection. A promising solution to this problem is a particle filter, which provides a representation of the model probability density function (pdf) by a discrete set of model states, or particles. The basic particle filter uses Bayes's theorem directly, but does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. This allows one to change the model equations to bring the particles closer to the observations, resulting in very efficient update schemes at observation times, but extending these schemes between observation times is computationally expensive. Simple solutions like nudging have been shown to be not powerful enough. A potential solution might be synchronization, in which one tries to synchronise the model of a system with the true evolution of the system via the observations. In practice this means that an extra term is added to the model equations that hampers growth of instabilities on the synchronization manifold. Especially the delayed versions, where observations are allowed to influence the state in the past have shown some remarkable successes. Unfortunately, all efforts ignore errors in the observations, and as soon as these are introduced the performance degrades considerably. There is a close connection between time-delayed synchronization and a Kalman Smoother, which does allow for observational (and other) errors. In this presentation we will explore this connection to the full, with a view to extend synchronization to more realistic settings. Specifically performance of the spread of information from observed to unobserved variables is studied in detail. The results indicate that this extended synchronisation is a promising tool to steer the model states towards the observations efficiently. If time permits, we will show initial results of embedding the new synchronization method into a particle filter.
NASA Astrophysics Data System (ADS)
Karasawa, Yoshio; Kumagai, Taichi; Takemoto, Atsushi; Fujii, Takeo; Ito, Kenji; Suzuki, Noriyoshi
A novel timing synchronizing scheme is proposed for use in inter-vehicle communication (IVC) with an autonomous distributed intelligent transport system (ITS). The scheme determines the timing of packet signal transmission in the IVC network and employs the guard interval (GI) timing in the orthogonal frequency divisional multiplexing (OFDM) signal currently used for terrestrial broadcasts in the Japanese digital television system (ISDB-T). This signal is used because it is expected that the automotive market will demand the capability for cars to receive terrestrial digital TV broadcasts in the near future. The use of broadcasts by automobiles presupposes that the on-board receivers are capable of accurately detecting the GI timing data in an extremely low carrier-to-noise ratio (CNR) condition regardless of a severe multipath environment which will introduce broad scatter in signal arrival times. Therefore, we analyzed actual broadcast signals received in a moving vehicle in a field experiment and showed that the GI timing signal is detected with the desired accuracy even in the case of extremely low-CNR environments. Some considerations were also given about how to use these findings.
NASA Astrophysics Data System (ADS)
Lü, Hua-Ping; Wang, Shi-Hong; Li, Xiao-Wen; Tang, Guo-Ning; Kuang, Jin-Yu; Ye, Wei-Ping; Hu, Gang
2004-06-01
Two-dimensional one-way coupled map lattices are used for cryptography where multiple space units produce chaotic outputs in parallel. One of the outputs plays the role of driving for synchronization of the decryption system while the others perform the function of information encoding. With this separation of functions the receiver can establish a self-checking and self-correction mechanism, and enjoys the advantages of both synchronous and self-synchronizing schemes. A comparison between the present system with the system of advanced encryption standard (AES) is presented in the aspect of channel noise influence. Numerical investigations show that our system is much stronger than AES against channel noise perturbations, and thus can be better used for secure communications with large channel noise.
Hardware-assisted software clock synchronization for homogeneous distributed systems
NASA Technical Reports Server (NTRS)
Ramanathan, P.; Kandlur, Dilip D.; Shin, Kang G.
1990-01-01
A clock synchronization scheme that strikes a balance between hardware and software solutions is proposed. The proposed is a software algorithm that uses minimal additional hardware to achieve reasonably tight synchronization. Unlike other software solutions, the guaranteed worst-case skews can be made insensitive to the maximum variation of message transit delay in the system. The scheme is particularly suitable for large partially connected distributed systems with topologies that support simple point-to-point broadcast algorithms. Examples of such topologies include the hypercube and the mesh interconnection structures.
Capture and playback synchronization in video conferencing
NASA Astrophysics Data System (ADS)
Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song
1995-03-01
Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.
A comparison of frame synchronization methods. [Deep Space Network
NASA Technical Reports Server (NTRS)
Swanson, L.
1982-01-01
Different methods are considered for frame synchronization of a concatenated block code/Viterbi link. Synchronization after Viterbi decoding, synchronization before Viterbi decoding based on hard-quantized channel symbols are all compared. For each scheme, the probability under certain conditions of true detection of sync within four 10,000 bit frames is tabulated.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.; Label, Kenneth A.; Pellish, Jonathan A.; Campola, Michael J.
2016-01-01
We present the challenges that arise when using redundant clock domains due to their time-skew. Radiation data show that a singular clock domain provides an improved triple modular redundant (TMR) scheme over redundant clocks.
Schemes for Oestrus Synchronization Protocols and Controlled Breeding Programs in Cattle
NASA Astrophysics Data System (ADS)
Sabo, Y. G.; Sandabe, U. K.; Maina, V. A.; Balla, H. G.
Today prostaglandin and progesterone has been found widely used in several schemes of oestrus synchronization and controlled breeding program. Several controlled breeding program, have been developed for synchronizing groups of all open or lactating cows within a breeding group with or without ovarian palpation. Such programs are reviewed in this article which involves extending the luteal phase by treatment with exogenous progesterone such as: progesterone treatment regimes using syncro-mate-B, progesterone releasing intravaginal device, melengesterol acetate-select and melegestrol acetate plus prostaglandin. Also reviewed in the program is the termination of the luteal phase by treatment with prostaglandin or its analogues. These includes, controlled breeding without ovarian palpation such as, the 7-days program; 11-days program, target breeding, ovsynch program, Heat synch, Cosynch and pre synch-ovsynch program. In our opinion full potential of progesterone and prostaglandin for the detection of oestrus and timed artificial insemination should be utilized. This reduces the much labour input employed in previous years. The practitioner of the livestock herd health must-develop strategies for the delivery of this technology to livestock farmers, its use and limitations.
Effect of asynchrony on numerical simulations of fluid flow phenomena
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Mahoney, Bryan; Donzis, Diego
2015-11-01
Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.
Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet
2006-01-01
A collaborative framework/environment was proto-typed to prove the feasibility of scheduling space flight missions on NASA's Deep Space Network (DSN) in a distributed fashion. In this environment, effective collaboration relies on efficient communications among all flight mission and DSN scheduling users. There-fore, messaging becomes critical to timely event notification and data synchronization. In the prototype, a rapid messaging system using Java Message Service (JMS) in a mixed Java and .NET environment is established. This scheme allows both Java and .NET applications to communicate with each other for data synchronization and schedule negotiation. The JMS approach we used is based on a centralized messaging scheme. With proper use of a high speed messaging system, all users in this collaborative framework can communicate with each other to generate a schedule collaboratively to meet DSN and projects tracking needs.
Integrated optical 3D digital imaging based on DSP scheme
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.
2008-03-01
We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
Wang, Rong; Gao, Jin-Yue
2005-09-01
In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn
With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaoticmore » complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.« less
Timing performance of phased-locked loops in optical pulse position modulation communication systems
NASA Technical Reports Server (NTRS)
Lafaw, D. A.; Gardner, C. S.
1984-01-01
An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.
Timing performance of phased-locked loops in optical pulse position modulation communication systems
NASA Astrophysics Data System (ADS)
Lafaw, D. A.; Gardner, C. S.
1984-08-01
An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.
Autonomous learning by simple dynamical systems with delayed feedback.
Kaluza, Pablo; Mikhailov, Alexander S
2014-09-01
A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.
Miao, J; Wang, B; Bai, Y; Yuan, Y B; Gao, C; Wang, L J
2015-05-01
Frequency dissemination and synchronization in free space play an important role in global navigation satellite system, radio astronomy, and synthetic aperture radar. In this paper, we demonstrated a portable radio frequency dissemination scheme via free space using microwave antennas. The setup has a good environment adaptability and high dissemination stability. The frequency signal was disseminated at different distances ranging from 10 to 640 m with a fixed 10 Hz locking bandwidth, and the scaling law of dissemination stability on distance and averaging time was discussed. The preliminary extrapolation shows that the dissemination stability may reach 1 × 10(-12)/s in ground-to-satellite synchronization, which far exceeds all present methods, and is worthy for further study.
NASA Astrophysics Data System (ADS)
de Oliveira, G. L.; Ramos, R. V.
2018-03-01
In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.
More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server
Ho, Qirong; Cipar, James; Cui, Henggang; Kim, Jin Kyu; Lee, Seunghak; Gibbons, Phillip B.; Gibson, Garth A.; Ganger, Gregory R.; Xing, Eric P.
2014-01-01
We propose a parameter server system for distributed ML, which follows a Stale Synchronous Parallel (SSP) model of computation that maximizes the time computational workers spend doing useful work on ML algorithms, while still providing correctness guarantees. The parameter server provides an easy-to-use shared interface for read/write access to an ML model’s values (parameters and variables), and the SSP model allows distributed workers to read older, stale versions of these values from a local cache, instead of waiting to get them from a central storage. This significantly increases the proportion of time workers spend computing, as opposed to waiting. Furthermore, the SSP model ensures ML algorithm correctness by limiting the maximum age of the stale values. We provide a proof of correctness under SSP, as well as empirical results demonstrating that the SSP model achieves faster algorithm convergence on several different ML problems, compared to fully-synchronous and asynchronous schemes. PMID:25400488
Inverse full state hybrid projective synchronization for chaotic maps with different dimensions
NASA Astrophysics Data System (ADS)
Ouannas, Adel; Grassi, Giuseppe
2016-09-01
A new synchronization scheme for chaotic (hyperchaotic) maps with different dimensions is presented. Specifically, given a drive system map with dimension n and a response system with dimension m, the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states. The method, based on the Lyapunov stability theory and the pole placement technique, presents some useful features: (i) it enables synchronization to be achieved for both cases of n < m and n > m; (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) maps defined to date. Finally, the capability of the approach is illustrated by synchronization examples between the two-dimensional Hénon map (as the drive system) and the three-dimensional hyperchaotic Wang map (as the response system), and the three-dimensional Hénon-like map (as the drive system) and the two-dimensional Lorenz discrete-time system (as the response system).
Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks
NASA Astrophysics Data System (ADS)
Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna
2018-05-01
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
Zadoff-Chu sequence-based hitless ranging scheme for OFDMA-PON configured 5G fronthaul uplinks
NASA Astrophysics Data System (ADS)
Reza, Ahmed Galib; Rhee, June-Koo Kevin
2017-05-01
A Zadoff-Chu (ZC) sequence-based low-complexity hitless upstream time synchronization scheme is proposed for an orthogonal frequency division multiple access passive optical network configured cloud radio access network fronthaul. The algorithm is based on gradual loading of the ZC sequences, where the phase discontinuity due to the cyclic prefix is alleviated by a frequency domain phase precoder, eliminating the requirements of guard bands to mitigate intersymbol interference and inter-carrier interference. Simulation results for uncontrolled-wavelength asynchronous transmissions from four concurrent transmitting optical network units are presented to demonstrate the effectiveness of the proposed scheme.
Robust synchronization in fiber laser arrays.
Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt
2006-02-01
Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.
NASA Technical Reports Server (NTRS)
Soprano, C.
1993-01-01
CDMA (Code Division Multiple Access) is known to decrease inter-service interference in Satellite Communication Systems. Its performance is increased by chip quasi-synchronous operation which virtually eliminates the self-noise; however, the theory shows that the time error on the synchronization has to be kept at less than one tenth of a chip which, for 1 Mchip/sec. spreading rate, corresponds to 10(exp -7) sec. This, on the return-link, may only be achieved by means of a closed loop control system which, for mobile communication systems, has to be capable of autonomous operation. Until now some results have been reported on the feasibility of chip quasi-synchronous operation for mobile communication systems only including satellites on GEO (Geostationary Earth Orbit). In what follows, the basic principles are exposed, and results are presented showing how low chip synchronism error may be achieved by means of an autonomous control loop operating through satellites on any Earth orbit.
Application of Soft Computing in Coherent Communications Phase Synchronization
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.
Rodrigues, Joel J. P. C.
2014-01-01
This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong
2015-07-01
This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.
NASA Astrophysics Data System (ADS)
Ma, Qian; Liu, Yu; Xiang, Yuanjiang
2018-07-01
Due to its merits of flexible bandwidth allocation and robustness towards fiber transmission impairments, coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology draws a lot of attention for passive optical networks (PON). However, a CO-OFDM system is vulnerable to frequency offsets between modulated optical signals and optical local oscillators (OLO). This is particularly serious for low cost PONs where low cost lasers are used. Thus, it is of great interest to develop efficient algorithms for frequency synchronization in CO-OFDM systems. Usually frequency synchronization proposed in CO-OFDM systems are done by detecting the phase shift in time domain. In such a way, there is a trade-off between estimation accuracy and range. Considering that the integer frequency offset (IFO) contributes to the major frequency offset, a more efficient method to estimate IFO is of demand. By detecting IFO induced circular channel rotation (CCR), the frequency offset can be directly estimated after fast Fourier transforming (FFT). In this paper, circular acquisition offset frequency and timing synchronization (CAO-FTS) scheme is proposed. A specially-designed frequency domain pseudo noise (PN) sequence is used for CCR detection and timing synchronization. Full-range frequency offset compensation and non-plateau timing synchronization are experimentally demonstrated in presence of fiber dispersion. Based on CAO-FTS, 16.9 Gb/s CO-OFDM signal is successfully delivered over a span of 80-km single mode fiber.
High performance interconnection between high data rate networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.
1992-01-01
The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.
Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics
NASA Astrophysics Data System (ADS)
Luo, Lin; Fu, Zhijian; Cheng, Han; Yang, Lizhong
2018-02-01
Modeling pedestrian movement is an interesting problem both in statistical physics and in computational physics. Update schemes of cellular automaton (CA) models for pedestrian dynamics govern the schedule of pedestrian movement. Usually, different update schemes make the models behave in different ways, which should be carefully recalibrated. Thus, in this paper, we investigated the influence of four different update schemes, namely parallel/synchronous scheme, random scheme, order-sequential scheme and shuffled scheme, on pedestrian dynamics. The multi-velocity floor field cellular automaton (FFCA) considering the changes of pedestrians' moving properties along walking paths and heterogeneity of pedestrians' walking abilities was used. As for parallel scheme only, the collisions detection and resolution should be considered, resulting in a great difference from any other update schemes. For pedestrian evacuation, the evacuation time is enlarged, and the difference in pedestrians' walking abilities is better reflected, under parallel scheme. In face of a bottleneck, for example a exit, using a parallel scheme leads to a longer congestion period and a more dispersive density distribution. The exit flow and the space-time distribution of density and velocity have significant discrepancies under four different update schemes when we simulate pedestrian flow with high desired velocity. Update schemes may have no influence on pedestrians in simulation to create tendency to follow others, but sequential and shuffled update scheme may enhance the effect of pedestrians' familiarity with environments.
NASA Astrophysics Data System (ADS)
Konduri, Aditya
Many natural and engineering systems are governed by nonlinear partial differential equations (PDEs) which result in a multiscale phenomena, e.g. turbulent flows. Numerical simulations of these problems are computationally very expensive and demand for extreme levels of parallelism. At realistic conditions, simulations are being carried out on massively parallel computers with hundreds of thousands of processing elements (PEs). It has been observed that communication between PEs as well as their synchronization at these extreme scales take up a significant portion of the total simulation time and result in poor scalability of codes. This issue is likely to pose a bottleneck in scalability of codes on future Exascale systems. In this work, we propose an asynchronous computing algorithm based on widely used finite difference methods to solve PDEs in which synchronization between PEs due to communication is relaxed at a mathematical level. We show that while stability is conserved when schemes are used asynchronously, accuracy is greatly degraded. Since message arrivals at PEs are random processes, so is the behavior of the error. We propose a new statistical framework in which we show that average errors drop always to first-order regardless of the original scheme. We propose new asynchrony-tolerant schemes that maintain accuracy when synchronization is relaxed. The quality of the solution is shown to depend, not only on the physical phenomena and numerical schemes, but also on the characteristics of the computing machine. A novel algorithm using remote memory access communications has been developed to demonstrate excellent scalability of the method for large-scale computing. Finally, we present a path to extend this method in solving complex multi-scale problems on Exascale machines.
NASA Pioneer: Venus reverse playback telemetry program TR 78-2
NASA Technical Reports Server (NTRS)
Modestino, J. W.; Daut, D. G.; Vickers, A. L.; Matis, K. R.
1978-01-01
During the entry of the Pioneer Venus Atmospheric Probes into the Venus atmosphere, there were several events (RF blackout and data rate changes) which caused the ground receiving equipment to lose lock on the signal. This caused periods of data loss immediately following each one of these disturbing events which lasted until all the ground receiving units (receiver, subcarrier demodulator, symbol synchronizer, and sequential decoder) acquired lock once more. A scheme to recover these data by off-line data processing was implemented. This scheme consisted of receiving the S band signals from the probes with an open loop reciever (requiring no lock up on the signal) in parallel with the closed loop receivers of the real time receiving equipment, down converting the signals to baseband, and recording them on an analog recorder. The off-line processing consisted of playing the analog recording in the reverse direction (starting with the end of the tape) up, converting the signal to S-band, feeding the signal into the "real time" receiving system and recording on digital tape, the soft decisions from the symbol synchronizer.
Li, Lebao; Sun, Lingling; Zhang, Shengzhou
2016-05-01
A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Timing performance of phase-locked loops in optical pulse position modulation communication systems
NASA Astrophysics Data System (ADS)
Lafaw, D. A.
In an optical digital communication system, an accurate clock signal must be available at the receiver to provide proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. A timing error causes energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. This report simulates a timing subsystem for a satellite-to-satellite optical PPM communication link. The receiver employs direct photodetection, preprocessing of the optical signal, and a phase-locked loop for timing synchronization. The photodetector output is modeled as a filtered, doubly stochastic Poisson shot noise process. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical relations.
Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.
Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang
2017-04-10
In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.
Sudheer, K Sebastian; Sabir, M
2010-03-01
Recently introduced function projective synchronization in which chaotic systems synchronize up to a scaling function has important applications in secure communications. We design coupling function for unidirectional coupling in identical and mismatched oscillators to realize function projective synchronization through open-plus-closed-loop coupling method. Numerical simulations on Lorenz system, Rossler system, hyperchaotic Lorenz, and hyperchaotic Chen system are presented to verify the effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng
This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).
NASA Astrophysics Data System (ADS)
Yi, Xiaoqing; Hao, Liling; Jiang, Fangfang; Xu, Lisheng; Song, Shaoxiu; Li, Gang; Lin, Ling
2017-08-01
Synchronous acquisition of multi-channel biopotential signals, such as electrocardiograph (ECG) and electroencephalograph, has vital significance in health care and clinical diagnosis. In this paper, we proposed a new method which is using single channel ADC to acquire multi-channel biopotential signals modulated by square waves synchronously. In this method, a specific modulate and demodulate method has been investigated without complex signal processing schemes. For each channel, the sampling rate would not decline with the increase of the number of signal channels. More specifically, the signal-to-noise ratio of each channel is n times of the time-division method or an improvement of 3.01 ×log2n dB, where n represents the number of the signal channels. A numerical simulation shows the feasibility and validity of this method. Besides, a newly developed 8-lead ECG based on the new method has been introduced. These experiments illustrate that the method is practicable and thus is potential for low-cost medical monitors.
Zong, Qun; Shao, Shikai
2016-11-01
This paper investigates decentralized finite-time attitude synchronization for a group of rigid spacecraft by using quaternion with the consideration of environmental disturbances, inertia uncertainties and actuator saturation. Nonsingular terminal sliding mode (TSM) is used for controller design. Firstly, a theorem is proven that there always exists a kind of TSM that converges faster than fast terminal sliding mode (FTSM) for quaternion-descripted attitude control system. Controller with this kind of TSM has faster convergence and reduced computation than FTSM controller. Then, combining with an adaptive parameter estimation strategy, a novel terminal sliding mode disturbance observer is proposed. The proposed disturbance observer needs no upper bound information of the lumped uncertainties or their derivatives. On the basis of undirected topology and the disturbance observer, decentralized attitude synchronization control laws are designed and all attitude errors are ensured to converge to small regions in finite time. As for actuator saturation problem, an auxiliary variable is introduced and accommodated by the disturbance observer. Finally, simulation results are given and the effectiveness of the proposed control scheme is testified. Copyright © 2016. Published by Elsevier Ltd.
Yoo, Sung Jin; Park, Bong Seok
2017-09-06
This paper addresses a distributed connectivity-preserving synchronized tracking problem of multiple uncertain nonholonomic mobile robots with limited communication ranges. The information of the time-varying leader robot is assumed to be accessible to only a small fraction of follower robots. The main contribution of this paper is to introduce a new distributed nonlinear error surface for dealing with both the synchronized tracking and the preservation of the initial connectivity patterns among nonholonomic robots. Based on this nonlinear error surface, the recursive design methodology is presented to construct the approximation-based local adaptive tracking scheme at the robot dynamic level. Furthermore, a technical lemma is established to analyze the stability and the connectivity preservation of the total closed-loop control system in the Lyapunov sense. An example is provided to illustrate the effectiveness of the proposed methodology.
A distributed transmit beamforming synchronization strategy for multi-element radar systems
NASA Astrophysics Data System (ADS)
Xiao, Manlin; Li, Xingwen; Xu, Jikang
2017-02-01
The distributed transmit beamforming has recently been discussed as an energy-effective technique in wireless communication systems. A common ground of various techniques is that the destination node transmits a beacon signal or feedback to assist source nodes to synchronize signals. However, this approach is not appropriate for a radar system since the destination is a non-cooperative target of an unknown location. In our paper, we propose a novel synchronization strategy for a distributed multiple-element beamfoming radar system. Source nodes estimate parameters of beacon signals transmitted from others to get their local synchronization information. The channel information of the phase propagation delay is transmitted to nodes via the reflected beacon signals as well. Next, each node generates appropriate parameters to form a beamforming signal at the target. Transmit beamforming signals of all nodes will combine coherently at the target compensating for different propagation delay. We analyse the influence of the local oscillation accuracy and the parameter estimation errors on the performance of the proposed synchronization scheme. The results of numerical simulations illustrate that this synchronization scheme is effective to enable the transmit beamforming in a distributed multi-element radar system.
NASA Technical Reports Server (NTRS)
Simon, M.; Tkacenko, A.
2006-01-01
In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.
NASA Astrophysics Data System (ADS)
Zhang, Chen; Yuan, Heng; Zhang, Ning; Xu, Lixia; Zhang, Jixing; Li, Bo; Fang, Jiancheng
2018-04-01
Negatively charged nitrogen vacancy (NV‑) centers in diamond have been extensively studied as high-sensitivity magnetometers, showcasing a wide range of applications. This study experimentally demonstrates a vector magnetometry scheme based on synchronous manipulation of NV‑ center ensembles in all crystal directions using double frequency microwaves (MWs) and multi-coupled-strip-lines (mCSL) waveguide. The application of the mCSL waveguide ensures a high degree of synchrony (99%) for manipulating NV‑ centers in multiple orientations in a large volume. Manipulation with double frequency MWs makes NV‑ centers of all four crystal directions involved, and additionally leads to an enhancement of the manipulation field. In this work, by monitoring the changes in the slope of the resonance line consisting of multi-axes NV‑ centers, measurement of the direction of the external field vector was demonstrated with a sensitivity of {{10}\\prime}/\\sqrt{Hz} . Based on the scheme, the fluorescence signal contrast was improved by four times higher and the sensitivity to the magnetic field strength was improved by two times. The method provides a more practical way of achieving vector sensors based on NV‑ center ensembles in diamond.
Consistency properties of chaotic systems driven by time-delayed feedback
NASA Astrophysics Data System (ADS)
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
Zhou, Ping; Bai, Rongji
2014-01-01
Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207
Daily hunger sensation monitoring as a tool for investigating human circadian synchronization.
Cugini, P; Camillieri, G; Alessio, L; Cristina, G; De Rosa, R; Petrangeli, C M
2000-03-01
This study investigates within-day hunger sensation (HS) variability in Clinically Healthy Subjects Adapted to Living in Antarctica (CHSALA), as compared to their coeval subjects living in their mother country. The aim is to detect how the orectic stimulus behaves in those environmental conditions and occupational schemes, in order to investigate the individual synchronization to sleep-wake alternation and meal time schedule. HS was estimated via a self-rating score of its intensity on a Visual Analog Scale, repeating the subjective perception every 30 min, unless sleeping. The individual HS time-qualified scores (orexigram) were analyzed according to conventional and chronobiological procedures. The orexigrams of the CHSALA were seen to show a more cadenced intermittence during the diurnal part of the day, strictly related to the meal timing, and a preserved circadian rhythm as well. In addition, these orexigrams were resolved in a spectrum of harmonic components which indicated a subsidiary number of ultradian formants. These findings are convincing evidence that the individual orexigram may be used to investigate whether or not a single subject is synchronized to sleep-wake cycle, meal time schedule and socio-occupational routines, instead of using more complex and expensive techniques, involving automated equipments and biohumoral assays.
NASA Astrophysics Data System (ADS)
Braun, Walter; Eglin, Peter; Abello, Ricard
1993-02-01
Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.
Distributed attitude synchronization of formation flying via consensus-based virtual structure
NASA Astrophysics Data System (ADS)
Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen
2011-06-01
This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.
Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing
NASA Astrophysics Data System (ADS)
Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline
2017-11-01
Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.
An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters
NASA Astrophysics Data System (ADS)
Fard, Miad
In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.
NASA Astrophysics Data System (ADS)
Zhao, L. W.; Du, J. G.; Yin, J. L.
2018-05-01
This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time series or relations among phase shifted time series.
Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik
2018-01-01
This paper exploits the dynamical modeling, behavior analysis, and synchronization of a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters linked in a ring configuration under direction-dependent coupling. The main purpose is to investigate a robust adaptive control law for the synchronization of uncertain and perturbed neurons, communicating in a medium of bidirectional coupling. The neurons are assumed to be different and interconnected in a ring structure. The strength of the gap junctions is taken to be different for each link in the network, owing to the inter-neuronal coupling medium properties. Robust adaptive control mechanism based on Lyapunov stability analysis is employed and theoretical criteria are derived to realize the synchronization of the network of four FHN neurons in a ring form with unknown parameters under direction-dependent coupling and disturbances. The proposed scheme for synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring communication topology, having all parameters unknown, and subject to directional coupling medium and perturbations, is addressed for the first time as per our knowledge. To demonstrate the efficacy of the proposed strategy, simulation results are provided. PMID:29535622
Asymptotically stable phase synchronization revealed by autoregressive circle maps
NASA Astrophysics Data System (ADS)
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Xiong, Ling; Peng, Daiyuan; Peng, Tu; Liang, Hongbin; Liu, Zhicai
2017-11-21
Due to their frequent use in unattended and hostile deployment environments, the security in wireless sensor networks (WSNs) has attracted much interest in the past two decades. However, it remains a challenge to design a lightweight authentication protocol for WSNs because the designers are confronted with a series of desirable security requirements, e.g., user anonymity, perfect forward secrecy, resistance to de-synchronization attack. Recently, the authors presented two authentication schemes that attempt to provide user anonymity and to resist various known attacks. Unfortunately, in this work we shall show that user anonymity of the two schemes is achieved at the price of an impractical search operation-the gateway node may search for every possible value. Besides this defect, they are also prone to smart card loss attacks and have no provision for perfect forward secrecy. As our main contribution, a lightweight anonymous authentication scheme with perfect forward secrecy is designed, and what we believe the most interesting feature is that user anonymity, perfect forward secrecy, and resistance to de-synchronization attack can be achieved at the same time. As far as we know, it is extremely difficult to meet these security features simultaneously only using the lightweight operations, such as symmetric encryption/decryption and hash functions.
Peng, Daiyuan; Peng, Tu; Liang, Hongbin; Liu, Zhicai
2017-01-01
Due to their frequent use in unattended and hostile deployment environments, the security in wireless sensor networks (WSNs) has attracted much interest in the past two decades. However, it remains a challenge to design a lightweight authentication protocol for WSNs because the designers are confronted with a series of desirable security requirements, e.g., user anonymity, perfect forward secrecy, resistance to de-synchronization attack. Recently, the authors presented two authentication schemes that attempt to provide user anonymity and to resist various known attacks. Unfortunately, in this work we shall show that user anonymity of the two schemes is achieved at the price of an impractical search operation—the gateway node may search for every possible value. Besides this defect, they are also prone to smart card loss attacks and have no provision for perfect forward secrecy. As our main contribution, a lightweight anonymous authentication scheme with perfect forward secrecy is designed, and what we believe the most interesting feature is that user anonymity, perfect forward secrecy, and resistance to de-synchronization attack can be achieved at the same time. As far as we know, it is extremely difficult to meet these security features simultaneously only using the lightweight operations, such as symmetric encryption/decryption and hash functions. PMID:29160861
Multisynchronization of chaotic oscillators via nonlinear observer approach.
Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L
2014-01-01
The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology.
Multisynchronization of Chaotic Oscillators via Nonlinear Observer Approach
Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L.
2014-01-01
The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology. PMID:24578671
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.
Towards Self-Clocked Gated OCDMA Receiver
NASA Astrophysics Data System (ADS)
Idris, S.; Osadola, T.; Glesk, I.
2013-02-01
A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.
Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade
NASA Astrophysics Data System (ADS)
Zhang, Lei-an; Yu, Xiang-yong; Wei, Xiu-ting; Liu, Wei-sheng
2018-02-01
In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0), and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.
Chaos synchronization basing on symbolic dynamics with nongenerating partition.
Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen
2009-06-01
Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.
Distributed Dynamic Host Configuration Protocol (D2HCP)
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856
Distributed Dynamic Host Configuration Protocol (D2HCP).
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment.
Power System Observation by using Synchronized Phasor Measurements as a Smart Device
NASA Astrophysics Data System (ADS)
Mitani, Yasunori
Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.
Nirmal Raja, K; Maraline Beno, M
2017-07-01
In the wireless sensor network(WSN) security is a major issue. There are several network security schemes proposed in research. In the network, malicious nodes obstruct the performance of the network. The network can be vulnerable by Sybil attack. When a node illicitly assertions multiple identities or claims fake IDs, the WSN grieves from an attack named Sybil attack. This attack threatens wireless sensor network in data aggregation, synchronizing system, routing, fair resource allocation and misbehavior detection. Henceforth, the research is carried out to prevent the Sybil attack and increase the performance of the network. This paper presents the novel security mechanism and Fujisaki Okamoto algorithm and also application of the work. The Fujisaki-Okamoto (FO) algorithm is ID based cryptographic scheme and gives strong authentication against Sybil attack. By using Network simulator2 (NS2) the scheme is simulated. In this proposed scheme broadcasting key, time taken for different key sizes, energy consumption, Packet delivery ratio, Throughput were analyzed.
Chen, Bor-Sen; Hsu, Chih-Yuan
2012-10-26
Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.
2012-01-01
Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662
Non-Discretionary Access Control for Decentralized Computing Systems
1977-05-01
Semaphores are inherently read-write objects to all users. Reed and Kanodia <Reed77> propose a scheme for process synchronization using...Capabilities 84 8.2.4.4 UNIX Style Naming 85 8.2.5 Garbage Collection 86 8.3 Synchronization Without Writing 87 9. Downgrading Information 89 9.1...intruder could not follow the rapid exchange of messages and would be unable to extract information. Farber and Larsen describe synchronization and
Classification and Evaluation of Coherent Synchronous Sampled-Data Telemetry Systems
NASA Technical Reports Server (NTRS)
Viterbi, Andrew
1961-01-01
This paper analyzes the various types of continuous wave and pulse modulation for the transmission of sampled data over channels perturbed by white gaussian noise. Optimal coherent synchronous detection schemes for all the different modulation methods are shown to belong to one of two general classes: linear synchronous detection and correlation detection. The figures of merit, mean-square signal-to-error ratio and bandwidth occupancy, are determined for each system and compared.
Throughput analysis of the IEEE 802.4 token bus standard under heavy load
NASA Technical Reports Server (NTRS)
Pang, Joseph; Tobagi, Fouad
1987-01-01
It has become clear in the last few years that there is a trend towards integrated digital services. Parallel to the development of public Integrated Services Digital Network (ISDN) is service integration in the local area (e.g., a campus, a building, an aircraft). The types of services to be integrated depend very much on the specific local environment. However, applications tend to generate data traffic belonging to one of two classes. According to IEEE 802.4 terminology, the first major class of traffic is termed synchronous, such as packetized voice and data generated from other applications with real-time constraints, and the second class is called asynchronous which includes most computer data traffic such as file transfer or facsimile. The IEEE 802.4 token bus protocol which was designed to support both synchronous and asynchronous traffic is examined. The protocol is basically a timer-controlled token bus access scheme. By a suitable choice of the design parameters, it can be shown that access delay is bounded for synchronous traffic. As well, the bandwidth allocated to asynchronous traffic can be controlled. A throughput analysis of the protocol under heavy load with constant channel occupation of synchronous traffic and constant token-passing times is presented.
Gait-Cycle-Driven Transmission Power Control Scheme for a Wireless Body Area Network.
Zang, Weilin; Li, Ye
2018-05-01
In a wireless body area network (WBAN), walking movements can result in rapid channel fluctuations, which severely degrade the performance of transmission power control (TPC) schemes. On the other hand, these channel fluctuations are often periodic and are time-synchronized with the user's gait cycle, since they are all driven from the walking movements. In this paper, we propose a novel gait-cycle-driven transmission power control (G-TPC) for a WBAN. The proposed G-TPC scheme reinforces the existing TPC scheme by exploiting the periodic channel fluctuation in the walking scenario. In the proposed scheme, the user's gait cycle information acquired by an accelerometer is used as beacons for arranging the transmissions at the time points with the ideal channel state. The specific transmission power is then determined by using received signal strength indication (RSSI). An experiment was conducted to evaluate the energy efficiency and reliability of the proposed G-TPC based on a CC2420 platform. The results reveal that compared to the original RSSI/link-quality-indication-based TPC, G-TPC reduces energy consumption by 25% on the sensor node and reduce the packet loss rate by 65%.
Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivlin, Lev A
We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)
Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks
NASA Astrophysics Data System (ADS)
Yue, Ming
This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection.
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Wei, Ying; Zeng, Xiangye; Lu, Jia; Zhang, Shuangxi; Wang, Mengjun
2018-03-01
A joint timing and frequency synchronization method has been proposed for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system in this paper. The timing offset (TO), integer frequency offset (FO) and the fractional FO can be realized by only one training symbol, which consists of two linear frequency modulation (LFM) signals with opposite chirp rates. By detecting the peak of LFM signals after Radon-Wigner transform (RWT), the TO and the integer FO can be estimated at the same time, moreover, the fractional FO can be acquired correspondingly through the self-correlation characteristic of the same training symbol. Simulation results show that the proposed method can give a more accurate TO estimation than the existing methods, especially at poor OSNR conditions; for the FO estimation, both the fractional and the integer FO can be estimated through the proposed training symbol with no extra overhead, a more accurate estimation and a large FO estimation range of [ - 5 GHz, 5GHz] can be acquired.
A Resonant Synchronous Vibration Based Approach for Rotor Imbalance Detection
NASA Technical Reports Server (NTRS)
Luo, Huangeng; Rodriquez, Hector; Hallman, Darren; Lewicki, David G.
2006-01-01
This paper presents a methodology of detecting rotor imbalances, such as mass imbalance and crack-induced imbalance, using shaft synchronous vibrations. An iterative scheme is developed to identify parameters from measured synchronous vibration data. A detection system is integrated by using state-of-the-art commercial analysis equipment. A laboratory rotor test rig is used to verify the system integration and algorithm validation. A real engine test has been carried out and the results are reported.
Stabilizing Motifs in Autonomous Boolean Networks and the Yeast Cell Cycle Oscillator
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Gong, Xinwei; Socolar, Joshua
2009-03-01
Synchronously updated Boolean networks are widely used to model gene regulation. Some properties of these model networks are known to be artifacts of the clocking in the update scheme. Autonomous updating is a less artificial scheme that allows one to introduce small timing perturbations and study stability of the attractors. We argue that the stabilization of a limit cycle in an autonomous Boolean network requires a combination of motifs such as feed-forward loops and auto-repressive links that can correct small fluctuations in the timing of switching events. A recently published model of the transcriptional cell-cycle oscillator in yeast contains the motifs necessary for stability under autonomous updating [1]. [1] D. A. Orlando, et al. Nature (London), 4530 (7197):0 944--947, 2008.
Chaos in the fractional order logistic delay system: Circuit realization and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskonus, Haci Mehmet; Hammouch, Zakia; Mekkaoui, Toufik
2016-06-08
In this paper, we present a numerical study and a circuit design to prove existence of chaos in the fractional order Logistic delay system. In addition, we investigate an active control synchronization scheme in this system. Numerical and cicruit simulations show the effectiveness and feasibility of this method.
An integrate-and-fire model for synchronized bursting in a network of cultured cortical neurons.
French, D A; Gruenstein, E I
2006-12-01
It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
Cryptanalysis of a chaotic communication scheme using adaptive observer.
Liu, Ying; Tang, Wallace K S
2008-12-01
This paper addresses the cryptanalysis of a secure communication scheme recently proposed by Wu [Chaos 16, 043118 (2006)], where the information signal is modulated into a system parameter of a unified chaotic system. With the Kerckhoff principle, assuming that the structure of the cryptosystem is known, an adaptive observer can be designed to synchronize the targeted system, so that the transmitted information and the user-specific parameters are obtained. The success of adaptive synchronization is mathematically proved with the use of Lyapunov stability theory, based on the original assumption, i.e., the dynamical evolution of the information signal is available. A more practical case, but yet much more difficult, is also considered. As demonstrated with simulations, generalized synchronization is still possible, even if the derivative of the information signal is kept secret. Hence, the message can be coarsely estimated, making the security of the considered system questionable.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2010-01-01
Auditory Brainstem Responses (ABRs) are used as objective method for diagnostics and quantification of hearing loss. Many methods for automatic recognition of ABRs have been developed, but none of them include the individual measurement setup in the analysis. The purpose of this work was to design a fast recognition scheme for chirp-evoked ABRs that is adjusted to the individual measurement condition using spontaneous electroencephalographic activity (SA). For the classification, the kernel-based novelty detection scheme used features based on the inter-sweep instantaneous phase synchronization as well as energy and entropy relations in the time-frequency domain. This method provided SA discrimination from stimulations above the hearing threshold with a minimum number of sweeps, i.e., 200 individual responses. It is concluded that the proposed paradigm, processing procedures and stimulation techniques improve the detection of ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measurement time.
A precise clock distribution network for MRPC-based experiments
NASA Astrophysics Data System (ADS)
Wang, S.; Cao, P.; Shang, L.; An, Q.
2016-06-01
In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.
A Framework for Simulating Turbine-Based Combined-Cycle Inlet Mode-Transition
NASA Technical Reports Server (NTRS)
Le, Dzu K.; Vrnak, Daniel R.; Slater, John W.; Hessel, Emil O.
2012-01-01
A simulation framework based on the Memory-Mapped-Files technique was created to operate multiple numerical processes in locked time-steps and send I/O data synchronously across to one-another to simulate system-dynamics. This simulation scheme is currently used to study the complex interactions between inlet flow-dynamics, variable-geometry actuation mechanisms, and flow-controls in the transition from the supersonic to hypersonic conditions and vice-versa. A study of Mode-Transition Control for a high-speed inlet wind-tunnel model with this MMF-based framework is presented to illustrate this scheme and demonstrate its usefulness in simulating supersonic and hypersonic inlet dynamics and controls or other types of complex systems.
Single neuron firing properties impact correlation-based population coding
Hong, Sungho; Ratté, Stéphanie; Prescott, Steven A.; De Schutter, Erik
2012-01-01
Correlated spiking has been widely observed but its impact on neural coding remains controversial. Correlation arising from co-modulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate co-modulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate co-modulation whereas “ideal” coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate co-modulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. PMID:22279226
Stamova, Ivanka; Stamov, Gani
2017-12-01
In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan
2015-09-01
A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Synchronization Dynamics in a Designed Open System
NASA Astrophysics Data System (ADS)
Yokoshi, Nobuhiko; Odagiri, Kazuki; Ishikawa, Akira; Ishihara, Hajime
2017-05-01
We theoretically propose a unifying expression for synchronization dynamics between two-level constituents. Although synchronization phenomena require some substantial mediators, the distinct repercussions of their propagation delays remain obscure, especially in open systems. Our scheme directly incorporates the details of the constituents and mediators in an arbitrary environment. As one example, we demonstrate the synchronization dynamics of optical emitters on a dielectric microsphere. We reveal that the whispering gallery modes (WGMs) bridge the well-separated emitters and accelerate the synchronized fluorescence, known as superfluorescence. The emitters are found to overcome the significant and nonuniform retardation, and to build up their pronounced coherence by the WGMs, striking a balance between the roles of resonator and intermediary. Our work directly illustrates the dynamical aspects of many-body synchronizations and contributes to the exploration of research paradigms that consider designed open systems.
Zhang, BiTao; Pi, YouGuo; Luo, Ying
2012-09-01
A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Binary counting with chemical reactions.
Kharam, Aleksandra; Jiang, Hua; Riedel, Marc; Parhi, Keshab
2011-01-01
This paper describes a scheme for implementing a binary counter with chemical reactions. The value of the counter is encoded by logical values of "0" and "1" that correspond to the absence and presence of specific molecular types, respectively. It is incremented when molecules of a trigger type are injected. Synchronization is achieved with reactions that produce a sustained three-phase oscillation. This oscillation plays a role analogous to a clock signal in digital electronics. Quantities are transferred between molecular types in different phases of the oscillation. Unlike all previous schemes for chemical computation, this scheme is dependent only on coarse rate categories for the reactions ("fast" and "slow"). Given such categories, the computation is exact and independent of the specific reaction rates. Although conceptual for the time being, the methodology has potential applications in domains of synthetic biology such as biochemical sensing and drug delivery. We are exploring DNA-based computation via strand displacement as a possible experimental chassis.
Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder
NASA Astrophysics Data System (ADS)
Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T. C.
2010-08-01
In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.
On the problem of data assimilation by means of synchronization
NASA Astrophysics Data System (ADS)
Szendro, Ivan G.; RodríGuez, Miguel A.; López, Juan M.
2009-10-01
The potential use of synchronization as a method for data assimilation is investigated in a Lorenz96 model. Data representing the reality are obtained from a Lorenz96 model with added noise. We study the assimilation scheme by means of synchronization for different noise intensities. We use a novel plot representation of the synchronization error in a phase diagram consisting of two variables: the amplitude and the width of the error after a suitable logarithmic transformation (the so-called mean-variance of logarithms diagram). Our main result concerns the existence of an "optimal" coupling for which the synchronization is maximal. We finally show how this allows us to quantify the degree of assimilation, providing a criterion for the selection of optimal couplings and validity of models.
High-precision two-way optic-fiber time transfer using an improved time code.
Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping
2014-11-01
We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.
Yang, Huiliao; Jiang, Bin; Yang, Hao; Liu, Hugh H T
2018-04-01
The distributed cooperative control strategy is proposed to make the networked nonlinear 3-DOF helicopters achieve the attitude synchronization in the presence of actuator faults and saturations. Based on robust adaptive control, the proposed control method can both compensate the uncertain partial loss of control effectiveness and deal with the system uncertainties. To address actuator saturation problem, the control scheme is designed to ensure that the saturation constraint on the actuation will not be violated during the operation in spite of the actuator faults. It is shown that with the proposed control strategy, both the tracking errors of the leading helicopter and the attitude synchronization errors of each following helicopter are bounded in the existence of faulty actuators and actuator saturations. Moreover, the state responses of the entire group would not exceed the predesigned performance functions which are totally independent from the underlaying interaction topology. Simulation results illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Qiliang; Lu, Shanshan; Bao, Qi; Chen, Dewang; Hu, Miao; Zeng, Ran; Yang, Guowei; Li, Shuqin
2018-01-10
In this paper, we propose a chaos-based scheme allowing for trilateral communication among three mutually coupled chaotic semiconductor lasers. The coupling through a partially transparent optical mirror between two lasers induces the chaotic dynamics. We numerically solve the delay rate equations of three lasers and demonstrate that the dynamics is completely synchronous. Herein, each laser is not only a transmitter but a receiver; three different messages are encoded by simultaneously modulating bias current of the three lasers. By monitoring the synchronization error between transmitter and receiver, and comparing the error with the message of the local laser, we can decipher the message of the sender. The investigation indicates that these messages introduced on the two ends of each link among three lasers can be simultaneously transmitted and restored, so the system can realize simultaneous trilateral communication. In this scheme, an eavesdropper can monitor the synchronization error, but one has no way to obtain the bits that are being sent, so the trilateral communication is secure.
Synchronization and an application of a novel fractional order King Cobra chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com; Ratnavelu, K., E-mail: kuru052001@gmail.com
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness ofmore » the proposed theoretical results.« less
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synchronous monitoring of muscle dynamics and electromyogram
NASA Astrophysics Data System (ADS)
Zakir Hossain, M.; Grill, Wolfgang
2011-04-01
A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.
NASA Technical Reports Server (NTRS)
Martin, Ken E.; Esztergalyos, J.
1992-01-01
The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.
NASA Astrophysics Data System (ADS)
Martin, Ken E.; Esztergalyos, J.
1992-07-01
The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.
Tian, Wei; Han, Xu; Zuo, Wangda; ...
2018-01-31
This paper presents a comprehensive review of the open literature on motivations, methods and applications of linking stratified airflow simulation to building energy simulation (BES). First, we reviewed the motivations for coupling prediction models for building energy and indoor environment. This review classified various exchanged data in different applications as interface data and state data, and found that choosing different data sets may lead to varying performance of stability, convergence, and speed for the co-simulation. Second, our review shows that an external coupling scheme is substantially more popular in implementations of co-simulation than an internal coupling scheme. The external couplingmore » is shown to be generally faster in computational speed, as well as easier to implement, maintain and expand than the internal coupling. Third, the external coupling can be carried out in different data synchronization schemes, including static coupling and dynamic coupling. In comparison, the static coupling that performs data exchange only once is computationally faster and more stable than the dynamic coupling. However, concerning accuracy, the dynamic coupling that requires multiple times of data exchange is more accurate than the static coupling. Furthermore, the review identified that the implementation of the external coupling can be achieved through customized interfaces, middleware, and standard interfaces. The customized interface is straightforward but may be limited to a specific coupling application. The middleware is versatile and user-friendly but usually limited in data synchronization schemes. The standard interface is versatile and promising, but may be difficult to implement. Current applications of the co-simulation are mainly energy performance evaluation and control studies. Finally, we discussed the limitations of the current research and provided an overview for future research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Han, Xu; Zuo, Wangda
This paper presents a comprehensive review of the open literature on motivations, methods and applications of linking stratified airflow simulation to building energy simulation (BES). First, we reviewed the motivations for coupling prediction models for building energy and indoor environment. This review classified various exchanged data in different applications as interface data and state data, and found that choosing different data sets may lead to varying performance of stability, convergence, and speed for the co-simulation. Second, our review shows that an external coupling scheme is substantially more popular in implementations of co-simulation than an internal coupling scheme. The external couplingmore » is shown to be generally faster in computational speed, as well as easier to implement, maintain and expand than the internal coupling. Third, the external coupling can be carried out in different data synchronization schemes, including static coupling and dynamic coupling. In comparison, the static coupling that performs data exchange only once is computationally faster and more stable than the dynamic coupling. However, concerning accuracy, the dynamic coupling that requires multiple times of data exchange is more accurate than the static coupling. Furthermore, the review identified that the implementation of the external coupling can be achieved through customized interfaces, middleware, and standard interfaces. The customized interface is straightforward but may be limited to a specific coupling application. The middleware is versatile and user-friendly but usually limited in data synchronization schemes. The standard interface is versatile and promising, but may be difficult to implement. Current applications of the co-simulation are mainly energy performance evaluation and control studies. Finally, we discussed the limitations of the current research and provided an overview for future research.« less
Statistical analysis of the pulse-coupled synchronization strategy for wireless sensor networks
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Pulse-coupled synchronization is attracting increased attention in the sensor network community. Yet its properties have not been fully investigated. Using statistical analysis, we prove analytically that by controlling the number of connections at each node, synchronization can be guaranteed for generally pulse-coupled oscillators even in the presence of a refractory period. The approach does not require the initial phases to reside in half an oscillation cycle, which improves existing results. We also find that a refractory period can be strategically included to reduce idle listening at nearly no sacrifice to the synchronization probability. Given that reduced idle listening leads to higher energy efficiency in the synchronization process, the strategically added refractory period makes the synchronization scheme appealing to cheap sensor nodes, where energy is a precious system resource. We also analyzed the pulse-coupled synchronization in the presence of unreliable communication links and obtained similar results. QualNet experimental results are given to confirm the effectiveness of the theoretical predictions. PMID:24324322
Cardiorespiratory phase synchronization during normal rest and inward-attention meditation.
Wu, Shr-Da; Lo, Pei-Chen
2010-06-11
The cardiac and respiratory systems can be viewed as two self-sustained oscillators with various interactions between them. In this study, the cardiorespiratory phase synchronization (CRPS) quantified by synchrogram was investigated to explore the phase synchronization between these two systems. The synchrogram scheme was applied to electrocardiogram (ECG) and respiration signals. Particular focus was the distinct cardiac-respiratory regulation phenomena intervened by inward-attention meditation and normal relaxation. Four synchronization parameters were measured: frequency ratio, lasting length, number of epochs, and total length. The results showed that normal rest resulted in much weaker CRPS. Statistical analysis reveals that the number of synchronous epochs and the total synchronization length significantly increase (p=0.024 and 0.034 respectively) during meditation. Furthermore, a predominance of 4:1 and 5:1 rhythm-ratio synchronizations was observed during meditation. Consequently, this study concludes that CRPS can be enhanced during meditation, compared with normal relaxation, and reveals a predominance of specific frequency ratios. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Interaction Control to Synchronize Non-synchronizable Networks.
Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc
2016-11-17
Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.
Interaction Control to Synchronize Non-synchronizable Networks
Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc
2016-01-01
Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266
Autonomous learning by simple dynamical systems with a discrete-time formulation
NASA Astrophysics Data System (ADS)
Bilen, Agustín M.; Kaluza, Pablo
2017-05-01
We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.
NASA Technical Reports Server (NTRS)
Simon, Marvin; Valles, Esteban; Jones, Christopher
2008-01-01
This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.
A framework for software fault tolerance in real-time systems
NASA Technical Reports Server (NTRS)
Anderson, T.; Knight, J. C.
1983-01-01
A classification scheme for errors and a technique for the provision of software fault tolerance in cyclic real-time systems is presented. The technique requires that the process structure of a system be represented by a synchronization graph which is used by an executive as a specification of the relative times at which they will communicate during execution. Communication between concurrent processes is severely limited and may only take place between processes engaged in an exchange. A history of error occurrences is maintained by an error handler. When an error is detected, the error handler classifies it using the error history information and then initiates appropriate recovery action.
An Autonomous Distributed Fault-Tolerant Local Positioning System
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2017-01-01
We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.
Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020
Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers
NASA Astrophysics Data System (ADS)
Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok
2018-04-01
In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.
Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto
2013-03-19
A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.
Dynamical noise filter and conditional entropy analysis in chaos synchronization.
Wang, Jiao; Lai, C-H
2006-06-01
It is shown that, in a chaotic synchronization system whose driving signal is exposed to channel noise, the estimation of the drive system states can be greatly improved by applying the dynamical noise filtering to the response system states. If the noise is bounded in a certain range, the estimation errors, i.e., the difference between the filtered responding states and the driving states, can be made arbitrarily small. This property can be used in designing an alternative digital communication scheme. An analysis based on the conditional entropy justifies the application of dynamical noise filtering in generating quality synchronization.
Cluster synchronization transmission of different external signals in discrete uncertain network
NASA Astrophysics Data System (ADS)
Li, Chengren; Lü, Ling; Chen, Liansong; Hong, Yixuan; Zhou, Shuang; Yang, Yiming
2018-07-01
We research cluster synchronization transmissions of different external signals in discrete uncertain network. Based on the Lyapunov theorem, the network controller and the identification law of uncertain adjustment parameter are designed, and they are efficiently used to achieve the cluster synchronization and the identification of uncertain adjustment parameter. In our technical scheme, the network nodes in each cluster and the transmitted external signal can be different, and they allow the presence of uncertain parameters in the network. Especially, we are free to choose the clustering topologies, the cluster number and the node number in each cluster.
Mixed coherent states in coupled chaotic systems: Design of secure wireless communication
NASA Astrophysics Data System (ADS)
Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.
2016-12-01
A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.
Compound synchronization of four memristor chaotic oscillator systems and secure communication.
Sun, Junwei; Shen, Yi; Yin, Quan; Xu, Chengjie
2013-03-01
In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.
Qin, Youxiang; Zhang, Junjie
2017-07-10
A novel low complexity and energy-efficient scheme by controlling the toggle-rate of ONU with time-domain amplitude identification is proposed for a heavy load downlink in an intensity-modulation and direct-detection orthogonal frequency division multiplexing passive optical network (IM-DD OFDM-PON). In a conventional OFDM-PON downlink, all ONUs have to perform demodulation for all the OFDM frames in a broadcast way no matter whether the frames are targeted to or not, which causes a huge energy waste. However, in our scheme, the optical network unit (ONU) logical link identifications (LLIDs) are inserted into each downlink OFDM frame in time-domain at the optical line terminal (OLT) side. At the ONU side, the LLID is obtained with a low complexity and high precision amplitude identification method. The ONU sets the toggle-rate of demodulation module to zero when the frames are not targeted to, which avoids unnecessary digital signal processing (DSP) energy consumption. Compared with the sleep-mode methods consisting of clock recovery and synchronization, toggle-rate shows its advantage in fast changing, which is more suitable for the heavy load scenarios. Moreover, for the first time to our knowledge, the characteristics of the proposed scheme are investigated in a real-time IM-DD OFDM system, which performs well at the received optical power as low as -21dBm. The experimental results show that 25.1% energy consumption can be saved in the receiver compared to the conventional configurations.
Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung
2017-10-02
Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.
Analysis of synchronous digital-modulation schemes for satellite communication
NASA Technical Reports Server (NTRS)
Takhar, G. S.; Gupta, S. C.
1975-01-01
The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.
Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms
NASA Astrophysics Data System (ADS)
Tang, Ze; Park, Ju H.; Feng, Jianwen
2018-04-01
This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.
Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun
2018-08-01
In this paper, without separating the complex-valued neural networks into two real-valued systems, the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated. First, two new fractional-order inequalities are established by using the theory of complex functions, Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-order derivative in the real domain. Additionally, different from hybrid control schemes given in the previous work concerning the projective synchronization, a simple and linear control strategy is designed in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-valued neural networks with fractional-order based on the established fractional-order inequalities and the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the addressed neural networks. Finally, some numerical examples with simulations are provided to show the effectiveness of the derived theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gajare, Swaroop; Rao, J Ganeswara; Naidu, O D; Pradhan, Ashok Kumar
2017-08-13
Cascade tripping of power lines triggered by maloperation of zone-3 relays during stressed system conditions, such as load encroachment, power swing and voltage instability, has led to many catastrophic power failures worldwide, including Indian blackouts in 2012. With the introduction of wide-area measurement systems (WAMS) into the grids, real-time monitoring of transmission network condition is possible. A phasor measurement unit (PMU) sends time-synchronized data to a phasor data concentrator, which can provide a control signal to substation devices. The latency associated with the communication system makes WAMS suitable for a slower form of protection. In this work, a method to identify the faulted line using synchronized data from strategic PMU locations is proposed. Subsequently, a supervisory signal is generated for specific relays in the system for any disturbance or stressed condition. For a given system, an approach to decide the strategic locations for PMU placement is developed, which can be used for determining the minimum number of PMUs required for application of the method. The accuracy of the scheme is tested for faults during normal and stressed conditions in a New England 39-bus system simulated using EMTDC/PSCAD software. With such a strategy, maloperation of relays can be averted in many situations and thereby blackouts/large-scale disturbances can be prevented.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Public-channel cryptography based on mutual chaos pass filters.
Klein, Einat; Gross, Noam; Kopelowitz, Evi; Rosenbluh, Michael; Khaykovich, Lev; Kinzel, Wolfgang; Kanter, Ido
2006-10-01
We study the mutual coupling of chaotic lasers and observe both experimentally and in numeric simulations that there exists a regime of parameters for which two mutually coupled chaotic lasers establish isochronal synchronization, while a third laser coupled unidirectionally to one of the pair does not synchronize. We then propose a cryptographic scheme, based on the advantage of mutual coupling over unidirectional coupling, where all the parameters of the system are public knowledge. We numerically demonstrate that in such a scheme the two communicating lasers can add a message signal (compressed binary message) to the transmitted coupling signal and recover the message in both directions with high fidelity by using a mutual chaos pass filter procedure. An attacker, however, fails to recover an errorless message even if he amplifies the coupling signal.
Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei
2018-05-01
We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150 nm with a -10 dB bandwidth of ∼13.2 THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.
Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Terry R
2012-01-01
This paper describes a kernel scheduling algorithm that is based on coscheduling principles and that is intended for parallel applications running on 1000 cores or more. Experimental results for a Linux implementation on a Cray XT5 machine are presented. The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
On Searching Available Channels with Asynchronous MAC-Layer Spectrum Sensing
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Ma, Xin; Chen, Canfeng; Ma, Jian; Ren, Yong
Dynamic spectrum access has become a focal issue recently, in which identifying the available spectrum plays a rather important role. Lots of work has been done concerning secondary user (SU) synchronously accessing primary user's (PU's) network. However, on one hand, SU may have no idea about PU's communication protocols; on the other, it is possible that communications among PU are not based on synchronous scheme at all. In order to address such problems, this paper advances a strategy for SU to search available spectrums with asynchronous MAC-layer sensing. With this method, SUs need not know the communication mechanisms in PU's network when dynamically accessing. We will focus on four aspects: 1) strategy for searching available channels; 2) vacating strategy when PUs come back; 3) estimation of channel parameters; 4) impact of SUs' interference on PU's data rate. The simulations show that our search strategy not only can achieve nearly 50% less interference probability than equal allocation of total search time, but also well adapts to time-varying channels. Moreover, access by our strategies can attain 150% more access time than random access. The moment matching estimator shows good performance in estimating and tracing time-varying channels.
Scalable Multiprocessor for High-Speed Computing in Space
NASA Technical Reports Server (NTRS)
Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard
2004-01-01
A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.
Gao, Qi; Zhou, Min; Han, Chengyin; Li, Shangyan; Zhang, Shuang; Yao, Yuan; Li, Bo; Qiao, Hao; Ai, Di; Lou, Ge; Zhang, Mengya; Jiang, Yanyi; Bi, Zhiyi; Ma, Longsheng; Xu, Xinye
2018-05-22
Optical clocks are the most precise measurement devices. Here we experimentally characterize one such clock based on the 1 S 0 - 3 P 0 transition of neutral 171 Yb atoms confined in an optical lattice. Given that the systematic evaluation using an interleaved stabilization scheme is unable to avoid noise from the clock laser, synchronous comparisons against a second 171 Yb lattice system were implemented to accelerate the evaluation. The fractional instability of one clock falls below 4 × 10 -17 after an averaging over a time of 5,000 seconds. The systematic frequency shifts were corrected with a total uncertainty of 1.7 × 10 -16 . The lattice polarizability shift currently contributes the largest source. This work paves the way to measuring the absolute clock transition frequency relative to the primary Cs standard or against the International System of Units (SI) second.
Synchronous acceleration with tapered dielectric-lined waveguides
Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...
2018-05-25
Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less
NASA Astrophysics Data System (ADS)
Mata-Machuca, Juan L.; Aguilar-López, Ricardo
2018-01-01
This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.
NASA Astrophysics Data System (ADS)
Kalidoss, R.; Bhagyaveni, M. A.; Vishvaksenan, K. S.
2014-08-01
The search for a method of utilizing the scarce spectrum in an efficient manner is an active area of research in both academic and industrial communities. IEEE 802.22 is a standard for wireless regional area network (WRAN) based on cognitive radio (CR) that operates over underutilized portions of TV bands (54-862 MHz). Time division duplex (TDD)-based WRAN cells have such advantages as dynamic traffic allocation, traffic asymmetry to users and ease of spectrum allocation. However, these cells suffer from severe cross time slot (CTS) interference when the frames of the cells are not synchronized with adjacent WRAN cells. In this paper, we evaluate the location-based duplex (LBD) scheme for eliminating the CTS interference. The proposed LBD system is much more flexible and efficient in providing asymmetric data service and eliminating CTS interference by exploiting the advantages of both TDD and frequency division duplex (FDD) schemes. We also compare the performance of LBD systems with virtual cell concepts. Furthermore, our simulation results reveal that LBD-based systems outperform the virtual cell approach in terms of the low signal-to-interference (SIR) ratio requirement by mitigating the effects of CTS.
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
NASA Astrophysics Data System (ADS)
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K.; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji
2013-01-01
We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.
Coherent population trapping with polarization modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
HEP - A semaphore-synchronized multiprocessor with central control. [Heterogeneous Element Processor
NASA Technical Reports Server (NTRS)
Gilliland, M. C.; Smith, B. J.; Calvert, W.
1976-01-01
The paper describes the design concept of the Heterogeneous Element Processor (HEP), a system tailored to the special needs of scientific simulation. In order to achieve high-speed computation required by simulation, HEP features a hierarchy of processes executing in parallel on a number of processors, with synchronization being largely accomplished by hardware. A full-empty-reserve scheme of synchronization is realized by zero-one-valued hardware semaphores. A typical system has, besides the control computer and the scheduler, an algebraic module, a memory module, a first-in first-out (FIFO) module, an integrator module, and an I/O module. The architecture of the scheduler and the algebraic module is examined in detail.
Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin
2014-03-01
In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Geosynchronous Performance of a Lithium-titanium Disulfide Battery
NASA Technical Reports Server (NTRS)
Otzinger, B.
1985-01-01
An ambient temperature rechargeable Lithium-Titanium disulfide (Li-TiS2) five cell battery has completed the first orbital year of accelerated synchronous orbit testing. A novel charge/discharge, state of charge (SOC) control scheme is utilized, together with taper current charge backup to overcome deleterious effects associated with high end of charge and low end of discharge voltages. It is indicated that 10 orbital years of simulated synchronous operation may be achieved. Preliminary findings associated with cell matching and battery performance are identified.
Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Terry R
2011-01-01
This paper describes a kernel scheduling algorithm that is based on co-scheduling principles and that is intended for parallel applications running on 1000 cores or more where inter-node scalability is key. Experimental results for a Linux implementation on a Cray XT5 machine are presented.1 The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
Spontaneous mode switching in coupled oscillators competing for constant amounts of resources
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki
2010-03-01
We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.
Synchronized SETI-The Case for "Opposition"
NASA Astrophysics Data System (ADS)
Corbet, Robin H. D.
2003-06-01
If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.
Synchronized SETI-the case for "opposition".
Corbet, Robin H D
2003-01-01
If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.
NASA Astrophysics Data System (ADS)
Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-04-01
One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.
NASA Technical Reports Server (NTRS)
Cartier, D. E.
1976-01-01
This concise paper considers the effect on the autocorrelation function of a pseudonoise (PN) code when the acquisition scheme only integrates coherently over part of the code and then noncoherently combines these results. The peak-to-null ratio of the effective PN autocorrelation function is shown to degrade to the square root of n, where n is the number of PN symbols over which coherent integration takes place.
Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator
NASA Astrophysics Data System (ADS)
Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji
This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.
The control gain region for synchronization in non-diffusively coupled complex networks
NASA Astrophysics Data System (ADS)
Gequn, Liu; Wenhui, Li; Huijie, Yang; Knowles, Gareth
2014-07-01
The control gain region for synchronization of non-diffusively coupled networks was studied with respect to three conditions: synchronization, synchronization in finite time, and synchronization in the minimum time. Based on cancellation control methodology and master stability function formalism, we found that a complete feasible control gain region may be bounded, unbounded, empty or a union of several bounded and unbounded regions, with a similar shape to the synchronized region. An interesting possibility emerged that a network could be synchronized by both negative and positive feedback control simultaneously. By bridging synchronizability and synchronizing response speeds with a settling time index, we have developed timed synchronized region (TSR) as a substitute for the classical synchronized region to study finite time synchronization. As for the last condition, a graphical method was developed to estimate control gain with the minimum synchronization time (CGMST). Each condition has examples provided for illustration and verification.
Stabilization and synchronization for a mechanical system via adaptive sliding mode control.
Song, Zhankui; Sun, Kaibiao; Ling, Shuai
2017-05-01
In this paper, we investigate the synchronization problem of chaotic centrifugal flywheel governor with parameters uncertainty and lumped disturbances. A slave centrifugal flywheel governor system is considered as an underactuated following-system which a control input is designed to follow a master centrifugal flywheel governor system. To tackle lumped disturbances and uncertainty parameters, a novel synchronization control law is developed by employing sliding mode control strategy and Nussbaum gain technique. Adaptation updating algorithms are derived in the sense of Lyapunov stability analysis such that the lumped disturbances can be suppressed and the adverse effect caused by uncertainty parameters can be compensated. In addition, the synchronization tracking-errors are proven to converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott
We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less
Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.
Liu, Xiwei; Chen, Tianping
2018-01-01
In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.
NASA Astrophysics Data System (ADS)
Hu, Hwai-Tsu; Chou, Hsien-Hsin; Yu, Chu; Hsu, Ling-Yuan
2014-12-01
This paper presents a novel approach for blind audio watermarking. The proposed scheme utilizes the flexibility of discrete wavelet packet transformation (DWPT) to approximate the critical bands and adaptively determines suitable embedding strengths for carrying out quantization index modulation (QIM). The singular value decomposition (SVD) is employed to analyze the matrix formed by the DWPT coefficients and embed watermark bits by manipulating singular values subject to perceptual criteria. To achieve even better performance, two auxiliary enhancement measures are attached to the developed scheme. Performance evaluation and comparison are demonstrated with the presence of common digital signal processing attacks. Experimental results confirm that the combination of the DWPT, SVD, and adaptive QIM achieves imperceptible data hiding with satisfying robustness and payload capacity. Moreover, the inclusion of self-synchronization capability allows the developed watermarking system to withstand time-shifting and cropping attacks.
NASA Astrophysics Data System (ADS)
Li, Fu-Hai; Chiu, Yung-Yueh; Lee, Yen-Hui; Chang, Ru-Wei; Yang, Bo-Jun; Sun, Wein-Town; Lee, Eric; Kuo, Chao-Wei; Shirota, Riichiro
2013-04-01
In this study, we precisely investigate the charge distribution in SiN layer by dynamic programming of channel hot hole induced hot electron injection (CHHIHE) in p-channel silicon-oxide-nitride-oxide-silicon (SONOS) memory device. In the dynamic programming scheme, gate voltage is increased as a staircase with fixed step amplitude, which can prohibits the injection of holes in SiN layer. Three-dimensional device simulation is calibrated and is compared with the measured programming characteristics. It is found, for the first time, that the hot electron injection point quickly traverses from drain to source side synchronizing to the expansion of charged area in SiN layer. As a result, the injected charges quickly spread over on the almost whole channel area uniformly during a short programming period, which will afford large tolerance against lateral trapped charge diffusion by baking.
Li, Jiarong; Jiang, Haijun; Hu, Cheng; Yu, Zhiyong
2018-03-01
This paper is devoted to the exponential synchronization, finite time synchronization, and fixed-time synchronization of Cohen-Grossberg neural networks (CGNNs) with discontinuous activations and time-varying delays. Discontinuous feedback controller and Novel adaptive feedback controller are designed to realize global exponential synchronization, finite time synchronization and fixed-time synchronization by adjusting the values of the parameters ω in the controller. Furthermore, the settling time of the fixed-time synchronization derived in this paper is less conservative and more accurate. Finally, some numerical examples are provided to show the effectiveness and flexibility of the results derived in this paper. Copyright © 2018 Elsevier Ltd. All rights reserved.
Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared.
Optical sampling by laser cavity tuning.
Hochrein, Thomas; Wilk, Rafal; Mei, Michael; Holzwarth, Ronald; Krumbholz, Norman; Koch, Martin
2010-01-18
Most time-resolved optical experiments rely either on external mechanical delay lines or on two synchronized femtosecond lasers to achieve a defined temporal delay between two optical pulses. Here, we present a new method which does not require any external delay lines and uses only a single femtosecond laser. It is based on the cross-correlation of an optical pulse with a subsequent pulse from the same laser. Temporal delay between these two pulses is achieved by varying the repetition rate of the laser. We validate the new scheme by a comparison with a cross-correlation measurement carried out with a conventional mechanical delay line.
Probing ultrafast proton induced dynamics in transparent dielectrics
NASA Astrophysics Data System (ADS)
Taylor, M.; Coughlan, M.; Nersisyan, G.; Senje, L.; Jung, D.; Currell, F.; Riley, D.; Lewis, C. L. S.; Zepf, M.; Dromey, B.
2018-05-01
A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10‑12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.
Mode-locking of a terahertz laser by direct phase synchronization.
Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J
2012-09-10
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.
Design and scheduling for periodic concurrent error detection and recovery in processor arrays
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Chung, Pi-Yu; Fuchs, W. Kent
1992-01-01
Periodic application of time-redundant error checking provides the trade-off between error detection latency and performance degradation. The goal is to achieve high error coverage while satisfying performance requirements. We derive the optimal scheduling of checking patterns in order to uniformly distribute the available checking capability and maximize the error coverage. Synchronous buffering designs using data forwarding and dynamic reconfiguration are described. Efficient single-cycle diagnosis is implemented by error pattern analysis and direct-mapped recovery cache. A rollback recovery scheme using start-up control for local recovery is also presented.
Synchronizing Data-Bus Messages
NASA Technical Reports Server (NTRS)
Harris, L. H.
1985-01-01
Adapter allows communications among as many as 30 data processors without central bus controller. Adapter improves reliability of multiprocessor system by eliminating point of failure that causes entire system to fail. Scheme prevents data collisions and eliminates nonessential polling, thereby reducing power consumption.
Synchronisation, acquisition and tracking for telemetry and data reception
NASA Astrophysics Data System (ADS)
Vandoninck, A.
1992-06-01
The important parameters of synchronization, acquisition, and tracking are addressed, and each function is highlighted separately. The following sequence is such as the functions occur in the system in time and for the type of data to be received, with distinction between telemetry and data reception, between direct carrier modulation or the use of a subcarrier, and between deep space and normal reception. For the telemetry reception the acquisition is described taking into account the difference in performances as geostationary or polar orbits, and the dependencies on the different Doppler offsets and rates are distinguished. The related functions and parameters are covered and the specifications of an average receiver are summarized. The synchronization of the valid data is described with a distinction for data directly modulated or via a subcarrier, the type of modulation and bitrate. The relevant functions and parameters of the average receiver/demodulator are summarized. The tracking of the signal in the course of the operational phase is described and relevant parameters of an actual system are presented. The reception of real data is handled and a sequence of acquisition, synchronization, and tracking is applied. Here higher bitrates and direct modulation schemes play an important role. The market equipment with the relevant parameters are discussed. The three functions in cases where deep reception is needed are covered. The high performance receiver/demodulator functions and how the acquisition, synchronization, and tracking is handled in such application, are explained.
The Medicare Chronic Disease Dental Scheme: Historical, Scientific, Socio-political Origins.
Akers, Harry Francis; Weerakoon, Arosha Tania; Foley, Michael Anthony; McAuliffe, Andrew James
While evidence and expert opinion are the foundations of effective policy, the politics, economics, and timing of a proposal can affect outcome. Australian government involvement in the planning, funding and delivery of dental services has been minimal and inconsistent. Many believe that the hybrid dispersal model of shared constitutional power has intermittently led to poor administration of national health policy. Throughout the decade-long prelude to the introduction of the Chronic Disease Dental Scheme, a landmark health policy in Australia, Parliamentarians moved responsibility for public dental services of disadvantaged Australians into an impasse between the Federal, State, and Territorial Governments. Developments throughout the era confirm the influence of administrative intrigue, centralized authority, competing priorities, funding pressures, political strategy, public opinion, scientific evidence and the timing of a proposal on the formulation and implementation of oral health policy. Synchronized inter-governmental collaboration was also absent. Moreover, the impasse and its resolution immediately before a national election demonstrate the bipolar roles of centralized political authority and political resolve in either obstructing or implementing policy. The historical, scientific, and socio-political contexts undermining the preamble to the Chronic Disease Dental Scheme lend weight to concerns about the hybrid dispersal model of constitutional power. Copyright American Academy of the History of Dentistry.
Evaluation of hardware costs of implementing PSK signal detection circuit based on "system on chip"
NASA Astrophysics Data System (ADS)
Sokolovskiy, A. V.; Dmitriev, D. D.; Veisov, E. A.; Gladyshev, A. B.
2018-05-01
The article deals with the choice of the architecture of digital signal processing units for implementing the PSK signal detection scheme. As an assessment of the effectiveness of architectures, the required number of shift registers and computational processes are used when implementing the "system on a chip" on the chip. A statistical estimation of the normalized code sequence offset in the signal synchronization scheme for various hardware block architectures is used.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.
2017-01-01
In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294
Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto
2013-01-01
Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345
Synchronous parallel spatially resolved stochastic cluster dynamics
Dunn, Aaron; Dingreville, Rémi; Martínez, Enrique; ...
2016-04-23
In this work, a spatially resolved stochastic cluster dynamics (SRSCD) model for radiation damage accumulation in metals is implemented using a synchronous parallel kinetic Monte Carlo algorithm. The parallel algorithm is shown to significantly increase the size of representative volumes achievable in SRSCD simulations of radiation damage accumulation. Additionally, weak scaling performance of the method is tested in two cases: (1) an idealized case of Frenkel pair diffusion and annihilation, and (2) a characteristic example problem including defect cluster formation and growth in α-Fe. For the latter case, weak scaling is tested using both Frenkel pair and displacement cascade damage.more » To improve scaling of simulations with cascade damage, an explicit cascade implantation scheme is developed for cases in which fast-moving defects are created in displacement cascades. For the first time, simulation of radiation damage accumulation in nanopolycrystals can be achieved with a three dimensional rendition of the microstructure, allowing demonstration of the effect of grain size on defect accumulation in Frenkel pair-irradiated α-Fe.« less
Lou, Der-Chyuan; Lee, Tian-Fu; Lin, Tsung-Hung
2015-05-01
Authenticated key agreements for telecare medicine information systems provide patients, doctors, nurses and health visitors with accessing medical information systems and getting remote services efficiently and conveniently through an open network. In order to have higher security, many authenticated key agreement schemes appended biometric keys to realize identification except for using passwords and smartcards. Due to too many transmissions and computational costs, these authenticated key agreement schemes are inefficient in communication and computation. This investigation develops two secure and efficient authenticated key agreement schemes for telecare medicine information systems by using biometric key and extended chaotic maps. One scheme is synchronization-based, while the other nonce-based. Compared to related approaches, the proposed schemes not only retain the same security properties with previous schemes, but also provide users with privacy protection and have fewer transmissions and lower computational cost.
Node synchronization schemes for the Big Viterbi Decoder
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Swanson, L.; Arnold, S.
1992-01-01
The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods.
All together now: Analogies between chimera state collapses and epileptic seizures
NASA Astrophysics Data System (ADS)
Andrzejak, Ralph G.; Rummel, Christian; Mormann, Florian; Schindler, Kaspar
2016-03-01
Conceptually and structurally simple mathematical models of coupled oscillator networks can show a rich variety of complex dynamics, providing fundamental insights into many real-world phenomena. A recent and not yet fully understood example is the collapse of coexisting synchronous and asynchronous oscillations into a globally synchronous motion found in networks of identical oscillators. Here we show that this sudden collapse is promoted by a further decrease of synchronization, rather than by critically high synchronization. This strikingly counterintuitive mechanism can be found also in nature, as we demonstrate on epileptic seizures in humans. Analyzing spatiotemporal correlation profiles derived from intracranial electroencephalographic recordings (EEG) of seizures in epilepsy patients, we found a pronounced decrease of correlation at the seizure onsets. Applying our findings in a closed-loop control scheme to models of coupled oscillators in chimera states, we succeed in both provoking and preventing outbreaks of global synchronization. Our findings not only advance the understanding of networks of coupled dynamics but can open new ways to control them, thus offering a vast range of potential new applications.
Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed
2018-02-01
This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.
User's manual for SYNC: A FORTRAN program for merging and time-synchronizing data
NASA Technical Reports Server (NTRS)
Maine, R. E.
1981-01-01
The FORTRAN 77 computer program SYNC for merging and time synchronizing data is described. The program SYNC reads one or more input files which contain either synchronous data frames or time-tagged data points, which can be compressed. The program decompresses and time synchronizes the data, correcting for any channel time skews. Interpolation and hold last value synchronization algorithms are available. The output from SYNC is a file of time synchronized data frames at any requested sample rate.
System and method for time synchronization in a wireless network
Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.
2010-03-30
A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays
Delgado, Emma; Barreiro, Antonio; Falcón, Pablo; Díaz-Cacho, Miguel
2016-01-01
We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C) control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency. PMID:27128914
NASA Technical Reports Server (NTRS)
Goldgof, Gregory M.
2005-01-01
Distributed systems allow scientists from around the world to plan missions concurrently, while being updated on the revisions of their colleagues in real time. However, permitting multiple clients to simultaneously modify a single data repository can quickly lead to data corruption or inconsistent states between users. Since our message broker, the Java Message Service, does not ensure that messages will be received in the order they were published, we must implement our own numbering scheme to guarantee that changes to mission plans are performed in the correct sequence. Furthermore, distributed architectures must ensure that as new users connect to the system, they synchronize with the database without missing any messages or falling into an inconsistent state. Robust systems must also guarantee that all clients will remain synchronized with the database even in the case of multiple client failure, which can occur at any time due to lost network connections or a user's own system instability. The final design for the distributed system behind the Mars rover mission planning software fulfills all of these requirements and upon completion will be deployed to MER at the end of 2005 as well as Phoenix (2007) and MSL (2009).
Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers
NASA Astrophysics Data System (ADS)
Jayaprasath, E.; Sivaprakasam, S.
2017-11-01
Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.
On program restructuring, scheduling, and communication for parallel processor systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polychronopoulos, Constantine D.
1986-08-01
This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, thesemore » algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.« less
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
Mehdiabadi, M. R. Rahmani; Rouhani, E.; Mashhadi, S. K. Mousavi; Jalali, A. A.
2014-01-01
This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its past behavior and the memorized system can be a better fit for the neuron response. An adaptive fractional-order controller based on the Lyaponuv stability theory was designed to synchronize two neurons electrically coupled with gap junction in EES. The proposed controller is also robust to the inevitable random noise such as disturbances of ionic channels. The simulation results demonstrate the effectiveness of the control scheme. PMID:25337373
Lukoyanov, Dmitriy; Barney, Brett M.; Dean, Dennis R.; Seefeldt, Lance C.; Hoffman, Brian M.
2007-01-01
A major obstacle to understanding the reduction of N2 to NH3 by nitrogenase has been the impossibility of synchronizing electron delivery to the MoFe protein for generation of specific enzymatic intermediates. When an intermediate is trapped without synchronous electron delivery, the number of electrons, n, it has accumulated is unknown. Consequently, the intermediate is untethered from kinetic schemes for reduction, which are indexed by n. We show that a trapped intermediate itself provides a “synchronously prepared” initial state, and its relaxation to the resting state at 253 K, conditions that prevent electron delivery to MoFe protein, can be analyzed to reveal n and the nature of the relaxation reactions. The approach is applied to the “H+/H− intermediate” (A) that appears during turnover both in the presence and absence of N2 substrate. A exhibits an S = ½ EPR signal from the active-site iron–molybdenum cofactor (FeMo-co) to which are bound at least two hydrides/protons. A undergoes two-step relaxation to the resting state (C): A → B → C, where B has an S = 3/2 FeMo-co. Both steps show large solvent kinetic isotope effects: KIE ≈ 3–4 (85% D2O). In the context of the Lowe–Thorneley kinetic scheme for N2 reduction, these results provide powerful evidence that H2 is formed in both relaxation steps, that A is the catalytically central state that is activated for N2 binding by the accumulation of n = 4 electrons, and that B has accumulated n = 2 electrons. PMID:17251348
Li, Xuanying; Li, Xiaotong; Hu, Cheng
2017-12-01
In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph
2014-06-01
We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA.
Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph
2014-01-01
We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA. PMID:26516290
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
Experimental multiplexing of quantum key distribution with classical optical communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei
2015-02-23
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across themore » entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.« less
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Al-Wais, Saba; Khoo, Suiyang; Lee, Tae Hee; Shanmugam, Lakshmanan; Nahavandi, Saeid
2018-01-01
This paper is devoted to the synchronization problem of tele-operation systems with time-varying delay, disturbances, and uncertainty. Delay-dependent sufficient conditions for the existence of integral sliding surfaces are given in the form of Linear Matrix Inequalities (LMIs). This guarantees the global stability of the tele-operation system with known upper bounds of the time-varying delays. Unlike previous work, in this paper, the controller gains are designed but not chosen, which increases the degree of freedom of the design. Moreover, Wirtinger based integral inequality and reciprocally convex combination techniques used in the constructed Lypunove-Krasoviskii Functional (LKF) are deemed to give less conservative stability condition for the system. Furthermore, to relax the analysis from any assumptions regarding the dynamics of the environment and human operator forces, H ∞ design method is used to involve the dynamics of these forces and ensure the stability of the system against these admissible forces in the H ∞ sense. This design scheme combines the strong robustness of the sliding mode control with the H ∞ design method for tele-operation systems which is coupled using state feedback controllers and inherit variable time-delays in their communication channels. Simulation examples are given to show the effectiveness of the proposed method. Copyright © 2017 ISA. All rights reserved.
NASA Astrophysics Data System (ADS)
Wali, Mohebullah; Nakamura, Yukinori; Wakui, Shinji
In this study, a positioning stage is considered, which is actuated by four pneumatic cylinders and vertically supported by four coil-type spring isolators. Previously, we realized the base plate jerk feedback (BPJFB) to be analogues to a Master-Slave system which can synchronize the motion of the stage as a Slave to the motion of the base plate as a Master. However, in the case of real positioning, the stage had slightly self oscillation with higher frequency due to the higher gains set to the outer feedback loop controller besides its oscillation due to the natural vibration of the base plate. The self oscillation of stage was misunderstood to be the natural vibration of base plate due to the reaction force. However, according to the experimental results, the BPJFB scheme was able to control both of the mentioned vibrations. Suppression of the self vibration of stage is an interesting phenomenon, which should be experimentally investigated. Therefore, the current study focuses on the suppression of the self vibration of stage by using the BPJFB scheme. The experimental results show that besides operating as a Master-Slave synchronizing system, the PBJFB scheme is able to increase the damping ratio and stiffness of stage against its self vibration. This newly recognized phenomenon contributes to further increase the proportional gain of the outer feedback loop controller. As a result, the positioning speed and stability can be improved.
Encryption key distribution via chaos synchronization
NASA Astrophysics Data System (ADS)
Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; van der Sande, Guy
2017-02-01
We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method.
Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun
2012-01-01
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.
Friction, wear, and noise of slip ring and brush contacts for synchronous satellite use.
NASA Technical Reports Server (NTRS)
Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.
1973-01-01
A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 nanotorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Brush property measurements made included measurement of density, electrical resistivity, shear strength, and microstructure.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1974-01-01
Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.
Peng, Xiao; Wu, Huaiqin; Song, Ka; Shi, Jiaxin
2017-10-01
This paper is concerned with the global Mittag-Leffler synchronization and the synchronization in finite time for fractional-order neural networks (FNNs) with discontinuous activations and time delays. Firstly, the properties with respect to Mittag-Leffler convergence and convergence in finite time, which play a critical role in the investigation of the global synchronization of FNNs, are developed, respectively. Secondly, the novel state-feedback controller, which includes time delays and discontinuous factors, is designed to realize the synchronization goal. By applying the fractional differential inclusion theory, inequality analysis technique and the proposed convergence properties, the sufficient conditions to achieve the global Mittag-Leffler synchronization and the synchronization in finite time are addressed in terms of linear matrix inequalities (LMIs). In addition, the upper bound of the setting time of the global synchronization in finite time is explicitly evaluated. Finally, two examples are given to demonstrate the validity of the proposed design method and theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ristau, Henry
Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.
A Full Mesh ATCA-based General Purpose Data Processing Board (Pulsar II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajuha, S.
The Pulsar II is a custom ATCA full mesh enabled FPGA-based processor board which has been designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth interconnections. The design has been motivated by silicon-based tracking trigger needs for LHC experiments. In this technical memo we describe the Pulsar II hardware and its performance, such as the performance test results with full mesh backplanes from different vendors, how the backplane is used for the development of low-latency time-multiplexed data transfer schemes and how the inter-shelf and intra-shelf synchronization works.
Next Steps in Network Time Synchronization For Navy Shipboard Applications
2008-12-01
40th Annual Precise Time and Time Interval (PTTI) Meeting NEXT STEPS IN NETWORK TIME SYNCHRONIZATION FOR NAVY SHIPBOARD APPLICATIONS...dynamic manner than in previous designs. This new paradigm creates significant network time synchronization challenges. The Navy has been...deploying the Network Time Protocol (NTP) in shipboard computing infrastructures to meet the current network time synchronization requirements
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
Guide to Synchronization of Video Systems to IRIG Timing
1992-07-01
and industry. 1-2 CHAPTER 2 SYNCHRONISATION Before delving into the details of synchronization , a review is needed of the reasons for synchronizing ... Synchronization of Video Systems to IRIG Timing Optical Systems Group Range Commanders Council White Sands Missile Range, NM 88002-5110 RCC Document 456-92 Range...This document addresses a broad field of video synchronization to IRIG timing with emphasis on color synchronization . This document deals with
Exact synchronization bound for coupled time-delay systems.
Senthilkumar, D V; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J
2013-04-01
We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595
NASA Astrophysics Data System (ADS)
Ding, Dawei; Qian, Xin; Wang, Nian; Liang, Dong
2018-05-01
In this paper, the issue of synchronization and anti-synchronization for fractional-delayed memristor-based chaotic system is studied by using active control strategy. Firstly, some explicit conditions are proposed to guarantee the synchronization and anti-synchronization of the proposed system. Secondly, the influence of order and time delay on the synchronization (anti-synchronization) is discussed. It reveals that synchronization (anti-synchronization) is faster as the order increases or the time delay decreases. Finally, some numerical simulations are presented to verify the validity of our theoretical analysis.
Constructive polarization modulation for coherent population trapping clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David
2014-12-08
We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less
a New Approach to Physiologic Triggering in Medical Imaging Using Multiple Heart Sounds Alone.
NASA Astrophysics Data System (ADS)
Groch, Mark Walter
A new method for physiological synchronization of medical image acquisition using both the first and second heart sound has been developed. Heart sounds gating (HSG) circuitry has been developed which identifies, individually, both the first (S1) and second (S2) heart sounds from their timing relationship alone, and provides two synchronization points during the cardiac cycle. Identification of first and second heart sounds from their timing relationship alone and application to medical imaging has, heretofore, not been performed in radiology or nuclear medicine. The heart sounds are obtained as conditioned analog signals from a piezoelectric transducer microphone placed on the patient's chest. The timing relationships between the S1 to S2 pulses and the S2 to S1 pulses are determined using a logic scheme capable of distinguishing the S1 and S2 pulses from the heart sounds themselves, using their timing relationships, and the assumption that initially the S1-S2 interval will be shorter than the S2-S1 interval. Digital logic circuitry is utilized to continually track the timing intervals and extend the S1/S2 identification to heart rates up to 200 beats per minute (where the S1-S2 interval is not shorter than the S2-S1 interval). Clinically, first heart sound gating may be performed to assess the systolic ejection portion of the cardiac cycle, with S2 gating utilized for reproduction of the diastolic filling portion of the cycle. One application of HSG used for physiologic synchronization is in multigated blood pool (MGBP) imaging in nuclear medicine. Heart sounds gating has been applied to twenty patients who underwent analysis of ventricular function in Nuclear Medicine, and compared to conventional ECG gated MGBP. Left ventricular ejection fractions calculated from MGBP studies using a S1 and a S2 heart sound trigger correlated well with conventional ECG gated acquisitions in patients adequately gated by HSG and ECG. Heart sounds gating provided superior definition of the diastolic filling phase of the cardiac cycle by qualitative assessment of the left ventricular volume time -activity curves. Heart sounds physiological synchronization has potential to be used in other imaging modalities, such as magnetic resonance imaging, where the ECG is distorted due to the electromagnetic environment within the imager.
Swetapadma, Aleena; Yadav, Anamika
2015-01-01
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088
Study of consensus-based time synchronization in wireless sensor networks.
He, Jianping; Li, Hao; Chen, Jiming; Cheng, Peng
2014-03-01
Recently, various consensus-based protocols have been developed for time synchronization in wireless sensor networks. However, due to the uncertainties lying in both the hardware fabrication and network communication processes, it is not clear how most of the protocols will perform in real implementations. In order to reduce such gap, this paper investigates whether and how the typical consensus-based time synchronization protocols can tolerate the uncertainties in practical sensor networks through extensive testbed experiments. For two typical protocols, i.e., Average Time Synchronization (ATS) and Maximum Time Synchronization (MTS), we first analyze how the time synchronization accuracy will be affected by various uncertainties in the system. Then, we implement both protocols on our sensor network testbed consisted of Micaz nodes, and investigate the time synchronization performance and robustness under various network settings. Noticing that the synchronized clocks under MTS may be slightly faster than the desirable clock, by adopting both maximum consensus and minimum consensus, we propose a modified protocol, MMTS, which is able to drive the synchronized clocks closer to the desirable clock while maintaining the convergence rate and synchronization accuracy of MTS. © 2013 ISA. Published by ISA. All rights reserved.
NASA Astrophysics Data System (ADS)
Lallart, Mickaël; Wu, Wen-Jong; Hsieh, Yuchieh; Yan, Linjuan
2017-11-01
This paper aims at proposing an electrical interface taking advantage of nonlinear treatment for both significantly increasing the voltage of a piezoelectric device and extracting the corresponding electrostatic energy in an independent way from the connected electrical load. The principles of the proposed system lies in quickly inverting the piezoelectric voltage on each extremum (synchronized switch on inductor operations) for a given number of extremum occurrences, and then extracting the total electrostatic energy available on the piezoelectric element through the so-called synchronous electric charge extraction (SECE) for energy harvesting purpose. Compared to classical SECE approach, which consists in extracting the energy on each voltage extremum occurrence, the proposed scheme shows a significant improvement in low-coupled systems thanks to a fine control of the trade-off between voltage amplification and number of extraction events.
Adaptive control of dynamical synchronization on evolving networks with noise disturbances
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen
2018-02-01
In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).
NASA Technical Reports Server (NTRS)
Defeo, P.; Chen, M.
1987-01-01
Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.
First opportunity to synchronize the ILRS network thanks to T2L2 on Jason-2
NASA Astrophysics Data System (ADS)
Exertier, Pierre; Belli, Alexandre; Courde, Clément; Vernotte, François
2016-07-01
The Time Transfer by Laser Link (T2L2, on-board the oceanographic satellite Jason-2 at 1335 km) experiment allows us to synchronize remote clocks of Satellite Laser Ranging (SLR) stations throughout the whole ILRS (International Laser Ranging Service) network. We have developed a time transfer processing dedicated to non Common View (CV) cases, i.e. time transfer between stations from the Americas, Asia, Europe and Oceania. The main difficulty is to take into account the complex behaviour of the on-board Ultra Stable Oscillator (USO) over more than 1,500 s and up to a few thousands seconds. By integrating a recently published model describing the frequency responses of the USO to physical effects, as temperature and radiations, we show that it is possible to propagate the phase (time) of the on-board clock for an orbital revolution (1 rev = 6,700 s) or two with an error of a few nanoseconds (ns). Scheme of stages of this process is presented. The non CV time transfer process is applied in order to synchronize a plurality of remote stations involved in the T2L2/Jason-2 tracking by laser. The ground-to-space time transfers which we have processed over recent years (from 2013 to 2015) are all contributing to the development of a synthetic on-board time scale. The resulting ground-to-ground time transfers, computed between remote clocks of SLR stations, show differences of 250-300 ns up to a few microseconds ± 3-4 ns. The T2L2 space experiment is thus the first opportunity to estimate, quasi-instantaneously and to the ns level, time differences between clocks of the SLR stations which form one of the basis of the International Terrestrial Reference Frame (ITRF). This result would help the laser ranging community (time & frequency metrology of stations, analysis centres, and applications to the precise orbit and positioning) to achieve the GGOS (Global Geodetic Observing System) requirements in terms of accuracy and long-term stability of geodetic references.
Ding, Xiaoshuai; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar
2017-06-01
This paper is concerned with the fixed-time synchronization for a class of complex-valued neural networks in the presence of discontinuous activation functions and parameter uncertainties. Fixed-time synchronization not only claims that the considered master-slave system realizes synchronization within a finite time segment, but also requires a uniform upper bound for such time intervals for all initial synchronization errors. To accomplish the target of fixed-time synchronization, a novel feedback control procedure is designed for the slave neural networks. By means of the Filippov discontinuity theories and Lyapunov stability theories, some sufficient conditions are established for the selection of control parameters to guarantee synchronization within a fixed time, while an upper bound of the settling time is acquired as well, which allows to be modulated to predefined values independently on initial conditions. Additionally, criteria of modified controller for assurance of fixed-time anti-synchronization are also derived for the same system. An example is included to illustrate the proposed methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Communication scheme using a hyperchaotic semiconductor laser model: Chaos shift key revisited
NASA Astrophysics Data System (ADS)
Fataf, N. A. A.; Palit, Sanjay Kumar; Mukherjee, Sayan; Said, M. R. M.; Son, Doan Hoai; Banerjee, Santo
2017-11-01
Based on the Maxwell-Bloch equations, we considered a five-dimensional ODE system, describing the dynamics of a semiconductor laser. The system has rich dynamics with multi-periodic, chaotic and hyperchaotic states. In this analysis, we have investigated the hyperchaotic nature of the aforesaid model and proposed a communication scheme, the generalized form of chaos shift keys, where the coupled systems do not need to be in the synchronized state. The results are implemented with the hyperchaotic laser model followed by a comprehensive security analysis.
Electromechanical converters for electric vehicles
NASA Astrophysics Data System (ADS)
Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.
2018-01-01
The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2017-12-01
The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-01-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s. PMID:24336459
OAM-labeled free-space optical flow routing.
Gao, Shecheng; Lei, Ting; Li, Yangjin; Yuan, Yangsheng; Xie, Zhenwei; Li, Zhaohui; Yuan, Xiaocong
2016-09-19
Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network.
NASA Astrophysics Data System (ADS)
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-12-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.
Analyzing Dynamics of Cooperating Spacecraft
NASA Technical Reports Server (NTRS)
Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.
2004-01-01
A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.
NASA Technical Reports Server (NTRS)
Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.
2007-01-01
The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.
Zhou, Xian; Chen, Xue
2011-05-09
The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron
2012-07-23
Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an
Attitude coordination of multi-HUG formation based on multibody system theory
NASA Astrophysics Data System (ADS)
Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin
2017-04-01
Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.
Time Synchronization in Wireless Sensor Networks
2003-01-01
University of California Los Angeles Time Synchronization in Wireless Sensor Networks A dissertation submitted in partial satisfaction of the...4. TITLE AND SUBTITLE Time Synchronization in Wireless Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1 1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time Synchronization in Sensor Networks
Coding for Communication Channels with Dead-Time Constraints
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2004-01-01
Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.
1989-11-01
GPS-UTC TIME SYNCHRONIZATION C. H. MCKENZIE W. A. FEESS R, H. LUCAS H. HOLTZ A. L. SATIN The Aerospace Corporation El Segundo, California...Abstract Two automatic algorithms for synchronizing the GPS time standard to the UTC time standard are evaluated. Both algorithms control GPS-UTC...is required to synchronize its broadcast time standard to within one microsecond o f the time standard maintained by the US Naval Observatory
NASA Astrophysics Data System (ADS)
Yousefian, Reza
This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.
Time Synchronization and Distribution Mechanisms for Space Networks
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.
2011-01-01
This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.
A precise time synchronization method for 5G based on radio-over-fiber network with SDN controller
NASA Astrophysics Data System (ADS)
He, Linkuan; Wei, Baoguo; Yang, Hui; Yu, Ao; Wang, Zhengyong; Zhang, Jie
2018-02-01
There is an increasing demand on accurate time synchronization with the growing bandwidth of network service for 5G. In 5G network, it's necessary for base station to achieve accurate time synchronization to guarantee the quality of communication. In order to keep accuracy time for 5G network, we propose a time synchronization system for satellite ground station based on radio-over-fiber network (RoFN) with software defined optical network (SDON) controller. The advantage of this method is to improve the accuracy of time synchronization of ground station. The IEEE 1588 time synchronization protocol can solve the problems of high cost and lack of precision. However, in the process of time synchronization, distortion exists during the transmission of digital time signal. RoF uses analog optical transmission links and therefore analog transmission can be implemented among ground stations instead of digital transmission, which means distortion and bandwidth waste in the process of digital synchronization can be avoided. Additionally, the thought of SDN, software defined network, can optimize RoFN with centralized control and simplifying base station. Related simulation had been carried out to prove its superiority.
NASA Astrophysics Data System (ADS)
Pattini, F.; Porzio Giusto, P.
The design criteria and performance of the master clock (MCK) generator and the unique word (UW) detector are examined. A narrow band phase lock loop is used for the onboard MCK generator and it is implemented with an all-digital scheme that employs a D-type flip flop as the phase detector. The performance of the MCK generator is analyzed with a computer program which considers phase offset of the digital phase comparator. The characteristics and capabilities of the UW detector which provides strobe signals for the MCK generator and synchronization signals for the onboard switching matrix are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com; Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx
2015-10-15
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
Encryption key distribution via chaos synchronization
Keuninckx, Lars; Soriano, Miguel C.; Fischer, Ingo; Mirasso, Claudio R.; Nguimdo, Romain M.; Van der Sande, Guy
2017-01-01
We present a novel encryption scheme, wherein an encryption key is generated by two distant complex nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to be implemented on either photonic, optoelectronic or electronic platforms. The method for generating the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic process, the obtained bit series fulfill the randomness conditions as defined by the National Institute of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator circuit and test the robustness against attacks using a state-of-the-art system identification method. PMID:28233876
NASA Astrophysics Data System (ADS)
Zhong, Chongquan; Lin, Yaoyao
2017-11-01
In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.
Li, Ping; Wu, Jia-Gui; Wu, Zheng-Mao; Lin, Xiao-Dong; Deng, Dao; Liu, Yu-Ran; Xia, Guang-Qiong
2011-11-21
Based on a linear chain composed of a central semiconductor laser and two outer semiconductor lasers, chaos synchronization and bidirectional communication between two outer lasers have been investigated under the case that the central laser and the two outer lasers are coupled mutually, whereas there exists no coupling between the two outer lasers. The simulation results show that high-quality and stable isochronal synchronization between the two outer lasers can be achieved, while the cross-correlation coefficients between the two outer lasers and the central laser are very low under proper operation condition. Based on the high performance chaos synchronization between the two outer lasers, message bidirectional transmissions of bit rates up to 20 Gbit/s can be realized through adopting a novel decoding scheme which is different from that based on chaos pass filtering effect. Furthermore, the security of bidirectional communication is also analyzed. © 2011 Optical Society of America
Real time implementation and control validation of the wind energy conversion system
NASA Astrophysics Data System (ADS)
Sattar, Adnan
The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real time simulation software and thus can be used to validate the controllers for the real time operation. Integration of the Battery Energy Storage System (BESS) with wind farm can smoothen its intermittent power fluctuations. The work also focuses on the real time implementation of the Sodium Sulfur (NaS) type BESS. BESS is integrated with the STATCOM. The main advantage of this system is that it can also provide the reactive power support to the system along with the real power exchange from BESS unit. BESS integrated with STATCOM is modeled in the VSC small time-step of the RTDS. The cascaded vector control scheme is used for the control of the STATCOM and suitable control is developed to control the charging/discharging of the NaS type BESS. Results are compared with Laboratory standard power system software PSCAD/EMTDC and the advantages of using RTDS in dynamic and transient characteristics analyses of wind farm are also demonstrated clearly.
Synchrony-optimized networks of Kuramoto oscillators with inertia
NASA Astrophysics Data System (ADS)
Pinto, Rafael S.; Saa, Alberto
2016-12-01
We investigate synchronization in networks of Kuramoto oscillators with inertia. More specifically, we introduce a rewiring algorithm consisting basically in a hill climb scheme in which the edges of the network are swapped in order to enhance its synchronization capacity. We show that the synchrony-optimized networks generated by our algorithm have some interesting topological and dynamical properties. In particular, they typically exhibit an anticipation of the synchronization onset and are more robust against certain types of perturbations. We consider synthetic random networks and also a network with a topology based on an approximated model of the (high voltage) power grid of Spain, since networks of Kuramoto oscillators with inertia have been used recently as simplified models for power grids, for which synchronization is obviously a crucial issue. Despite the extreme simplifications adopted in these models, our results, among others recently obtained in the literature, may provide interesting principles to guide the future growth and development of real-world grids, specially in the case of a change of the current paradigm of centralized towards distributed generation power grids.
Synchronous response modelling and control of an annular momentum control device
NASA Astrophysics Data System (ADS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-08-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
Synchronous response modelling and control of an annular momentum control device
NASA Technical Reports Server (NTRS)
Hockney, Richard; Johnson, Bruce G.; Misovec, Kathleen
1988-01-01
Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware.
NASA Astrophysics Data System (ADS)
Duane, G. S.; Selten, F.
2016-12-01
Different models of climate and weather commonly give projections/predictions that differ widely in their details. While averaging of model outputs almost always improves results, nonlinearity implies that further improvement can be obtained from model interaction in run time, as has already been demonstrated with toy systems of ODEs and idealized quasigeostrophic models. In the supermodeling scheme, models effectively assimilate data from one another and partially synchronize with one another. Spread among models is manifest as a spread in possible inter-model connection coefficients, so that the models effectively "agree to disagree". Here, we construct a supermodel formed from variants of the SPEEDO model, a primitive-equation atmospheric model (SPEEDY) coupled to ocean and land. A suite of atmospheric models, coupled to the same ocean and land, is chosen to represent typical differences among climate models by varying model parameters. Connections are introduced between all pairs of corresponding independent variables at synoptic-scale intervals. Strengths of the inter-atmospheric connections can be considered to represent inverse inter-model observation error. Connection strengths are adapted based on an established procedure that extends the dynamical equations of a pair of synchronizing systems to synchronize parameters as well. The procedure is applied to synchronize the suite of SPEEDO models with another SPEEDO model regarded as "truth", adapting the inter-model connections along the way. The supermodel with trained connections gives marginally lower error in all fields than any weighted combination of the separate model outputs when used in "weather-prediction mode", i.e. with constant nudging to truth. Stronger results are obtained if a supermodel is used to predict the formation of coherent structures or the frequency of such. Partially synchronized SPEEDO models give a better representation of the blocked-zonal index cycle than does a weighted average of the constituent model outputs. We have thus shown that supermodeling and the synchronization-based procedure to adapt inter-model connections give results superior to output averaging not only with highly nonlinear toy systems, but with smaller nonlinearities as occur in climate models.
RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.
Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na
2015-09-03
Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.
Synchronized state of coupled dynamics on time-varying networks.
Amritkar, R E; Hu, Chin-Kun
2006-03-01
We consider synchronization properties of coupled dynamics on time-varying networks and the corresponding time-average network. We find that if the different Laplacians corresponding to the time-varying networks commute with each other then the stability of the synchronized state for both the time-varying and the time-average topologies are approximately the same. On the other hand for noncommuting Laplacians the stability of the synchronized state for the time-varying topology is in general better than the time-average topology.
An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis
NASA Technical Reports Server (NTRS)
Tsow, Alex
2008-01-01
Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.
An Interactive Multi-Model for Consensus on Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocarev, Ljupco
This project purports to develop a new scheme for forming consensus among alternative climate models, that give widely divergent projections as to the details of climate change, that is more intelligent than simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under development effectively allows models to assimilate data from one another in run time with weights that are chosen in an adaptive training phase using 20th century data, so that the models synchronize with one another as well as with reality. An alternate approach that is being explored in parallel is the automatedmore » combination of equations from different models in an expert-system-like framework.« less
Two-color hybrid laser wakefield and direct laser accelerator
NASA Astrophysics Data System (ADS)
Zhang, Xi; Khudik, V.; Bernstein, A.; Downer, M.; Shvets, G.
2017-03-01
We propose and investigate the concept of two-color laser wakefield and direct acceleration (LWDA) scheme in the regime of moderate (10 TW scale) laser powers. The concept utilizes two unequal frequency laser pulses: the leading long-wavelength (λ0 = 0.8 µm) wakefield laser pulse driving a nonlinear plasma wake, and a trailing short-wavelength (λDLA = λ0/2) DLA laser pulse. The combination of the large electric field, yet small ponderomotive pressure of the DLA pulse is shown to be advantageous for producing a higher energy and larger charge electron beam compared with the single frequency LWDA. The sensitivity of the dual-frequency LWDA to synchronization time jitter is also reduced.
Chronos in synchronicity: manifestations of the psychoid reality.
Yiassemides, Angeliki
2011-09-01
Jung's most obvious time-related concept is synchronicity. Yet, even though 'time' is embedded in it (chronos) there has been no systematic treatment of the time factor. Jung himself avoided dealing explicitly with the concept of time in synchronicity, in spite of its temporal assumptions and implications. In this paper the role of time in synchronicity is examined afresh, locating it in the context of meaning and relating it to the psychoid archetype. Synchronicity is viewed as an expression of the psychoid; the vital parameter for the elucidation of this link appears to be time. The author argues that the psychoid rests on relative time which Jung deemed transcendent. The existence of two different uses of the word 'time' in Jung's opus are emphasized: fixed time that dominates consciousness and relative time that exists in the psyche at large. Since consciousness cannot grasp the psychoid's temporality it de-relativizes time; examples of this 'behaviour' of time can be observed in instances of synchronicity. It is thus argued that synchronicity demonstrates by analogy the nature of the psychoid archetype. Jung's quaternio, as it developed via his communication with Pauli, is also examined in light of the above presented 'time theory'. © 2011, The Society of Analytical Psychology.
Suresh, R; Senthilkumar, D V; Lakshmanan, M; Kurths, J
2012-07-01
We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.
Studies in integrated line-and packet-switched computer communication systems
NASA Astrophysics Data System (ADS)
Maglaris, B. S.
1980-06-01
The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.
Criteria for Labelling Prosodic Aspects of English Speech.
ERIC Educational Resources Information Center
Bagshaw, Paul C.; Williams, Briony J.
A study reports a set of labelling criteria which have been developed to label prosodic events in clear, continuous speech, and proposes a scheme whereby this information can be transcribed in a machine readable format. A prosody in a syllabic domain which is synchronized with a phonemic segmentation was annotated. A procedural definition of…
Modulation and synchronization technique for MF-TDMA system
NASA Technical Reports Server (NTRS)
Faris, Faris; Inukai, Thomas; Sayegh, Soheil
1994-01-01
This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.
Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael
2018-01-01
Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Shedding light on some possible remedies against watermark desynchronization: a case study
NASA Astrophysics Data System (ADS)
Barni, Mauro
2005-03-01
Watermark de-synchronization is perhaps the most dangerous attack against the great majority of watermarking systems proposed so far. Exhaustive search and template matching are two of the most popular solution against it, however several doubts exist about their effectiveness. As a matter of fact, a controversial point in digital watermarking is whether these techniques are of any help to cope with watermark de-synchronization introduced by geometric attacks. On one side, watermark synchronization through exhaustive search dramatically increases the false detection probability. On the other side, for the template matching approach the probability of a synchronization error must be taken into account, thus deteriorating significantly the performance of the system. It is the scope of this paper to shed some light on the above points. To do so we focus on a very simple case study, whereby we show that as long as the size of the search space (the cardinality of the geometric attack) increases polynomially with the length of the to-be-marked host feature sequence, both methods provide an effective solution to the de-synchronization problem. Interestingly, and rather surprisingly, we also show that Exhaustive Search Detection (ESD) always outperforms Template Matching Detection (TMD), though the general behavior of the two schemes is rather similar.
A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.
Yang, Wenlun; Fu, Minyue
2017-11-01
Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Jiang, Jin-Gang; Zhang, Yong-De
2013-03-01
The traditional, manual method of reproducing the dental arch form is prone to numerous random errors caused by human factors. The purpose of this study was to investigate the automatic acquisition of the dental arch and implement the motion planning and synchronized control of the dental arch generator of the multi-manipulator tooth-arrangement robot for use in full denture manufacture. First, the mathematical model of the dental arch generator was derived. Then the kinematics and control point position of the dental arch generator of the tooth arrangement robot were calculated and motion planning of each control point was analysed. A hardware control scheme is presented, based on the industrial personal computer and control card PC6401. In order to gain single-axis, precise control of the dental arch generator, we studied the control pulse realization of high-resolution timing. Real-time, closed-loop, synchronous control was applied to the dental arch generator. Experimental control of the dental arch generator and preliminary tooth arrangement were gained by using the multi-manipulator tooth-arrangement robotic system. The dental arch generator can automatically generate a dental arch to fit a patient according to the patient's arch parameters. Repeated positioning accuracy is 0.12 mm for the slipways that drive the dental arch generator. The maximum value of single-point error is 1.83 mm, while the arc-width direction (x axis) is -33.29 mm. A novel system that generates the dental arch has been developed. The traditional method of manually determining the dental arch may soon be replaced by a robot to assist in generating a more individual dental arch. The system can be used to fabricate full dentures and bend orthodontic wires. Copyright © 2012 John Wiley & Sons, Ltd.
Association schemes perspective of microbubble cluster in ultrasonic fields.
Behnia, S; Yahyavi, M; Habibpourbisafar, R
2018-06-01
Dynamics of a cluster of chaotic oscillators on a network are studied using coupled maps. By introducing the association schemes, we obtain coupling strength in the adjacency matrices form, which satisfies Markov matrices property. We remark that in general, the stability region of the cluster of oscillators at the synchronization state is characterized by Lyapunov exponent which can be defined based on the N-coupled map. As a detailed physical example, dynamics of microbubble cluster in an ultrasonic field are studied using coupled maps. Microbubble cluster dynamics have an indicative highly active nonlinear phenomenon, were not easy to be explained. In this paper, a cluster of microbubbles with a thin elastic shell based on the modified Keller-Herring equation in an ultrasonic field is demonstrated in the framework of the globally coupled map. On the other hand, a relation between the microbubble elements is replaced by a relation between the vertices. Based on this method, the stability region of microbubbles pulsations at complete synchronization state has been obtained analytically. In this way, distances between microbubbles as coupling strength play the crucial role. In the stability region, we thus observe that the problem of study of dynamics of N-microbubble oscillators reduce to that of a single microbubble. Therefore, the important parameters of the isolated microbubble such as applied pressure, driving frequency and the initial radius have effective behavior on the synchronization state. Copyright © 2018 Elsevier B.V. All rights reserved.
Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.
2018-01-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352
Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R
2016-04-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-01-01
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results.
2018-01-01
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results. PMID:29370248
Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose
NASA Astrophysics Data System (ADS)
Su, Zikang; Wang, Honglun; Li, Na
2018-05-01
As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.
Enhanced Precision Time Synchronization for Wireless Sensor Networks
Cho, Hyuntae; Kim, Jongdeok; Baek, Yunju
2011-01-01
Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol. PMID:22164035
Enhanced precision time synchronization for wireless sensor networks.
Cho, Hyuntae; Kim, Jongdeok; Baek, Yunju
2011-01-01
Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks.
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-13
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs' demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks †
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-01
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs’ demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays. PMID:28098750
2002-12-01
34th Annual Precise Time and Time Interval (PTTI) Meeting 243 IEEE-1588™ STANDARD FOR A PRECISION CLOCK SYNCHRONIZATION PROTOCOL FOR... synchronization . 2. Cyclic-systems. In cyclic-systems, timing is periodic and is usually defined by the characteristics of a cyclic network or bus...incommensurate, timing schedules for each device are easily implemented. In addition, synchronization accuracy depends on the accuracy of the common
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2017-03-01
We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.
Intelligent design of permanent magnet synchronous motor based on CBR
NASA Astrophysics Data System (ADS)
Li, Cong; Fan, Beibei
2018-05-01
Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.
Satellite time synchronization of a NASA network.
NASA Technical Reports Server (NTRS)
Laios, S. C.
1972-01-01
A satellite time synchronization technique has been used for synchronization of remotely separated clocks during the past several years. The NASA network has been successfully synchronized to an accuracy of tens of microseconds via the NASA Geodetic Earth Orbiting Satellite GEOS-11. The results indicate that a polar orbit satellite having an onboard clock can effectively be used to synchronize clocks on a global basis.
NASA Astrophysics Data System (ADS)
Schaefer, S.; Gregory, M.; Rosenkranz, W.
2017-09-01
Due to higher data rates, better data security and unlicensed spectral usage optical inter-satellite links (OISL) offer an attractive alternative to conventional RF-communication. However, the very high transmission distances necessitate an optical receiver design enabling high receiver sensitivity which requires careful carrier synchronization and a quasi-coherent detection scheme.
Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.
Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin
2014-07-01
This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation
NASA Technical Reports Server (NTRS)
Steinman, Jeff S.
1992-01-01
Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.
Precise time transfer using MKIII VLBI technology
NASA Technical Reports Server (NTRS)
Johnston, K. J.; Buisson, J. A.; Lister, M. J.; Oaks, O. J.; Spencer, J. H.; Waltman, W. B.; Elgered, G.; Lundqvist, G.; Rogers, A. E. E.; Clark, T. A.
1984-01-01
It is well known that Very Long Baseline Interferometry (VLBI) is capable of precise time synchronization at subnanosecond levels. This paper deals with a demonstration of clock synchronization using the MKIII VBLI system. The results are compared with clock synchronization by traveling cesium clocks and GPS. The comparison agrees within the errors of the portable clocks (+ 5 ns) and GPS(+ or - 30 ns) systems. The MKIII technology appears to be capable of clock synchronization at subnanosecond levels and appears to be very good benchmark system against which future time synchronization systems can be evaluated.
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-12-01
This paper is devoted to studying the fixed-time synchronization of memristor-based BAM neural networks (MBAMNNs) with discrete delay. Fixed-time synchronization means that synchronization can be achieved in a fixed time for any initial values of the considered systems. In the light of the double-layer structure of MBAMNNs, we design two similar feedback controllers. Based on Lyapunov stability theories, several criteria are established to guarantee that the drive and response MBAMNNs can realize synchronization in a fixed time. In particular, by changing the parameters of controllers, this fixed time can be adjusted to some desired value in advance, irrespective of the initial values of MBAMNNs. Numerical simulations are included to validate the derived results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay.
Alofi, Abdulaziz; Ren, Fengli; Al-Mazrooei, Abdullah; Elaiw, Ahmed; Cao, Jinde
2015-10-01
In this paper, a new synchronization problem for the collective dynamics among genetic oscillators with unbounded time-varying delay is investigated. The dynamical system under consideration consists of an array of linearly coupled identical genetic oscillators with each oscillators having unbounded time-delays. A new concept called power-rate synchronization, which is different from both the asymptotical synchronization and the exponential synchronization, is put forward to facilitate handling the unbounded time-varying delays. By using a combination of the Lyapunov functional method, matrix inequality techniques and properties of Kronecker product, we derive several sufficient conditions that ensure the coupled genetic oscillators to be power-rate synchronized. The criteria obtained in this paper are in the form of matrix inequalities. Illustrative example is presented to show the effectiveness of the obtained results.
Map synchronization in optical communication systems
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.; Mohanty, N.
1973-01-01
The time synchronization problem in an optical communication system is approached as a problem of estimating the arrival time (delay variable) of a known transmitted field. Maximum aposteriori (MAP) estimation procedures are used to generate optimal estimators, with emphasis placed on their interpretation as a practical system device, Estimation variances are used to aid in the design of the transmitter signals for best synchronization. Extension is made to systems that perform separate acquisition and tracking operations during synchronization. The closely allied problem of maintaining timing during pulse position modulation is also considered. The results have obvious application to optical radar and ranging systems, as well as the time synchronization problem.
Wang, Leimin; Zeng, Zhigang; Hu, Junhao; Wang, Xiaoping
2017-03-01
This paper addresses the controller design problem for global fixed-time synchronization of delayed neural networks (DNNs) with discontinuous activations. To solve this problem, adaptive control and state feedback control laws are designed. Then based on the two controllers and two lemmas, the error system is proved to be globally asymptotically stable and even fixed-time stable. Moreover, some sufficient and easy checked conditions are derived to guarantee the global synchronization of drive and response systems in fixed time. It is noted that the settling time functional for fixed-time synchronization is independent on initial conditions. Our fixed-time synchronization results contain the finite-time results as the special cases by choosing different values of the two controllers. Finally, theoretical results are supported by numerical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quadrature-quadrature phase-shift keying
NASA Astrophysics Data System (ADS)
Saha, Debabrata; Birdsall, Theodore G.
1989-05-01
Quadrature-quadrature phase-shift keying (Q2PSK) is a spectrally efficient modulation scheme which utilizes available signal space dimensions in a more efficient way than two-dimensional schemes such as QPSK and MSK (minimum-shift keying). It uses two data shaping pulses and two carriers, which are pairwise quadrature in phase, to create a four-dimensional signal space and increases the transmission rate by a factor of two over QPSK and MSK. However, the bit error rate performance depends on the choice of pulse pair. With simple sinusoidal and cosinusoidal data pulses, the Eb/N0 requirement for Pb(E) = 10 to the -5 is approximately 1.6 dB higher than that of MSK. Without additional constraints, Q2PSK does not maintain constant envelope. However, a simple block coding provides a constant envelope. This coded signal substantially outperforms MSKS and TFM (time-frequency multiplexing) in bandwidth efficiency. Like MSK, Q2PSK also has self-clocking and self-synchronizing ability. An optimum class of pulse shapes for use in Q2PSK-format is presented. One suboptimum realization achieves the Nyquist rate of 2 bits/s/Hz using binary detection.
Kerstein, Robert B
2004-04-01
Current advances in computer technologies have afforded dentists precision ways to examine occlusal contacts and muscle function. Recently, two separate computer technologies have been synchronized together, so that an operator can record their separate diagnostic data simultaneously. The two systems are: the T Scan II Occlusal Analysis System and the Biopak Electromyography Recording System. The simultaneous recording and playback capacity of these two computer systems allows the operator to analyze and correlate specific occlusal moments to specific electromyographic changes that result from these occlusal moments. This synchronization provides unparalleled evidence of the effect occlusal contact arrangement has on muscle function. Therefore, the occlusal condition of an inserted dental prosthesis or the occlusal scheme of the natural teeth (before and after corrective occlusal adjustments) can be readily evaluated, documented, and quantified for both, quality of occlusal parameters and muscle activity and the responses to the quality of the occlusal condition. This article describes their synchronization and illustrates their use in performing precision occlusal adjustment procedures on two patients: one who demonstrates occlusal disharmony while exhibiting the signs and symptoms of chronic myofascial pain dysfunction syndrome, and the other who had extensive restorative work accomplished but exhibits occlusal discomfort post-operatively.
A review and guidance for pattern selection in spatiotemporal system
NASA Astrophysics Data System (ADS)
Wang, Chunni; Ma, Jun
2018-03-01
Pattern estimation and selection in media can give important clues to understand the collective response to external stimulus by detecting the observable variables. Both reaction-diffusion systems (RDs) and neuronal networks can be treated as multi-agent systems from molecular level, intrinsic cooperation, competition. An external stimulus or attack can cause collapse of spatial order and distribution, while appropriate noise can enhance the consensus in the spatiotemporal systems. Pattern formation and synchronization stability can bridge isolated oscillators and the network by coupling these nodes with appropriate connection types. As a result, the dynamical behaviors can be detected and discussed by developing different spatial patterns and realizing network synchronization. Indeed, the collective response of network and multi-agent system depends on the local kinetics of nodes and cells. It is better to know the standard bifurcation analysis and stability control schemes before dealing with network problems. In this review, dynamics discussion and synchronization control on low-dimensional systems, pattern formation and synchronization stability on network, wave stability in RDs and neuronal network are summarized. Finally, possible guidance is presented when some physical effects such as polarization field and electromagnetic induction are considered.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin
2018-06-01
This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.
Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E
2017-01-01
This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can help decision makers mitigate potential risks, e.g. insufficiency of pollutant treatment capabilities, exceedance of air quality standards, deficiency of pollution control fund, or imbalance of economic or environmental stress, in the process of guiding AQM. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy; Biswas, Debabrata
2013-12-01
We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.
PTTI 2030 - Time Transfer and Applications in 2030
2010-01-01
today’s society is paramount. Every day billions of people worldwide depend on some level of time synchronization , and timing laboratories require...applications as an inexpensive way to disseminate GPS-acquired time and frequency among groups, or as a backup method of time synchronization in the...strictly for timing use would be very expensive, perhaps prohibitive. ADVANTAGES OF AN IEEE-1588-ENABLED POWER GRID Time synchronization in
Synchrophasor Sensor Networks for Grid Communication and Protection.
Gharavi, Hamid; Hu, Bin
2017-07-01
This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems.
Synchrophasor Sensor Networks for Grid Communication and Protection
Gharavi, Hamid
2017-01-01
This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems. PMID:28890553
NASA Astrophysics Data System (ADS)
Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori
This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.
Femtosecond synchronism of x-rays and visible/infrared light in an x-ray free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, B. W.
2007-12-15
A way is proposed to obtain ultrashort pulses of intense infrared/visible light in few-femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL). It makes use of the recently proposed emittance-slicing technique [Emma et al., Phys. Rev. Lett. 92, 074801 (2004)] to both restrict the duration of self-amplified spontaneous emission (SASE) to a few femtoseconds and to lead to a coherence enhancement of near-infrared transition undulator radiation (CTUR). The x-rays and the near-infrared light originate within the XFEL undulator from the same slice of electrons within a bunch and are therefore perfectly synchronized with each other. An example of realizingmore » the scheme at the Linac Coherent Light Source is presented. A few side issues are explored briefly, such as the magnitude of the velocity term versus the acceleration term in the Lienard-Wiechert fields and the possible use of the CTUR as a diagnostic tool for the SASE process itself.« less
Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.
Liu, Xiaoyang; Cao, Jinde; Yu, Wenwu; Song, Qiang
2016-10-01
This paper is concerned with the finite-time synchronization (FTS) issue of switched coupled neural networks with discontinuous or continuous activations. Based on the framework of nonsmooth analysis, some discontinuous or continuous controllers are designed to force the coupled networks to synchronize to an isolated neural network. Some sufficient conditions are derived to ensure the FTS by utilizing the well-known finite-time stability theorem for nonlinear systems. Compared with the previous literatures, such synchronization objective will be realized when the activations and the controllers are both discontinuous. The obtained results in this paper include and extend the earlier works on the synchronization issue of coupled networks with Lipschitz continuous conditions. Moreover, an upper bound of the settling time for synchronization is estimated. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.
Time-resolved measurement of global synchronization in the dust acoustic wave
NASA Astrophysics Data System (ADS)
Williams, J. D.
2014-10-01
A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.
Dharani, S; Rakkiyappan, R; Cao, Jinde; Alsaedi, Ahmed
2017-08-01
This paper explores the problem of synchronization of a class of generalized reaction-diffusion neural networks with mixed time-varying delays. The mixed time-varying delays under consideration comprise of both discrete and distributed delays. Due to the development and merits of digital controllers, sampled-data control is a natural choice to establish synchronization in continuous-time systems. Using a newly introduced integral inequality, less conservative synchronization criteria that assure the global asymptotic synchronization of the considered generalized reaction-diffusion neural network and mixed delays are established in terms of linear matrix inequalities (LMIs). The obtained easy-to-test LMI-based synchronization criteria depends on the delay bounds in addition to the reaction-diffusion terms, which is more practicable. Upon solving these LMIs by using Matlab LMI control toolbox, a desired sampled-data controller gain can be acuqired without any difficulty. Finally, numerical examples are exploited to express the validity of the derived LMI-based synchronization criteria.
Jiancheng, Shi; Min, Luo; Chusheng, Huang
2017-08-01
The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.
The two-way time synchronization system via a satellite voice channel
NASA Technical Reports Server (NTRS)
Heng-Qiu, Zheng; Ren-Huan, Zhang; Yong-Hui, HU
1994-01-01
A newly developed two-way time synchronization system is described in this paper. The system uses one voice channel at a SCPC satellite digital communication earth station, whose bandwidth is only 45 kHz, thus saving satellite resources greatly. The system is composed of one master station and one or several, up to sixty-two, secondary stations. The master and secondary stations are equipped with the same equipment, including a set of timing equipment, a synthetic data terminal for time synchronizing, and a interface unit between the data terminal and the satellite earth station. The synthetic data terminal for time synchronization also has an IRIG-B code generator and a translator. The data terminal of master station is the key part of whole system. The system synchronization process is full automatic, which is controlled by the master station. Employing an autoscanning technique and conversational mode, the system accomplishes the following tasks: linking up liaison with each secondary station in turn, establishing a coarse time synchronization, calibrating date (years, months, days) and time of day (hours, minutes, seconds), precisely measuring the time difference between local station and the opposite station, exchanging measurement data, statistically processing the data, rejecting error terms, printing the data, calculating the clock difference and correcting the phase, thus realizing real-time synchronization from one point to multiple points. We also designed an adaptive phase circuit to eliminate the phase ambiguity of the PSK demodulator. The experiments have shown that the time synchronization accuracy is better than 2 mu S. The system has been put into regular operation.
Physical Layer Ethernet Clock Synchronization
2010-11-01
42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization
NASA Astrophysics Data System (ADS)
Itahashi, S.
2018-03-01
Source apportionments for atmospheric concentration, dry deposition, and wet deposition of sulfate aerosol (SO42-) were synchronously evaluated over East Asia, a main source of anthropogenic sulfur dioxide (SO2) emissions. Estimating dry deposition was difficult owing to the difficulty of measuring deposition velocity directly; therefore, sensitivity simulations using two dry deposition schemes were conducted. Moreover, sensitivity simulations for different emission inventories, the largest uncertainty source in the air quality model, were also conducted. In total, four experimental settings were used. Model performance was verified for atmospheric concentration and wet deposition using a ground-based observation network in China, Korea, and Japan, and all four model settings captured the observations. The underestimation of wet deposition over China was improved by an adjusted approach that linearly scaled the modeled precipitation values to observations. The synchronous evaluation of source apportionments for atmospheric concentration and dry and wet deposition showed the dominant contribution of anthropogenic emissions from China to the atmospheric concentration and deposition in Japan. The contributions of emissions from volcanoes were more important for wet deposition than for atmospheric concentration. Differences in the dry deposition scheme and emission inventory did not substantially influence the relative ratio of source apportionments over Japan. Because the dry deposition was more attributed to local factors, the differences in dry deposition may be an important determinant of the source contributions from China to Japan. Verification of these findings, including the dry deposition velocity, is necessary for better understanding of the behavior of sulfur compound in East Asia.
Dynamics and stability of wind turbine generators
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.; Nolan, P. J.
1981-01-01
Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered.
Homodyning and heterodyning the quantum phase
NASA Technical Reports Server (NTRS)
Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.
1994-01-01
The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.
SKIRT: Hybrid parallelization of radiative transfer simulations
NASA Astrophysics Data System (ADS)
Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.
2017-07-01
We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.
Graph State-Based Quantum Group Authentication Scheme
NASA Astrophysics Data System (ADS)
Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying
2017-02-01
Motivated by the elegant structure of the graph state, we design an ingenious quantum group authentication scheme, which is implemented by operating appropriate operations on the graph state and can solve the problem of multi-user authentication. Three entities, the group authentication server (GAS) as a verifier, multiple users as provers and the trusted third party Trent are included. GAS and Trent assist the multiple users in completing the authentication process, i.e., GAS is responsible for registering all the users while Trent prepares graph states. All the users, who request for authentication, encode their authentication keys on to the graph state by performing Pauli operators. It demonstrates that a novel authentication scheme can be achieved with the flexible use of graph state, which can synchronously authenticate a large number of users, meanwhile the provable security can be guaranteed definitely.
Efficient quantum transmission in multiple-source networks.
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-04-02
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.
Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.
Su, Housheng; Wu, Han; Chen, Xia
2017-10-01
This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.
System Synchronizes Recordings from Separated Video Cameras
NASA Technical Reports Server (NTRS)
Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.
2009-01-01
A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.
Secure Communication Based on a Hybrid of Chaos and Ica Encryptions
NASA Astrophysics Data System (ADS)
Chen, Wei Ching; Yuan, John
Chaos and independent component analysis (ICA) encryptions are two novel schemes for secure communications. In this paper, a new scheme combining chaos and ICA techniques is proposed to enhance the security level during communication. In this scheme, a master chaotic system is embedded at the transmitter. The message signal is mixed with a chaotic signal and a Gaussian white noise into two mixed signals and then transmitted to the receiver through the public channels. A signal for synchronization is transmitted through another public channel to the receiver where a slave chaotic system is embedded to reproduce the chaotic signal. A modified ICA is used to recover the message signal at the receiver. Since only two of the three transmitted signals contain the information of message signal, a hacker would not be able to retrieve the message signal by using ICA even though all the transmitted signals are intercepted. Spectrum analyses are used to prove that the message signal can be securely hidden under this scheme.
Wang, Leimin; Shen, Yi; Zhang, Guodong
2016-10-01
This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.
Using GLONASS signal for clock synchronization
NASA Technical Reports Server (NTRS)
Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.
1994-01-01
Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.
Intra-household work time synchronization: Togetherness or material benefits?
van Klaveren, Chris; van den Brink, Henriette Maassen
2007-10-01
If partners derive utility from joint leisure time, it is expected that they will coordinate their work schedules in order to increase the amount of joint leisure. In order to control for differences in constraints and selection effects, this paper uses a new matching procedure, providing answers to the following questions: (1) Do partners coordinate their work schedules and does this result in work time synchronization?; (2) which partners synchronize more work hours?; and (3) is there a preference for togetherness? We find that coordination results in more synchronized work hours. The presence of children in the household is the main cause why some partners synchronize their work times less than other partners. Finally, partners coordinate their work schedules in order to have more joint leisure time, which is evidence for togetherness preferences.
Garbage Collection in a Distributed Object-Oriented System
NASA Technical Reports Server (NTRS)
Gupta, Aloke; Fuchs, W. Kent
1993-01-01
An algorithm is described in this paper for garbage collection in distributed systems with object sharing across processor boundaries. The algorithm allows local garbage collection at each node in the system to proceed independently of local collection at the other nodes. It requires no global synchronization or knowledge of the global state of the system and exhibits the capability of graceful degradation. The concept of a specialized dump node is proposed to facilitate the collection of inaccessible circular structures. An experimental evaluation of the algorithm is also described. The algorithm is compared with a corresponding scheme that requires global synchronization. The results show that the algorithm works well in distributed processing environments even when the locality of object references is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua
This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less
NASA Astrophysics Data System (ADS)
Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo
2018-03-01
Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.
Luo, Shaohua
2014-09-01
This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.
Optical gating and streaking of free electrons with sub-optical cycle precision
Kozák, M.; McNeur, J.; Leedle, K. J.; Deng, H.; Schönenberger, N.; Ruehl, A.; Hartl, I.; Harris, J. S.; Byer, R. L.; Hommelhoff, P.
2017-01-01
The temporal resolution of ultrafast electron diffraction and microscopy experiments is currently limited by the available experimental techniques for the generation and characterization of electron bunches with single femtosecond or attosecond durations. Here, we present proof of principle experiments of an optical gating concept for free electrons via direct time-domain visualization of the sub-optical cycle energy and transverse momentum structure imprinted on the electron beam. We demonstrate a temporal resolution of 1.2±0.3 fs. The scheme is based on the synchronous interaction between electrons and the near-field mode of a dielectric nano-grating excited by a femtosecond laser pulse with an optical period duration of 6.5 fs. The sub-optical cycle resolution demonstrated here is promising for use in laser-driven streak cameras for attosecond temporal characterization of bunched particle beams as well as time-resolved experiments with free-electron beams. PMID:28120930
Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio
2016-01-01
The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813
Development of a decentralized multi-axis synchronous control approach for real-time networks.
Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang
2017-05-01
The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Two-way sequential time synchronization: Preliminary results from the SIRIO-1 experiment
NASA Technical Reports Server (NTRS)
Detoma, E.; Leschiutta, S.
1981-01-01
A two-way time synchronization experiment performed in the spring of 1979 and 1980 via the Italian SIRIO-1 experimental telecommunications satellite is described. The experiment was designed and implemented to precisely monitor the satellite motion and to evaluate the possibility of performing a high precision, two-way time synchronization using a single communication channel, time-shared between the participating sites. Results show that the precision of the time synchronization is between 1 and 5 ns, while the evaluation and correction of the satellite motion effect was performed with an accuracy of a few nanoseconds or better over a time interval from 1 up to 20 seconds.
Time synchronization of a frequency-hopped MFSK communication system
NASA Technical Reports Server (NTRS)
Simon, M. K.; Polydoros, A.; Huth, G. K.
1981-01-01
In a frequency-hopped (FH) multiple-frequency-shift-keyed (MFSK) communication system, frequency hopping causes the necessary frequency transitions for time synchronization estimation rather than the data sequence as in the conventional (nonfrequency-hopped) system. Making use of this observation, this paper presents a fine synchronization (i.e., time errors of less than a hop duration) technique for estimation of FH timing. The performance degradation due to imperfect FH time synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of hops used in the FH timing estimate.
NASA Astrophysics Data System (ADS)
Amano, Yoko; Ogasawara, Satoshi
In this paper, a new universal drive system of synchronous motors used Real-Time Interface (RTI) performs characteristic evaluation of Synchronous Reluctance (SynR) motors and Surface Permanent Magnet (SPM) synchronous motors. The RTI connects directly a simulation model with experimental equipment, and makes it possible to use the simulation model for an experiment. The RTI is very effective in the early detection of an actual problem and examination of solution technique. Moreover, it concentrates on examination of control algorithm, and efficient research and development are enabled. A measuring system of synchronous motors is built by the universal drive system. The examination of various synchronous motors is possible for the measurement system using the same control algorithm. Characteristic evaluation of a SynR motor and a SPM synchronous motor that are the same gap length and stator was performed using the measuring system. The measurement result shows experimentally that motor loss of the SynR motor is smaller rather than the SPM synchronous motor, at the time of high speed and low load operation. For example, the SynR motor is suitable to hybrid cars with the comparatively long time of low load and high-speed operation.
A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks.
Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung
2016-01-05
Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.
A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks
Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung
2016-01-01
Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR. PMID:26742046
The synchronization of asymmetric-structured electric coupling neuronal system
NASA Astrophysics Data System (ADS)
Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei
2018-02-01
Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.
Precise Time Synchronisation and Ranging in Nano-Satellite Swarms
NASA Astrophysics Data System (ADS)
Laabs, Martin; Plettemeier, Dirk
2015-04-01
Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at frequencies above 60GHz in a small, cost effective and low power integrated circuit. But with the state of the art (commercial available) SiGe and p-HEMPT GaAs semiconductor processes it becomes possible to implement this concept even at 300GHz in a small MMIC or hybrid circuit.
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David
2012-01-01
The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.
Analysis of Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.
2011-01-01
To synchronize clocks between spacecraft in proximity, the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol has been proposed. PITS is based on the NTP Interleaved On-Wire Protocol and is capable of being adapted and integrated into CCSDS Proximity-1 Space Link Protocol with minimal modifications. In this work, we will discuss the correctness and liveness of PITS. Further, we analyze and evaluate the performance of time synchronization latency with various channel error rates in different PITS operational modes.
Overview of timing/synchronization for digital communications
NASA Technical Reports Server (NTRS)
Stover, H. A.
1978-01-01
Systems in general, and switched systems in particular, are explained. It pointed out some of the criteria that greatly influence timing/synchronization subsystem design for a military communications network but have little or no significance for civil systems. Timing techniques were evaluated in terms of fundamental features. Different combinations of these features covered most possibilities from which a synchronous timing system could be chosen.
Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You
2017-12-01
The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.
Synchronization and fault-masking in redundant real-time systems
NASA Technical Reports Server (NTRS)
Krishna, C. M.; Shin, K. G.; Butler, R. W.
1983-01-01
A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration.
NASA Astrophysics Data System (ADS)
Xie, Huijuan; Gong, Yubing; Wang, Baoying
In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.
Illumination-based synchronization of high-speed vision sensors.
Hou, Lei; Kagami, Shingo; Hashimoto, Koichi
2010-01-01
To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.
Indirect synchronization control in a starlike network of phase oscillators
NASA Astrophysics Data System (ADS)
Kuptsov, Pavel V.; Kuptsova, Anna V.
2018-04-01
A starlike network of non-identical phase oscillators is considered that contains the hub and tree rays each having a single node. In such network effect of indirect synchronization control is reported: changing the natural frequency and the coupling strength of one of the peripheral oscillators one can switch on an off the synchronization of the others. The controlling oscillator at that is not synchronized with them and has a frequency that is approximately four time higher then the frequency of the synchronization. The parameter planes showing a corresponding synchronization tongue are represented and time dependencies of phase differences are plotted for points within and outside of the tongue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
We study synchronization of coupled linear systems over networks with weak connectivity and time-varying delays. We focus on the case that the internal dynamics are time-varying but non-expansive. Both uniformly connected and infinitely connected communication topologies are considered. A new concept of P-synchronization is introduced and we first show that global asymptotic P-synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of the infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns out that the existence of a uniform time interval for the communicationmore » topology is not necessary and P-synchronization can be achieved when the time varying delays are arbitrarily bounded. Simulations are given to validate the theoretical results.« less
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xie, Huijuan
2017-09-01
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.
Precision Timed Infrastructure: Design Challenges
2013-09-19
timing constructs Clock synchronization and communication PRET Machines Other Platforms Fig. 1. Conceptual overview of translation steps between...2002. [3] A. Benveniste and G. Berry. The Synchronous Approach to Reactive and Real- Time Systems. Proceedings of the IEEE, 79(9):1270–1282, 1991. [4] D...and E. Lee. A programming model for time - synchronized distributed real- time systems. In Real Time and Embedded Technology and Applications Symposium, 2007. RTAS’07. 13th IEEE, pages
Bao, Yan; Pöppel, Ernst; Wang, Lingyan; Lin, Xiaoxiong; Yang, Taoxi; Avram, Mihai; Blautzik, Janusch; Paolini, Marco; Silveira, Sarita; Vedder, Aline; Zaytseva, Yuliya; Zhou, Bin
2015-12-01
Synchronizing neural processes, mental activities, and social interactions is considered to be fundamental for the creation of temporal order on the personal and interpersonal level. Several different types of synchronization are distinguished, and for each of them examples are given: self-organized synchronizations on the neural level giving rise to pre-semantically defined time windows of some tens of milliseconds and of approximately 3 s; time windows that are created by synchronizing different neural representations, as for instance in aesthetic appreciations or moral judgments; and synchronization of biological rhythms with geophysical cycles, like the circadian clock with the 24-hr rhythm of day and night. For the latter type of synchronization, an experiment is described that shows the importance of social interactions for sharing or avoiding common time. In a group study with four subjects being completely isolated together for 3 weeks from the external world, social interactions resulted both in intra- and interindividual circadian synchronization and desynchronization. A unique phenomenon in circadian regulation is described, the "beat phenomenon," which has been made visible by the interaction of two circadian rhythms with different frequencies in one body. The separation of the two physiological rhythms was the consequence of social interactions, that is, by the desire of a subject to share and to escape common time during different phases of the long-term experiment. The theoretical arguments on synchronization are summarized with the general statement: "Nothing in cognitive science makes sense except in the light of time windows." The hypothesis is forwarded that time windows that express discrete timing mechanisms in behavioral control and on the level of conscious experiences are the necessary bases to create cognitive order, and it is suggested that time windows are implemented by neural oscillations in different frequency domains. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Fault-tolerant clock synchronization in distributed systems
NASA Technical Reports Server (NTRS)
Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.
1990-01-01
Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.
Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Gao, Jay L.; Mills, David
2010-01-01
Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
Ben Abdallah, Emna; Folschette, Maxime; Roux, Olivier; Magnin, Morgan
2017-01-01
This paper addresses the problem of finding attractors in biological regulatory networks. We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks (AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the attractors in the model to understand the long-term behaviors. We present a computational logical method based on answer set programming (ASP) to identify all attractors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous updating modes. The logical approach goes through a complete enumeration of the states of the network in order to find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computational experiments which show good performance and fit the expected theoretical results in the literature. The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a given size (20 states). This size is only limited by memory and computation time.
Algorithms for Data Sharing, Coordination, and Communication in Dynamic Network Settings
2007-12-03
problems in dynamic networks, focusing on mobile networks with wireless communication. Problems studied include data management, time synchronization ...The discovery of a fundamental limitation in capabilities for time synchronization in large networks. (2) The identification and development of the...Problems studied include data management, time synchronization , communication problems (broadcast, geocast, and point-to-point routing), distributed
Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina
2017-01-01
Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.
Detection of generalized synchronization using echo state networks
NASA Astrophysics Data System (ADS)
Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.
2018-03-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.
Voltage regulation and power losses reduction in a wind farm integrated MV distribution network
NASA Astrophysics Data System (ADS)
Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb
2018-01-01
A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.
Efficient Quantum Transmission in Multiple-Source Networks
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590
A joint tracking method for NSCC based on WLS algorithm
NASA Astrophysics Data System (ADS)
Luo, Ruidan; Xu, Ying; Yuan, Hong
2017-12-01
Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.
Optical flip-flops in a polarization-encoded optical shadow-casting scheme.
Rizvi, R A; Zubairy, M S
1994-06-10
We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.
NASA's next generation all-digital deep space network breadboard receiver
NASA Technical Reports Server (NTRS)
Hinedi, Sami
1993-01-01
This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.
An adaptive bit synchronization algorithm under time-varying environment.
NASA Technical Reports Server (NTRS)
Chow, L. R.; Owen, H. A., Jr.; Wang, P. P.
1973-01-01
This paper presents an adaptive estimation algorithm for bit synchronization, assuming that the parameters of the incoming data process are time-varying. Experiment results have proved that this synchronizer is workable either judged by the amount of data required or the speed of convergence.
Distributed synchronization of networked drive-response systems: A nonlinear fixed-time protocol.
Zhao, Wen; Liu, Gang; Ma, Xi; He, Bing; Dong, Yunfeng
2017-11-01
The distributed synchronization of networked drive-response systems is investigated in this paper. A novel nonlinear protocol is proposed to ensure that the tracking errors converge to zeros in a fixed-time. By comparison with previous synchronization methods, the present method considers more practical conditions and the synchronization time is not dependent of arbitrary initial conditions but can be offline pre-assign according to the task assignment. Finally, the feasibility and validity of the presented protocol have been illustrated by a numerical simulation. Copyright © 2017. Published by Elsevier Ltd.
Folgado, Hugo; Duarte, Ricardo; Fernandes, Orlando; Sampaio, Jaime
2014-01-01
This study aimed to quantify the time-motion demands and intra-team movement synchronization during the pre-season matches of a professional soccer team according to the opposition level. Positional data from 20 players were captured during the first half of six pre-season matches of a Portuguese first league team. Time-motion demands were measured by the total distance covered and distance covered at different speed categories. Intra-team coordination was measured by calculating the relative phase of all pairs of outfield players. Afterwards, the percentage of time spent in the -30° to 30° bin (near-in-phase mode of coordination) was calculated for each dyad as a measure of space-time movement synchronization. Movement synchronization data were analyzed for the whole team, according to each dyad average speed and by groups of similar dyadic synchronization tendencies. Then, these data were compared according to the opponent team level (first league; second league; amateurs). Time-motion demands showed no differences in total distance covered per opposition levels, while matches opposing teams of superior level revealed more distance covered at very high intensity. Competing against superior level teams implied more time in synchronized behavior for the overall displacements and displacements at higher intensities. These findings suggest that playing against higher-level opponents (1st league teams) increased time-motion demands at high intensities in tandem with intra-team movement synchronization tendencies.
Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen
2017-12-01
It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
Meng, Ziyang; Yang, Tao; Li, Guoqi; ...
2017-09-18
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai
2008-06-01
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.
NASA Astrophysics Data System (ADS)
Yim, Wan Hung
Economical operation of future satellite systems for mobile communications can only be fulfilled by using dedicated on-board processing satellites, which would allow both cheap earth terminals and lower space segment costs. With on-board modems and codecs, the up-link and down-link can be optimized separately. An attractive scheme is to use frequency-division multiple access/single chanel per carrier (FDMA/SCPC) on the up-link and time division multiplexing (TDM) on the down-link. This scheme allows mobile terminals to transmit a narrow band, low power signal, resulting in smaller dishes and high power amplifiers (HPA's) with lower output power. On the up-link, there are hundreds to thousands of FDM channels to be demodulated on-board. The most promising approach is the use of all-digital multicarrier demodulators (MCD's), where analog and digital hardware are efficiently shared among channels, and digital signal processing (DSP) is used at an early stage to take advantage of very large scale integration (VLSI) implementation. A MCD consists of a channellizer for separation of frequency division multiplexing (FDM) channels, followed by individual modulators for each channel. Major research areas in MCD's are in multirate DSP, and the optimal estimation for synchronization, which form the basis of the thesis. Complex signal theories are central to the development of structured approaches for the sampling and processing of bandpass signals, which are the foundations in both channellizer and demodulator design. In multirate DSP, polyphase theories replace many ad-hoc, tedious and error-prone design procedures. For example, a polyphase-matrix deep space network frequency and timing system (DFT) channellizer includes all efficient filter bank techniques as special cases. Also, a polyphase-lattice filter is derived, not only for sampling rate conversion, but also capable of sampling phase variation, which is required for symbol timing adjustment in all-digital demodulators. In modulation schemes, a systematic survey is reported, based on two expressions that includes all formats in linear and constant envelope modulation. In synchronization techniques, classifications according to the criterion of statistical optimization, the data dependecy, and the method of parameter extraction, reflect the inherent complexity and performance of numerous existing algorithms. The designs of two new algorithms are presented: a differential decision frequency error detector that is simple and fast; a dual-comb-filter frequency/timing error detector that is targeted at VLSI implementation. The real-time implementation of a complete 4 x 16 kb/s MCD for the T-SAT project is described in detail, which proved many of the structured design concepts developed in this thesis. The requirements of software tools for various levels of simulation in multirate DSP and communications are analyzed. This led to the implementation of a data-flow oriented simulation system, which was used in all research work in the thesis.
COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy
NASA Astrophysics Data System (ADS)
Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun
2014-09-01
In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.
Melfi, Michael J.
2015-10-20
A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.
Benefits of Synchronous Online Courses
ERIC Educational Resources Information Center
Moser, Scott; Smith, Phil
2015-01-01
Most online courses are offered as "asynchronous" courses and have no real-time contact with students. The Synchronous online alternative provides normal scheduled class time and allows students to login to a virtual online classroom with the instructor. We provide an overview of two different platforms for hosting synchronous classes…
2010-11-01
CDMA base stations are each synchronized by GPS receivers, they provide an indirect link to GPS system time and UTC time . The major stock...antenna synchronizes the Local Area Network (LAN) to within 10 microseconds of UTC using the IEEE-1588 Precision Time Protocol (PTP). This is an...activities. Understanding and measuring latency on the LAN is key to the success of HFTs. Without precise time synchronization below 1 millisecond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrinan, Thomas; Leigh, Jason; Renambot, Luc
Mixed presence collaboration involves remote collaboration between multiple collocated groups. This paper presents the design and results of a user study that focused on mixed presence collaboration using large-scale tiled display walls. The research was conducted in order to compare data synchronization schemes for multi-user visualization applications. Our study compared three techniques for sharing data between display spaces with varying constraints and affordances. The results provide empirical evidence that using data sharing techniques with continuous synchronization between the sites lead to improved collaboration for a search and analysis task between remotely located groups. We have also identified aspects of synchronizedmore » sessions that result in increased remote collaborator awareness and parallel task coordination. It is believed that this research will lead to better utilization of large-scale tiled display walls for distributed group work.« less
Dynamical inference: where phase synchronization and generalized synchronization meet.
Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2014-06-01
Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
Tang, Ze; Park, Ju H; Feng, Jianwen
2018-04-01
This paper is concerned with the exponential synchronization issue of nonidentically coupled neural networks with time-varying delay. Due to the parameter mismatch phenomena existed in neural networks, the problem of quasi-synchronization is thus discussed by applying some impulsive control strategies. Based on the definition of average impulsive interval and the extended comparison principle for impulsive systems, some criteria for achieving the quasi-synchronization of neural networks are derived. More extensive ranges of impulsive effects are discussed so that impulse could either play an effective role or play an adverse role in the final network synchronization. In addition, according to the extended formula for the variation of parameters with time-varying delay, precisely exponential convergence rates and quasi-synchronization errors are obtained, respectively, in view of different types impulsive effects. Finally, some numerical simulations with different types of impulsive effects are presented to illustrate the effectiveness of theoretical analysis.
Cai, Zuowei; Huang, Lihong; Zhang, Lingling
2015-05-01
This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping
2018-03-01
Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.
Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.
Çakir, Yüksel
2016-01-01
Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.
Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.
Blakely, Jonathan N; Stahl, Mark T; Corron, Ned J
2009-12-01
We examine chains of unidirectionally coupled oscillators in which time-shifted synchronization occurs without explicit delays in the coupling. In numerical simulations and in an experimental system of electronic oscillators, we examine the time shift and the degree of distortion (primarily in the form of attenuation) of the waveforms of the oscillators located far from the drive oscillator. Surprisingly, under weak coupling we observe minimal attenuation in spite of a significant total time shift. In contrast, at higher coupling strengths the observed attenuation increases dramatically and approaches the value predicted by an analytically derived estimate. In this regime, we verify directly that generalized synchronization is maintained over the entire chain length despite severe attenuation. These results suggest that weak coupling generally may produce higher quality synchronization in systems for which truly identical synchronization is not possible.
Development of sub-100 femtosecond timing and synchronization system
NASA Astrophysics Data System (ADS)
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Development of sub-100 femtosecond timing and synchronization system.
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
Analysis of the time structure of synchronization in multidimensional chaotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarenko, A. V., E-mail: avm.science@mail.ru
2015-05-15
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.
Finite-time synchronization for memristor-based neural networks with time-varying delays.
Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong
2015-09-01
Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun
2014-05-01
In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.
Enhancing Time Synchronization Support in Wireless Sensor Networks
Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison
2017-01-01
With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization results and their costs in terms of energy consumption. PMID:29261113
Enhancing Time Synchronization Support in Wireless Sensor Networks.
Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison
2017-12-20
With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization results and their costs in terms of energy consumption.
Synchronization of the DOE/NASA 100-kilowatt wind turbine generator with a large utility network
NASA Technical Reports Server (NTRS)
Gilbert, L. J.
1977-01-01
The DOE/NASA 100 kilowatt wind turbine generator system was synchronized with a large utility network. The system equipments and procedures associated with the synchronization process were described. Time history traces of typical synchronizations were presented indicating that power and current transients resulting from the synchronizing procedure are limited to acceptable magnitudes.
Distributed synchronization control of complex networks with communication constraints.
Xu, Zhenhua; Zhang, Dan; Song, Hongbo
2016-11-01
This paper is concerned with the distributed synchronization control of complex networks with communication constraints. In this work, the controllers communicate with each other through the wireless network, acting as a controller network. Due to the constrained transmission power, techniques such as the packet size reduction and transmission rate reduction schemes are proposed which could help reduce communication load of the controller network. The packet dropout problem is also considered in the controller design since it is often encountered in networked control systems. We show that the closed-loop system can be modeled as a switched system with uncertainties and random variables. By resorting to the switched system approach and some stochastic system analysis method, a new sufficient condition is firstly proposed such that the exponential synchronization is guaranteed in the mean-square sense. The controller gains are determined by using the well-known cone complementarity linearization (CCL) algorithm. Finally, a simulation study is performed, which demonstrates the effectiveness of the proposed design algorithm. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Principles for problem aggregation and assignment in medium scale multiprocessors
NASA Technical Reports Server (NTRS)
Nicol, David M.; Saltz, Joel H.
1987-01-01
One of the most important issues in parallel processing is the mapping of workload to processors. This paper considers a large class of problems having a high degree of potential fine grained parallelism, and execution requirements that are either not predictable, or are too costly to predict. The main issues in mapping such a problem onto medium scale multiprocessors are those of aggregation and assignment. We study a method of parameterized aggregation that makes few assumptions about the workload. The mapping of aggregate units of work onto processors is uniform, and exploits locality of workload intensity to balance the unknown workload. In general, a finer aggregate granularity leads to a better balance at the price of increased communication/synchronization costs; the aggregation parameters can be adjusted to find a reasonable granularity. The effectiveness of this scheme is demonstrated on three model problems: an adaptive one-dimensional fluid dynamics problem with message passing, a sparse triangular linear system solver on both a shared memory and a message-passing machine, and a two-dimensional time-driven battlefield simulation employing message passing. Using the model problems, the tradeoffs are studied between balanced workload and the communication/synchronization costs. Finally, an analytical model is used to explain why the method balances workload and minimizes the variance in system behavior.
Kwon, Tae-Ho; Kim, Jai-Eun; Kim, Ki-Doo
2018-05-14
In the field of communication, synchronization is always an important issue. The communication between a light-emitting diode (LED) array (LEA) and a camera is known as visual multiple-input multiple-output (MIMO), for which the data transmitter and receiver must be synchronized for seamless communication. In visual-MIMO, LEDs generally have a faster data rate than the camera. Hence, we propose an effective time-sharing-based synchronization technique with its color-independent characteristics providing the key to overcome this synchronization problem in visual-MIMO communication. We also evaluated the performance of our synchronization technique by varying the distance between the LEA and camera. A graphical analysis is also presented to compare the symbol error rate (SER) at different distances.
Xiao, Qiang; Zeng, Zhigang
2017-10-01
The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.
NASA Astrophysics Data System (ADS)
Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian
2012-11-01
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.
NASA Astrophysics Data System (ADS)
Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro
2018-04-01
With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.
Synchronization Of Parallel Discrete Event Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Dynamic Long-Term Anticipation of Chaotic States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Henning U.
2001-07-02
Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.
Yang, Shaofu; Guo, Zhenyuan; Wang, Jun
2017-07-01
In this paper, new results on the global synchronization of multiple recurrent neural networks (NNs) with time delays via impulsive interactions are presented. Impulsive interaction means that a number of NNs communicate with each other at impulse instants only, while they are independent at the remaining time. The communication topology among NNs is not required to be always connected and can switch ON and OFF at different impulse instants. By using the concept of sequential connectivity and the properties of stochastic matrices, a set of sufficient conditions depending on time delays is derived to ascertain global synchronization of multiple continuous-time recurrent NNs. In addition, a counterpart on the global synchronization of multiple discrete-time NNs is also discussed. Finally, two examples are presented to illustrate the results.
LDFT-based watermarking resilient to local desynchronization attacks.
Tian, Huawei; Zhao, Yao; Ni, Rongrong; Qin, Lunming; Li, Xuelong
2013-12-01
Up to now, a watermarking scheme that is robust against desynchronization attacks (DAs) is still a grand challenge. Most image watermarking resynchronization schemes in literature can survive individual global DAs (e.g., rotation, scaling, translation, and other affine transforms), but few are resilient to challenging cropping and local DAs. The main reason is that robust features for watermark synchronization are only globally invariable rather than locally invariable. In this paper, we present a blind image watermarking resynchronization scheme against local transform attacks. First, we propose a new feature transform named local daisy feature transform (LDFT), which is not only globally but also locally invariable. Then, the binary space partitioning (BSP) tree is used to partition the geometrically invariant LDFT space. In the BSP tree, the location of each pixel is fixed under global transform, local transform, and cropping. Lastly, the watermarking sequence is embedded bit by bit into each leaf node of the BSP tree by using the logarithmic quantization index modulation watermarking embedding method. Simulation results show that the proposed watermarking scheme can survive numerous kinds of distortions, including common image-processing attacks, local and global DAs, and noninvertible cropping.
Techniques to control and position laser targets. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.B.
1978-06-01
The purpose of the work was to investigate the potential role of various electrohydrodynamic phenomena in the fabrication of small spherical particles and shells for laser target applications. A number of topics were considered. These included charged droplet levitation, specifically the combined effects of the Rayleigh limit and droplet elongation in the presence of electric fields. Two new levitation schemes for uncharged dielectric particles were studied. A dynamic dielectrophoretic levitation scheme was proposed and unsuccessful attempts were made to observe levitation with it. Another static dielectrophoretic levitation scheme was studied and used extensively. A theory was developed for this typemore » of levitation, and a dielectric constant measurement scheme proposed. A charged droplet generator for the production of single droplets (< 1 mm dia of insulating liquids was developed. The synchronous DEP pumping of bubbles and spheres has been considered. Finally, some preliminary experiments with SiH/sub 4//O/sub 2/ bubbles in Viscasil silicone fluid were conducted to learn about the possibility of using silane to form SiO/sub 2/ microballons from bubbles.« less
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
Controlador para un Reloj GPS de Referencia en el Protocolo NTP
NASA Astrophysics Data System (ADS)
Hauscarriaga, F.; Bareilles, F. A.
The synchronization between computers in a local network plays a very important role on enviroments similar to IAR. Calculations for exact time are needed before, during and after an observation. For this purpose the IAR's GNU/Linux Software Development Team implemented a driver inside NTP protocol (an internet standard for time synchronization of computers) for a GPS receiver acquired a few years ago by IAR, which did not have support in such protocol. Today our Institute has a stable and reliable time base synchronized to atomic clocks on board GPS Satellites according to computers's synchronization standard, offering precise time services to all scientific community and particularly to the University of La Plata. FULL TEXT IN SPANISH
An NTP Stratum-One Server Farm Fed By IEEE-1588
2010-01-01
Serial Time Code Formats,” U.S. Army White Sands Missile Range, N.M. [11] J. Eidson , 2005, “IEEE-1588 Standard for a Precision Clock Synchronization ... synchronized to its Master Clocks via IRIG-B time code on a low- frequency RF distribution system. The availability of Precise Time Protocol (PTP, IEEE...forwarding back to the requestor. The farm NTP servers are synchronized to the USNO Master Clocks using IRIG-B time code. The current standard NTP
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Synchronization of Chaotic Systems without Direct Connections Using Reinforcement Learning
NASA Astrophysics Data System (ADS)
Sato, Norihisa; Adachi, Masaharu
In this paper, we propose a control method for the synchronization of chaotic systems that does not require the systems to be connected, unlike existing methods such as that proposed by Pecora and Carroll in 1990. The method is based on the reinforcement learning algorithm. We apply our method to two discrete-time chaotic systems with mismatched parameters and achieve M step delay synchronization. Moreover, we extend the proposed method to the synchronization of continuous-time chaotic systems.
Representation and Analysis of Real-Time Control Structures.
1980-08-01
external processes which cannot be forced to cooperate with programmed processes through use of a synchronization primitive such as a semaphore [Dijkstre...amounts to each task, but the time slices are synchronized with program execution. The length of the codestrip is determined by the response time...which might be synchronous or asynchronous with respect to the executing task. The notation can represent total and partial orderings among its tasks, and
System frequency support of permanent magnet synchronous generator-based wind power plant
NASA Astrophysics Data System (ADS)
Wu, Ziping
With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.
Dalla Bella, Simone; Sowiński, Jakub
2015-03-16
A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).
Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson
NASA Astrophysics Data System (ADS)
Stefanis, N. G.; Pimikov, A. V.
2016-01-01
Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.
Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian
2014-12-01
This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.
Differentially Timed Extracellular Signals Synchronize Pacemaker Neuron Clocks
Collins, Ben; Kaplan, Harris S.; Cavey, Matthieu; Lelito, Katherine R.; Bahle, Andrew H.; Zhu, Zhonghua; Macara, Ann Marie; Roman, Gregg; Shafer, Orie T.; Blau, Justin
2014-01-01
Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species. PMID:25268747
Noncoherent DTTLs for Symbol Synchronization
NASA Technical Reports Server (NTRS)
Simon, Marvin; Tkacenko, Andre
2007-01-01
Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol timing) that causes a likelihood function of symbol estimates over some number of symbol periods to assume a maximum value. In terms that are necessarily oversimplified to fit within the space available for this article, it can be said that the mathematical derivation involves a modified interpretation of the likelihood function that lends itself to noncoherent DTTLs. The proposal encompasses both linear and nonlinear noncoherent DTTLs. The performances of both have been computationally simulated; for comparison, the performances of linear and nonlinear coherent DTTLs have also been computationally simulated. The results of these simulations show that, among other things, the expected mean-square timing errors of coherent and noncoherent DTTLs are relatively insensitive to window width. The results also show that at high signal-to-noise ratios (SNRs), the performances of the noncoherent DTTLs approach those of their coherent counterparts at, while at low SNRs, the noncoherent DTTLs incur penalties of the order of 1.5 to 2 dB.
A relativistic analysis of clock synchronization
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1974-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.
Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R. (Inventor)
2010-01-01
A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.
Gao, Jie; Zhu, Peiyong; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar
2017-02-01
In this paper, finite-time synchronization (FTS) of memristor-based recurrent neural networks (MNNs) with time-varying delays is investigated by designing a new switching controller. First, by using the differential inclusions theory and set-valued maps, sufficient conditions to ensure FTS of MNNs are obtained under the two cases of 0<α<1 and α=0, and it is derived that α=0 is the critical value of 0<α<1. Next, it is discussed deeply on the relation between the parameter α and the synchronization time. Then, a new controller with a switching parameter α is designed which can shorten the synchronization time. Finally, some numerical simulation examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-06-01
This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.
Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin
2010-08-01
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.
Frequency synchronization of a frequency-hopped MFSK communication system
NASA Technical Reports Server (NTRS)
Huth, G. K.; Polydoros, A.; Simon, M. K.
1981-01-01
This paper presents the performance of fine-frequency synchronization. The performance degradation due to imperfect frequency synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of frequency hops used in the estimator. The effect of imperfect fine-time synchronization is also included in the calculation of fine-frequency synchronization performance to obtain the overall performance degradation due to synchronization errors.
Wilquin, Hélène; Delevoye-Turrell, Yvonne; Dione, Mariama; Giersch, Anne
2018-01-01
Objective: Basic temporal dysfunctions have been described in patients with schizophrenia, which may impact their ability to connect and synchronize with the outer world. The present study was conducted with the aim to distinguish between interval timing and synchronization difficulties and more generally the spatial-temporal organization disturbances for voluntary actions. A new sensorimotor synchronization task was developed to test these abilities. Method: Twenty-four chronic schizophrenia patients matched with 27 controls performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to six visual targets presented around a virtual circle on a tactile screen. Isochronous (time intervals of 500 ms) and non-isochronous auditory sequences (alternated time intervals of 300/600 ms) were presented. The capacity to produce time intervals accurately versus the ability to synchronize own actions (tap) with external events (tone) were measured. Results: Patients with schizophrenia were able to produce the tapping patterns of both isochronous and non-isochronous auditory sequences as accurately as controls producing inter-response intervals close to the expected interval of 500 and 900 ms, respectively. However, the synchronization performances revealed significantly more positive asynchrony means (but similar variances) in the patient group than in the control group for both types of auditory sequences. Conclusion: The patterns of results suggest that patients with schizophrenia are able to perceive and produce both simple and complex sequences of time intervals but are impaired in the ability to synchronize their actions with external events. These findings suggest a specific deficit in predictive timing, which may be at the core of early symptoms previously described in schizophrenia.
New GOES satellite synchronized time code generation
NASA Technical Reports Server (NTRS)
Fossler, D. E.; Olson, R. K.
1984-01-01
The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.
The Classical and Quantum Aspects of the Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Factourovich, Maxim
Detection of gravitational waves has been one of the major undertakings of science for the past several decades. The elusive phenomenon first emerged as a natural consequence of the A. Einstein's Theory of General Relativity, but for many years was beyond the reach of the existing technological capabilities. Today, a radical effort is underway to take the measurement technology to a new, unprecedented level of sensitivity, in order to give a definite answer to one of the most fundamental aspects of our understanding of the Universe. The currently accepted detection scheme utilizes interference of near-infrared light inside a high-finesse Fabry-Perot cavity, and has achieved resolution on a scale of 10-21 as compared to the cavity length. At this scale, the signal becomes very sensitive to all kinds of unwanted inputs which include, but not limited to, the seismic activity, acoustic vibrations, thermal effects and radiation pressure noise. Moreover, the sensitivity requirements place it near the fundamental limit of quantum uncertainty which poses the ultimate barrier for lowering the detection threshold. Additionally, at the large kilometer-scale size of the installations, the signal propagation delays become significant enough to call for precise synchronization between the remote sensors and electronics within the main data collector. The need for this becomes even more evident considering a possibility of triangulation the otherwise non-directional signal, by unifying the data collected from different observatories spread around the globe. In this work, we first address the aspect of precise timing synchronization implemented in the US-based Advanced Laser-Interferometer Gravitational-wave Observatories (LIGO) located at Hanford, WA and Livingston, LA. The developed Advanced LIGO Timing System allows for synchronization of virtually unlimited number of devices to an accuracy of better than 1 microsecond, regardless of the distances involved. The machinery uses Field Programmable Gate Array (FPGA) logic at its core processing units. The FPGA chips are driven by oscillators synchronized to both, a Master atomic clock and the Global Positioning System (GPS) satellites for a precise calibration with redundancy. The timings signals are encoded in a pulse-modulated signal and distributed over the network via optical fibers. Additionally, we present a prototype device that allows overcoming the quantum sensitivity barrier without violating the Uncertainty Principle, also known as the Squeezer. We demonstrate the laser shotnoise reduction of up to 9 dB in a test setup, that eventually translated to a 25% increase in the detector sensitivity, upon injection of the squeezed light into the operational LIGO interferometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xin, E-mail: xinshih86029@gmail.com; Zhao, Xiangmo, E-mail: xinshih86029@gmail.com; Hui, Fei, E-mail: xinshih86029@gmail.com
Clock synchronization in wireless sensor networks (WSNs) has been studied extensively in recent years and many protocols are put forward based on the point of statistical signal processing, which is an effective way to optimize accuracy. However, the accuracy derived from the statistical data can be improved mainly by sufficient packets exchange, which will consume the limited power resources greatly. In this paper, a reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization is proposed to optimize sync accuracy without expending additional sync packets. As a contribution, a linear weighted fusion scheme for multiple clock deviations ismore » constructed with the collaborative sensing of clock timestamp. And the fusion weight is defined by the covariance of sync errors for different clock deviations. Extensive simulation results show that the proposed approach can achieve better performance in terms of sync overhead and sync accuracy.« less
Friction, wear and noise of slip ring and brush contacts for synchronous satellite use.
NASA Technical Reports Server (NTRS)
Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.
1972-01-01
A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 ntorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Four contact combinations have been tested during an ambient condition run-in at 150 rpm and a humidity sequence at 0.1 rpm. The first six months of the two year vacuum test at 0.1 rpm have been completed. Electrical noise, friction and brush wear data recorded during these periods have been analyzed.
Regression analysis of sparse asynchronous longitudinal data.
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P
2015-09-01
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
Bridging the Capability Gap for Battle Command On-the-Move
2005-06-01
FDM) and synchronous Time Division Multiplexing (TDM) network components. This advantage will become further realized once mobile satellite modem... synchronize the initial network timing . Once a NM receives this beacon, it reports the measured receive signal strength back to the NC using the NM’s...in certain areas of the world. Due to M4’s synchronous network connections, link engineering to manage required distributed network timing is often
Deterministic Execution of Ptides Programs
2013-05-15
at a time no later than 30+1+5 = 36. Assume the maximum clock synchronization error is . Therefore, the AddSubtract adder must delay processing the...the synchronization of the platform real- time clock to its peers in other system platforms. The portions of PtidyOS code that implement access to the...interesting opportunities for future research. References [1] Y. Zhao, E. A. Lee, and J. Liu, “A programming model for time - synchronized distributed real
MICA: Multiple interval-based curve alignment
NASA Astrophysics Data System (ADS)
Mann, Martin; Kahle, Hans-Peter; Beck, Matthias; Bender, Bela Johannes; Spiecker, Heinrich; Backofen, Rolf
2018-01-01
MICA enables the automatic synchronization of discrete data curves. To this end, characteristic points of the curves' shapes are identified. These landmarks are used within a heuristic curve registration approach to align profile pairs by mapping similar characteristics onto each other. In combination with a progressive alignment scheme, this enables the computation of multiple curve alignments. Multiple curve alignments are needed to derive meaningful representative consensus data of measured time or data series. MICA was already successfully applied to generate representative profiles of tree growth data based on intra-annual wood density profiles or cell formation data. The MICA package provides a command-line and graphical user interface. The R interface enables the direct embedding of multiple curve alignment computation into larger analyses pipelines. Source code, binaries and documentation are freely available at https://github.com/BackofenLab/MICA