Sample records for timp-2 transcript profiles

  1. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  2. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay.

    PubMed

    Fiorentino, Loredana; Cavalera, Michele; Menini, Stefano; Marchetti, Valentina; Mavilio, Maria; Fabrizi, Marta; Conserva, Francesca; Casagrande, Viviana; Menghini, Rossella; Pontrelli, Paola; Arisi, Ivan; D'Onofrio, Mara; Lauro, Davide; Khokha, Rama; Accili, Domenico; Pugliese, Giuseppe; Gesualdo, Loreto; Lauro, Renato; Federici, Massimo

    2013-03-01

    ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3(-/-) mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3(-/-) mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3(-/-) mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  3. Global Gene Expression Profiling in PAI-1 Knockout Murine Heart and Kidney: Molecular Basis of Cardiac-Selective Fibrosis

    PubMed Central

    Ghosh, Asish K.; Murphy, Sheila B.; Kishore, Raj; Vaughan, Douglas E.

    2013-01-01

    Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1(PAI-1) knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication in fibrogenesis and several other biological processes. The significance of these observations in the light of heart-specific profibrotic signaling and fibrogenesis are discussed. PMID:23724005

  4. Maintenance of the Extracellular Matrix in Rat Anterior Pituitary Gland: Identification of Cells Expressing Tissue Inhibitors of Metalloproteinases.

    PubMed

    Azuma, Morio; Tofrizal, Alimuddin; Maliza, Rita; Batchuluun, Khongorzul; Ramadhani, Dini; Syaidah, Rahimi; Tsukada, Takehiro; Fujiwara, Ken; Kikuchi, Motoshi; Horiguchi, Kotaro; Yashiro, Takashi

    2015-12-25

    The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components.

  5. Maintenance of the Extracellular Matrix in Rat Anterior Pituitary Gland: Identification of Cells Expressing Tissue Inhibitors of Metalloproteinases

    PubMed Central

    Azuma, Morio; Tofrizal, Alimuddin; Maliza, Rita; Batchuluun, Khongorzul; Ramadhani, Dini; Syaidah, Rahimi; Tsukada, Takehiro; Fujiwara, Ken; Kikuchi, Motoshi; Horiguchi, Kotaro; Yashiro, Takashi

    2015-01-01

    The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components. PMID:26855451

  6. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    PubMed

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  7. TIMP3 Overexpression Improves the Sensitivity of Osteosarcoma to Cisplatin by Reducing IL-6 Production

    PubMed Central

    Han, Xiu-guo; Mo, Hui-min; Liu, Xu-qiang; Li, Yan; Du, Lin; Qiao, Han; Fan, Qi-ming; Zhao, Jie; Zhang, Shu-hong; Tang, Ting-ting

    2018-01-01

    Osteosarcoma is the most common bone cancer in children and adolescents. Tissue inhibitors of metalloproteinases (TIMPs)-3 inhibit matrix metalloproteinases to limit extracellular matrix degradation. Cisplatin is a widely used chemotherapeutic drug used to cure osteosarcoma. Interleukin (IL)-6 and TIMP3 play important roles in the drug resistance of osteosarcoma; however, their relationship in this process remains unclear. This study aimed to explore the role of TIMP3 in the cisplatin sensitivity of osteosarcoma and its underlying molecular mechanisms in vitro and in vivo. We compared TIMP3 expression levels between patients with cisplatin-sensitive and -insensitive osteosarcoma. TIMP3 was overexpressed or knocked down in the Saos2-lung cell line, which is a Saos2 subtype isolated from pulmonary metastases that has higher cisplatin chemoresistance than Saos2 cells. IL-6 expression, cell proliferation, sensitivity to cisplatin, migration, and invasion after TIMP3 overexpression or knockdown were determined. The same experiments were performed using MG63 and U2OS cells. Subsequently, luciferase-labeled Saos2-lung cells overexpressing TIMP3 were injected into the tibiae of nude mice treated with cisplatin. The results showed that IL-6 inhibited TIMP3 expression in Saos2 and Saos2-lung cells via signal transducer and activator of transcription 3 (STAT3) activation. STAT3 knockdown reversed the effect of IL-6. The expression of TIMP3 was higher in patients with cisplatin-sensitive osteosarcoma than in those with insensitive osteosarcoma. IL-6 expression was downregulated upon TIMP3 overexpression, and upregulated by TIMP3 knockdown. TIMP3 overexpression suppressed cell proliferation and enhanced cisplatin sensitivity by activating apoptosis-related signal pathways and inhibiting IL-6 expression in vitro and in vivo. In conclusion, cisplatin sensitivity correlated positively with TIMP3 expression, which is regulated by the IL-6/TIMP3/caspase pathway. The TIMP3 pathway could represent a target for new therapies to treat osteosarcoma. PMID:29731768

  8. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    PubMed

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  9. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes

    PubMed Central

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-01-01

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. PMID:23313877

  10. Basic Fibroblast Growth Factor Regulates Gene and Protein Expression Related to Proliferation, Differentiation, and Matrix Production of Human Dental Pulp Cells.

    PubMed

    Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei

    2017-06-01

    Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms.

    PubMed

    Lutshumba, Jenny; Liu, Shu; Zhong, Yu; Hou, Tianfei; Daugherty, Alan; Lu, Hong; Guo, Zhenheng; Gong, Ming C

    2018-05-01

    Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)-a transcription factor known to regulate circadian rhythm-in AAA development. SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt-induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion. © 2018 American Heart Association, Inc.

  12. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes.

    PubMed

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-03-15

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates that significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Reduced levels of potential circulating biomarkers of cardiovascular diseases in apparently healthy vegetarian men.

    PubMed

    Navarro, Julio Acosta; de Gouveia, Luiza Antoniazzi; Rocha-Penha, Lilliam; Cinegaglia, Naiara; Belo, Vanessa; Castro, Michele Mazzaron de; Sandrim, Valeria Cristina

    2016-10-01

    Several evidences report that a vegetarian diet is protector against cardiovascular diseases. Few studies have demonstrated the circulating profile of cardiovascular biomarkers in vegetarians. Therefore, the aims of the current study were compared the plasma concentrations of myeloperoxidase (MPO), metalloproteinase (MMP)-9, MMP-2, tissue inhibitor of MMP (TIMP)-1 and TIMP-2 between healthy vegetarian (Veg) and healthy omnivorous (Omn). Using ELISA and multiplexed bead immunoassay, we measured in plasma from 43 Veg and 41 Omn the cardiovascular biomarkers concentrations cited above. We found significant lower concentrations of MPO, MMP-9, MMP-2 and MMP-9/TIMP-1 ratio in Veg compared to Omn (all P<0.05). Moreover, MMP-9 concentrations were correlated positively with leukocytes and neutrophils count in both groups (all P<0.05). A vegetarian diet is associated with a healthier profile of cardiovascular biomarkers compared to omnivorous. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation.

    PubMed

    El Hajj, Elia C; El Hajj, Milad C; Voloshenyuk, Tetyana G; Mouton, Alan J; Khoutorova, Elena; Molina, Patricia E; Gilpin, Nicholas W; Gardner, Jason D

    2014-02-01

    Chronic alcohol consumption has been shown in human and animal studies to result in collagen accumulation, myocardial fibrosis, and heart failure. Cardiac fibroblasts produce collagen and regulate extracellular matrix (ECM) homeostasis through the synthesis and activity of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), with the balance of MMPs/TIMPs determining the rate of collagen turnover. Dynamic changes of MMP and TIMP expression were reported in alcohol-induced hepatic fibrosis; however, the effect of alcohol on MMP/TIMP balance in the heart and cardiac fibroblasts is unknown. We hypothesized that alcohol exposure alters cardiac fibroblast MMP and TIMP expression to promote collagen accumulation in the heart. Cardiac fibroblasts isolated from adult rats were cultured in the presence of alcohol (12.5 to 200 mM) for 48 hours. MMP, TIMP, and collagen type I and III expression were assayed by Western blot analysis. Hydroxyproline (HPro) was used as a marker of collagen production. The in vivo cardiac effects of ethanol (EtOH) were determined using rats exposed to EtOH vapor for 2 weeks, resulting in blood alcohol levels of 150 to 200 mg/dl. Cardiac collagen volume fraction (CVF), as well as MMP, TIMP, and collagen expression, was assessed. EtOH-exposed rats exhibited up-regulation of TIMP-1, TIMP-3 and TIMP-4 in the heart, with no significant increases in MMPs. Cardiac fibroblasts exhibited transformation to a profibrotic phenotype following exposure to alcohol. These changes were reflected by increased α-smooth muscle actin and collagen I and III expression, as well as increased collagen secretion. In vivo EtOH exposure also produced fibrosis, indicated by increased CVF and expression of collagens. Alcohol exposure modulates cardiac fibroblast MMP/TIMP expression favoring a profile associated with collagen accumulation. Our data suggest that this disrupted MMP/TIMP profile may contribute to the development of myocardial fibrosis and cardiac dysfunction resulting from chronic alcohol abuse. Copyright © 2013 by the Research Society on Alcoholism.

  15. Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice.

    PubMed

    Rossi, Claudia; Marzano, Valeria; Consalvo, Ada; Zucchelli, Mirco; Levi Mortera, Stefano; Casagrande, Viviana; Mavilio, Maria; Sacchetta, Paolo; Federici, Massimo; Menghini, Rossella; Urbani, Andrea; Ciavardelli, Domenico

    2018-02-01

    The tissue inhibitor of metalloproteinase TIMP3 is a stromal protein that restrains the activity of both protease and receptor in the extracellular matrix and has been found to be down-regulated in diabetic nephropathy (DN), the leading cause of end-stage renal disease in developed countries. In order to gain deeper insights on the association of loss of TIMP3 and DN, we performed differential proteomic analysis of kidney and blood metabolic profiling of wild-type and Timp3-knockout mice before and after streptozotocin (STZ) treatment, widely used to induce insulin deficiency and hyperglycemia. Kidney proteomic data and blood metabolic profiles suggest significant alterations of peroxisomal and mitochondrial fatty acids β-oxidation in Timp3-knockout mice compared to wild-type mice under basal condition. These alterations were exacerbated in response to STZ treatment. Proteomic and metabolomic approaches showed that loss of TIMP3 alone or in combination with STZ treatment results in significant alterations of kidney lipid metabolism and peripheral acylcarnitine levels, supporting the idea that loss of TIMP3 may generate a phenotype more prone to DN.

  16. Time-Dependent Alterations of MMPs, TIMPs and Tendon Structure in Human Achilles Tendons after Acute Rupture

    PubMed Central

    Minkwitz, Susann; Schmock, Aysha; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian; Klatte-Schulz, Franka

    2017-01-01

    A balance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) is required to maintain tendon homeostasis. Variation in this balance over time might impact on the success of tendon healing. This study aimed to analyze structural changes and the expression profile of MMPs and TIMPs in human Achilles tendons at different time-points after rupture. Biopsies from 37 patients with acute Achilles tendon rupture were taken at surgery and grouped according to time after rupture: early (2–4 days), middle (5–6 days), and late (≥7 days), and intact Achilles tendons served as control. The histological score increased from the early to the late time-point after rupture, indicating the progression towards a more degenerative status. In comparison to intact tendons, qRT-PCR analysis revealed a significantly increased expression of MMP-1, -2, -13, TIMP-1, COL1A1, and COL3A1 in ruptured tendons, whereas TIMP-3 decreased. Comparing the changes over time post rupture, the expression of MMP-9, -13, and COL1A1 significantly increased, whereas MMP-3 and -10 expression decreased. TIMP expression was not significantly altered over time. MMP staining by immunohistochemistry was positive in the ruptured tendons exemplarily analyzed from early and late time-points. The study demonstrates a pivotal contribution of all investigated MMPs and TIMP-1, but a minor role of TIMP-2, -3, and -4, in the early human tendon healing process. PMID:29053586

  17. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiated THP-1 Cells

    PubMed Central

    Maghsood, Faezeh; Mirshafiey, Abbas; Farahani, Mohadese M.; Modarressi, Mohammad Hossein; Jafari, Parvaneh; Motevaseli, Elahe

    2018-01-01

    Objective Recent studies have reported dysregulated expression of matrix metalloproteinases (MMPs), especially MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, TIMP-2), and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in activated macrophages of patients with inflammatory diseases. Therefore, MMP-2, MMP-9, and their regulators may represent a new target for treatment of inflammatory diseases. Probiotics, which are comprised of lactic acid bacteria, have the potential to modulate inflammatory responses. In this experimental study, we investigated the anti-inflammatory effects of cell-free supernatants (CFS) from Lactobacillus acidophilus (L. acidophilus) and L. rhamnosus GG (LGG) in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Materials and Methods In this experimental study, PMA-differentiated THP-1 cells were treated with CFS from L. acidophilus, LGG and uninoculated bacterial growth media (as a control). The expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNAs were determined using real-time quantitative reverse transcription polymerase chain reaction (RT- PCR). The levels of cellular surface expression of CD147 were assessed by flow cytometry, and the gelatinolytic activity of MMP-2 and MMP-9 were determined by zymography. Results Our results showed that CFS from both L. acidophilus and LGG significantly inhibited the gene expression of MMP-9 (P=0.0011 and P=0.0005, respectively), increased the expression of TIMP-1 (P<0.0001), decreased the cell surface expression of CD147 (P=0.0307 and P=0.0054, respectively), and inhibited the gelatinolytic activity of MMP-9 (P=0.0003 and P<0.0001, respectively) in PMA-differentiated THP-1 cells. Although, MMP-2 expression and activity and TIMP-2 expression remained unchanged. Conclusion Our results indicate that CFS from L. acidophilus and LGG possess anti-inflammatory properties and can modulate the inflammatory response. PMID:29105390

  18. Interleukin-13 is involved in the formation of liver fibrosis in Clonorchis sinensis-infected mice.

    PubMed

    Xu, Yanquan; Liang, Pei; Bian, Meng; Chen, Wenjun; Wang, Xiaoyun; Lin, Jinsi; Shang, Mei; Qu, Hongling; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-07-01

    Clonorchiasis is a chronic infection disease often accompanied by formation of liver fibrosis. Previous study has identified that Clonorchis sinensis (C. sinensis, Cs) infection and CsRNASET2 (a member of CsESPs) immunization can drive Th2 immune response. IL-13, a multifunctional Th2 cytokine, has been widely confirmed to be profibrotic mediator. We want to determine whether IL-13 is involved in the generation of liver fibrosis during C. sinensis infection. A part of mice were infected with C. sinensis or immunized with CsRNASET2, respectively. Another part of mice were intravenously injected with rIL-13. Liver tissues of C. sinensis-infected mice were stained with hematoxylin-eosin and Masson's trichrome, respectively. The transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1 in the livers of infected mice and rIL-13-treated mice were measured by quantitative RT-PCR. Besides, splenocytes of C. sinensis-infected and CsRNASET2-immunized mice were isolated, respectively. The levels of IL-13 in splenocytes were detected by ELISA. Our results displayed that the livers of C. sinensis-infected mice had serious chronic inflammation and collagen deposition. The transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1 in the livers of C. sinensis-infected mice were obviously increased. Splenocytes from both C. sinensis-infected and CsRNASET2-immunized mice expressed high levels of IL-13. Moreover, rIL-13 treatment markedly promoted the transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1. These data implied that hepatic fibrosis was formed in the livers of C. sinensis-infected mice, and IL-13 induced by C. sinensis infection and CsRNASET2 immunization might favor this progression.

  19. TIMP3 Promoter Methylation Represents an Epigenetic Marker of BRCA1ness Breast Cancer Tumours.

    PubMed

    Maleva Kostovska, Ivana; Jakimovska, Milena; Popovska-Jankovic, Katerina; Kubelka-Sabit, Katerina; Karagjozov, Mitko; Plaseska-Karanfilska, Dijana

    2018-03-09

    Tumours presenting BRCAness profile behave more aggressively and are more invasive as a consequence of their complex genetic and epigenetic alterations, caused by impaired fidelity of the DNA repair processes. Methylation of promoter CpG islands represents an alternative mechanism to inactivate DNA repair and tumour suppressor genes. In our study, we analyzed the frequency of methylation changes of 24 tumour suppressor genes and explored their association with BRCAness profile. BRCA1ness profile and aberrant methylation were studied in 233 fresh frozen breast tumour tissues by Multiplex Ligation-dependent Probe Amplification (MLPA) and Methylation Specific (MS)-MLPA methods, respectively. Our analyses revealed that 12.4% of the breast cancer (BC) patients had tumours with a BRCA1ness profile. TIMP3 showed significantly higher (p = 5.8х10 -5 ) methylation frequency in tumours with BRCA1ness, while methylation of APC, GSTP1 and RASSF1 promoters was negatively associated with BRCA1ness (р = 0.0017, р = 0.007 and р = 0.046, respectively). TIMP3 methylation was also associated with triple negative (TN) BC. Furthermore, TN tumours showing BRCA1ness showed stronger association with TIMP3 methylation (p = 0.0008) in comparison to TN tumours without BRCA1ness (p = 0.009). In conclusion, we confirmed that TIMP3 methylation is a marker for TN tumours and furthermore we showed for the first time that TIMP3 promoter methylation is an epigenetic marker of BRCA1ness tumours.

  20. Influence of Expression Plasmid of Connective Tissue Growth Factor and Tissue Inhibitor of Metalloproteinase-1 shRNA on Hepatic Precancerous Fibrosis in Rats.

    PubMed

    Zhang, Qun; Shu, Fu-Li; Jiang, Yu-Feng; Huang, Xin-En

    2015-01-01

    In this study, influence caused by expression plasmids of connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) short hairpin RNA (shRNA) on mRNA expression of CTGF,TIMP-1,procol-α1 and PCIII in hepatic tissue with hepatic fibrosis, a precancerous condition, in rats is analyzed. To screen and construct shRNA expression plasimid which effectively interferes RNA targets of CTGF and TIMP-1 in rats. 50 cleaning Wistar male rats are allocated randomly at 5 different groups after precancerous fibrosis models and then injection of shRNA expression plasimids. Plasmid psiRNA-GFP-Com (CTGF and TIMP-1 included), psiRNA-GFP-CTGF, psiRNA-GFP-TIMP-1 and psiRNA- DUO-GFPzeo of blank plasmid are injected at group A, B, C and D, respectively, and as model control group that none plasimid is injected at group E. In 2 weeks after last injection, to hepatic tissue at different groups, protein expression of CTGF, TIMP-1, procol-α1and PC III is tested by immunohistochemical method and,mRNA expression of CTGF,TIMP-1,procol-α1 and PCIII is measured by real-time PCR. One-way ANOVA is used to comparison between-groups. Compared with model group, there is no obvious difference of mRNA expression among CTGF,TIMP-1,procol-α1,PC III and of protein expression among CTGF, TIMP-1, procol-α1, PC III in hepatic tissue at group injected with blank plasmid. Expression quantity of mRNA of CTGF, TIMP-1, procol-α1 and PCIII at group A, B and C decreases, protein expression of CTGF, TIMP-1, procol-α1, PC III in hepatic tissue is lower, where the inhibition of combination RNA interference group (group A) on procol-α1 mRNA transcription and procol-α1 protein expression is superior to that of single interference group (group B and C) (P<0.01 or P<0.05). RNA interference on CTGF and/or TIMP-1 is obviously a inhibiting factor for mRNA and protein expression of CTGF, TIMP-1, procol-α1 and PCIII. Combination RNA interference on genes of CTGF and TIMP-1 is superior to that of single RNA interference, and this could be a contribution for prevention of precancerous condition.

  1. Detection of MMP-9 and TIMP-3 mRNA expression in the villi of patients undergoing early spontaneous abortion: A report of 30 cases.

    PubMed

    Jiang, Guangli; Qi, Yuxia

    2015-05-01

    The aim of the present study was to investigate the correlation of matrix metalloproteinase (MMP)-9 and tissue inhibitor of matrix metalloproteinase inhibitor (TIMP)-3 expression with spontaneous abortion (SA) during early pregnancy. The villus tissues of 30 SA cases and 20 requested abortion cases were collected during surgery and constituted the SA and normal abortion (NA) groups, respectively. The total villous RNA was extracted and the expression levels of MMP -9 and TIMP-3 mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR) assay to calculate the MMP-9/TIMP-3 mRNA ratio. The MMP-9 mRNA expression level and MMP-9/TIMP-3 mRNA ratio of the SA group were significantly higher than those of the NA group (P<0.01), while the TIMP-3 mRNA levels of the two groups were similar (P>0.05). The MMP-9 mRNA expression level of the SA group was higher than that of the NA group; thus, the MMP-9/TIMP-3 mRNA ratio was higher. These results suggest that the expression level of MMP-9 mRNA and the MMP-9/TIMP-3 mRNA ratio are associated with SA.

  2. Impaired CD23 and CD62L expression and tissue inhibitors of metalloproteinases secretion by eosinophils in adults with atopic dermatitis.

    PubMed

    de Oliveira Titz, T; Orfali, R L; de Lollo, C; Dos Santos, V G; da Silva Duarte, A J; Sato, M N; Aoki, V

    2016-12-01

    Eosinophils are multifunctional, polymorphonuclear leucocytes that secrete proteins within cytoplasmic granules, such as cytokines, chemokines, metalloproteinases (MMPs) and metalloproteinases tissue inhibitors (TIMPs). Although eosinophilia is a hallmark of atopic dermatitis (AD), several functional aspects of eosinophils remain unknown. We aimed to evaluate the phenotype and functional response of eosinophils under staphylococcal enterotoxin B (SEB) and Toll-like receptor (TLR)-2/6 (FSL-1) stimulation in the secretion of CCL5, MMPs and TIMPs in adults with AD. Forty-one adult patients with AD and 45 healthy controls enrolled for the study. Phenotype of eosinophils from granulocytes of peripheral blood was analysed by flow cytometry. We performed evaluation of CCL5 (cytometric bead array), MMP and TIMP (ELISA) secretion, in culture supernatants of purified eosinophils stimulated with SEB or TLR2/6 agonist (FSL-1). We found a higher frequency of LIN1 - CCR3 + eosinophils, and decreased expression of CD23 and CD62L receptors in eosinophils of AD patients. There was no difference in MMP and TIMP serum levels between the evaluated groups. However, we detected decreased basal levels of TIMP-1, TIMP-2 and CCL5 in culture supernatants from purified, unstimulated eosinophils from AD patients. In adults with AD, phenotypical features of eosinophils reveal decreased expression of early activation and L-selectin receptors. Regarding the functional profile of purified eosinophils related to tissue remodelling in atopic dermatitis, innate immune stimulation (TLR2/6 agonist and SEB) did not affect the ratio of MMP/TIMPs secretion in AD. Our findings reinforce the potential breakdown in tissue remodelling process mediated by eosinophils in AD. © 2016 European Academy of Dermatology and Venereology.

  3. Circulating matrix modulators (MMP-9 and TIMP-1) and their association with severity of diabetic retinopathy.

    PubMed

    Jayashree, Kuppuswami; Yasir, Md; Senthilkumar, Gandhipuram Periyasamy; Ramesh Babu, K; Mehalingam, Vadivelan; Mohanraj, Palani Selvam

    2018-05-05

    Diabetic Retinopathy (DR) is the leading cause of vision loss in the working age population. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), are molecules involved in extracellular tissue matrix remodelling. They are implicated in the loss of retinal tissue integrity, a major cause of DR, that leads to retinal tissue degradation and apoptosis. This study is therefore, conducted to compare the serum levels of MMP-9 and TIMP-1 in T2DM patients without and with retinopathy, and to evaluate their association with the severity of DR. Our study comprised of 2 groups of 41 each. Group A (cases) included T2DM patients with retinopathy and Group B (controls) included T2DM patients without retinopathy. Routine parameters, mainly, fasting blood glucose, and lipid profile were measured using autoanalyzer. Serum MMP-9, TIMP-1, and insulin levels were assessed using ELISA method. Statistically significant increase in the levels of MMP-9, insulin, fasting blood glucose and lipid profile were observed in the serum of T2DM patients with retinopathy, as compared with those without retinopathy. These results help to conclude that rise in MMP-9, and associated serum markers promote disease progress in DR. These findings suggest that the elevations of our study markers in the serum of the type 2 diabetic patients with retinopathy, as compared to those without retinopathy, play important roles in aggravating tissue matrix degradation, supporting DR disease progression. Copyright © 2018. Published by Elsevier Ltd.

  4. MMP13, TIMP2 and TGFB3 Gene Polymorphisms in Brazilian Chronic Periodontitis and Periimplantitis Subjects.

    PubMed

    Gonçalves Junior, Roberto; Pinheiro, Aristides da Rosa; Schoichet, José Jorge; Nunes, Carlos Henrique Ramirez; Gonçalves, Rackel; Bonato, Leticia Ladeira; Quinelato, Valquiria; Antunes, Leonardo Santos; Küchler, Erika Calvano; Lobo, Julie; Villas-Bôas, Ricardo de Mello; Vieira, Alexandre Rezende; Granjeiro, José Mauro; Casado, Priscila Ladeira

    2016-01-01

    Subjects susceptible to chronic periodontitis (CP) show a high risk for the development of periimplantitis (PI). Both diseases are multifactorial, presenting similarities in their pathophysiology and polygenic profile. MMP-13 (matrix metalloproteinases 13/ collagenase 3) is a collagenolytic enzyme, which expression is induced by TGF beta 3 (transforming growth factor type 3) in human gingival fibroblasts and inhibited by TIMP-2 (tissue inhibitor of metalloproteinase type 2). The aim of this study was to investigate the occurrence of periimplantitis (PI) in subjects with history of chronic periodontitis (CP) and polymorphisms frequency in MMP13, TIMP2 and TGFB3 genes. One hundred and sixty-three volunteers received dental implant placement were submitted to oral and radiographic examination in order to identify past history of CP or presence of PI. Volunteers were divided into 4 groups: Control (without PI and CP, n=72), CP (with CP and without PI, n=28), PI (with PI and without CP, n=28) and diseased (with CP and PI, n=35). The chi-square test correlated genotypes in specific regions of MMP13 (rs2252070), TIMP2 (rs7501477) and TGFB3 (rs2268626) genes, considering the interaction between CP and PI. The results showed that volunteers with CP had 3.2 times more susceptibility to develop PI (p=0.0004) compared to those without CP. No significant association was observed in MMP13, TIMP2 and TGFB3 genes with CP or PI. CP is a risk factor to develop PI, however, there is no association of both diseases with polymorphisms in the MMP13, TIMP2 and TGFB3 genes.

  5. Inflammatory Mediator Profiles Differ in Sepsis Patients With and Without Bacteremia.

    PubMed

    Mosevoll, Knut Anders; Skrede, Steinar; Markussen, Dagfinn Lunde; Fanebust, Hans Rune; Flaatten, Hans Kristian; Aßmus, Jörg; Reikvam, Håkon; Bruserud, Øystein

    2018-01-01

    Systemic levels of cytokines are altered during infection and sepsis. This prospective observational study aimed to investigate whether plasma levels of multiple inflammatory mediators differed between sepsis patients with and those without bacteremia during the initial phase of hospitalization. A total of 80 sepsis patients with proven bacterial infection and no immunosuppression were included in the study. Plasma samples were collected within 24 h of hospitalization, and Luminex ® analysis was performed on 35 mediators: 16 cytokines, six growth factors, four adhesion molecules, and nine matrix metalloproteases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs). Forty-two patients (52.5%) and 38 (47.5%) patients showed positive and negative blood cultures, respectively. There were significant differences in plasma levels of six soluble mediators between the two "bacteremia" and "non-bacteremia" groups, using Mann-Whitney U test ( p  < 0.0014): tumor necrosis factor alpha (TNFα), CCL4, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and TIMP-1. Ten soluble mediators also significantly differed in plasma levels between the two groups, with p -values ranging between 0.05 and 0.0014: interleukin (IL)-1ra, IL-10, CCL2, CCL5, CXCL8, CXCL11, hepatocyte growth factor, MMP-8, TIMP-2, and TIMP-4. VCAM-1 showed the most robust results using univariate and multivariate logistic regression. Using unsupervised hierarchical clustering, we found that TNFα, CCL4, E-selectin, VCAM-1, ICAM-1, and TIMP-1 could be used to discriminate between patients with and those without bacteremia. Patients with bacteremia were mainly clustered in two separate groups (two upper clusters, 41/42, 98%), with higher levels of the mediators. One (2%) patient with bacteremia was clustered in the lower cluster, which compromised most of the patients without bacteremia (23/38, 61%) (χ 2 test, p  < 0.0001). Our study showed that analysis of the plasma inflammatory mediator profile could represent a potential strategy for early identification of patients with bacteremia.

  6. Comparative gene expression profiling of ADAMs, MMPs, TIMPs, EMMPRIN, EGF-R and VEGFA in low grade meningioma.

    PubMed

    Rooprai, Harcharan K; Martin, Andrew J; King, Andrew; Appadu, Usha D; Jones, Huw; Selway, Richard P; Gullan, Richard W; Pilkington, Geoffrey J

    2016-12-01

    MMPs (matrix metalloproteinases), ADAMs (a disintegrin and metalloproteinase) and TIMPs (tissue inhibitors of metalloproteinases) are implicated in invasion and angiogenesis: both are tissue remodeling processes involving regulated proteolysis of the extracellular matrix, growth factors and their receptors. The expression of these three groups and their correlations with clinical behaviour has been reported in gliomas but a similar comprehensive study in meningiomas is lacking. In this study, we aimed to evaluate the patterns of expression of 23 MMPs, 4 TIMPs, 8 ADAMs, selective growth factors and their receptors in 17 benign meningiomas using a quantitative real-time polymerase chain reaction (qPCR). Results indicated very high gene expression of 13 proteases, inhibitors and growth factors studied: MMP2 and MMP14, TIMP-1, -2 and -3, ADAM9, 10, 12, 15 and 17, EGF-R, EMMPRIN and VEGF-A, in almost every meningioma. Expression pattern analysis showed several positive correlations between MMPs, ADAMs, TIMPs and growth factors. Furthermore, our findings suggest that expression of MMP14, ADAM9, 10, 12, 15 and 17, TIMP-2, EGF-R and EMMPRIN reflects histological subtype of meningioma such that fibroblastic subtype had the highest mRNA expression, transitional subtype was intermediate and meningothelial type had the lowest expression. In conclusion, this is the first comprehensive study characterizing gene expression of 8 ADAMs in meningiomas. These neoplasms, although by histological definition benign, have invasive potential. Taken together, the selected elevated gene expression pattern may serve to identify targets for therapeutic intervention or indicators of biological progression and recurrence.

  7. Successive Release of Tissue Inhibitors of Metalloproteinase-1 Through Graphene Oxide-Based Delivery System Can Promote Skin Regeneration

    NASA Astrophysics Data System (ADS)

    Zhong, Cheng; Shi, Dike; Zheng, Yixiong; Nelson, Peter J.; Bao, Qi

    2017-09-01

    The purpose of this study was to testify the hypothesis that graphene oxide (GO) could act as an appropriate vehicle for the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) protein in the context of skin repair. GO characteristics were observed by scanning electron microscopy, atomic force microscopy, and thermal gravimetric analysis. After TIMP-1 absorbing GO, the release profiles of various concentrations of TIMP-1 from GO were compared. GO biocompatibility with fibroblast viability was assessed by measuring cell cycle and apoptosis. In vivo wound healing assays were used to determine the effect of TIMP-1-GO on skin regeneration. The greatest intensity of GO was 1140 nm, and the most intensity volume was 10,674.1 nm (nanometer). TIMP-1 was shown to be continuously released for at least 40 days from GO. The proliferation and viability of rat fibroblasts cultured with TIMP-1-GO were not significantly different as compared with the cells grown in GO or TIMP-1 alone ( p > 0.05). Skin defect of rats treated with TIMP-1 and TIMP-1-GO showed significant differences in histological and immunohistochemical scores ( p < 0.05). GO can be controlled to release carrier materials. The combination of TIMP-1 and GO promoted the progression of skin tissue regeneration in skin defect.

  8. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases

    PubMed Central

    Jia, Yan; Yue, Yu; Hu, Dan-Ning; Chen, Ji-Li; Zhou, Ji-Bo

    2017-01-01

    The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyzed using the Spearmans correlation test. The levels of TGF-β2 were identified to be positively correlated with the levels of TIMP-1 and TIMP-3 (TIMP-1: r=0.334; P=0.007; TIMP-3: r=0.309; P=0.012). The levels of MMP-2, MMP-3 and TIMP-2 did not significantly correlate with TGF-β2 levels (P>0.05). A positive correlation was identified between TGF-β2 and TIMPs in the aqueous humor of human eyes with elongated axial length. It appears that TGF-β2 stimulates the expression of TIMPs as a compensatory reaction to the development of high myopia. PMID:29188062

  9. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  10. Oral contraceptive containing chlormadinone acetate and ethinylestradiol reduces plasma concentrations of matrix metalloproteinase-2 in women with polycystic ovary syndrome.

    PubMed

    Gomes, Valéria A; Vieira, Carolina S; Jacob-Ferreira, Anna L; Belo, Vanessa A; Soares, Gustavo M; França, Janaína B; Ferriani, Rui A; Tanus-Santos, Jose E

    2012-09-01

    Biochemical markers of cardiovascular disease, including matrix metalloproteinases (MMPs), are altered in women with polycystic ovary syndrome (PCOS), with many of these alterations thought to be due to excess androgen concentrations. Despite oral contraceptives (OCs) being the first-line pharmacological treatment in women with PCOS and the importance of MMPs in many physiological conditions and pathological states, including cardiovascular diseases, no study has yet evaluated whether OCs alter plasma concentrations of MMPs. We therefore assessed whether treatment with an OC containing the anti-androgenic progestogen alters MMP profiles in women with PCOS. We analysed 20 women with PCOS who wanted hormonal contraception (OC-PCOS group), 20 ovulatory women who required hormonal contraception (OC-control group) and 20 ovulatory women who wanted non-hormonal contraception (non-OC-control group). OC consisted of cyclic use of 2 mg chlormadinone acetate/30 μg ethinylestradiol for 6 months. Plasma concentrations of MMP-2, MMP-9, TIMP-1 and TIMP-2 were measured by gelatin zymography or enzyme-linked immunoassays. OC treatment for 6 months significantly reduced plasma MMP-2 concentrations in the OC-control and OC-PCOS groups and TIMP-2 and TIMP-1 concentrations levels in the OC-control group (all p < 0.05), but had no effects on MMP-9 concentrations or on MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios in any group (all p > 0.05). These findings indicated that long-term treatment with an OC containing chlormadinone acetate plus ethinylestradiol reduced plasma MMP-2 concentrations in both healthy and PCOS women. As the latter have imbalances in circulating matrix MMPs, treatment of these women with an OC may be beneficial. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  11. Micro-RNA profile and proteins in peritoneal fluid from women with endometriosis: their relationship with sterility.

    PubMed

    Marí-Alexandre, Josep; Barceló-Molina, Moisés; Belmonte-López, Elisa; García-Oms, Javier; Estellés, Amparo; Braza-Boïls, Aitana; Gilabert-Estellés, Juan

    2018-04-01

    To define the microRNA (miRNA) profile and its relationship with cytokines content in peritoneal fluid (PF) from endometriosis patients. Case-control study. University hospital, research institute. One hundred twenty-six women with endometriosis (EPF) and 45 control women (CPF). MiRNA arrays were prepared from six EPF and six CPF. Quantitative reverse transcription-polymerase chain reaction validation of nine selected miRNAs (miR-29c-3p, -106b-3p, -130a-3p, -150-5p, -185-5p, -195-5p, -451a, -486-5p, and -1343-5p) was performed. Vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1), urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-3 (MMP3), tissue inhibitor of metalloproteinases type 1 (TIMP-1), interleukin (IL)-6, IL-8, IL-17A, macrophage inflammatory protein 1β (MIP1beta), platelet-derived growth factor α-polypeptide A, and regulated on activation, normal T cell expressed and secreted (RANTES) were quantified by ELISA and MILLIPLEX. MiRNA arrays showed 126 miRNAs differentially expressed (fold change ±1.2) (78 down-regulated, 48 up-regulated) in EPF. Validation showed higher levels of miR-106b-3p, -451a, -486-5p, IL-6, IL-8, uPA, and TIMP-1 in EPF. In menstrual phase, EPF presented up-regulation of miR-106b-3p, -130a-3p, -150-5p, -185-5p, -451a, -486-5p, VEGF-A, IL-8, MIF 1β, uPA, and PAI-1 compared with other phases; however, CPF did not. MiRNA-486-5p was up-regulated in sterile EPF compared with sterile controls, and VEGF-A, IL-8, and TIMP-1 were increased in sterile and fertile EPF compared with fertile CPF. MiRNAs seem to be involved in the peritoneal alterations in endometriosis, suggesting new mechanisms by which ectopic lesions could implant in endometriosis patients; and to serve as biomarkers for fertility outcome prediction. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Correlations Between MMPs and TIMPs Levels in Aqueous Humor from High Myopia and Cataract Patients.

    PubMed

    Jia, Yan; Hu, Dan-Ning; Sun, Jing; Zhou, Jibo

    2017-04-01

    To study the relationships between matrix metalloproteinases (MMP)-2, MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3 aqueous humor levels in patients with high myopia or cataract. MMPs and TIMPs protein levels in 65 aqueous humor samples collected from patients with high myopia or cataract during cataract or clear lens extraction surgery were measured with the Luminex xMAP Technology. The relationship between MMPs and TIMPs levels was analyzed with Spearman's correlation test. MMP-2 levels, but not MMP-3 levels, were increased in the aqueous humor from high-myopia patients. Levels of TIMP-1, -2, and -3 were positively and very significantly correlated with the MMP-2 levels (TIMP-1: r=0.626, p < 0.001; TIMP-2: r = 0.545, p < 0.001; TIMP-3: r = 0.439, p < 0.001). TIMP-2 and-3 levels did not significantly correlate with MMP-3 levels (TIMP-2: r = 0.175, p > 0.05; TIMP-3: r = 0.127, p > 0.05) and TIMP-1 levels only marginally correlated with MMP-3 levels (r = 0.278, 0.01< P < 0.05). Compared to the present findings with the relationship of MMPs and TIMPs in other fields of medicine, our results are consistent with the homeostasis hypothesis that the increase of TIMPs serves as a compensation reaction to inhibit the excessive degradation caused by the increase of MMPs and limits the development of myopia.

  13. Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2

    PubMed Central

    Tapia, Alejandro; Salamonsen, Lois A.; Manuelpillai, Ursula; Dimitriadis, Evdokia

    2008-01-01

    BACKGROUND Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that is essential for blastocyst implantation in mice. It has been suggested that LIF may play a role in human first trimester extravillous trophoblast (EVT) invasion. The aim of the present study was to establish whether LIF induces changes in EVT function related to invasiveness. METHODS Primary first trimester human EVT cell cultures were treated with/without LIF and the effects on cell adhesion to fibronectin (FN), vitronectin (VN) and laminin (LN) were assessed. Transcript levels of integrin subunits that mediate cell adhesion to these extracellular matrix (ECM) elements were determined by real-time RT–PCR. Matrix metalloproteinase (MMP)2 and MMP9 secretion was assessed by gelatine zymography and tissue inhibitors matrix metalloproteinase (TIMP) -1 and TIMP-2 secretion by enzyme-linked immunosorbent assay. RESULTS EVT cells showed increased adhesion to FN, VN and LN ECM elements in response to LIF (20, 20 and 29%, respectively, P < 0.05 FN and VN compared to control; and P < 0.001 LN compared to control). Integrin β4 mRNA levels decreased by 50% following LIF treatment (P < 0.001 versus control). MMP2 and MMP9 secretion was not affected by LIF but LIF did increase secretion of TIMP-1 and -2 (P < 0.001 versus control). LIF stimulated the phosphorylation of signal transducer and activator of transcription (STAT) 3 protein while it did not affect STAT3 protein abundance. The addition of a LIF inhibitor attenuated the LIF-induced STAT3 phosphorylation in EVT. CONCLUSION The results suggest that LIF can regulate EVT invasion, suggesting an important role in early placental development. PMID:18492704

  14. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc.

    PubMed

    Kim, Jae-Sung; Ellman, Michael B; An, Howard S; Yan, Dongyao; van Wijnen, Andre J; Murphy, Gillian; Hoskin, David W; Im, Hee-Jeong

    2012-04-01

    Lactoferricin (LfcinB) antagonizes biological effects mediated by angiogenic and catabolic growth factors, in addition to pro-inflammatory cytokines and chemokines in human endothelial cells and tumor cells. However, the effect of LfcinB on intervertebral disc (IVD) cell metabolism has not yet been investigated. Using bovine nucleus pulposus (NP) cells, we analyzed the effect of LfcinB on proteoglycan (PG) accumulation, PG synthesis, and anabolic gene expression. We assessed expression of genes for matrix-degrading enzymes such as matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family), as well as their endogenous inhibitors, tissue inhibitor of metalloproteases (TIMPs). In order to understand the specific molecular mechanisms by which LfcinB exerts its biological effects, we investigated intracellular signaling pathways in NP cells. LfcinB increased PG accumulation mainly via PG synthesis in a dose-dependent manner. Simultaneously, LfcinB dose-dependently downregulated catabolic enzymes. LfcinB's anti-catabolic effects were further demonstrated by a dose-dependent increase in multiple TIMP family members. Our results demonstrate that ERK and/or p38 mitogen-activated protein kinase pathways are the key signaling cascades that exert the biological effects of LfcinB in NP cells, regulating transcription of aggrecan, SOX-9, TIMP-1, TIMP-2, TIMP-3, and iNOS. Our results suggest that LfcinB has anabolic and potent anti-catabolic biological effects on bovine IVD cells that may have considerable promise in the treatment of disc degeneration in the future. Copyright © 2011 Wiley Periodicals, Inc.

  15. Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts.

    PubMed

    Lovelock, Joshua D; Baker, Andrew H; Gao, Feng; Dong, Jing-Fei; Bergeron, Angela L; McPheat, Willie; Sivasubramanian, Natarajan; Mann, Douglas L

    2005-02-01

    The balance between matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), plays a critical role in cardiac remodeling. Although a number of studies have characterized the pathophysiological role of MMPs in the heart, very little is known with respect to the role of TIMPs in the heart. To delineate the role of TIMPs in the heart we examined the effects of adenovirus-mediated overexpression of TIMP-1, -2, -3, and -4 in cardiac fibroblasts. Infection of cardiac fibroblasts with adenoviral constructs containing human recombinant TIMP (AdTIMP-1, -2, -3, and -4) provoked a significant (P < 0.0001) 1.3-fold in increase in bromodeoxyuridine (BrdU) incorporation. Similarly, treatment of cardiac fibroblasts with AdTIMP-1-, -2-, -3-, and -4-conditioned medium led to a 1.2-fold increase in BrdU incorporation (P < 0.0001) that was abolished by pretreatment with anti-TIMP-1, -2, -3, and -4 antibodies. The effects of TIMPs were not mimicked by treating the cells with RS-130830, a broad-based MMP inhibitor, suggesting that the effects of TIMPs were independent of their ability to inhibit MMPs. Infection with AdTIMP-1, -2, -3, and -4 led to a significant increase in alpha-smooth muscle actin staining, consistent with TIMP-induced phenotypic differentiation into myofibroblasts. Finally, infection with AdTIMP-2 resulted in a significant increase in collagen synthesis, whereas infection with AdTIMP-3 resulted in a significant increase in fibroblast apoptosis. TIMPs exert overlapping as well as diverse effects on isolated cardiac fibroblasts. The observation that TIMPs stimulate fibroblast proliferation as well as phenotypic differentiation into myofibroblasts suggests that TIMPs may play an important role in tissue repair in the heart that extends beyond their traditional role as MMP inhibitors.

  16. Predictive Value of Matrix Metalloproteinases and Their Inhibitors for Mortality in Septic Patients: A Cohort Study.

    PubMed

    Serrano-Gomez, Sergio; Burgos-Angulo, Gabriel; Niño-Vargas, Daniela Camila; Niño, María Eugenia; Cárdenas, María Eugenia; Chacón-Valenzuela, Estephania; McCosham, Diana Margarita; Peinado-Acevedo, Juan Sebastián; Lopez, M Marcos; Cunha, Fernando; Pazin-Filho, Antonio; Ilarraza, Ramses; Schulz, Richard; Torres-Dueñas, Diego

    2017-01-01

    Over 170 biomarkers are being investigated regarding their prognostic and diagnostic accuracy in sepsis in order to find new tools to reduce morbidity and mortality. Matrix metalloproteinases (MMPs) and their inhibitors have been recently studied as promising new prognostic biomarkers in patients with sepsis. This study is aimed at determining the utility of several cutoff points of these biomarkers to predict mortality in patients with sepsis. A multicenter, prospective, analytic cohort study was performed in the metropolitan area of Bucaramanga, Colombia. A total of 289 patients with sepsis and septic shock were included. MMP-9, MMP-2, tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2, TIMP-1/MMP-9 ratio, and TIMP-2/MMP-2 ratio were determined in blood samples. Value ranges were correlated with mortality to estimate sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiving operating characteristic curve. Sensitivity ranged from 33.3% (MMP-9/TIMP-1 ratio) to 60.6% (TIMP-1) and specificity varied from 38.8% (MMP-2/TIMP-2 ratio) to 58.5% (TIMP-1). As for predictive values, positive predictive value range was from 17.5% (MMP-9/TIMP-1 ratio) to 70.4% (MMP-2/TIMP-2 ratio), whereas negative predictive values were between 23.2% (MMP-2/TIMP-2 ratio) and 80.9% (TIMP-1). Finally, area under the curve scores ranged from 0.31 (MMP-9/TIMP-1 ratio) to 0.623 (TIMP-1). Although TIMP-1 showed higher sensitivity, specificity, and negative predictive value, with a representative population sample, we conclude that none of the evaluated biomarkers had significant predictive value for mortality.

  17. Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits.

    PubMed

    Jaworski, Diane M; Soloway, Paul; Caterina, John; Falls, William A

    2006-01-01

    The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP-2(-/-) mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2(-/-) mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2(-/-) mice. Juvenile TIMP-2(-/-) mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2(-/-) endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2(-/-) motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2(-/-) motor phenotype.

  18. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.

    PubMed

    Weng, Chia-Jui; Wu, Cheng-Feng; Huang, Hsiao-Wen; Ho, Chi-Tang; Yen, Gow-Chin

    2010-11-01

    Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.

  19. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts.

    PubMed

    Kim, J-A; Ahn, B-N; Kong, C-S; Kim, S-K

    2013-05-01

    Skin ageing is influenced by environmental factors such as ultraviolet (UV) radiation. The effects of UV radiation on skin functions should be investigated using human in vitro models to understand the mechanisms of skin ageing. Additionally, marine algae provide a valuable source for identifying and extracting biologically active substances. In this study, sargachromanol E was isolated from a marine brown alga, Sargassum horneri, and its inhibitory effect on skin ageing was investigated using UVA-irradiated dermal fibroblasts. Formation of intracellular reactive oxygen species (ROS), lipid peroxidation and protein oxidation induced by UVA irradiation were investigated in UVA-irradiated human dermal fibroblasts. The levels of matrix metalloproteinases (MMPs) were determined by reverse-transcriptase polymerase chain reaction and Western blot analysis. Sargachromanol E did not exhibit any significant cytotoxicity or phototoxicity in UVA-exposed dermal fibroblasts. Additionally, sargachromanol E suppressed intracellular formation of ROS, membrane protein oxidation, lipid peroxidation and expression of collagenases such as MMP-1, MMP-2 and MMP-9, all of which are caused by UVA exposure. It was further found that these inhibitions were related to an increase in the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP2. Moreover, we have shown that the transcriptional activation of activator protein 1 (AP-1) signalling caused by UVA irradiation was inhibited by treatment with sargachromanol E. This study suggests that UVA irradiation modulates MMP expression via the transcriptional activation of AP-1 signalling, whereas treatment with sargachromanol E protected cell damage caused by UVA irradiation. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  20. Imbalances between Matrix Metalloproteinases (MMPs) and Tissue Inhibitor of Metalloproteinases (TIMPs) in Maternal Serum during Preterm Labor

    PubMed Central

    Tency, Inge; Verstraelen, Hans; Kroes, Ivo; Holtappels, Gabriële; Verhasselt, Bruno; Vaneechoutte, Mario

    2012-01-01

    Background Matrix metalloproteinases (MMPs) are involved in remodeling of the extracellular matrix (ECM) during pregnancy and parturition. Aberrant ECM degradation by MMPs or an imbalance between MMPs and their tissue inhibitors (TIMPs) have been implicated in the pathogenesis of preterm labor, however few studies have investigated MMPs or TIMPs in maternal serum. Therefore, the purpose of this study was to determine serum concentrations of MMP-3, MMP-9 and all four TIMPs as well as MMP:TIMP ratios during term and preterm labor. Methods A case control study with 166 singleton pregnancies, divided into four groups: (1) women with preterm birth, delivering before 34 weeks (PTB); (2) gestational age (GA) matched controls, not in preterm labor; (3) women at term in labor and (4) at term not in labor. MMP and TIMP concentrations were measured using Luminex technology. Results MMP-9 and TIMP-4 concentrations were higher in women with PTB vs. GA matched controls (resp. p = 0.01 and p<0.001). An increase in MMP-9:TIMP-1 and MMP-9:TIMP-2 ratio was observed in women with PTB compared to GA matched controls (resp. p = 0.02 and p<0.001) as well as compared to women at term in labor (resp. p = 0.006 and p<0.001). Multiple regression results with groups recoded as three key covariates showed significantly higher MMP-9 concentrations, higher MMP-9:TIMP-1 and MMP-9:TIMP-2 ratios and lower TIMP-1 and -2 concentrations for preterm labor. Significantly higher MMP-9 and TIMP-4 concentrations and MMP-9:TIMP-2 ratios were observed for labor. Conclusions Serum MMP-9:TIMP-1 and MMP-9:TIMP-2 balances are tilting in favor of gelatinolysis during preterm labor. TIMP-1 and -2 concentrations were lower in preterm gestation, irrespective of labor, while TIMP-4 concentrations were raised in labor. These observations suggest that aberrant serum expression of MMP:TIMP ratios and TIMPs reflect pregnancy and labor status, providing a far less invasive method to determine enzymes essential in ECM remodeling during pregnancy and parturition. PMID:23145060

  1. Serum TIMP1 and TIMP2 concentration in patients with different grades of meningioma.

    PubMed

    Mashayekhi, Farhad; Saberi, Alia; Mashayekhi, Sohail

    2018-07-01

    Meningiomas are common primary brain tumors that constitute about 13% of all intracranial tumors. Matrix metalloproteinase-9 (MMP-9) is able to degrade the extracellular matrix and basement membrane leading to cancer cell invasion and metastasis. MMPs are specifically inhibited by a family of small extracellular proteins known as the tissue inhibitors of metalloproteinases (TIMPs). The objective of this project was to evaluate serum concentration of TIMP-1 and TIMP-2 in patients with different grades of meningioma. Ninety samples from different stages of patients with meningitis (42 cases of grade I, 28 grade II, 20 grade III) and 51 samples from normal healthy were included in this study. Total protein concentration (TPC) and the level TIMP-1 and TIMP-2 serum were determined by Bio-Rad protein assay based on the Bradford dye procedure and enzyme-linked immunosorbent assay (ELISA), respectively. No significant change in the TPC was seen in the serum of patients with meningioma when compared with normal controls. Results obtained demonstrated that all serum samples presented TIMP-1 and TIMP-2 expression, whereas, starting from grade I to III meningiomas, a significant decrease of TIMP-1 and TIMP-2 expression was observed as compared to controls. The results of this study show that a low expression of TIMP1 and TIMP2 is correlated with advanced stages of meningioma. It is also concluded that the detection of serum TIMP1 and TIMP2 may be useful in classifying different grades of meningioma. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Reduced Scleral TIMP-2 Expression Is Associated With Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development.

    PubMed

    Liu, Hsin-Hua; Kenning, Megan S; Jobling, Andrew I; McBrien, Neville A; Gentle, Alex

    2017-04-01

    The purpose of this study was to determine the endogenous regulation pattern of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the tree shrew sclera during myopia development and investigate the capacity of exogenous TIMP-2 to inhibit matrix metalloproteinase-2 (MMP-2) in vitro and both scleral collagen degradation and myopia development in vivo. TIMP-2 expression in the sclera during myopia development was assessed using polymerase chain reaction. In vitro TIMP-2 inhibition of MMP-2 was investigated using a gelatinase activity plate assay and zymography. Tree shrews were injected with a collagen precursor before undergoing monocular form deprivation and concurrent daily subconjunctival injections of either TIMP-2 or vehicle to the form-deprived eye. In vivo ocular biometry changes were monitored, and scleral tissue was collected after 12 days and assayed for collagen degradation. The development of myopia was associated with a mean reduction in TIMP-2 mRNA expression after 5 days of form deprivation (P < 0.01). Both activation and activity of MMP-2 were inhibited by TIMP-2 with an IC50 of 10 to 20 and 2 nM, respectively. In vivo exogenous addition of TIMP-2 significantly reduced myopia development (P < 0.01), due to reduced vitreous chamber elongation (P < 0.01). In vivo TIMP-2 treatment also significantly inhibited posterior scleral collagen degradation relative to vehicle-treated eyes (P < 0.01), with levels similar to those in control eyes. Myopia development in mammals is associated with reduced expression of TIMP-2, which contributes to increased degradative activity in the sclera. It follows that replenishment of this TIMP-2 significantly reduced the rate of both scleral collagen degradation and myopia development.

  3. Effect of elastin-derived peptides on the production of tissue inhibitor of metalloproteinase-1, -2, and -3 and the ratios in various endothelial cell lines.

    PubMed

    Siemianowicz, Krzysztof; Likus, Wirginia; Francuz, Tomasz; Garczorz, Wojciech

    2015-06-01

    Tissue inhibitors of metalloproteinases (TIMPs) control the activity of metalloproteinases. Elastin-derived peptides (EDPs) are generated as a result of the degradation of elastin fibers. The EDPs bind to the elastin receptor and exert numerous biological effects. The aim of the present study was to compare the production of TIMP-1, TIMP-2 and TIMP-3 and their ratios in human endothelial cells (ECs) derived from three clinically important vascular localizations (coronary arteries, aorta and iliac artery), and evaluate the influence of a well-known EDP, κ-elastin. The highest concentration of TIMP-1 was identified in the aortic ECs, while the lowest concentration was observed in the ECs derived from the coronary artery. The opposite pattern was observed for TIMP-2 production. When the TIMP-3 concentration was analyzed in the three EC lines, no statistically significant differences were observed. Application of κ-elastin was found to decrease the TIMP-1 concentration in the aortic ECs, while an increase in the TIMP-1 concentration was observed in the ECs derived from the iliac artery. The most significant decrease in TIMP-2 concentration following κ-elastin administration was observed in the ECs obtained from the coronary arteries. Furthermore, the highest concentration of κ-elastin resulted in an increase in TIMP-3 production in the ECs derived from the coronary arteries. The following ratios of the TIMP concentrations were calculated: TIMP-1/TIMP-2, TIMP-1/TIMP-3 and TIMP-2/TIMP-3. Each ratio presented different values for the ECs obtained from the various localizations. In the majority of cases, the addition of κ-elastin did not significantly change these proportions. Therefore, these indicators may be characteristic features that can be used to describe ECs in various clinically important vascular localizations.

  4. Effect of elastin-derived peptides on the production of tissue inhibitor of metalloproteinase-1, -2, and -3 and the ratios in various endothelial cell lines

    PubMed Central

    SIEMIANOWICZ, KRZYSZTOF; LIKUS, WIRGINIA; FRANCUZ, TOMASZ; GARCZORZ, WOJCIECH

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) control the activity of metalloproteinases. Elastin-derived peptides (EDPs) are generated as a result of the degradation of elastin fibers. The EDPs bind to the elastin receptor and exert numerous biological effects. The aim of the present study was to compare the production of TIMP-1, TIMP-2 and TIMP-3 and their ratios in human endothelial cells (ECs) derived from three clinically important vascular localizations (coronary arteries, aorta and iliac artery), and evaluate the influence of a well-known EDP, κ-elastin. The highest concentration of TIMP-1 was identified in the aortic ECs, while the lowest concentration was observed in the ECs derived from the coronary artery. The opposite pattern was observed for TIMP-2 production. When the TIMP-3 concentration was analyzed in the three EC lines, no statistically significant differences were observed. Application of κ-elastin was found to decrease the TIMP-1 concentration in the aortic ECs, while an increase in the TIMP-1 concentration was observed in the ECs derived from the iliac artery. The most significant decrease in TIMP-2 concentration following κ-elastin administration was observed in the ECs obtained from the coronary arteries. Furthermore, the highest concentration of κ-elastin resulted in an increase in TIMP-3 production in the ECs derived from the coronary arteries. The following ratios of the TIMP concentrations were calculated: TIMP-1/TIMP-2, TIMP-1/TIMP-3 and TIMP-2/TIMP-3. Each ratio presented different values for the ECs obtained from the various localizations. In the majority of cases, the addition of κ-elastin did not significantly change these proportions. Therefore, these indicators may be characteristic features that can be used to describe ECs in various clinically important vascular localizations. PMID:26136968

  5. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    PubMed

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  6. Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

    PubMed Central

    Kim, Yeon Seong; Jeong, Young-II; Jin, Shu-Guang; Pei, Jian; Wen, Min; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young; Ryu, Hyang-Hwa; Jung, Shin

    2013-01-01

    Background In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2) and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v). Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. PMID:24231999

  7. Tissue Inhibitor of Metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal

    PubMed Central

    Pérez-Martínez, Leonor; Jaworski, Diane M.

    2005-01-01

    Although traditionally recognized for maintaining extracellular matrix integrity during morphogenesis, the function of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), in the mature nervous system is largely unknown. Here, we report that TIMP-2 induces PC12 cell cycle arrest via regulation of cell cycle regulatory proteins resulting in differentiation and neurite outgrowth. TIMP-2 decreases cyclin B and D expression and increases p21Cip expression. Furthermore, TIMP-2 promotes cell differentiation via activation of the cAMP/Rap1/ERK pathway. Expression of dominant negative Rap1 blocks TIMP-2 mediated neurite outgrowth. Both the cell cycle arrest and neurite outgrowth induced by TIMP-2 was independent of MMP inhibitory activity. Consistent with the PC12 cell data, primary cultures of TIMP-2 knockout cerebral cortical neurons exhibit significantly reduced neurite length, which is rescued by TIMP-2. These in vitro results were corroborated in vivo. TIMP-2 deletion causes a delay in neuronal differentiation as demonstrated by the persistence of nestin-positive progenitors in the neocortical ventricular zone. The interaction of TIMP-2 with α3β1 integrin in the cerebral cortex suggests that TIMP-2 promotes neuronal differentiation and maintains mitotic quiescence in an MMP independent manner through integrin activation. The identification of molecules responsible for neuronal quiescence has significant implications for the adult brain’s ability to generate new neurons in response to injury and neurological disorders such as Alzheimer’s and Parkinson’s disease. PMID:15901773

  8. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction.

    PubMed

    Lu, Xiaofei; Duan, Lingling; Xie, Hongqin; Lu, Xiaoxia; Lu, Daolin; Lu, Daopeng; Jiang, Nan; Chen, Yuxin

    2016-01-01

    Adenocarcinoma of esophagogastric junction (AEG) is a lethal malignancy featured with early metastasis, poor prognosis, and few treatment options. Matrix metalloproteinase (MMP) and metalloproteinase suppressor (TIMP) have been considered to be associated with cancer invasion and metastasis. In our study, we evaluated expressions of MMP-9, MMP-2, TIMP-1, and TIMP-2 in AEG and their correlation with clinicopathological parameters and the overall survival rate. Expressions of MMP-9, MMP-2, TIMP-1, and TIMP-2 in specimens from 120 AEGs were detected by immunohistochemistry. The correlations between expressions of these four proteins and clinicopathological characters were analyzed by chi-square test. Moreover, the prognostic value of these four biomarkers was evaluated by univariate analysis with Kaplan-Meier method and multivariate analysis with Cox regression model. The positive expression rate of MMP-9, MMP-2, TIMP-1, and TIMP-2 was 65%, 53%, 70%, and 49%, respectively, in the detected 120 AEG samples. MMP-9 was significantly associated with poorly histological differentiation (P=0.001), lymph node metastasis (P=0.007), and UICC stage (P=0.008). TIMP-1 showed significantly reversed correlations with histological differentiation (P=0.001), lymph node metastasis (P=0.007), and Union for International Cancer Control stage (P=0.008). Univariate analysis revealed that lymph node metastasis (P=0.002), depth of invasion (P=0.050), and MMP-9+/TIMP-1 phonotype (P<0.001) were significantly associated with the overall survival rate. Multivariate analyses demonstrated that MMP-9+/TIMP-1-phenotype was an independent prognostic factor in AEGs. Detection of MMP-9 and TIMP-1 expression allows stratification of AEG patients into different survival categories and can be useful for precise individual evaluation and survival prediction.

  9. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma.

    PubMed

    Urbaniak-Kujda, Donata; Kapelko-Slowik, Katarzyna; Prajs, Iwona; Dybko, Jarosław; Wolowiec, Dariusz; Biernat, Monika; Slowik, Miroslaw; Kuliczkowski, Kazimierz

    2016-01-01

    Activity of metalloproteinases (MMP) is controlled both by specific tissue inhibitors (TIMP) and activators (extracellular matrix metalloproteinase inducer, EMMPRIN). There are few data available concerning concentration the bone marrow of MMP-2, MMP-9, TIMP-1, and TIMP-2, or EMMPRIM expression by bone marrow mesenchymal stromal cells (BMSCs) in patients with multiple myeloma (MM). We studied 40 newly diagnosed, untreated patients: 18 males and 22 females with de novo MM and 11 healthy controls. Bone marrow was collected prior to therapy. BMSCs were derived by culturing bone marrow cells on MesenCult. Protein concentrations were determined in bone marrow plasma and culture supernatants by ELISA. EMMPRIN expression by BMSCs was assessed by flow cytometry. The median concentrations of MMP-9, TIMP-1, and TIMP-2 in both marrow plasma and culture supernatants were significantly higher in MM patients than controls. EMMPRIN expression and ratios MMP-9/TIMP-1 and MMP-2/TIMP-2 were higher in MM patients, our results demonstrate that in MM patients MMP-2 and MMP-9 are secreted in higher amounts and are not balanced by inhibitors.

  10. Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts

    PubMed Central

    Dohi, Teruyuki; Aoki, Masayo; Ogawa, Rei; Akaishi, Satoshi; Shimada, Takashi; Okada, Takashi; Hyakusoku, Hiko

    2015-01-01

    Background: Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. Methods: The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). Results: TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. Conclusion: These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids. PMID:26495233

  11. Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy

    PubMed Central

    Salzmann, J.; Limb, G; Khaw, P.; Gregor, Z.; Webster, L.; Chignell, A.; Charteris, D.

    2000-01-01

    AIM—To examine epiretinal membranes of proliferative diabetic retinopathy (PDR) for the presence of selective matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs), in order to determine whether neovascularisation and fibrosis, characteristic of this complication of diabetes mellitus, are associated with specific anomalies of MMP or TIMP expression.
METHODS—The presence of selected MMPs and TIMPs was investigated in 24 fibrovascular epiretinal membranes of PDR, and the findings compared with that observed in 21 avascular epiretinal membranes of proliferative vitreoretinopathy (PVR) and five normal retinas. Specimens were examined for deposition of interstitial collagenase (MMP-1), stromelysin-1 (MMP-3), gelatinase A (MMP-2), gelatinase B (MMP-9), and three tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2, and TIMP-3).
RESULTS—The results showed that unlike normal retina, which constitutively expresses MMP-1 and TIMP-2, a large proportion of PDR membranes (> 62%) stained for MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, TIMP-2, and TIMP-3. There were no differences in the expression of these molecules when compared with PVR membranes. A characteristic staining for MMP-9 was observed within the perivascular matrix of PDR membranes, and there was a significant increase in TIMP-2 expression by PDR membranes (p= 0.036) when compared with PVR membranes.
CONCLUSIONS—The findings that MMPs involved in degradation of fibrovascular tissue matrix, as well as TIMP-1 and TIMP-2, are found in a large proportion of PDR membranes, and that their expression does not differ from that of PVR membranes, suggest the existence of common pathways of extracellular matrix degradation in pathological processes leading to retinal neovascularisation and fibrosis.

 PMID:11004090

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMPmore » and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic wounds.« less

  13. Diabetes may affect the expression of matrix metalloproteinases and their inhibitors more than smoking in chronic periodontitis.

    PubMed

    Bastos, M F; Tucci, M A; de Siqueira, A; de Faveri, M; Figueiredo, L C; Vallim, P C; Duarte, P M

    2017-04-01

    No previous study has directly compared the levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) between smokers and individuals with diabetes mellitus (DM) with periodontitis. Therefore, the aim of this study was to evaluate the gene expression of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 in tissues with chronic periodontitis (ChP) of smokers and individuals with type 2 DM. Gingival biopsies were harvested from: non-smokers and non-diabetic individuals with ChP (n = 18) (ChP group); non-diabetic smokers (≥ 10 cigarettes per day for at least the past 5 years) with ChP (n = 18) (SChP group); non-smoking individuals with type 2 diabetes (glycated hemoglobin levels ≥ 7.5%) and ChP (n = 18) (DMChP group). The tissue levels of mRNA of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 were evaluated by quantitative real-time polymerase chain reaction. The MMP-8 expression was the lowest in the ChP group (p < 0.05). The DMChP group presented increased mRNA levels of MMP-2 and MMP-9, when compared to the SChP group (p < 0.05). MMP-1 expression and the MMP-1/TIMP-1, MMP-2/TIMP-1, MMP-8/TIMP-1, MMP-9/TIMP-1, MMP-1/TIMP-2 and MMP-2/TIMP-2 ratios were higher in the DMChP group than in the ChP and SChP groups (p < 0.05). The DMChP group presented lower mRNA levels of TIMP-1 than the ChP group (p < 0.05). The MMP-8/TIMP-2 ratio was the highest in the SChP group (p < 0.05). Uncontrolled type 2 DM upregulates the ratio of MMP/TIMPs in sites with ChP more than smoking, which may contribute to a greater extracellular matrix degradation and periodontal breakdown in DM-related periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. MMP-2, MMP-9, and TIMP-4 and Response to Aspirin in Diabetic and Nondiabetic Patients with Stable Coronary Artery Disease: A Pilot Study

    PubMed Central

    Kuliczkowski, Wiktor; Radomski, Marek; Gąsior, Mariusz; Urbaniak, Joanna; Kaczmarski, Jacek; Mysiak, Andrzej; Negrusz-Kawecka, Marta

    2017-01-01

    Background High on-aspirin treatment platelets reactivity (HPR) is a significant problem in long-term secondary prevention of cardiovascular events. We hypothesize that imbalance between platelets MMPs/TIMPs results in cardiovascular disorders. We also explored whether chronically elevated blood glucose affects MMP-2/TIMP-4 release from platelets. Materials and Methods Seventy patients with stable coronary artery disease, supplemented with aspirin, participated in this pilot study. The presence of HPR and/or diabetes mellitus was considered as the differentiating factor. Light aggregometry, impedance aggregometry, and ELISA tests for TXB2, MMP-2, MMP-9, and TIMP-4 were performed in serum, plasma, platelet-rich plasma, and platelets-poor plasma, as appropriate. Results Aspirin-HPR did not affect plasma MMP-2, MMP-9, and TIMP-4. Arachidonic acid-induced aggregation of platelets from aspirin-HPR patients did not lead to increased release of MMP-2, MMP-9, and TIMP-4. Studying patients at the lowest TXB2 serum concentration quartile revealed that high concentration of plasma TIMP-4 and TIMP-4 negatively correlated with TXB2 and platelet aggregation. Diabetics showed an increased plasma MMP-2 as well as an increased MMP-2 in supernatants after platelet aggregation. However, diabetes mellitus did not affect MMP-9 and TIMP-4. Conclusion Aspirin-HPR did not affect the translocation and release of MMPs and TIMP-4 from platelets. TIMP-4 may serve as a marker of TXA2-mediated platelet aggregation. Chronically elevated plasma glucose increases plasma MMP-2, and HPR potentiates this phenomenon. PMID:28770228

  15. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases: Relevance to intracellular signaling pathways

    PubMed Central

    Roeb, Elke; Bosserhoff, Anja-Katrin; Hamacher, Sabine; Jansen, Bettina; Dahmen, Judith; Wagner, Sandra; Matern, Siegfried

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells. METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases. RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1. CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9. PMID:15754388

  16. Variability of MMP/TIMP and TGF-β1 Receptors throughout the Clinical Progression of Chronic Venous Disease.

    PubMed

    Serralheiro, Pedro; Novais, António; Cairrão, Elisa; Maia, Cláudio; Costa Almeida, Carlos M; Verde, Ignacio

    2017-12-21

    Chronic venous disease (CVeD) is a prevalent condition with a significant socioeconomic burden, yet the pathophysiology is only just beginning to be understood. Previous studies concerning the dysregulation of matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of metalloproteinases (TIMPs)) within the varicose vein wall are inconsistent and disregard clinical progression. Moreover, it is highly plausible that MMP and TIMP expression/activity is affected by transforming growth factor (TGF)-β1 and its signaling receptors (TGFβRs) expression/activity in the vein wall. A case-control study was undertaken to analyze genetic and immunohistochemical differences between healthy ( n = 13) and CVeD (early stages: n = 19; advanced stages: n = 12) great saphenous vein samples. Samples were grouped based on anatomic harvest site and subjected to quantitative polymerase chain reaction for MMP1 , MMP2 , MMP8 , MMP9 , MMP12 , MMP13 , TIMP1 , TIMP2 , TIMP3 , TIMP4 , TGFβR1 , TGFβR2 , and TGFβR3 gene expression analysis, and then to immunohistochemistry for immunolocalization of MMP2, TIMP2, and TGFβR2. Decreased gene expression of MMP12 , TIMP2 , TIMP3 , TIMP4 , and TGFβR2 was found in varicose veins when compared to controls. Regarding CVeD clinical progression, two facts arose: results across anatomical regions were uneven; decreased gene expression of MMP9 and TGFβR3 and increased gene expression of MMP2 and TIMP3 were found in advanced clinical stages. Most immunohistochemistry results for tunica intima were coherent with qPCR results. In conclusion, decreased expression of TGFβRs might suggest a reduction in TGF-β1 participation in the MMP/TIMP imbalance throughout CVeD progression. Further studies about molecular events in the varicose vein wall are required and should take into consideration the venous anatomical region and CVeD clinical progression.

  17. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals

    PubMed Central

    Jaworski, Diane M.; Pérez-Martínez, Leonor

    2010-01-01

    Neuronal differentiation requires exquisitely timed cell cycle arrest for progenitors to acquire an appropriate neuronal cell fate and is achieved by communication between soluble signals, such as growth factors and extracellular matrix molecules. Here we report that the expression of TIMP-2, a matrix metalloproteinase inhibitor, is up-regulated by signals that control proliferation (bFGF and EGF) and differentiation (retinoic acid and NGF) in neural progenitor and neuroblastoma cell lines. TIMP-2 expression coincides with the appearance of neurofilament-positive neurons, indicating that TIMP-2 may play a role in neurogenesis. The up-regulation of TIMP-2 expression by proliferative signals suggests a role in the transition from proliferation to neuronal differentiation. Live labeling experiments demonstrate TIMP-2 expression only on α3 integrin-positive cells. Thus, TIMP-2 function may be mediated via interaction with integrin receptor(s). We propose that TIMP-2 represents a component of the neurogenic signaling cascade induced by mitogenic stimuli that may withdraw progenitor cells from the cell cycle permitting their terminal neuronal differentiation. PMID:16805810

  18. Suppressive activity of tiotropium bromide on matrix metalloproteinase production from lung fibroblasts in vitro

    PubMed Central

    Asano, Kazuhito; Shikama, Yusuke; Shibuya, Yasuhiro; Nakajima, Hiroaki; Kanai, Ken-ichi; Yamada, Naohiro; Suzaki, Harumi

    2008-01-01

    Background Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling with an accumulation of inflammatory cells. There is also increasing evidence that metalloproteinases (MMPs) may contribute to the pathogenesis of COPD, but the influence of agents that used for the treatment of COPD is not well understood. Objective We evaluated whether tiotropium bromide hydrate (TBH), a M3 muscarinic receptor antagonist, could inhibit MMP production from lung fibroblasts (LFs) in response to tumor necrosis factor (TNF)-α stimulation. Methods LFs were established from normal lung tissues taken from patients with lung tumors. LFs (5 × 105 cells/ml) were stimulated with TNF-α in the presence of various concentrations of TBH. After 24 h, culture supernatants were obtained and assayed for the levels of MMPs and tissue inhibitor of metalloproteinases (TIMPs) by ELISA. The influence of TBH on mRNA expression of MMPs and TIMPs in 4 h-cultured cells was also examined by real-time RT-PCR. Furthermore, nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in LFs treated with TBH for 4 h was examined by ELISA. Results TBH at more than 15 pg/ml inhibited the production of MMP-2 from LFs after TNF-α stimulation, whereas TIMP-1 and TIMP-2 production was scarcely affected by TBH through the suppression of both mRNA expression and transcription factor, NF-κB, activation in LFs induced by TNF-α stimulation. Conclusion These results suggest that the attenuating effect of TBH on MMP-2 production from LFs induced by inflammatory stimulation may be additional beneficial therapeutic effects not directly relating to its bronchodilatory effects. PMID:19281093

  19. T-2 Toxin Alters the Levels of Collagen II and Its Regulatory Enzymes MMPs/TIMP-1 in a Low-Selenium Rat Model of Kashin-Beck Disease.

    PubMed

    Zhou, Xiaorong; Yang, Haojie; Guan, Fang; Xue, Senhai; Song, Daiqin; Chen, Jinghong; Wang, Zhilun

    2016-02-01

    The objectives of this study are to assess T-2 toxin's involvement in low selenium (Se)-induced Kashin-Beck disease (KBD) in rats and unveil the mechanisms underlying this disease. Two hundred thirty rats were randomly divided into two groups after weaning and fed normal or low-Se diets (n = 115), respectively, for a month. After low-Se model confirmation, rats in each group were subdivided into five: two subgroups (n = 20) were fed their current diets (normal or low-Se diets, respectively) for 30 and 90 days, respectively; two other subgroups (n = 25) received their current diets + low T-2 toxin (100 ng/g BW/day) for 30 and 90 days, respectively; and 25 rats were fed their current diets + high T-2 toxin (200 ng/g BW/day) for 30 days. Articular cartilage samples were extracted for hematoxylin and eosin (H&E) staining and immunohistochemistry. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) were used to assess protein and mRNA levels, respectively, of collagen II, matrix metalloproteinase (MMP-1), MMP -3, MMP-13, and tissue inhibitor of metalloproteinase-1 (TIMP-1). Low Se and T-2 toxin synergistically affected animal fitness. Interestingly, low Se + T-2 toxin groups showed KBD characteristics. MMP-1, -3, and -13 mRNA and protein levels generally increased in low-Se groups, while collagen II and TIMP-1 levels showed a downward trend, compared with normal diet fed animals for the same treatment (P < 0.05). T-2 toxin's effect was dose but not time dependent. Low Se and T-2 toxin synergistically alter the expression levels of collagen II as well as its regulatory enzymes MMP-1, MMP-3, MMP-13, and TIMP-1, inducing cartilage damage. Therefore, T-2 toxin may cause KBD in low-Se conditions.

  20. Sonic extracts from a bacterium related to periapical disease activate gelatinase A and inactivate tissue inhibitor of metalloproteinases TIMP-1 and TIMP-2.

    PubMed

    Sato, Y; Kishi, J; Suzuki, K; Nakamura, H; Hayakawa, T

    2009-12-01

    To examine the effects of sonicated bacterial extracts (SBEs) from three related to periapical disease bacteria (Porphyromonas gingivalis, P. endodontalis and F. nucleatum) on the activation of matrix metalloproteinase (MMP-2) and the inactivation of tissue inhibitors of metalloproteinase (TIMP-1 and TIMP-2). Each SBE was added to cultures of human periodontal ligament (PL) cells or HT1080 cells and their supernatants were analysed by zymography for MMP-2. Each SBE was added to PL cell cultures, and the amount of TIMP-1 was determined by ELISA. P. gingivalis SBE was incubated with HT1080 cell culture supernatants, and the amounts of TIMP-1 and TIMP-2 were determined by ELISA. Statistical analysis was performed with the paired Student's t-test. In extracts of PL cells that had been incubated in the presence of P. gingivalis SBE, one representing pro-MMP-2 (72 kDa) and a band corresponding to the active MMP-2 (66 kDa) were observed; but in the other extracts it was not detected. When HT1080 cells were treated with P. gingivalis SBE, the pro-MMPs was processed into 86- and 66-kDa fragments, but in the other extracts, the processing did not occur when the other SBEs were used. When PL cells were incubated with the same SBEs, the amount of TIMP-1 was markedly decreased (P < 0.01), but in the other extracts, it was not. The amounts of both TIMP-1 and TIMP-2 were decreased in a dose-dependent manner when HT1080 cell culture supernatant was incubated with P. gingivalis SBE. These findings suggest that P. gingivalis SBE may cause connective tissue to be destroyed, contributing to the process of periapical disease, by activating pro-MMP-2 as well as by inactivating TIMP-1 and TIMP-2.

  1. Inhibitory Effect of Hizikia fusiformis Solvent-Partitioned Fractions on Invasion and MMP Activity of HT1080 Human Fibrosarcoma Cells

    PubMed Central

    Lee, Seul-Gi; Karadeniz, Fatih; Oh, Jung Hwan; Yu, Ga Hyun; Kong, Chang-Suk

    2017-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases that take significant roles in extracellular matrix degradation and therefore linked to several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Hizikia fusiformis, a brown algae, was reported to possess bioactivities, including but not limited to, antiviral, antimicrobial, and anti-inflammatory partly due to bioactive polysaccharide contents. In this study, the potential of H. fusiformis against cancer cell invasion was evaluated through the MMP inhibitory effect in HT1080 fibrosarcoma cells in vitro. H. fusiformis crude extract was fractionated with organic solvents, H2O, n-BuOH, 85% aqueous MeOH, and n-hexane (n-Hex). The non-toxicity of the fractions was confirmed by MTT assay. All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to the gelatin zymography assay. Cell migration was also significantly inhibited by the n-Hex fraction. In addition, both gene and protein expressions of MMP-2 and -9, and tissue inhibitor of MMPs (TIMPs) were evaluated by reverse transcription-polymerase chain reaction and Western blotting, respectively. The fractions suppressed the mRNA and protein levels of MMP-2, MMP-9 while elevating the TIMP-1 and TIMP-2, with the H2O fraction being the least effective while n-Hex fraction the most. Collectively, the n-Hex fraction from brown algae H. fusiformis could be a potential inhibitor of MMPs, suggesting the presence of various derivatives of polysaccharides in high amounts. PMID:29043215

  2. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    PubMed

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  3. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases

    PubMed Central

    Jakubowska, Katarzyna; Pryczynicz, Anna; Iwanowicz, Piotr; Niewiński, Andrzej; Maciorkowska, Elżbieta; Hapanowicz, Jerzy; Jagodzińska, Dorota; Kemona, Andrzej; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Crohn's disease (CD) and ulcerative colitis (UC) belong to a group of inflammatory bowel diseases (IBD). The aim of our study was to evaluate the expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 in ulcerative colitis and Crohn's disease. The study group comprised 34 patients with UC and 10 patients with CD. Evaluation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 expression in tissue samples was performed using immunohistochemistry. The overexpression of MMP-9 and TIMP-1 was dominant in both the glandular epithelium and inflammatory infiltration in UC patients. In contrast, in CD subjects the positive expression of MMP-2 and TIMP-1 was in glandular tubes while mainly MMP-7 and TIMP-2 expression was in inflammatory infiltration. Metalloproteinases' expression was associated with the presence of erosions, architectural tissue changes, and inflammatory infiltration in the lamina propria of UC patients. The expression of metalloproteinase inhibitors correlated with the presence of eosinophils and neutrophils in UC and granulomas in CD patients. Our studies indicate that the overexpression of metalloproteinases and weaker expression of their inhibitors may determine the development of IBD. It appears that MMP-2, MMP-7, and MMP-9 may be a potential therapeutic target and the use of their inhibitors may significantly reduce UC progression. PMID:27034654

  4. Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases.

    PubMed

    Jakubowska, Katarzyna; Pryczynicz, Anna; Iwanowicz, Piotr; Niewiński, Andrzej; Maciorkowska, Elżbieta; Hapanowicz, Jerzy; Jagodzińska, Dorota; Kemona, Andrzej; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Crohn's disease (CD) and ulcerative colitis (UC) belong to a group of inflammatory bowel diseases (IBD). The aim of our study was to evaluate the expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 in ulcerative colitis and Crohn's disease. The study group comprised 34 patients with UC and 10 patients with CD. Evaluation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 expression in tissue samples was performed using immunohistochemistry. The overexpression of MMP-9 and TIMP-1 was dominant in both the glandular epithelium and inflammatory infiltration in UC patients. In contrast, in CD subjects the positive expression of MMP-2 and TIMP-1 was in glandular tubes while mainly MMP-7 and TIMP-2 expression was in inflammatory infiltration. Metalloproteinases' expression was associated with the presence of erosions, architectural tissue changes, and inflammatory infiltration in the lamina propria of UC patients. The expression of metalloproteinase inhibitors correlated with the presence of eosinophils and neutrophils in UC and granulomas in CD patients. Our studies indicate that the overexpression of metalloproteinases and weaker expression of their inhibitors may determine the development of IBD. It appears that MMP-2, MMP-7, and MMP-9 may be a potential therapeutic target and the use of their inhibitors may significantly reduce UC progression.

  5. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    PubMed

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.

  6. [Matrix metalloproteinases and their inhibitors in lung cancer with malignant pleural effusion].

    PubMed

    Moche, M; Hui, D S C; Huse, K; Chan, K S; Choy, D K L; Scholz, G H; Gosse, H; Winkler, J; Schauer, J; Sack, U; Hoheisel, G

    2005-08-01

    Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) play a crucial role in physiological and pathological matrix turnover. This study aimed to determine the occurrence of MMP and TIMP in lung cancer patients with malignant pleural effusions (CA). MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and IMP-2 oncentrations were determined by ELISA and zymography in pleural effusions and plasma of 31 CA and 14 congestive heart failure (CHF) patients and in plasma of 18 healthy controls (CON). MMP-2, TIMP-1, and TIMP-2 ELISA-concentrations were increased in CA pleural fluid vs. CA plasma (p < 0.005, p < 0.005, p < 0.05), in contrast to MMP-9 being higher in plasma (p < 0.005). Pleural fluid MMP-1 and MMP-8 were increased in CA vs. CHF (p < 0.05, p < 0.005). MMP and TIMP plasma concentrations were not different in CA vs. CHF, but MMP-9, TIMP-1, and TIMP-2 were increased vs. CON (p < 0.005, each). Gelatine zymography MMP-9/MMP-2 ratios were increased in CA plasma vs. effusion fluid (p < 0.005), in CA vs. CHF plasma, CA vs. CHF effusions (p < 0.005 each), and in CA vs. CON plasma (p < 0.05). MMP-2, TIMP-1, and TIMP-2 accumulate in the pleural compartment in CA and CHF, probably reflecting an unspecific pleural reaction. MMP-1 and MMP-8 are increased in cellular rich CA pleural effusions only. The determination of MMP-9/MMP-2 ratios in pleural fluid may contribute to differentiate CHF from CA effusions.

  7. Matrix metalloproteinase and tissue inhibitor of metalloproteinase in serum and synovial fluid of osteoarthritic dogs.

    PubMed

    Salinardi, B J; Roush, J K; Schermerhorn, T; Mitchell, K E

    2006-01-01

    To better understand the mechanisms responsible for the pathological processes of osteoarthritis (OA) and to potentially identify a profile of changes that could be predictive of early OA, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in the synovial fluid and serum of normal and osteoarthritic dogs were examined. The concentration of MMP-1 in the synovial fluid of osteoarthritic dogs (0.62 +/- 0.16), as measured by densitometry, was significantly higher than that found in control dogs (0.42 +/- 0.19) (P = 0.03). The concentration of MMP-1 in the serum of osteoarthritic dogs (0.74 +/- 0.16) was significantly less than that found in control dogs (0.87 +/- 0.08) (P = 0.05). The concentration of TIMP-2 in the synovial fluid of osteoarthritic dogs (46.2 +/- 21.9 ng/ml) was significantly less than that of control dogs (122.0 +/- 66.5 ng/ml) (P = 0.009). The concentration of TIMP-2 in the serum of osteoarthritic dogs (116.2 +/- 43.1 ng/ml) was not significantly different than that of control dogs (95.1 +/- 94.4 ng/ml) (P = 0.554). In addition, a phospho-tyrosine immunoprecipitation and mass spectrometry were used to isolate and identify interferon-alpha in canine synovial fluid.

  8. Matrix metalloproteinases: their biological functions and clinical implications.

    PubMed

    Hijova, E

    2005-01-01

    Matrix metalloproteinases (MMPs), which are also known as matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, at that of activation of the pro-MMP precursor zymogenes as well as at that of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). Alterations in the regulation of MMP activity are implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and cardiac remodelling in congestive heart failure or after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinases activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at the modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. Recent findings suggest that MMPs are also involved in cancer initiation, invasion and metastasis; MMP inhibitors could be considered for evaluation as cancer chemopreventive molecules. This review describes the members of MMP and TIMP families and discusses the structure, function and regulation of MMP activity. (Tab. 1, Ref: 45.)

  9. Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells.

    PubMed

    Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2017-02-28

    Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.

  10. Circulating matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases-1 and -2 levels in gestational hypertension.

    PubMed

    Tayebjee, Muzahir H; Karalis, Ioannis; Nadar, Sunil K; Beevers, D Gareth; MacFadyen, Robert J; Lip, Gregory Y H

    2005-03-01

    Gestational hypertension (GH) is dangerous to both mother and child. Arterial invasiveness and growth are dependent on successful extracellular matrix (ECM) breakdown, which may be abnormal in GH. We hypothesized abnormalities in circulating matrix metalloproteinase-9 (MMP-9) and tissue inhibitors of metalloproteinases-1 and -2 (TIMP-1 and TIMP-2, respectively) in patients with GH, when compared with normotensive women with normal pregnancies and healthy nonpregnant control subjects. Plasma MMP-9, TIMP-1, and TIMP-2 were measured by ELISA in 23 women with GH, 30 normotensive pregnant women, and 28 nonpregnant women who were matched for age, gestational age, and parity. Levels of circulating MMP-9, TIMP-1 and TIMP-2, and the MMP-9/TIMP-1 and MMP-9/TIMP-2 ratios were significantly different among the three groups (P = .026, P = .006, P = .007, P = .001 and P = .008 respectively). Within the GH group, MMP-9 and the MMP-9/TIMP-1 ratio correlated negatively with age (r = -0.581, P = .004 and r = -0.563, P = .005, respectively) and levels of diastolic blood pressure (r = -0.432, P = .040 and r = -0.461, P = .027, respectively). With multiple regression analysis, only age independently correlated with circulating levels of MMP-9 (P = .010); neither age nor levels of diastolic blood pressure had any effect on the MMP-9/TIMP-1 ratio. We have demonstrated altered MMP/TIMP ratios in maternal blood during GH. These observations suggest pregnancy-related changes in ECM breakdown and turnover. Given the importance of changes in ECM composition to vascular and cardiac structure in hypertension, we suggest that these observations may be related to the pathophysiology of human GH.

  11. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    PubMed

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant targets. Biotechnol. Bioeng. 2017;114: 2348-2359. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing.

    PubMed

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-08-01

    In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. HaCaT cells were treated for 24h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine.

    PubMed

    Strilakou, Athina; Perelas, Apostolos; Lazaris, Andreas; Papavdi, Asteria; Karkalousos, Petros; Giannopoulou, Ioanna; Kriebardis, Anastasios; Panayiotides, Ioannis; Liapi, Charis

    2016-02-01

    Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  14. Tissue Inhibitor of Metalloproteinases–3 Moderates the Proinflammatory Status of Macrophages

    PubMed Central

    Gharib, Sina A.; Bench, Eli M.; Sussman, Samuel W.; Wang, Roy T.; Rims, Cliff; Birkland, Timothy P.; Wang, Ying; Manicone, Anne M.; McGuire, John K.; Parks, William C.

    2013-01-01

    Tissue inhibitor of metalloproteinases–3 (TIMP-3) has emerged as a key mediator of inflammation. Recently, we reported that the resolution of inflammation is impaired in Timp3−/− mice after bleomycin-induced lung injury. Here, we demonstrate that after LPS instillation (another model of acute lung injury), Timp3−/− mice demonstrate enhanced and persistent neutrophilia, increased numbers of infiltrated macrophages, and delayed weight gain, compared with wild-type (WT) mice. Because macrophages possess broad immune functions and can differentiate into cells that either stimulate inflammation (M1 macrophages) or are immunosuppressive (M2 macrophages), we examined whether TIMP-3 influences macrophage polarization. Comparisons of the global gene expression of unstimulated or LPS-stimulated bone marrow–derived macrophages (BMDMs) from WT and Timp3−/− mice revealed that Timp3−/− BMDMs exhibited an increased expression of genes associated with proinflammatory (M1) macrophages, including Il6, Il12, Nos2, and Ccl2. Microarray analyses also revealed a baseline difference in gene expression between WT and Timp3−/− BMDMs, suggesting altered macrophage differentiation. Furthermore, the treatment of Timp3−/− BMDMs with recombinant TIMP-3 rescued this altered gene expression. We also examined macrophage function, and found that Timp3−/− M1 cells exhibit significantly more neutrophil chemotactic activity and significantly less soluble Fas ligand–induced caspase-3/7 activity, a marker of apoptosis, compared with WT M1 cells. Macrophage differentiation into immunosuppressive M2 cells is mediated by exposure to IL-4/IL-13, and we found that Timp3−/− M2 macrophages demonstrated a lower expression of genes associated with an anti-inflammatory phenotype, compared with WT M2 cells. Collectively, these findings indicate that TIMP-3 functions to moderate the differentiation of macrophages into proinflammatory (M1) cells. PMID:23742180

  15. Multigene methylation analysis of conventional renal cell carcinoma.

    PubMed

    Onay, H; Pehlivan, S; Koyuncuoglu, M; Kirkali, Z; Ozkinay, F

    2009-01-01

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Since RCC is curable when it is confined to the renal capsule, early diagnosis is extremely important. Promoter hypermethylation is the most common mechanism for the inactivation of the tumor suppressor genes (TSG) in the development of human cancer. This study aimed to investigate the methylation profiles of 7 TSG (RASSF1A, ECAD, TIMP3, APC, MGMT, p16 and RARbeta2) in 3 different tissue samples (normal, premalign, malign) of patients with RCC. Twenty-one patients diagnosed with RCC were included in the study. Methylation-specific polymerase chain reaction was performed to detect the methylation patterns of the 7 TSG. High methylation rates for the genes RASSF1A (76%), p16 (80%), ECAD (42%), TIMP3 (33%) and MGMT (33%) were observed in the patients with RCC. The APC (14%) and RARbeta2 (19%) genes showed low methylation rates. In conclusion, 5 TSG (RASSF1A, ECAD, TIMP3, MGMT and p16) showed high methylation rates in RCC patients. A methylation-based gene test including these genes may be useful in the early detection of RCC. Copyright 2009 S. Karger AG, Basel.

  16. The Effect of Autologous Platelet-Rich Gel on the Dynamic Changes of the Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 Expression in the Diabetic Chronic Refractory Cutaneous Ulcers

    PubMed Central

    Li, Lan; Chen, Dawei; Wang, Chun; Liu, Guanjian; Ran, Xingwu

    2015-01-01

    Aim. To investigate the dynamic changes on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in the diabetic chronic refractory cutaneous ulcers after the autologous platelet-rich gel (APG) treatment. Methods. The study was developed at the Diabetic Foot Care Centre, West China Hospital. The granulation tissues from the target wounds were taken before and within 15 days after APG application. The expression of MMP-2 and TIMP-2 as well as transforming growth factor-β1 (TGF-β1) in the granulation tissue was detected by q TR-PCR and IHC. The relationship between the expression level of MMP-2 and TIMP-2 and their ratio and that of TGF-β1 was analyzed. Results. The expression of MMP-2 (P < 0.05) was suppressed, and the expression of TIMP-2 (P < 0.05) was promoted, while the ratio of MMP-2/TIMP-2 (P < 0.05) was decreased after APG treatments. The expression of TGF-β1 had negative correlation with the ratio of MMP-2/TIMP-2 (P < 0.05) and positive correlation with the expression of TIMP-2 (P < 0.05). Conclusions. APG treatment may suppress the expression of MMP-2, promoting that of the TIMP-2 in the diabetic chronic refractory cutaneous wounds. TGF-β1 may be related to these effects. PMID:26221614

  17. MMP-7 and TIMP-1, new targets in predicting poor wound healing in apical periodontitis.

    PubMed

    Letra, Ariadne; Ghaneh, Ghazaleh; Zhao, Min; Ray, Herbert; Francisconi, Carolina Favaro; Garlet, Gustavo Pompermaier; Silva, Renato Menezes

    2013-09-01

    Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are strongly associated with tissue destruction because of inflammation. In this study, we investigated the expression of MMPs and TIMPs messenger RNA and protein levels in apical periodontitis lesions. Tissue samples from patients presenting clinical signs of chronic apical abscess (CAA) or asymptomatic apical periodontitis (AAP) were collected postoperatively and used for gene expression analysis of MMP-2, -3, -7, -9, -14, -16, and -25; TIMP-1; and TIMP-2 in real-time polymerase chain reaction. Immunohistochemistry was also performed to detect the expression of MMP-7 and TIMP-1 proteins. Lastly, U-937 cells were induced to terminal differentiation into macrophages, infected with purified Escherichia coli lipopolysaccharide, and assessed for the expression of MMP-7 and TIMP-1 using immunocytochemistry and confocal microscopy. Significantly higher messenger RNA levels were found for all genes in AAP and CAA samples when compared with healthy control samples (P < .001). AAP cases exhibited significantly higher TIMP-1 when compared with CAA cases, whereas CAA cases showed higher MMP-2, MMP-7, and MMP-9 messenger RNA levels (P < .05). We also detected positive the expression of MMP-7 and TIMP-1 proteins in the tissue samples. The expression of both MMP-7 and TIMP-1 were increased in lipopolysaccharide-stimulated cells compared with nonstimulated cells and appear to colocalize in the Golgi apparatus. MMPs appear to have an influential role in CAA cases in which ongoing tissue destruction is observed. TIMPs are preferentially associated with AAP, perhaps as a subsequent defense mechanism against excessive destruction. Taken together, our findings implicate MMP and TIMP molecules in the dynamics of inflammatory periapical lesion development. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity.

    PubMed

    Liu, Hongyu; Jiang, Yue; Jin, Xiaoyan; Zhu, Lihua; Shen, Xiaoyue; Zhang, Qun; Wang, Bin; Wang, Junxia; Hu, Yali; Yan, Guijun; Sun, Haixiang

    2013-07-15

    Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2.

  19. Effects of maternal dietary olive oil on pathways involved in diabetic embryopathy.

    PubMed

    Higa, Romina; Roberti, Sabrina Lorena; Musikant, Daniel; Mazzucco, María Belén; White, Verónica; Jawerbaum, Alicia

    2014-11-01

    Maternal diabetes induces a pro-oxidant/pro-inflammatory intrauterine environment related to the induction of congenital anomalies. Peroxisome proliferator activated receptors (PPARs) are transcription factors that regulate antioxidant and anti-inflammatory pathways. We investigated whether maternal diets supplemented with olive oil, enriched in oleic acid, a PPAR agonist, can regulate the expression of PPAR system genes, levels of lipoperoxidation and activity of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) in embryos and decidua from diabetic rats. The embryos and decidua from diabetic rats showed reduced expression of PPARs and increased concentration of lipoperoxidation, MMPs and TIMPs, whereas the maternal treatments enriched in olive oil increased PPARδ in embryos and PPARγ and PPARγ-coactivator-1α expression in decidua, and increased TIMPs concentrations and decreased lipoperoxidation and MMPs activity in both tissues. Thus, maternal diets enriched in olive oil can regulate embryonic and decidual PPAR system genes expression and reduce the pro-oxidant/pro-inflammatory environment during rat early organogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    PubMed Central

    2012-01-01

    Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184

  1. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilico, Nicoletta, E-mail: nicoletta.basilico@unimi.it; Magnetto, Chiara, E-mail: c.magnetto@inrim.it; D'Alessandro, Sarah, E-mail: sarah.dalessandro@unimi.it

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects ofmore » hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of HMEC-1. • Nontoxic dextran-shelled oxygen-loaded nanodroplets (OLNs) are uptaken by HMEC-1. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic phenotype. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic behavior.« less

  2. Metalloproteinases and their inhibitors are influenced by inhalative glucocorticoid therapy in combination with environmental dust reduction in equine recurrent airway obstruction.

    PubMed

    Barton, Ann Kristin; Shety, Tarek; Bondzio, Angelika; Einspanier, Ralf; Gehlen, Heidrun

    2016-12-09

    Overexpression of matrix-metalloproteinases (MMPs) has been shown to lead to tissue damage in equine recurrent airway obstruction (RAO), as a misbalance with their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), occurs. This favors irreversible pulmonary fibrosis formation. Increased levels of MMPs, TIMPs or altered ratios between them can be used as biomarkers of respiratory disease. We hypothesized that levels of MMPs, TIMPs and their ratios correlate with improvement in clinical findings and bronchoalveolar lavage fluid (BALF) cytology after 10 days of inhalative glucocorticoid therapy and environmental dust reduction (EDR) and may be used to monitor treatment success. Ten horses with a history of RAO participated in a prospective clinical study. Clinical and cytological scoring was performed before and after inhalative therapy using budesonide (1500 μg BID over 10 days) and EDR (bedding of wood shavings and wet hay as roughage). Gelatin zymography was performed for qualitative and semi-quantitative evaluation of MMP-2 and MMP-9 in BALF supernatant, while fluorimetry was used to evaluate MMP-8 activity. Additionally, specific equine ELISA assays were used for quantitative assessment of MMP-2, MMP-9, TIMP-1 and TIMP-2. A significant reduction in the total and several single parameters of the clinical score were found after 10 days of inhalative therapy and EDR. The concentrations of MMP-2, MMP-9, TIMP-1 and TIMP-2 (ELISA) as well as their activities (MMP-2 and MMP-9 zymography and MMP-8 fluorimetry) were significantly decreased after therapy. Significant improvements in MMP-8/TIMP-1 and MMP-8/TIMP-2 ratios were also found, differences between other ratios before and after therapy were insignificant. Metalloproteinases and their inhibitors, in particular MMP-9 and TIMP-2, are valuable markers for clinical improvement in RAO.

  3. Lupinus albus, a novel vegetable extract with metalloproteinase inhibitory properties: a potential periodontal therapy.

    PubMed

    Gaultier, Frédérick; Ejeil, Anne-Laure; Dridi, Sophie-Myriam; Piccardi, Nathalie; Piccirilli, Antoine; Msika, Philippe; Pellat, Bernard; Godeau, Gaston; Gogly, Bruno

    2005-08-01

    In this study we examine the properties of a vegetable extract from seeds of Lupinus albus (LU 105). In previous works we demonstrated that LU 105 reduced the expression, by gingival fibroblasts, of both matrix metalloproteinase (MMP)-2 and MMP-9. We decided to study the impact of LU 105 on cell proliferation and morphology. Using organ culture media we also studied the MMP and tissue inhibitors of metalloproteinases (timp) expression AND THE cytokines secretion. Healthy and inflamed gingival biopsies were placed in appendage culture with or without LU 105. The organ culture media were analyzed using Western blottings (MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, TIMP-1, and TIMP-2) and gelatine zymography. A reverse transcription polymerase chain reaction (RT-PCR) was also performed on healthy and inflamed gingival biopsies, which were maintained in culture with or without LU 105 0.1%. Then, we decided to determine the amount of cytokines present in the organ culture media such as interleukin (IL)-1 beta, IL-4, IL-6, transforming growth factor (TGF)-beta, and tumor necrosis factor (TNF)-alpha. When gingival biopsies derived from inflamed tissues were cultured with LU 105 0.1% in the culture media, the MMP and TIMP expression and activity decreased significantly when compared to cultures without LU 105. Moreover, we did not note any statistical difference in the cell proliferation compared with human gingival fibroblast cultures without LU 105. Furthermore, IL-1 beta, IL-6, TGF-beta, and TNF-alpha amounts in the culture media decreased significantly, whereas IL-4 increased significantly when LU 105 0.1% was added to the culture media. LU 105, a novel metalloproteinase inhibitor with few consequences on cell proliferation and morphology, is a vegetable extract with potential clinical capacity. J Periodontol 2005;76:1329-1338.

  4. Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells.

    PubMed

    English, William R; Ireland-Zecchini, Heather; Baker, Andrew H; Littlewood, Trevor D; Bennett, Martin R; Murphy, Gillian

    2018-01-01

    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain.

  5. Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells

    PubMed Central

    Ireland-Zecchini, Heather; Baker, Andrew H.; Littlewood, Trevor D.; Bennett, Martin R.; Murphy, Gillian

    2018-01-01

    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain. PMID:29617412

  6. Enhanced secretion of TIMP-1 by human hypertrophic scar keratinocytes could contribute to fibrosis.

    PubMed

    Simon, Franck; Bergeron, Daniele; Larochelle, Sébastien; Lopez-Vallé, Carlos A; Genest, Hervé; Armour, Alexis; Moulin, Véronique J

    2012-05-01

    Hypertrophic scars are a pathological process characterized by an excessive deposition of extracellular matrix components. Using a tissue-engineered reconstructed human skin (RHS) method, we previously reported that pathological keratinocytes induce formation of a fibrotic dermal matrix. We further investigated keratinocyte action using conditioned media. Results showed that conditioned media induce a similar action on dermal thickness similar to when an epidermis is present. Using a two-dimensional electrophoresis technique, we then compared conditioned media from normal or hypertrophic scar keratinocytes and determined that TIMP-1 was increased in conditioned media from hypertrophic scar keratinocytes. This differential profile was confirmed using ELISA, assaying TIMP-1 presence on media from monolayer cultured keratinocytes and from RHS. The dermal matrix of these RHS was recreated using mesenchymal cells from three different origins (skin, wound and hypertrophic scar). The effect of increased TIMP-1 levels on dermal fibrosis was also validated independently from the mesenchymal cell origin. Immunodetection of TIMP-1 showed that this protein was increased in the epidermis of hypertrophic scar biopsies. The findings of this study represent an important advance in understanding the role of keratinocytes as a direct potent modulator for matrix degradation and scar tissue remodeling, possibly through inactivation of MMPs. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  7. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers.

    PubMed

    Li, Zhihong; Guo, Shuqin; Yao, Fang; Zhang, Yunliang; Li, Tingting

    2013-01-01

    Little is known about serum concentrations of Matrix Metalloproteinase-9 (MMP-9), MMP-2, TIMP-1 and TIMP-2 in diabetic patients with foot ulcers. This study demonstrates their relationship with wound healing. Ninety-four patients with diabetic foot ulcers were recruited in the study. Serum MMP-9, MMP-2, TIMP-1 and TIMP-2 were measured at the first clinic visit and the end of 4-week treatment and followed up till 12 weeks. According to the decreasing rate of ulcer healing area at the fourth week, we divided those cases into good and poor healers. Through analyses, we explore the possible relationship among those factors and degree of wound healing. The median level of serum MMP-9 in good healers was lower than poor healers at first visit (124.2 μg/L vs 374.6 μg/L, p<0.05), and after 4-week therapy it decreased 5-fold approximately. In contrast, the change in MMP-9 concentration did not reach statistical significance in poor healers. MMP-2, TIMP-1 and TIMP-2 varied slightly in both good healers and poor healers. The MMP-9/TIMP-1 ratio better reflected the healing than MMP-9 alone before therapy and after 4 week treatment (r = -0.6475 vs -0.3251, r = -0.7096 vs -0.1231, respectively). Receiver Operator Curve (ROC) showed that the cutoff for MMP-9/TIMP-1 ratio at <0.395 best predicted a reduction in wound area of 82% at the end of 4-week treatment with a sensitivity of 63.6% and a specificity of 58.6% (area under the curve 0.658, p < 0.001). Detecting serum MMP-9/TIMP-1 ratio on admission might be a predictor of healing and might provide a novel target for the future therapy in diabetic foot ulcers. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Static Mechanical Loading Influences the Expression of Extracellular Matrix and Cell Adhesion Proteins in Vaginal Cells Derived From Premenopausal Women With Severe Pelvic Organ Prolapse.

    PubMed

    Kufaishi, Hala; Alarab, May; Drutz, Harold; Lye, Stephen; Shynlova, Oksana

    2016-08-01

    Primary human vaginal cells derived from women with severe pelvic organ prolapse (POP-HVCs) demonstrate altered cellular characteristics as compared to cells derived from asymptomatic women (control-HVCs). Using computer-controllable Flexcell stretch unit, we examined whether POP-HVCs react differently to mechanical loading as compared to control-HVCs by the expression of extracellular matrix (ECM) components, cell-ECM adhesion proteins, and ECM degrading and maturating enzymes. Vaginal tissue biopsies from premenopausal patients with Pelvic Organ Prolapse Quantification System stage ≥3 (n = 8) and asymptomatic controls (n = 7) were collected during vaginal hysterectomy or repair. Human vaginal cells were isolated by enzymatic digestion, seeded on collagen (COLI)-coated plates, and stretched (24 hours, 25% elongation). Total RNA was extracted, and 84 genes were screened using Human ECM and Adhesion Molecules polymerase chain reaction array; selected genes were verified by quantitative reverse transcription-polymerase chain reaction. Stretch-conditioned media (SCM) were collected and analyzed by protein array, immunoblotting, and zymography. In mechanically stretched control-HVCs, transcript levels of integrins (ITGA1, ITGA4, ITGAV, and ITGB1) and matrix metalloproteinases (MMPs) 2, 8, and 13 were downregulated (P < .05); in POP-HVCs, MMP1, MMP3, and MMP10, ADAMTS8 and 13, tissue inhibitor of metalloproteinases (TIMPs) 1 to 3, ITGA2, ITGA4, ITGA6, ITGB1, contactin (CNTN1), catenins (A1 and B1), and laminins (A3 and C1) were significantly upregulated, whereas COLs (1, 4, 5, 6, 11, and 12) and LOXL1 were downregulated. Human vaginal cells massively secrete MMPs and TIMPs proteins; MMP1, MMP8, MMP9 protein expression and MMP2 gelatinase activity were increased, whereas TIMP2 decreased in SCM from POP-HVCs compared to control-HVCs. Primary human vaginal cells derived from women with severe pelvic organ prolapse and control-HVCs react differentially to in vitro mechanical stretch. Risk factors that induce stretch may alter ECM composition and cell-ECM interaction in pelvic floor tissue leading to the abatement of pelvic organ support and subsequent POP development. © The Author(s) 2016.

  9. Study of matrix metalloproteinases and their inhibitors in breast cancer

    PubMed Central

    Vizoso, F J; González, L O; Corte, M D; Rodríguez, J C; Vázquez, J; Lamelas, M L; Junquera, S; Merino, A M; García-Muñiz, J L

    2007-01-01

    An immunohistochemical study was performed using tissue microarrays and specific antibodies against matrix metalloproteinases (MMPs) 1, 2, 7, 9, 11, 13, 14, and their tisullar inhibitors (TIMPs) 1, 2, and 3. More than 2600 determinations on cancer specimens from 131 patients with primary ductal invasive tumours of the breast (65 with and 66 without distant metastasis) and controls were performed. Staining results were categorised using a score based on the intensity of the staining and a specific software program calculated the percentage of immunostained cells automatically. We observed a broad variation of the total immunostaining scores and the cell type expressing each protein. There were multiple and significant associations between the expression of the different MMPs and TIMPs evaluated and some parameters indicative of tumour aggressiveness, such as large tumour size, advanced tumour grade, high Nottinham prognostic index, negative oestrogen receptor status, peritumoural inflammation, desmoplastic reaction, and infiltrating tumoural edge. Likewise, the detection of elevated immunohistochemical scores for MMP-9, 11, TIMP-1, and TIMP-2, was significantly associated with a higher rate of distant metastases. The expression of MMP-9 or TIMP-2 by tumour cells, MMP-1, 7, 9, 11, 13, or TIMP-3 by fibroblastic cells, and MMP-7, 9, 11, 13, 14, TIMP-1, or TIMP-2 by mononuclear inflammatory cells, was also significantly associated with a higher rate of distant metastases. PMID:17342087

  10. Substance P regulates the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in cultured human gingival fibroblasts.

    PubMed

    Cury, P R; Canavez, F; de Araújo, V C; Furuse, C; de Araújo, N S

    2008-06-01

    Substance P may play a role in the pathogenesis of periodontal disease; however, its mechanisms of modulation are not clear. This study evaluated the effect of two concentrations of Substance P on the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in cultured human gingival fibroblasts. Fibroblasts were stimulated for 48 h with 10(-4) or 10(-9) m Substance P; untreated fibroblasts served as controls. The expression of MMP-1, -2, -3, -7 and -11 and of TIMP-1 and -2 was evaluated using real-time polymerase chain reaction and western blotting. There was a significant, concentration-dependent stimulatory effect of Substance P on MMP-1, -2, -3 and -7 and TIMP-2 gene expression (p < 0.05), and a probable effect on MMP-11 (p = 0.06). At the higher concentration (10(-4) m Substance P), MMP-1, -2, -3, -7 and -11 and TIMP-2 showed the greatest up-regulation; at the lower concentration (10(-9) m Substance P), MMP-1, -3 and -7 and TIMP-2 exhibited diminished up-regulation, with MMP-2 and -11 showing down-regulation (p < 0.05). Expression of TIMP-1 was not affected by Substance P (p > 0.05). Western blotting confirmed that Substance P up-regulated MMP-1, -2, -3 and -11 and TIMP-2. MMP-1, -3 and -11 and TIMP-2 showed greater up-regulation at the higher Substance P concentration and diminished up-regulation at the lower concentration. MMP-2 was up-regulated to a similar degree at both Substance P concentrations. In gingival fibroblast cells, Substance P at the higher concentration (10(-4) m) induced greater up-regulation of MMP-1, -3 and -11 and TIMP-2 expression, but at the lower concentration (10(-9) m) induced diminished up-regulation, which may represent a mechanism for modulating periodontal breakdown.

  11. Vaginal Lactoferrin Modulates PGE2, MMP-9, MMP-2, and TIMP-1 Amniotic Fluid Concentrations

    PubMed Central

    Maritati, Martina; Gonelli, Arianna; Greco, Pantaleo

    2016-01-01

    Inflammation plays an important role in pregnancy, and cytokine and matrix metalloproteases (MMPs) imbalance has been associated with premature rupture of membranes and increased risk of preterm delivery. Previous studies have demonstrated that lactoferrin (LF), an iron-binding protein with anti-inflammatory properties, is able to decrease amniotic fluid (AF) levels of IL-6. Therefore, we aimed to evaluate the effect of vaginal LF administration on amniotic fluid PGE2 level and MMP-TIMP system in women undergoing genetic amniocentesis. One hundred and eleven women were randomly divided into controls (n = 57) or treated with LF 4 hours before amniocentesis (n = 54). Amniotic fluid PGE2, active MMP-9 and MMP-2, and TIMP-1 and TIMP-2 concentrations were determined by commercially available assays and the values were normalized by AF creatinine concentration. PGE2, active MMP-9, and its inhibitor TIMP-1 were lower in LF-treated group than in controls (p < 0.01, p < 0.005, and p < 0.001, resp.). Conversely, active MMP-2 (p < 0.0001) and MMP-2/TIMP-2 molar ratio (p < 0.001) were increased, whilst TIMP-2 was unchanged. Our data suggest that LF administration is able to modulate the inflammatory response following amniocentesis, which may counteract cytokine and prostanoid imbalance that leads to abortion. This trial is registered with Clinical Trial number NCT02695563. PMID:27872513

  12. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Rong; Department of Pathology, Fujian Medical University, Fujian; Mo Yiqun

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of somemore » transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells after exposure to Nano-Co, but not to Nano-TiO{sub 2}. However, neither Nano-Co nor Nano-TiO{sub 2} exposure led to any transcriptional change of TIMP-1. The decrease of TIMP-2 after exposure to Nano-Co was also inhibited by pre-treatment with ROS scavengers or inhibitors. Our results also showed that pre-treatment of U937 cells with AP-1 inhibitor, curcumin, or the PTK specific inhibitor, herbimycin A or genistein, prior to exposure to Nano-Co, significantly abolished Nano-Co-induced pro-MMP-2 and-9 activity. Our results suggest that Nano-Co causes an imbalance between the expression and activity of MMPs and their inhibitors which is mediated by the AP-1 and tyrosine kinase pathways due to oxidative stress.« less

  13. The effect of cryopreservation on anti-cancer activity of human amniotic membrane.

    PubMed

    Modaresifar, Khashayar; Azizian, Sara; Zolghadr, Maryam; Moravvej, Hamideh; Ahmadiani, Abolhassan; Niknejad, Hassan

    2017-02-01

    Human amniotic membrane (AM) is an appropriate candidate for treatment of cancer due to special properties, such as inhibition of angiogenesis and secretion of pro-apoptotic factors. This research was designed to evaluate the impact of cryopreservation on cancer cell death induction and anti-angiogenic properties of the AM. Cancer cells were treated with fresh and cryopreserved amniotic condition medium during 24 h and cancer cell viability was determined by MTT assay. To evaluate angiogenesis, the rat aorta ring assay was performed for both fresh and cryopreserved AM within 7 days. In addition, four anti-angiogenic factors Tissue Inhibitor of Matrix Metalloproteinase-1 and 2 (TIMP-1 and TIMP-2), Thrombospondin, and Endostatin were measured by ELISA assay before and after cryopreservation. The results showed that the viability of cultured cancer cells dose-dependently decreased after treatment with condition medium of fresh and cryopreserved tissue and no significant difference was observed between the fresh and cryopreserved AM. The results revealed that the amniotic epithelial stem cells inhibit the penetration of fibroblast-like cells and angiogenesis. Moreover, the penetration of fibroblast-like cells in both epithelial and mesenchymal sides of fresh and cryopreserved AM was observed after removing of epithelial cells. The cryopreservation procedure significantly decreased anti-angiogenic factors TIMP-1, TIMP-2, Thrombospondin, and Endostatin which shows that angio-modulatory property is not fully dependent on proteomic and metabolomic profiles of the AM. These promising results demonstrate that cancer cell death induction and anti-angiogenic properties of the AM were maintained within cryopreservation; a procedure which can circumvent limitations of the fresh AM. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer.

    PubMed

    Adissu, Hibret A; McKerlie, Colin; Di Grappa, Marco; Waterhouse, Paul; Xu, Qiang; Fang, Hui; Khokha, Rama; Wood, Geoffrey A

    2015-12-01

    Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  15. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2005-01-01

    inhibitors of MMPs, TIMP-1 and TIMP-2 in postmortem brain tissue of progressive supranuclear palsy . J Neurol Sci 2004; 218:39-45. Martinat C, Shendelman S...inhibitors of MMPs, TIMP-1 and TIMP-2 in postmortem brain tissue of progressive supranuclear palsy . J Neurol Sci 2004; 218:39-45. Martinat C...excess can have serious neurologi- effects at the higher dosages needed to overcome the In Viva Iron Chelation Prevents MPTP Toxicity 905 A 0 20 in

  16. The role of matrix metalloproteinase MMP-9 and TIMP-2 tissue inhibitor of metalloproteinases as serum markers of bladder cancer.

    PubMed

    Ramón de Fata, F; Ferruelo, A; Andrés, G; Gimbernat, H; Sánchez-Chapado, M; Angulo, J C

    2013-09-01

    The diagnosis and molecular staging of bladder cancer based on the detection of gelatinases mRNA (MMP-2 and MMP-9) in peripheral blood circulating and mononuclear cells have shown promising results. We analyze if the determination of the corresponding protein synthesis products makes it possible to diagnose and characterize patients with bladder cancer. Quantification of the serum levels of MMP-2, MMP-9 and TIMP-2 in a series of 42 individuals (31 patients with bladder cancer in different stages and 11 healthy controls) using the ELISA technique was carried out. The determinations were compared between cases and controls (Mann-Whitney U) and between different groups of tumors (Mann-Whitney U or Kruskal-Wallis), according to the clinical-pathological characteristics (age, gender, T category, M category or grade). Diagnostic yield of these markers was evaluated by analysis of the ROC curves. There is a correlation between the determinations of MMP-2 and TIMP-2 (R=.699; P>.0001) and MMP-9 and TIMP-2 (R=.305; P=.049). Patients with bladder cancer have higher levels of MMP-9 (p<0.0001) and TIMP-2 (P=.047) than the controls. Furthermore, the MMP-9/TIMP-2 ratio is also superior in cancer patients (P<.001). Differences were not detected between cancer and controls regarding age (P=.64) or gender (P=.64). Differences were also not detected regarding MMP-2 (P=.35) or MMP-2/TIMP-2 rate (P=.45). Within the cancer patient population, the MMP-2 and MMP-9 values differ according to T category (P=.022 and P=.038, respectively) and those of the TIMP-2 according to M category (P=.036). ROC curve analysis showed that both MMP-9 and the MMP-9/TIMP-2 ratio discriminate patients with cancer and controls, with equivalent diagnostic accuracy (ABC 0.953) and cut offs of 3.93 ng/mL (S 90%; Sp 81%) and 0.053 ng/mL (S 96%; Sp 84%), respectively. The results obtained suggest that both serum MMP-9 and TIMP-2 would have an application in the prediction of the development and progression of bladder cancer, and a potential utility as clinical markers of the disease. Multicenter, prospective studies that confirm their preliminary results are necessary. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  17. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts.

    PubMed

    Kim, Jung-Ae; Ahn, Byul-Nim; Kong, Chang-Suk; Kim, Se-Kwon

    2012-08-01

    Skin homoeostasis is interrupted during UV-A irradiation. How the UV-A-altered skin components influences photoageing of skin should be investigated using human in vitro models that are important for understanding skin ageing. In this study, chromene compound, sargachromenol, was isolated from Sargassum horneri, and its potency on inhibition of photoageing was investigated in UV-A-irradiated dermal fibroblasts. Effects of sargachromenol on the prevention of photoageing were evaluated by measuring ROS production, membrane protein oxidation, lipid peroxidation and ageing-related gene expression in UV-A-irradiated human skin dermal fibroblasts. The results indicated that treatment with sargachromenol suppressed the collagenase matrix metalloproteinases (MMPs), MMP-1, MMP-2 and MMP-9 expression without any cytotoxicity and phototoxicity. It was further found that these inhibitions were because of increase in the expression of TIMP-1 and TIMP-2 genes. Furthermore, we confirmed that the UV-A-induced transcriptions of AP-1 signalling pathway were regulated by sargachromenol treatment in UV-A-irradiated dermal fibroblasts. © 2012 John Wiley & Sons A/S.

  18. Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats.

    PubMed

    Wang, Y; Huang, G; Mo, B; Wang, C

    2016-06-03

    The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation.

  19. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    PubMed

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P < 0.05). This study has confirmed that the expression of MMP-1, MMP-2, TIMP-1, and TIMP-2 genes is important for the pathogenesis of periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A novel synthetic oleanane triterpenoid suppresses adhesion, migration and invasion of highly metastatic melanoma cells by modulating gelatinase signaling axis

    PubMed Central

    Sinha, Dona; Dutta, Kaustav; Ganguly, Kirat K.; Biswas, Jaydip; Bishayee, Anupam

    2014-01-01

    Background A methyl derivative natural triterpenoid amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) has been found to possess antiproliferative, proapoptotic and anti-inflammatory effects against established tumor cells. Large-scale synthesis of pure AMR-Me has eliminated the need of the natural phytochemical for further development of AMR-Me as an anticancer drug. Metastatic melanoma is a fatal form of cutaneous malignancy with poor prognosis and limited therapeutic options. It was hypothesized that antitumor pharmacological effect of AMR-Me could be linked to AMR-Me-mediated suppression of the metastatic potential of B16F10 murine melanoma. Methods AMR-Me was assessed for its antimetastatic efficacy by cell adhesion, migration and invasion assays in B16F10 cells. The signaling crosstalk was explored by gelatin zymography, Western blot, ELISA and immunocytochemistry. Results The results elicited that AMR-Me was successful in restricting the adhesion, migration and invasion of highly metastatic cells. The antimetastatic potential of this compound may be attributed to the reduced expression of membrane type 1 metalloproteinase (MT1-MMP) and matrix metalloproteinases (MMP-2 and MMP-9). AMR-Me was found to downregulate vascular endothelial growth factor (VEGF)/prosphorylated forms of focal adhesion kinase (pFAK397)/Jun N-terminus kinase (pJNK)/extracellular signal-regulated kinase (pERK). This, in turn, inhibited transcription factor nuclear factor-κB (NF-κB) and transactivation of MMPs. Moreover the activation of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) might have influenced the downmodulation of MT1-MMP, MMP-2 and MMP-9. Conclusion AMR-Me suppresses the activity of MT1-MMP, MMP-2 and MMP-9 by downregulation of VEGF/pFAK397/pJNK/pERK/NF-κB and activation of TIMP-1 and TIMP-2 in metastatic melanoma cell line, B16F10. General significance AMR-Me has the potential as an effective anticancer drug for metastatic melanoma which is a dismal disease. PMID:24510625

  1. Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis.

    PubMed Central

    Sutinen, M.; Kainulainen, T.; Hurskainen, T.; Vesterlund, E.; Alexander, J. P.; Overall, C. M.; Sorsa, T.; Salo, T.

    1998-01-01

    Although matrix metalloproteinases (MMPs) are among the potential key mediators of cancer invasion, their involvement in premalignant lesions and conditions is not clarified. Therefore, we studied, using in situ hybridization, immunohistochemistry and zymography the expression and distribution of MMP-1 and -2, and their tissue inhibitors (TIMPs -1, -2 and -3) in oral squamous cell carcinomas (SCC) and lymph node metastases as well as in oral lichen planus, epithelial dysplasias and normal buccal mucosa. In oral SCC and lymph node metastasis, MMP-1 mRNA was detected in fibroblastic cells of tumoral stroma. In two out of ten carcinomas studied, the peripheral cells of neoplastic islands were also positive. MMP-2 mRNA expression was noted in fibroblasts surrounding the carcinoma cells, and no signal in carcinoma cells was detected. A clear TIMP-3 mRNA expression was seen in stromal cells surrounding the neoplastic islands in all SCCs and lymph node metastases studied. TIMP-1 mRNA was detected in some stromal cells surrounding the neoplastic islands, whereas the mRNA expression for TIMP-2 was negligible. On the other hand, expression of MMPs and TIMPs was consistently low in oral epithelial dysplasias, lichen planus and normal mucosa. In certain epithelial dysplasias and lichen planus, MMP-1 and -2 mRNA expressions were detected in few fibroblasts under the basement membrane zone, but normal mucosa was completely negative. In SCC and lymph node metastasis, a detectable immunostaining for MMP-1 in stromal cells and in some carcinoma cells was observed. MMP-2 immunoreactivity was detected in the peripheral cell layer in neoplastic islands and in some fibroblast-like cells of tumoral stroma. Immunostaining for TIMP-3 was detected in stromal cells surrounding the neoplastic islands. A weak positive staining for TIMP-1 was located in tumoral stroma, whereas the immunostaining for TIMP-2 was negative. Using zymography, elevated levels of MMP-2 and MMP-9 were observed in carcinoma samples in comparison with lichen planus or normal oral mucosa. Our results indicate that the studied MMPs and TIMPs are clearly up-regulated during invasion in oral SCC. However, there was also a clear, although weak, up-regulation of the expression of the MMPs but not TIMPs in some of the lichen planus and dysplastic lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9649139

  2. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo.

    PubMed

    Wang, Zi-Yi; Lu, Jing; Zhang, Yuan-Zhen; Zhang, Ming; Liu, Teng; Qu, Xin-Lan

    2015-01-01

    Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic cell line BeWo and its possible mechanism were investigated. BeWo cells were exposed to BPA and co-cultured with human endometrial cells to mimic embryo implantation in transwell model. The proliferation and invasion capability of BeWo cells were detected. The expression of E-cadherin, DNMT1, MMP-2, MMP-9, TIMP-1 and TIMP-2 were also analyzed. The results showed that the invasion capability of BeWo was reduced after daily exposure to BPA. BPA had biphasic effect on E-cadherin expression level in BeWo cells and expression level of DNMT1 was decreased when treated with BPA. Moreover, BPA treatment also changed the balance of MMPs/TIMPs in BeWo cells by down-regulating MMP-2, MMP-9 and up-regulating TIMP-1, TIMP-2 with increasing BPA concentration. Taken together, these results showed that BPA treatment could reduce the invasion ability of BeWo cells and alter the expression level of E-cadherin, DNMT1, TIMP-1, TIMP-2, MMP-2, and MMP-9. Our study would help us to understand the possible mechanism of BPA effect on invasion ability of human trophoblastic cell line BeWo.

  3. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy.

    PubMed

    Molina, Ezequiel J; Palma, Jon; Gupta, Dipin; Torres, Denise; Gaughan, John P; Houser, Steven; Macha, Mahender

    2009-02-01

    Changes in ventricular extracellular matrix (ECM) composition of pressure overload hypertrophy determine clinical outcomes. The effects of mesenchymal stem cell (MSC) transplantation upon determinants of ECM composition in pressure overload hypertrophy have not been studied. Sprague-Dawley rats underwent aortic banding and were followed by echocardiography. After an absolute decrease in fractional shortening of 25% from baseline, 1 x 10(6) MSC (n = 28) or PBS (n = 20) was randomly injected intracoronarily. LV protein analysis, including matrix metalloproteinases (MMP-2, MMP-3, MMP-6, MMP-9) and tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2, TIMP-3), was performed after sacrifice on postoperative day 7, 14, 21 or 28. Left ventricular levels of MMP-3, MMP-6, MMP-9, TIMP-1 and TIMP-3 were demonstrated to be decreased in the MSC group compared with controls after 28 days. Expression of MMP-2 and TIMP-2 remained relatively stable in both groups. Successful MSCs delivery was confirmed by histological analysis and visualization of labelled MSCs. In this model of pressure overload hypertrophy, intracoronary delivery of MSCs during heart failure was associated with specific changes in determinants of ECM composition. LV reverse remodeling was associated with decreased ventricular levels of MMP-3, MMP-6, MMP-9, TIMP-1 and TIMP-3, which were upregulated in the control group as heart failure progressed. These effects were most significant at 28 days following injection. (c) 2008 John Wiley & Sons, Ltd.

  4. TIMP1 and MMP9 are predictors of mortality in septic patients in the emergency department and intensive care unit unlike MMP9/TIMP1 ratio: Multivariate model.

    PubMed

    Niño, Maria Eugenia; Serrano, Sergio Eduardo; Niño, Daniela Camila; McCosham, Diana Margarita; Cardenas, Maria Eugenia; Villareal, Vivian Poleth; Lopez, Marcos; Pazin-Filho, Antonio; Jaimes, Fabian Alberto; Cunha, Fernando; Schulz, Richard; Torres-Dueñas, Diego

    2017-01-01

    Matrix metalloproteinases and tissue inhibitors of metalloproteinases could be promising biomarkers for establishing prognosis during the development of sepsis. It is necessary to clarify the relationship between matrix metalloproteinases and their tissue inhibitors. We conducted a cohort study with 563 septic patients, in order to elucidate the biological role and significance of these inflammatory biomarkers and their relationship to the severity and mortality of patients with sepsis. A multicentric prospective cohort was performed. The sample was composed of patients who had sepsis as defined by the International Conference 2001. Serum procalcitonin, creatinine, urea nitrogen, C-Reactive protein, TIMP1, TIMP2, MMP2 and MMP9 were quantified; each patient was followed until death or up to 30 days. A descriptive analysis was performed by calculating the mean and the 95% confidence interval for continuous variables and proportions for categorical variables. A multivariate logistic regression model was constructed by the method of intentional selection of covariates with mortality at 30 days as dependent variable and all the other variables as predictors. Of the 563 patients, 68 patients (12.1%) died within the first 30 days of hospitalization in the ICU. The mean values for TIMP1, TIMP2 and MMP2 were lower in survivors, MMP9 was higher in survivors. Multivariate logistic regression showed that age, SOFA and Charlson scores, along with TIMP1 concentration, were statistically associated with mortality at 30 days of septic patients; serum MMP9 was not statistically associated with mortality of patients, but was a confounder of the TIMP1 variable. It could be argued that plasma levels of TIMP1 should be considered as a promising prognostic biomarker in the setting of sepsis. Additionally, this study, like other studies with large numbers of septic patients does not support the predictive value of TIMP1 / MMP9.

  5. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    PubMed

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  6. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    PubMed

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  7. The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age.

    PubMed

    Peyton, Colleen; Schreiber, Michael D; Msall, Michael E

    2018-03-13

    To determine the relationship between the Test of Infant Motor Performance (TIMP) at 3 months and cognitive, language, and motor outcomes on the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) at 2 years of age in high-risk infants born preterm. One hundred and six infants (47 females, 59 males) born at earlier than 31 weeks gestational age were prospectively tested with the TIMP at 10 to 15 weeks after term age and were assessed again with the Bayley-III at 2 years corrected age. Sensitivity and specificity were calculated for various cut points of the TIMP z-score and Bayley-III composite scores of no more than 85. The TIMP z-scores at 10 to 15 weeks of age were significantly associated with all three subscales on the Bayley-III at 2 years of age (p<0.001). Using a TIMP z-score cutoff of -0.5, specificity was relatively high for cognitive (87%), language (88%), and motor (89%) outcomes, but sensitivity was low (cognitive 41%, language 49%, motor 57%). This study demonstrates that the TIMP is related to cognitive, language, and motor outcomes on the Bayley-III at 2 years of age in high-risk infants born preterm. The Test of Infant Motor Performance (TIMP) predicts Bayley Scales of Infant and Toddler Development, Third Edition outcomes at 2 years of age. The TIMP is relatively good at discriminating between children who will and will not have typical development. © 2018 Mac Keith Press.

  8. Age-Related DNA Methylation Changes and Neoplastic Transformation of the Human Prostate

    DTIC Science & Technology

    2009-07-01

    transcriptional silencing by aberrant CpG m ethylation of C pG-rich promoter regions. 5, 6 Aberrant promoter methylation of GSTP1 , e ncoding the π-class...during prostate cancer developm ent.7 Since the recogni tion that the GSTP1 Cp G was frequently hypermethylated in prostate cancer, more than 40 genes...8 genes; SPARC, RARb2, AR, TIMP3, GSTP1 , NKX2 .5, RASSF1 A and CYP27B1 in DNA sa mples fro m African American (AA) and Caucasian (C au) m en as a

  9. Tissue Inhibitor of Metalloproteinase-3 (TIMP3) Promotes Endothelial Apoptosis via a Caspase-Independent Mechanism

    PubMed Central

    Qi, Jian Hua; Anand-Apte, Bela

    2015-01-01

    Tissue Inhibitor of Metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in endothelial cells (ECs) in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in endothelial cells expressing KDR (PAE/KDR), but not in endothelial cells expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway. PMID:25558000

  10. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism.

    PubMed

    Qi, Jian Hua; Anand-Apte, Bela

    2015-04-01

    Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.

  11. Effects of a vegetable extract from Lupinus albus (LU105) on the production of matrix metalloproteinases (MMP1, MMP2, MMP9) and tissue inhibitor of metalloproteinases (TIMP1, TIMP2) by human gingival fibroblasts in culture.

    PubMed

    Gaultier, F; Foucault-Bertaud, A; Lamy, E; Ejeil, A L; Dridi, S M; Piccardi, N; Piccirilli, A; Msika, P; Godeau, G; Gogly, B

    2003-12-01

    This study examined the effects of a vegetable extract from Lupinus albus (LU105) on MMPs and TIMPs secreted by human gingival fibroblasts in culture. LU105 was extracted from seeds of L. albus and is freely soluble in water. Gelatin zymography showed that control human gingival fibroblasts maintained in culture for 48 h express pro-MMP2 (progelatinase A) in the culture medium while the active form of MMP2 (gelatinase A), the active form of MMP9 (gelatinase B), and pro-MMP9 (progelatinase B) are not detected. Fibroblasts derived from inflamed gingiva expressed in the culture medium increased amounts of pro-MMP2 (progelatinase A) compared with controls and significant amounts of pro-MMP9 (progelatinase B). LU105 diminished the expression by gingival fibroblasts derived from inflamed tissue of both pro-MMP2 and pro-MMP9. Furthermore LU105 did not modify the amount of TIMP2 expressed in culture by controls or by gingival fibroblasts derived from inflamed tissue. TIMP1 and MMP1 significantly decreased when LU105 was added in the culture media of gingival fibroblasts derived from inflamed tissue compared with control fibroblasts. Thus LU105 seems to offer an opportunity to restore a correct balance between MMP2, MMP9, MMP1, and their natural inhibitors, i.e., TIMP1 and TIMP2 in human inflamed gingiva.

  12. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  13. The influence of elastin degradation products, glucose and atorvastatin on metalloproteinase-1, -2, -9 and tissue inhibitor of metalloproteinases-1, -2, -3 expression in human retinal pigment epithelial cells.

    PubMed

    Dorecka, Mariola; Francuz, Tomasz; Garczorz, Wojciech; Siemianowicz, Krzysztof; Romaniuk, Wanda

    2014-01-01

    Hyperglycemia and increased concentrations of elastin degradation products (EDPs) are common findings in patients with diabetes, atherosclerosis and hypertension. The aim of this study was to assess the influence of high glucose, EDPs and atorvastatin on MMP-1, MMP-2, MMP-9 and TIMP1-3 gene expression in human retinal pigment epithelial cells (HRPE) in vitro. HRPE were cultured for 24 hours with the substances being tested (glucose, EDPs), alone or in combination. Additionally, the cells were treated with atorvastatin in two different concentrations (1 or 10 μM). After incubation, total cellular RNA was extracted and used for gene expression evaluation. Gene expression was measured using the real-time RT-PCR technique. Glucose, EDPs and atorvastatin had no impact on TIMP-1 and TIMP-3 expression. HRPE cells treated with glucose or EDPs with the addition of atorvastatin had a statistically significant decrease of TIMP-2 expression; glucose alone decreased MMP-1 expression. Atorvastatin decreased expression of all assessed genes, except TIMP-1 and TIMP-3 in a dose-dependent manner. Our results confirm the importance of MMPs and TIMPs in retinal vascular biology. Atorvastatin-induced MMPs gene expression can deeply affect extracellular matrix turnover, which may play an important role in the progression of ocular diseases.

  14. The 372 T/C genetic polymorphism of TIMP-1 is associated with serum levels of TIMP-1 and survival in patients with severe sepsis

    PubMed Central

    2013-01-01

    Introduction Previous studies have found higher circulating levels of tissue inhibitor of matrix metalloproteinase (TIMP)-1 in nonsurviving septic patients than in surviving septic patients, and an association between the 372 T/C genetic polymorphism of TIMP-1 and the risk of developing certain diseases. However, the relationship between genetic polymorphisms of TIMP-1, circulating TIMP-1 levels and survival in patients with severe sepsis has not been examined, and this was the objective of the study. Methods This multicentre, prospective, observational study was carried out in six Spanish ICUs. We determined the 372 T/C genetic polymorphism of TIMP-1 (rs4898), serum levels of TIMP-1, matrix metalloproteinase (MMP)-9, MMP-10, TNFα, IL-10 and plasma plasminogen activator inhibitor-1 (PAI-1). Survival at 30 days from ICU admission was the endpoint assessed. The association between continuous variables was carried out using Spearman's rank correlation coefficient or Spearman's rho coefficient. Multivariate logistic regression analysis was applied to determine the association between the 372 T/C genetic polymorphism and survival 30 days from ICU admission. Results Of 275 patients with severe sepsis, 80 had genotype CC, 55 had genotype CT and 140 had genotype TT of the 372 T/C genetic polymorphism of TIMP-1. Patients with the T allele showed higher serum levels of TIMP-1 than patients without the T allele (P = 0.004). Multiple logistic regression analysis showed that the T allele was associated with higher mortality at 30 days (odds ratio = 2.08; 95% confidence interval = 1.06 to 4.09; P = 0.03). Survival analysis showed that patients with the T allele presented lower 30-day survival than patients without the T allele (χ2 = 5.77; P = 0.016). We found an association between TIMP-1 levels and levels of MMP-9 (ρ = -0.19; P = 0.002), MMP-10 (ρ = 0.55; P <0.001), TNFα (ρ = 0.56; P <0.001), IL-10 (ρ = 0.48; P <0.001) and PAI-1 (ρ = 0.49; P <0.001). Conclusion The novel findings of our study are that septic patients with the T allele in the 372 T/C genetic polymorphism of TIMP-1 showed higher serum TIMP-1 levels and lower survival rate. The determination of the 372 T/C genetic polymorphism of TIMP-1 thus has prognostic implications and could help in the selection of patients who may benefit from modulation of the MMP/TIMP balance. PMID:23706069

  15. Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice.

    PubMed

    Stöhr, Robert; Cavalera, Michele; Menini, Stefano; Mavilio, Maria; Casagrande, Viviana; Rossi, Claudia; Urbani, Andrea; Cardellini, Marina; Pugliese, Giuseppe; Menghini, Rossella; Federici, Massimo

    2014-08-01

    Tissue inhibitor of metalloproteinase 3 (TIMP3) is a stromal protein that inhibits the activity of various proteases and receptors. We have previously shown TIMP3 to be downregulated in metabolic and inflammatory disorders, such as type 2 diabetes mellitus. We have now generated an ApoE(-/-)Timp3(-/-) mouse model in which, through the use of genetics, metabolomics and in-vivo phenotypical analysis we investigated the role of TIMP3 in the development of atherosclerosis. En face aorta analysis and aortic root examination showed that ApoE(-/-)Timp3(-/-) mice show increased atherosclerosis with increased infiltration of macrophages into the plaque. Serum concentration of MCP-1 were elevated in the serum of ApoE(-/-)Timp3(-/-) mice coupled with an expansion of the inflammatory (M1) Gr1+ macrophages, both in the circulation and within the aortic tissue. Targeted analysis of metabolites revealed a trend to reduced short chain acylcarnitines. Our study shows that lack of TIMP3 increases inflammation and polarizes macrophages towards a more inflammatory phenotype resulting in increased atherosclerosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Serum Gelatinases Levels in Multiple Sclerosis Patients during 21 Months of Natalizumab Therapy

    PubMed Central

    Bellini, Tiziana; Trentini, Alessandro; Delbue, Serena; Elia, Francesca; Gastaldi, Matteo; Franciotta, Diego; Bergamaschi, Roberto; Manfrinato, Maria Cristina; Volta, Carlo Alberto; Granieri, Enrico; Fainardi, Enrico

    2016-01-01

    Background. Natalizumab is a highly effective treatment approved for multiple sclerosis (MS). The opening of the blood-brain barrier mediated by matrix metalloproteinases (MMPs) is considered a crucial step in MS pathogenesis. Our goal was to verify the utility of serum levels of active MMP-2 and MMP-9 as biomarkers in twenty MS patients treated with Natalizumab. Methods. Serum levels of active MMP-2 and MMP-9 and of specific tissue inhibitors TIMP-1 and TIMP-2 were determined before treatment and for 21 months of therapy. Results. Serum levels of active MMP-2 and MMP-9 and of TIMP-1 and TIMP-2 did not differ during the treatment. The ratio between MMP-9 and MMP-2 was increased at the 15th month compared with the 3rd, 6th, and 9th months, greater at the 18th month than at the 3rd and 6th months, and higher at the 21st than at the 3rd and 6th months. Discussion. Our data indicate that an imbalance between active MMP-9 and active MMP-2 can occur in MS patients after 15 months of Natalizumab therapy; however, they do not support the use of serum active MMP-2 and active MMP-9 and TIMP-1 and TIMP-2 levels as biomarkers for monitoring therapeutic response to Natalizumab. PMID:27340316

  17. Effect of Chinese traditional compound, Gan-fu-kang, on CCl(4)-induced liver fibrosis in rats and its probable molecular mechanisms.

    PubMed

    Xu, Ting-Ting; Jiang, Miao-Na; Li, Cong; Che, Ying; Jia, Yu-Jie

    2007-03-01

    To explore the antifibrotic effect of traditional Chinese medicine compound Gan-fu-kang (GFK) on CCl(4)-induced liver fibrosis in rats and its probable mechanisms. The effects of GFK on CCl(4)-induced liver fibrosis were tested in rats. The liver histopathology was examined by light microscope, polaring microscope and electron microscope. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed and the content of albumin (ALB) and hydroxyproline in the liver was measured. The expression of transforming growth factor-beta(1) (TGF-beta(1)) and laminin (LN) was determined by immunohistochemistry. Semi-quantitive computation of collagen types I and III and laminin was done. The expression of MMP-2 and TIMP-1 was assayed by reverse transcription polymerase chain reaction (RT-PCR). Upon pathological examination, GFK treatment had significantly reversed liver fibrosis. Hepatic extracellular matrix (ECM) deposition was significantly reduced, as evidenced by the reduction of the content of hydroxyproline, collagen types I and III, and laminin. Hepatic function was improved by GFK treatment, as evidenced by the increase of plasma ALB and A/G, and by the decrease of serum ALT and AST. TGF-beta(1) in liver was significantly reduced. A significant expression of MMP-2 and TIMP-1 mRNA in liver were downregulated after GFK treatment. The traditional Chinese medicine compound recipe GFK has an antifibrotic effect on CCl(4)-induced liver fibrosis in rats, which improves hepatic function and lessens the deposition of collagen in the liver. The probable antifibrotic mechanisms were: inhibiting the expression of TGF-beta(1) and decreasing expressions of MMP-2 and TIMP-1.

  18. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents.

    PubMed

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2008-01-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.

  19. Protease Expression Levels in Prostate Cancer Tissue Can Explain Prostate Cancer-Associated Seminal Biomarkers-An Explorative Concept Study.

    PubMed

    Neuhaus, Jochen; Schiffer, Eric; Mannello, Ferdinando; Horn, Lars-Christian; Ganzer, Roman; Stolzenburg, Jens-Uwe

    2017-05-04

    Previously, we described prostate cancer (PCa) detection (83% sensitivity; 67% specificity) in seminal plasma by CE-MS/MS. Moreover, advanced disease was distinguished from organ-confined tumors with 80% sensitivity and 82% specificity. The discovered biomarkers were naturally occurring fragments of larger seminal proteins, predominantly semenogelin 1 and 2, representing endpoints of the ejaculate liquefaction. Here we identified proteases putatively involved in PCa specific protein cleavage, and examined gene expression and tissue protein levels, jointly with cell localization in normal prostate (nP), benign prostate hyperplasia (BPH), seminal vesicles and PCa using qPCR, Western blotting and confocal laser scanning microscopy. We found differential gene expression of chymase (CMA1), matrix metalloproteinases (MMP3, MMP7), and upregulation of MMP14 and tissue inhibitors (TIMP1 and TIMP2) in BPH. In contrast tissue protein levels of MMP14 were downregulated in PCa. MMP3/TIMP1 and MMP7/TIMP1 ratios were decreased in BPH. In seminal vesicles, we found low-level expression of most proteases and, interestingly, we also detected TIMP1 and low levels of TIMP2. We conclude that MMP3 and MMP7 activity is different in PCa compared to BPH due to fine regulation by their inhibitor TIMP1. Our findings support the concept of seminal plasma biomarkers as non-invasive tool for PCa detection and risk stratification.

  20. Differential effects of leptin on ovarian metalloproteinases and their tissue inhibitors between in vivo and in vitro studies.

    PubMed

    Bilbao, M G; Di Yorio, M P; Faletti, A G

    2011-04-01

    In this study, we investigated the effect of leptin on the ovarian metalloproteinase system in the rat during the ovulatory process. Ovulation was induced in immature rats primed with gonadotropins. In both in vitro and in vivo experiments, we measured i) the protein expression of the ovarian metalloproteinases (matrix metalloproteinases, MMPs) and their tissue inhibitors (TIMPs) by western blot; ii) the gelatinase activity of the ovarian MMPs by zymography; and iii) the inhibitory action of TIMPs by reverse zymography. Using cultures of ovarian explants, leptin increased the activity but not the protein expression of MMP-2 and MMP-9 in both culture medium and ovarian tissue, and the protein expression of TIMPs, without a higher inhibitory action of the gelatinase activity. These results suggest either that the increase in TIMP proteins was not sufficient or that the inhibitory actions of TIMPs were impaired to suppress the MMP activity when the ovaries were directly exposed to leptin. To study the in vivo effect, rats received an acute treatment with high doses of leptin to inhibit ovulation. This treatment increased the expression of both the latent and the active forms of MMP-2 but did not result in a greater activity of MMP-2. In addition, the inhibitory action of TIMP-2 was also increased by this treatment. These results suggest that the administration of high doses of leptin could be regulating the follicle wall degradation, at least in part, by increasing the action of the ovarian TIMP-2 as a result of an extraovarian mechanism or signaling pathway.

  1. Progesterone Inhibits Leptin-Induced Invasiveness of BeWo Cells.

    PubMed

    Jo, Yun Sung; Lee, Gui Se Ra; Nam, Sun Young; Kim, Sa Jin

    2015-01-01

    This study investigated the roles of progesterone and leptin in placenta invasion, which is closely related to pregnancy prognosis. We examined the effects of leptin and progesterone on the invasion of BeWo cells, a human trophoblastic cell line, and the effect of concurrent treatment. Cells were treated with leptin (0, 5, 50, or 500 ng/mL) or progesterone (0, 2, 20, or 200 µM) and cultured in an invasion assay. Cells treated with 500 ng/mL leptin were also treated with progesterone (0, 2, 20, or 200 µM) in the invasion assay for 48 h. The number of cells that invaded the lower surface was counted in five randomly chosen fields using a light microscope with a 200× objective. The mRNA expression levels of MMP-9, TIMP1, TIMP2, and E-cadherin were detected by semi-quantitative PCR. Invasion of BeWo cells was promoted by leptin and influenced by both leptin concentration and treatment duration. Invasion was most effective at 500 ng/mL leptin and 48 h culture. Leptin-induced invasiveness was suppressed by progesterone in a dose-dependent manner. Leptin significantly decreased the expression levels of TIMP1 and E-cadherin, whereas progesterone significantly decreased expression of MMP-9 and significantly increased levels of TIMP1, TIMP2, and E-cadherin. Leptin promotes invasion of BeWo cells, and progesterone suppresses leptin-induced invasion by regulating the expressions of MMP-9, TIMP1, TIMP2, and E-cadherin. The balance between leptin and progesterone may play an important role in human placenta formation during early pregnancy.

  2. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency.

    PubMed

    Serralheiro, Pedro; Cairrão, Elisa; Maia, Cláudio J; João, Marina; Almeida, Carlos M Costa; Verde, Ignacio

    2017-06-01

    Objectives Transforming growth factor-beta1 (TGF-β1) may participate in local chronic inflammatory processes in varicose veins and in venous wall structure modifications through regulation of matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitor of metalloproteinase (TIMP)). The aim of this study was to analyze the effect of TGF-β1 in the vein wall, namely on the gene expression of selected MMP, TIMP and TGF-β1 receptors. Methods Healthy vein samples were harvested from eight subjects who underwent coronary bypass graft surgery with great saphenous vein. Each vein sample was divided into two segments, which were cultivated separately in vitro (one of the segments had TGF-β1 added) and then submitted to gene expression analysis. Results In the TGF-β1 supplemented group, there was a general increase in the mean gene expression. Specifically, expression of MMP9, MMP12, TIMP1 and TIMP2 were statistically significant. Conclusion The results of this study demonstrate that the gene expression of MMP9, MMP12, TIMP1 and TIMP2 was influenced by the addition of TGF-β1. These results may be translated to chronic venous insufficiency framework and suggest involvement of TGF-β1 in the vein wall pathology.

  3. Plasma levels and diagnostic utility of VEGF, MMP-2 and TIMP-2 in the diagnostics of breast cancer patients.

    PubMed

    Ławicki, Sławomir; Zajkowska, Monika; Głażewska, Edyta Katarzyna; Będkowska, Grażyna Ewa; Szmitkowski, Maciej

    2017-03-01

    We investigated plasma levels and diagnostic utility of vascular endothelial growth factor VEGF, matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2) in comparison to cancer antigen 15-3 (CA 15-3). Plasma levels of tested parameters were determined using enzyme-linked immunosorbent assay (ELISA) while CA 15-3 with chemiluminescent microparticle immunoassay (CMIA). The plasma levels of VEGF, TIMP-2 showed significantly higher than CA 15-3 values of the diagnostic sensitivity, the predictive values of positive and negative test results (PPV, NPV) and the area under the receiver-operating characteristics (ROC) curve (AUC) in early stages of breast cancer (BC). The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, NPV and AUC, especially in the combination with VEGF (83%; 72%; 0.888) and TIMP-2 (83%; 72%; 0.894). The highest values were obtained for combination of all three parameters (93%; 85%; 0.923). These findings suggest the usefulness of the tested parameters in the diagnosis of BC, especially VEGF and TIMP-2 with CA 15-3 in early stages of BC, which could be a new diagnostic panel.

  4. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2).

    PubMed

    Kunte, Mugdha; Desai, Krutika

    2017-06-01

    Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.

  5. System of matrix metalloproteinases and cytokine secretion in type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension.

    PubMed

    Kologrivova, I V; Suslova, T E; Koshel'skaya, O A; Vinnitskaya, I V; Trubacheva, O A

    2014-03-01

    The study included patients with type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension, patients with arterial hypertension, and healthy volunteers. We evaluated the levels of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase type 1 (TIMP-1), glucose, insulin, C-peptide, glycated hemoglobin, and spontaneous and mitogen-activated cytokine secretion (IL-2, IL4, IL-6, IL-10, IL-17, TNF-α, and IFN-γ). Patients with type 2 diabetes mellitus in combination with arterial hypertension exhibited maximum TIMP-1 levels and TIMP-1/MMP-2, TIMP-1/ MMP-9 ratios as well as enhanced secretion of TNF-α, IL-6, IL-17 and reduced secretion of IL-10 in comparison with healthy individuals. The observed shifts are probably determined the development of systemic hyperinsulinemia in patients suffering from type 2 diabetes mellitus coupled with arterial hypertension.

  6. Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale.

    PubMed

    Campbell, Suzann K; Kolobe, Thubi H A; Wright, Benjamin D; Linacre, John Michael

    2002-04-01

    The Test of Infant Motor Performance (TIMP) is a test of functional movement in infants from 32 weeks' post-conceptional age to 4 months postterm. The purpose of this study was to assess in 96 infants (44 females, 52 males) with varying risk, the relation between measures on the TIMP at 7, 30, 60, and 90 days after term age and percentile ranks (PR) on the Alberta Infant Motor Scale (AIMS). Correlation between scores on the TIMP and the AIMS was highest for TIMP tests at 90 days and AIMS testing at 6 months (r=0.67, p=0.0001), but all comparisons were statistically significant except those between the TIMP at 7 days and AIMS PR at 9 months. In a multiple regression analysis combining a perinatal risk score and 7-day TIMP measures to predict 12-month AIMS PR, risk, but not TIMP, predicted outcome (21% of variance explained). At older ages TIMP measures made increasing contributions to prediction of 12-month AIMS PR (30% of variance explained by 90-day TIMP). The best TIMP score to maximize specificity and correctly identify 84% of the infants above versus below the 10th PR at 6 months was a cut-off point of 1 SD below the mean. The same cut-off point correctly identified 88% of the infants at 12 months. A cut-off of -0.5 SD, however, maximized sensitivity at 92%. A negative test result, i.e. score above -0.5 SD at 3 months, carried only a 2% probability of a poor 12-month outcome. We conclude that TIMP scores significantly predict AIMS PR 6 to 12 months later, but the TIMP at 3 months of age has the greatest degree of validity for predicting motor performance on the AIMS at 12 months and can be used clinically to identify infants likely to benefit from intervention.

  7. Human mesenchymal stem cells generate a distinct pericellular zone of MMP activities via binding of MMPs and secretion of high levels of TIMPs.

    PubMed

    Lozito, Thomas P; Jackson, Wesley M; Nesti, Leon J; Tuan, Rocky S

    2014-02-01

    Mesenchymal stem cells (MSCs) are attractive candidates for inclusion in cell-based therapies by virtue of their abilities to home to wound sites. However, in-depth characterization of the specific effects of MSCs on their microenvironments is needed to realize their full therapeutic potentials. Furthermore, since MSCs of varying properties can be isolated from a diverse spectrum of tissues, a strategic and rational approach in MSC sourcing for a particular application has yet to be achieved. For example, MSCs that activate their proteolytic environments may promote tissue remodeling, while those from different tissue sources may inhibit proteases and promote tissue stabilization. This study attempts to address these issues by analyzing MSCs isolated from three adult tissue sources in terms of their effects on their proteolytic microenvironments. Human bone marrow, adipose, and traumatized muscle derived MSCs were compared in their soluble and cellular-associated MMP components and activity. For all types of MSCs, MMP activity associated with the cell surface, but activity levels and MMP profiles differed with tissue source. All MSC types bound exogenous active MMPs at their surfaces. MSCs were also able to activate exogenous proMMP-2 and proMMP-13. This is in marked contrast to the MSC soluble compartment, which strongly inhibited MMPs via endogenous TIMPs. The exact TIMP used to inhibit the exogenous MMP differed with MSC type. Thus, MSCs saturate their environment with both MMPs and TIMPs. Since they bind and activate MMPs at their surfaces, the net result is a very controlled pericellular localization of MMP activities by MSCs. © 2013.

  8. Comparison between Er:YAG laser and bipolar radiofrequency combined with infrared diode laser for the treatment of acne scars: Differential expression of fibrogenetic biomolecules may be associated with differences in efficacy between ablative and non-ablative laser treatment.

    PubMed

    Min, Seonguk; Park, Seon Yong; Moon, Jungyoon; Kwon, Hyuck Hoon; Yoon, Ji Young; Suh, Dae Hun

    2017-04-01

    Fractional Er:YAG minimizes the risk associated with skin ablation. Infrared diode laser and radiofrequency have suggested comparable improvements in acne scar. We compared the clinical efficacy of Er:YAG laser and bipolar radiofrequency combined with diode laser (BRDL) for the treatment of acne scars. Moreover, acute molecular changes of cytokine profile associated with wound healing have been evaluated to suggest mechanisms of improvement of acne scar. Twenty-four subjects with mild-to-moderate acne scars were treated in a split-face manner with Er:YAG and BRDL, with two treatment sessions, 4 weeks apart. Objective and subjective assessments were done at baseline, 1, 3, 7 days after each treatment and 4 weeks after last treatment. Skin biopsy specimens were obtained at baseline, 1, 3, 7, 28 days after one session of treatment for investigation of molecular profile of acute skin changes by laser treatment. Investigator's Global Assessment representing the improvement degree shows 2.1 (50%) in fractional Er:YAG and 1.2 (25%) in BRDL. Er:YAG induced the later and higher peak expression of TGFβs and collagenases, whereas BRDL induced earlier and lower expression of TGFβ and collagenases, relatively. PPARγ dropped rapidly after a peak in Er:YAG-treated side, which is associated with tissue inhibitor of metalloproteinase (TIMP) expression. We observed higher expression of TIMP after Er:YAG treatment compared with BRDL by immunohistochemistry, which may be associated with the expression of upregulation of collagen fibers. The superior efficacy of Er:YAG to BRDL in the treatment of acne scars may be associated with higher expression of collagen which is associated with differential expression of TGFβs, collagenases, PPARγ, and TIMP. Lasers Surg. Med. 49:341-347, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Purification and sequence analysis of two rat tissue inhibitors of metalloproteinases

    NASA Technical Reports Server (NTRS)

    Roswit, W. T.; McCourt, D. W.; Partridge, N. C.; Jeffrey, J. J.

    1992-01-01

    Two protein inhibitors of metalloproteinases (TIMP) were isolated from medium conditioned by the clonal rat osteosarcoma line UMR 106-01. Initial purification of both a 30-kDa inhibitor and a 20-kDa inhibitor was accomplished using heparin-Sepharose chromatography with dextran sulfate elution followed by DEAE-Sepharose and CM-Sepharose chromatography. Purification of the 20-kDa inhibitor to homogeneity was completed with reverse-phase high-performance liquid chromatography. The 20-kDa inhibitor was identified as rat TIMP-2. The 30-kDa inhibitor, although not purified to homogeneity, was identified as rat TIMP-1. Amino terminal amino acid sequence analysis of the 30-kDa inhibitor demonstrated 86% identity to human TIMP-1 for the first 22 amino acids while the sequence of the 20-kDa inhibitor was identical to that of human TIMP-2 for the first 22 residues. Treatment with peptide:N-glycosidase F indicated that the 30-kDa rat inhibitor is glycosylated while the 20-kDa inhibitor is apparently unglycosylated. Inhibition of both rat and human interstitial collagenase by rat TIMP-2 was stoichiometric, with a 1:1 molar ratio required for complete inhibition. Exposure of UMR 106-01 cells to 10(-7) M parathyroid hormone resulted in approximately a 40% increase in total inhibitor production over basal levels.

  10. Relationship of biomarkers of extracellular matrix with myocardial function in Type 2 diabetes mellitus.

    PubMed

    Liu, Ju-Hua; Chen, Yan; Zhen, Zhe; Ho, Lai-Ming; Tsang, Anita; Yuen, Michele; Lam, Karen; Tse, Hung-Fat; Yiu, Kai-Hang

    2017-07-01

    The study evaluated the relationship of extracellular matrix and renin angiotensin system with myocardial dysfunction in Type 2 diabetes mellitus. All patients underwent resting and exercise echocardiography, including conventional parameters, E/E' ratio, global longitudinal strain and diastolic function reserve index. Plasma matrix metalloproteinase-1, TIMP-1, amino-terminal propeptide of type I and type III procollagen and renin angiotensin system activity were measured. As patients with diastolic dysfunction had a higher plasma level of TIMP-1 and propeptide of type III procollagen than those with no diastolic dysfunction. After multivariate adjustment, TIMP-1 associated with E/E' (both at rest and stress) and diastolic function reserve index. TIMP-1 is independently associated with myocardial diastolic dysfunction in patients with Type 2 diabetes mellitus.

  11. Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis.

    PubMed

    Musiał, Kinga; Zwolińska, Danuta

    2011-07-01

    The system of membrane receptor Fas and its ligand FasL compose one of the main pathways triggering apoptosis. However, the role of their soluble forms has not been clarified yet. Although sFasL can be converted from the membrane-bound form by matrix metalloproteinases (MMPs), there are no data on relations between sFas/sFasL, MMPs and their tissue inhibitors (TIMPs) in patients on chronic dialysis--neither children nor adults. The aim of our study was to evaluate serum concentrations of sFas, sFasL, and their potential regulators (MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2), in children and young adults chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 19 patients on hemodialysis (HD) and 30 controls were examined. Serum concentrations of sFas, sFasL, MMPs and TIMPs were assessed by ELISA. Median values of sFas, sFasL, sFas/sFasL ratio, MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 were significantly elevated in all dialyzed patients vs. controls, the highest values being observed in subjects on HD. A single HD session caused the decrease in values of all parameters to the levels below those seen in children on APD. Regression analysis revealed that MMP-7 and TIMP-1 were the best predictors of sFas and sFasL concentrations. Children and young adults on chronic dialysis are prone to sFas/sFasL system dysfunction, more pronounced in patients on hemodialysis. The correlations between sFas/sFasL and examined enzymes suggest that MMPs and TIMPs take part in the regulation of cell death in the pediatric population on chronic dialysis, triggering both anti- (sFas) and pro-apoptotic (sFasL) mechanisms.

  12. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    PubMed Central

    Hopkinson, Mark; Poulet, Blandine; Pollard, Andrea S.; Shefelbine, Sandra J.; Chang, Yu-Mei; Francis-West, Philippa; Bou-Gharios, George; Pitsillides, Andrew A.

    2016-01-01

    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages. PMID:27519049

  14. Effects of rosuvastatin on the production and activation of matrix metalloproteinase-2 and migration of cultured rat vascular smooth muscle cells induced by homocysteine.

    PubMed

    Shi, Ya-fei; Chi, Ju-fang; Tang, Wei-liang; Xu, Fu-kang; Liu, Long-bin; Ji, Zheng; Lv, Hai-tao; Guo, Hang-yuan

    2013-08-01

    To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10(-9)-10(-5) mol/L) were added when VSMCs were induced with 1000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and activation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.

  15. Overexpression of TIMP3 Protects Against Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Apoptosis Through ROS/Mapks Pathway.

    PubMed

    Liu, Hui; Jing, Xibo; Dong, Aiqiao; Bai, Baobao; Wang, Haiyan

    2017-01-01

    Myocardial ischemia/reperfusion (I/R) injury remains a great challenge in clinical therapy. Tissue inhibitor of metalloproteinases 3 (TIMP3) plays a crucial role in heart physiological and pathophysiological processes. However, the effects of TIMP3 on I/R injury remain unknown. C57BL/6 mice were infected with TIMP3 adenovirus by local delivery in myocardium followed by I/R operation or doxorubicin treatment. Neonatal rat cardiomyocytes were pretreated with TIMP3 adenovirus prior to anoxia/reoxygenation (A/R) treatment in vitro. Histology, echocardiography, in vivo phenotypical analysis, flow cytometry and western blotting were used to investigate the altered cardiac function and underlying mechanisms. The results showed that upregulation of TIMP3 in myocardium markedly inhibited myocardial infarct areas and the cardiac dysfunction induced by I/R or by doxorubicin treatment. TUNEL staining revealed that TIMP3 overexpression attenuated I/R-induced myocardial apoptosis, accompanied by decreased Bax/Bcl-2 ratio, Cleaved Caspase-3 and Cleaved Caspase-9 expression. In vitro, A/R-induced cardiomyocyte apoptosis was abrogated by pharmacological inhibition of reactive oxygen species (ROS) production or MAPKs signaling. Attenuation of ROS production reversed A/R-induced MAPKs activation, whereas MAPKs inhibitors showed on effect on ROS production. Furthermore, in vivo or in vitro overexpression of TIMP3 significantly inhibited I/R- or A/R-induced ROS production and MAPKs activation. Our findings demonstrate that TIMP3 upregulation protects against cardiac I/R injury through inhibiting myocardial apoptosis. The mechanism may be related to inhibition of ROS-initiated MAPKs pathway. This study suggests that TIMP3 may be a potential therapeutic target for the treatment of I/R injury. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Systematic investigation of the relationship between high myopia and polymorphisms of the MMP2, TIMP2, and TIMP3 genes by a DNA pooling approach.

    PubMed

    Leung, Kim Hung; Yiu, Wai Chi; Yap, Maurice K H; Ng, Po Wah; Fung, Wai Yan; Sham, Pak Chung; Yip, Shea Ping

    2011-06-01

    This study examined the relationship between high myopia and three myopia candidate genes--matrix metalloproteinase 2 (MMP2) and tissue inhibitor of metalloproteinase-2 and -3 (TIMP2 and TIMP3)--involved in scleral remodeling. Recruited for the study were unrelated adult Han Chinese who were high myopes (spherical equivalent, ≤ -6.0 D in both eyes; cases) and emmetropes (within ±1.0 D in both eyes; controls). Sample set 1 had 300 cases and 300 controls, and sample set 2 had 356 cases and 354 controls. Forty-nine tag single-nucleotide polymorphisms (SNPs) were selected from these candidate genes. The first stage was an initial screen of six case pools and six control pools constructed from sample set 1, each pool consisting of 50 distinct subjects of the same affection status. In the second stage, positive SNPs from the first stage were confirmed by genotyping individual samples forming the DNA pools. In the third stage, positive SNPs from stage 2 were replicated, with sample set 2 genotyped individually. Of the 49 SNPs screened by DNA pooling, three passed the lenient threshold of P < 0.10 (nested ANOVA) and were followed up by individual genotyping. Of the three SNPs genotyped, two TIMP3 SNPs were found to be significantly associated with high myopia by single-marker or haplotype analysis. However, the initial positive results could not be replicated by sample set 2. MMP2, TIPM2, and TIMP3 genes were not associated with high myopia in this Chinese sample and hence are unlikely to play a major role in the genetic susceptibility to high myopia.

  17. The effects of therapeutic instrumental music performance on endurance level, self-perceived fatigue level, and self-perceived exertion of inpatients in physical rehabilitation.

    PubMed

    Lim, Hayoung A; Miller, Karen; Fabian, Chuck

    2011-01-01

    The present study investigated the effects of a Neurologic Music Therapy (NMT) sensory-motor rehabilitation technique, Therapeutic Instrumental Music Performance (TIMP) as compared to Traditional Occupational Therapy (TOT), on endurance, self-perceived fatigue, and self-perceived exertion of 35 hospitalized patients in physical rehabilitation. The present study attempted to examine whether an active musical experience such as TIMP with musical cueing (i.e., rhythmic auditory cueing) during physical exercises influences one's perception of pain, fatigue, and exertion. All participants were diagnosed with a neurologic disorder or had recently undergone orthopedic surgery. Investigators measured the effects of TOT and TIMP during upper extremity exercise of the less affected or stronger upper extremity. Results showed no significant difference on endurance measures between the 2 treatment conditions (TIMP and TOT). Statistically significant differences were found between TIMP and TOT when measuring their effects on perceived exertion and perceived fatigue. TIMP resulted in significantly less perception of fatigue and exertion levels than TOT. TIMP can be used foran effective sensory-motor rehabilitation technique to decrease perceived exertion and fatigue level of inpatients in physical rehabilitation.

  18. Role of matrix metalloproteinases in the pathogenesis of childhood gastroenteritis.

    PubMed

    Kawamura, Yoshiki; Gotoh, Kensei; Takeuchi, Nao; Miura, Hiroki; Nishimura, Naoko; Ozaki, Takao; Yoshikawa, Tetsushi

    2016-08-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been implicated in the pathogenesis of gastrointestinal diseases, such as rotavirus gastroenteritis (GE). Kinetics of these biomarkers were examined in paired serum samples collected from bacterial enteritis patients with Campylobacter (n = 2) and Salmonella (n = 4) and viral GE patients with rotavirus (n = 27), norovirus (n = 25), and adenovirus (n = 11). At the time of hospital admission, all viral GE patients demonstrated increased MMP-9 and decreased MMP-2 and TIMP-2 serum levels. In contrast to viral GE patients, serum MMP-9 levels were not elevated at the time of hospital admission but elevated at the time of discharge; serum MMP-2 and TIMP-2 levels were decreased both at the time of admission and discharge in bacterial enteritis patients. Interestingly, the kinetics of serum MMP-2, MMP-9, and TIMP-2 levels were similar among the viral GE patients but distinct from bacterial enteritis patients. Thus, the involvement of MMPs and TIMPs in the pathophysiology of gastrointestinal symptoms likely varies depending on the etiological agent. Further studies are required to verify whether the extent of the bacterial enteritis or age of the patients influences these serum biomarkers. J. Med. Virol. 88:1341-1346, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Association of Sepsis-Related Mortality with Early Increase of TIMP-1/MMP-9 Ratio

    PubMed Central

    Lorente, Leonardo; Martín, María M.; Solé-Violán, Jordi; Blanquer, José; Labarta, Lorenzo; Díaz, César; Borreguero-León, Juan M.; Orbe, Josune; Rodríguez, José A.; Jiménez, Alejandro; Páramo, José A.

    2014-01-01

    Objective Higher circulating levels of tissue inhibitor of matrix metalloproteinases (TIMP)-1 at the time of severe sepsis diagnosis have been reported in nonsurviving than in surviving patients. However, the following questions remain unanswered: 1) Does TIMP-1/MMP-9 ratio differ throughout the first week of intensive care between surviving and non-surviving patients? 2) Is there an association between TIMP-1/MMP-9 ratio and sepsis severity and mortality during such period? 3) Could TIMP-1/MMP-9 ratio during the first week be used as an early biomarker of sepsis outcome? 4) Is there an association between TIMP-1/MMP-9 ratio and coagulation state and circulating cytokine levels during the first week of intensive care in these patients? The present study sought to answer these questions. Methods Multicenter, observational and prospective study carried out in six Spanish Intensive Care Units (ICUs) of 295 patients with severe sepsis. Were measured circulating levels of TIMP-1, MMP-9, tumour necrosis factor (TNF)-alpha, interleukin (IL)-10 and plasminogen activator inhibitor (PAI)-1 at day 1, 4 and 8. End-point was 30-day mortality. Results We found higher TIMP-1/MMP-9 ratio during the first week in non-surviving (n = 98) than in surviving patients (n = 197) (p<0.01). Logistic regression analyses showed that TIMP-1/MMP-9 ratio at days 1, 4 and 8 was associated with mortality. Receiver operating characteristic (ROC) curves showed that TIMP-1/MMP-9 ratio at days 1, 4 and 8 could predict mortality. There was an association between TIMP-1/MMP-9 ratio and TNF-alpha, IL-10, PAI-1 and lactic acid levels, SOFA score and platelet count at days 1, 4 and 8. Conclusions The novel findings of our study were that non-surviving septic patients showed persistently higher TIMP-1/MMP-9 ratio than survivors ones during the first week, which was associated with severity, coagulation state, circulating cytokine levels and mortality; thus representing a new biomarker of sepsis outcome. PMID:24727739

  20. Association of sepsis-related mortality with early increase of TIMP-1/MMP-9 ratio.

    PubMed

    Lorente, Leonardo; Martín, María M; Solé-Violán, Jordi; Blanquer, José; Labarta, Lorenzo; Díaz, César; Borreguero-León, Juan M; Orbe, Josune; Rodríguez, José A; Jiménez, Alejandro; Páramo, José A

    2014-01-01

    Higher circulating levels of tissue inhibitor of matrix metalloproteinases (TIMP)-1 at the time of severe sepsis diagnosis have been reported in nonsurviving than in surviving patients. However, the following questions remain unanswered: 1) Does TIMP-1/MMP-9 ratio differ throughout the first week of intensive care between surviving and non-surviving patients? 2) Is there an association between TIMP-1/MMP-9 ratio and sepsis severity and mortality during such period? 3) Could TIMP-1/MMP-9 ratio during the first week be used as an early biomarker of sepsis outcome? 4) Is there an association between TIMP-1/MMP-9 ratio and coagulation state and circulating cytokine levels during the first week of intensive care in these patients? The present study sought to answer these questions. Multicenter, observational and prospective study carried out in six Spanish Intensive Care Units (ICUs) of 295 patients with severe sepsis. Were measured circulating levels of TIMP-1, MMP-9, tumour necrosis factor (TNF)-alpha, interleukin (IL)-10 and plasminogen activator inhibitor (PAI)-1 at day 1, 4 and 8. End-point was 30-day mortality. We found higher TIMP-1/MMP-9 ratio during the first week in non-surviving (n = 98) than in surviving patients (n = 197) (p<0.01). Logistic regression analyses showed that TIMP-1/MMP-9 ratio at days 1, 4 and 8 was associated with mortality. Receiver operating characteristic (ROC) curves showed that TIMP-1/MMP-9 ratio at days 1, 4 and 8 could predict mortality. There was an association between TIMP-1/MMP-9 ratio and TNF-alpha, IL-10, PAI-1 and lactic acid levels, SOFA score and platelet count at days 1, 4 and 8. The novel findings of our study were that non-surviving septic patients showed persistently higher TIMP-1/MMP-9 ratio than survivors ones during the first week, which was associated with severity, coagulation state, circulating cytokine levels and mortality; thus representing a new biomarker of sepsis outcome.

  1. Biomarkers in Trypanosoma cruzi-infected and uninfected individuals with varying severity of cardiomyopathy in Santa Cruz, Bolivia.

    PubMed

    Okamoto, Emi E; Sherbuk, Jacqueline E; Clark, Eva H; Marks, Morgan A; Gandarilla, Omar; Galdos-Cardenas, Gerson; Vasquez-Villar, Angel; Choi, Jeong; Crawford, Thomas C; Do, Rose Q; Q, Rose; Fernandez, Antonio B; Colanzi, Rony; Flores-Franco, Jorge Luis; Gilman, Robert H; Bern, Caryn

    2014-10-01

    Twenty to thirty percent of persons with Trypanosoma cruzi infection eventually develop cardiomyopathy. If an early indicator were to be identified and validated in longitudinal studies, this could enable treatment to be prioritized for those at highest risk. We evaluated cardiac and extracellular matrix remodeling markers across cardiac stages in T. cruzi infected (Tc+) and uninfected (Tc-) individuals. Participants were recruited in a public hospital in Santa Cruz, Bolivia and assigned cardiac severity stages by electrocardiogram and echocardiogram. BNP, NTproBNP, CKMB, troponin I, MMP-2, MMP-9, TIMP-1, TIMP-2, TGFb1, and TGFb2 were measured in specimens from 265 individuals using multiplex bead systems. Biomarker levels were compared between Tc+ and Tc- groups, and across cardiac stages. Receivers operating characteristic (ROC) curves were created; for markers with area under curve>0.60, logistic regression was performed. Analyses stratified by cardiac stage showed no significant differences in biomarker levels by Tc infection status. Among Tc+ individuals, those with cardiac insufficiency had higher levels of BNP, NTproBNP, troponin I, MMP-2, TIMP-1, and TIMP-2 than those with normal ejection fraction and left ventricular diameter. No individual marker distinguished between the two earliest Tc+ stages, but in ROC-based analyses, MMP-2/MMP-9 ratio was significantly higher in those with than those without ECG abnormalities. BNP, NTproBNP, troponin I, MMP-2, TIMP-1, and TIMP-2 levels rose with increasing severity stage but did not distinguish between Chagas cardiomyopathy and other cardiomyopathies. Among Tc+ individuals without cardiac insufficiency, only the MMP-2/MMP-9 ratio differed between those with and without ECG changes.

  2. Biomarkers in Trypanosoma cruzi-Infected and Uninfected Individuals with Varying Severity of Cardiomyopathy in Santa Cruz, Bolivia

    PubMed Central

    Clark, Eva H.; Marks, Morgan A.; Gandarilla, Omar; Galdos-Cardenas, Gerson; Vasquez-Villar, Angel; Choi, Jeong; Crawford, Thomas C.; Q., Rose; Fernandez, Antonio B.; Colanzi, Rony; Flores-Franco, Jorge Luis; Gilman, Robert H.; Bern, Caryn

    2014-01-01

    Background Twenty to thirty percent of persons with Trypanosoma cruzi infection eventually develop cardiomyopathy. If an early indicator were to be identified and validated in longitudinal studies, this could enable treatment to be prioritized for those at highest risk. We evaluated cardiac and extracellular matrix remodeling markers across cardiac stages in T. cruzi infected (Tc+) and uninfected (Tc−) individuals. Methods Participants were recruited in a public hospital in Santa Cruz, Bolivia and assigned cardiac severity stages by electrocardiogram and echocardiogram. BNP, NTproBNP, CKMB, troponin I, MMP-2, MMP-9, TIMP-1, TIMP-2, TGFb1, and TGFb2 were measured in specimens from 265 individuals using multiplex bead systems. Biomarker levels were compared between Tc+ and Tc− groups, and across cardiac stages. Receivers operating characteristic (ROC) curves were created; for markers with area under curve>0.60, logistic regression was performed. Results Analyses stratified by cardiac stage showed no significant differences in biomarker levels by Tc infection status. Among Tc+ individuals, those with cardiac insufficiency had higher levels of BNP, NTproBNP, troponin I, MMP-2, TIMP-1, and TIMP-2 than those with normal ejection fraction and left ventricular diameter. No individual marker distinguished between the two earliest Tc+ stages, but in ROC-based analyses, MMP-2/MMP-9 ratio was significantly higher in those with than those without ECG abnormalities. Conclusions BNP, NTproBNP, troponin I, MMP-2, TIMP-1, and TIMP-2 levels rose with increasing severity stage but did not distinguish between Chagas cardiomyopathy and other cardiomyopathies. Among Tc+ individuals without cardiac insufficiency, only the MMP-2/MMP-9 ratio differed between those with and without ECG changes. PMID:25275382

  3. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Kicic-Starcevich, Elizabeth; Knight, Darryl A; Ranganathan, Sarath; Stick, Stephen M; Kicic, Anthony

    2015-08-01

    Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease. Copyright ©ERS 2015.

  4. Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block.

    PubMed

    Clancy, Robert M; Markham, Androo J; Jackson, Tanisha; Rasmussen, Sara E; Blumenberg, Miroslav; Buyon, Jill P

    2017-09-01

    The signature lesion of SSA/Ro autoantibody-associated congenital heart block (CHB) is fibrosis and a macrophage infiltrate, supporting an experimental focus on cues influencing the fibroblast component. The transcriptomes of human fetal cardiac fibroblasts were analyzed using two complementary approaches. Cardiac injury conditions were simulated in vitro by incubating human fetal cardiac fibroblasts with supernatants from macrophages transfected with the SSA/Ro-associated noncoding Y ssRNA. The top 10 upregulated transcripts in the stimulated fibroblasts reflected a type I interferon (IFN) response [e.g., IFN-induced protein 44-like (IFI44L), of MX dynamin-like GTPase (MX)1, MX2, and radical S -adenosyl methionine domain containing 2 (Rsad2)]. Within the fibrotic pathway, transcript levels of endothelin-1 (EDN1), phosphodiesterase (PDE)4D, chemokine (C-X-C motif) ligand (CXCL)2, and CXCL3 were upregulated, while others, including adenomedullin, RAP guanine nucleotide exchange factor 3 (RAPGEF3), tissue inhibitor of metalloproteinase (TIMP)1, TIMP3, and dual specificity phosphatase 1, were downregulated. Agnostic Database for Annotation, Visualization and Integrated Discovery analysis revealed a significant increase in inflammatory genes, including complement C3A receptor 1 (C3AR1), F2R-like thrombin/trypsin receptor 3, and neutrophil cytosolic factor 2. In addition, stimulated fibroblasts expressed high levels of phospho-MADS box transcription enhancer factor 2 [a substrate of MAPK5 (ERK5)], which was inhibited by BIX-02189, a specific inhibitor of ERK5. Translation to human disease leveraged an unprecedented opportunity to interrogate the transcriptome of fibroblasts freshly isolated and cell sorted without stimulation from a fetal heart with CHB and a matched healthy heart. Consistent with the in vitro data, five IFN response genes were among the top 10 most highly expressed transcripts in CHB fibroblasts. In addition, the expression of matrix-related genes reflected fibrosis. These data support the novel finding that cardiac injury in CHB may occur secondary to abnormal remodeling due in part to upregulation of type 1 IFN response genes. NEW & NOTEWORTHY Congenital heart block is a rare disease of the fetal heart associated with maternal anti-Ro autoantibodies which can result in death and for survivors, lifelong pacing. This study provides in vivo and in vitro transcriptome-support that injury may be mediated by an effect of Type I Interferon on fetal fibroblasts. Copyright © 2017 the American Physiological Society.

  5. Expression of MMP-2 and TIMP-1 in cerebrospinal fluid and the correlation with dynamic changes of serum PCT in neonatal purulent meningitis

    PubMed Central

    Chen, Huilan; Wu, Fei; Fu, Rong; Feng, Xiangchun

    2018-01-01

    Matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels in cerebrospinal fluid of pediatric patients with neonatal purulent meningitis were observed to analyze changes in serum procalcitonin (PCT) and the correlation among the three factors (MMP-2, TIMP-1 and PCT). Sixty pediatric patients with neonatal purulent meningitis from April 2015 to December 2016 were enrolled as the purulent meningitis group and 60 pediatric patients with viral encephalitis treated during the same period were enrolled as the viral encephalitis group. Additionally, 60 healthy newborns who underwent physical examinations in our hospital during the same period were enrolled as the control group. The levels of MMP-2 were 136.73±25.42 ng/ml in the purulent meningitis group, 45.32±6.57 ng/ml in the viral encephalitis group and 1.32±0.51 ng/ml in the control group and the differences between the three groups were statistically significant (F=15.052, p<0.05). The levels of TIMP-1 in cerebrospinal fluid were 374.55±36.04 ng/ml in the purulent meningitis group, 176.61±21.06 ng/ml in the viral encephalitis group and 7.72±2.44 ng/ml in the control group. The serum levels of PCT were 14.56±2.21 ng/ml in the purulent meningitis group, 9.04±1.17 ng/ml in the viral encephalitis group and 0.38±0.14 ng/ml in the control group. The level of MMP-2 in cerebrospinal fluid of pediatric patients in the purulent meningitis group was positively correlated with the level of serum PCT (r=0.582, p<0.05); the level of TIMP-1 in cerebrospinal fluid of pediatric patients in the viral encephalitis group was positively correlated with the level of serum PCT (r=0.635, p<0.05). In conclusion, MMP-2 and TIMP-1 were positively correlated with the levels of serum PCT, suggesting that MMP-2, TIMP-1 and PCT were involved in the occurrence and development of neonatal purulent meningitis. PMID:29399119

  6. Urinary matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 biomarkers for predicting renal scar in children with urinary tract infection

    PubMed Central

    Abedi, Seyed Mohammad; Mohammadjafari, Hamid; Rafiei, Alireza; Bazi, Sara; Yazdani, Pooneh

    2017-01-01

    Objective Urinary tract infection occurs in 1.8–6.6% of children under 6 years old. The aim of this study was to assess the urinary concentrations of matrix metalloproteinase 9 (MMP9) and tissue inhibitor of metalloproteinase 1 (TIMP1), in children with acute pyelonephritis (APN) and the potential to develop renal scarring. Material and methods Children who had experienced an episode of APN were divided into 2 groups. Group 1 included children with APN who exhibited scarring and group 2 included children with APN who had a normal 99mTechnetium dimercaptosuccinic acid scan. Urinary levels of MMP9 and TIMP1 were measured in the acute phase of infection. A receiver operating characteristic curve was generated to allow calculation of cut-off values. Results Sixty-one children were enrolled across the 2 groups: group 1 contained 16 patients (all female); group 2, 38 children (36 female and 2 male). Urinary levels of MMP9 and TIMP1 were significantly higher in group 1 than in group 2 (p=0.037 and 0.022 respectively). For comparison of groups 1 and 2, the cut-off values were measured as 75.5 ng/mL (sensitivity 62.5%, specificity 71.1%, positive predictive value, PPV, 48%, negative predictive value, NPV, 82%), 16.1 ng/mL (sensitivity 75%, specificity 55.3%, PPV 41%, NPV 84%), and 1310.7 ng/mL (sensitivity 75% specificity 60.5%, PPV 44%, NPV 85%) for MMP9, TIMP1, and MMP9×TIMP1 levels, respectively. Conclusion Evaluation of urinary MMP9 and TIMP1 levels may help to identify children with APN who are at risk of developing renal scarring. PMID:29201521

  7. Urinary matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 biomarkers for predicting renal scar in children with urinary tract infection.

    PubMed

    Abedi, Seyed Mohammad; Mohammadjafari, Hamid; Rafiei, Alireza; Bazi, Sara; Yazdani, Pooneh

    2017-12-01

    Urinary tract infection occurs in 1.8-6.6% of children under 6 years old. The aim of this study was to assess the urinary concentrations of matrix metalloproteinase 9 (MMP9) and tissue inhibitor of metalloproteinase 1 (TIMP1), in children with acute pyelonephritis (APN) and the potential to develop renal scarring. Children who had experienced an episode of APN were divided into 2 groups. Group 1 included children with APN who exhibited scarring and group 2 included children with APN who had a normal 99m Technetium dimercaptosuccinic acid scan. Urinary levels of MMP9 and TIMP1 were measured in the acute phase of infection. A receiver operating characteristic curve was generated to allow calculation of cut-off values. Sixty-one children were enrolled across the 2 groups: group 1 contained 16 patients (all female); group 2, 38 children (36 female and 2 male). Urinary levels of MMP9 and TIMP1 were significantly higher in group 1 than in group 2 (p=0.037 and 0.022 respectively). For comparison of groups 1 and 2, the cut-off values were measured as 75.5 ng/mL (sensitivity 62.5%, specificity 71.1%, positive predictive value, PPV, 48%, negative predictive value, NPV, 82%), 16.1 ng/mL (sensitivity 75%, specificity 55.3%, PPV 41%, NPV 84%), and 1310.7 ng/mL (sensitivity 75% specificity 60.5%, PPV 44%, NPV 85%) for MMP9, TIMP1, and MMP9×TIMP1 levels, respectively. Evaluation of urinary MMP9 and TIMP1 levels may help to identify children with APN who are at risk of developing renal scarring.

  8. MMP3 and TIMP2 gene variants as predisposing factors for Achilles tendon pathologies: Attempted replication study in a British case-control cohort.

    PubMed

    El Khoury, Louis; Ribbans, William J; Raleigh, Stuart M

    2016-09-01

    Variants within the MMP3 (rs679620) and TIMP2 (rs4789932) genes have been associated with the risk of Achilles tendon pathology (ATP) in populations from South Africa and Australia. This study aimed to determine whether these variants were associated with the risk of ATP in British Caucasians. We recruited 118 cases with ATP, including a subset of 25 individuals with Achilles tendon rupture (RUP) and 131 controls. DNA samples were isolated from saliva and genotyped using qPCR. For the TIMP2 rs4789932 variant we found a significant (p = 0.038) difference in the genotype distribution frequency between males with ATP (CC, 39.4%; CT, 43.7%; TT, 16.9%) compared to male controls (CC, 20.7%; CT, 59.8%; TT, 19.5%). We also observed a difference in the TIMP2 rs4789932 genotype distribution between males with rupture compared to male controls (p = 0.038). The MMP3 rs679620 GG genotype was found to be overrepresented in the Achilles tendon rupture (RUP) group (AA, 24.0%; AG, 32.0%; GG, 44.0%) compared to controls (AA, 26.7%; AG, 54.2%; GG, 19.1%). In conclusion, the CT genotype of the TIMP2 rs4789932 variant was associated with lower risk of ATP in males. Furthermore, while we revealed differences for both variants in genotype distribution between the RUP and control groups, the sample size of the RUP group was small and confirmation would be required in additional cohorts. Finally, although both the TIMP2 rs4789932 and MMP3 rs679620 variants tentatively associated with ATP, there were differences in the direction of association compared to earlier work.

  9. Cryoplasty for Canine Iliac Artery Stenosis and its Impact on Expression of TIMP-2 and MMP-2.

    PubMed

    Wu, Zhengzhong; Zang, Shengbing; Liu, Wenwen; Jiang, Na; Yang, Weizhu

    2015-01-01

    This study was performed to observe the effects of cryoplasty on canine iliac artery stenosis and the expression of tissue inhibition of matrix metalloproteinase 2 (TIMP-2) and matrix metalloproteinase 2 (MMP-2). We produced a reliable canine model to mimic the atherosclerotic stenosis in the iliac artery by suturing the artery followed by vessel ligation to create an injury to intimal and medial walls. Sixteen mongrel dogs with iliac artery stenosis were randomized to conventional balloon angioplasty (n = 8) or cryoplasty (n = 8). Four weeks posttreatment, the cryoplasty group with less collagen fibers and smooth muscle demonstrated significantly larger luminal diameter of iliac artery compared to the balloon angioplasty group (P < .001). Expression of TIMP-2 significantly increased and expression of MMP-2 significantly reduced in iliac artery of the cryoplasty group compared to conventional balloon angioplasty. Our study suggests cryoplasty might increase the expression of TIMP-2 and decrease the expression of MMP-2, thereby inhibiting vascular hyperplasia and collagen fibers synthesis of the stenotic vessels. © The Author(s) 2015.

  10. Redox regulation of MMP-3/TIMP-1 ratio in intestinal myofibroblasts: effect of N-acetylcysteine and curcumin.

    PubMed

    Fontani, Filippo; Marcucci, Tommaso; Picariello, Lucia; Tonelli, Francesco; Vincenzini, Maria Teresa; Iantomasi, Teresa

    2014-04-15

    Matrix metalloproteinases (MMPs) play a critical role in inflammation and ulcerations in gut of Crohn׳s disease (CD) patients. Intestinal subepithelial myofibroblasts (ISEMFs) secrete MMPs in response to inflammatory stimuli. Previous data showed in CD-ISEMFs increased oxidative status. The aim of this study was to investigate the role of ISEMFs in modulating the production of MMP-3 and TIMP-1, an inhibitor of MMPs activity. A relationship among oxidative stress, activity of antioxidants and MMP-3/TIMP-1 was also studied. ISEMFs isolated from CD patient colon and human colonic cell line of myofibroblasts (18Co) were used. Oxidative state was modulated by buthionine sulfoximine, an inhibitor of glutathione (GSH) synthesis, and N-acetylcysteine (NAC), GSH precursor. An up-regulation of MMP-3 due to increased oxidative state was found in CD-ISEMFs. Stimulation by tumor necrosis factor (TNF)α increased further MMP-3 levels. On the contrary, no change in TIMP-1 production was determined. NAC treatment decreased MMP-3 production in CD-ISMEFs and removed the enhancement due to TNFα. Similar effects were observed in 18Co cells treated with curcumin, antioxidant with anti-inflammatory properties. The involvement of MAPKs on MMP-3 redox regulation was also shown. This study demonstrates the involvement of ISEMFs and high oxidative state in the increased MMP-3 production found in intestinal mucosa of CD patients. NAC and curcumin normalize MMP-3 levels mainly in TNFα stimulated cells. A modulation of MMP-3 production by NAC and curcumin due to their direct action on transcriptional factors has been also suggested. Therefore, they could have a therapeutic use for the prevention and treatment of fistulaes in CD. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The effects of cyclosporin on the collagenolytic activity of gingival fibroblasts.

    PubMed

    Hyland, Paula L; Traynor, Patrick S; Myrillas, Theofilos T; Marley, John J; Linden, Gerard J; Winter, Paul; Leadbetter, Nicola; Cawston, Timothy E; Irwin, Chris R

    2003-04-01

    The immunosuppressive agent cyclosporin is associated with a number of major side-effects including the development of gingival overgrowth. Although the pathogenesis of cyclosporin-induced gingival overgrowth remains unclear, it has been suggested that the finely regulated balance between extracellular matrix synthesis and degradation may be disturbed, resulting in an accumulation of excess connective tissue components within the gingival tissue. The aim of this study was to investigate the effect of cyclosporin on matrix metalloproteinases (MMP)-1 and tissue inhibitors of MMP (TIMP)-1 expression at the mRNA, protein, and enzyme activity levels. Gingival fibroblasts were grown to confluence and then cultured in serum-free medium supplemented with cyclosporin over the concentration range of 0 to 2000 ng/ml. MMP-1 and TIMP-1 mRNA levels in cultures were determined by reverse transcription polymerase chain reaction (RT-PCR), protein levels in whole conditioned medium were assessed by enzyme-linked immunosorbent assay (ELISA), and collagenolytic activity determined using a 3H-acetylated type I collagen degradation assay. Tissue mRNA levels in normal and overgrown gingiva were also determined by RT-PCR. Results indicated that cyclosporin inhibited MMP-1 expression at both the mRNA and protein level in a dose- and time-dependent fashion. The effects on TIMP-1 expression were less clear, cyclosporin inhibiting mRNA expression, but having no effect on TIMP-1 protein levels at any concentration studied. Addition of the drug resulted in reduced levels of collagenolytic activity in the culture medium. MMP-1 mRNA expression was significantly reduced in overgrown compared to normal tissue. These results add support to the hypothesis that the accumulation of collagen seen in gingival overgrowth can be explained by a cyclosporin-induced inhibition of collagenolytic activity within the gingival tissues.

  12. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    PubMed

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  13. Predicting motor outcome at preschool age for infants tested at 7, 30, 60, and 90 days after term age using the Test of Infant Motor Performance.

    PubMed

    Kolobe, Thubi H A; Bulanda, Michelle; Susman, Louisa

    2004-12-01

    Accurate and diagnostic measures are central to early identification and intervention with infants who are at risk for developmental delays or disabilities. The purpose of this study was to examine (1) the ability of infants' Test of Infant Motor Performance (TIMP) scores at 7, 30, 60 and 90 days after term age to predict motor development at preschool age and (2) the contribution of the home environment and medical risk to the prediction. Sixty-one children from an original cohort of 90 infants who were assessed weekly with the TIMP, between 34 weeks gestational age and 4 months after term age, participated in this follow-up study. The Peabody Developmental Motor Scales, 2nd edition (PDMS-2), were administered to the children at the mean age of 57 months (SD=4.8 months). The quality and quantity of the home environment also were assessed at this age using the Early Childhood Home Observation for Measurement of the Environment (EC-HOME). Pearson product moment correlation coefficients, multiple regression, sensitivity and specificity, and positive and negative predictive values were used to assess the relationship among the TIMP, HOME, medical risk, and PDMS-2 scores. The correlation coefficients between the TIMP and PDMS-2 scores were statistically significant for all ages except at 7 days. The highest correlation coefficient was at 90 days (r=.69, P=.001). The TIMP scores at 30, 60, and 90 days after term; medical risk scores; and EC-HOME scores explained 24%, 23%, and 52% of the variance in the PDMS-2 scores, respectively. The TIMP score at 90 days after term was the most significant contributor to the prediction. The TIMP cutoff score of -0.5 standard deviation below the mean correctly classified 80%, 79%, and 87% of the children using a cutoff score of -2 standard deviations on the PDMS-2 at 30, 60, and 90 days, respectively. The results compare favorably with those of developmental tests administered to infants at 6 months of age or older. These findings underscore the need for age-specific test values and developmental surveillance of infants before making referrals.

  14. [The cardioprotective effects of ischemic postconditioning on myocardial interstitium following ischemic/reperfusion in rats].

    PubMed

    Lu, Yan-Zhen; Wang, Jia; Zhang, Cui-Ying; Song, Juan; Li, Bao-Hong; Song, Xiao-Liang

    2014-09-01

    To investigate the effects of ischemic postconditioning (IPTC) on the changes of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) protein and mRNA levels in rat heart subjected to ischemia/reperfusion, and explore the mechanism by which IPTC protects myocardial interstitium following ischemic/reperfusion (I/R). Twenty four healthy male SD rats were randomly divided into 3 groups (n = 8): sham control (SC) group, I/R group and IPTC group. The parameters of left ventricular function including left ventricular systolic pressure (LVSP) and its derivate (±dp/dt) were measured; the amount of myocardial collagen contents was determined by hydroxyproline quantification; the plasma activity of creatine kinase (CK) and lactate dehydrogenase (LDH) was detected; the protien levels of MMP-2 and TIMP-2 was measured by Western blot and the mRNA levels of MMP-2 and TIMP-2 was detected by real-time PCR. The myocardial collagen contents, left ventricular function and the protein and mRNA levels of TIMP-2 were significantly decreased in I/R group compared with those of SC group, wherease the activities of CK and LDH in the plasma and the protein and mRNA levels of MMP-2 were significantly enhanced in I/R group when compared to SC group. Compared with I/R group, the myocardial collagen contents, left ventricular function and the protein and mRNA levels of TIMP-2 were increased in IPTC group, the activities of CK and LDH in the plasma and the protein and mRNA level of MMP-2 were decreased in IPTC group. These findings indicate that IPTC has protective effects on myocardial interstitial after the myocardial ischemia/reperfusion injury, and IPTC may exert its cardioprotectve effect via inhibiting MMP-2 and enhancing TIMP-2 expression in cardiac muscle.

  15. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina.

    PubMed

    Kim, Hwa Sun; Vargas, Andrew; Eom, Yun Sung; Li, Justin; Yamamoto, Kyra L; Craft, Cheryl Mae; Lee, Eun-Jin

    2018-01-01

    Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1 works in the mouse animal model of RP.

  16. Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis.

    PubMed

    Lorente, Leonardo; Martín, María M; Labarta, Lorenzo; Díaz, César; Solé-Violán, Jordi; Blanquer, José; Orbe, Josune; Rodríguez, José A; Jiménez, Alejandro; Borreguero-León, Juan M; Belmonte, Felipe; Medina, Juan C; Llimiñana, Maria C; Ferrer-Agüero, José M; Ferreres, José; Mora, María L; Lubillo, Santiago; Sánchez, Manuel; Barrios, Ysamar; Sierra, Antonio; Páramo, José A

    2009-01-01

    Matrix metalloproteinases (MMPs) play a role in infectious diseases through extracellular matrix (ECM) degradation, which favors the migration of immune cells from the bloodstream to sites of inflammation. Although higher levels of MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) have been found in small series of patients with sepsis, MMP-10 levels have not been studied in this setting. The objective of this study was to determine the predictive value of MMP-9, MMP-10, and TIMP-1 on clinical severity and mortality in a large series of patients with severe sepsis. This was a multicenter, observational, and prospective study carried out in six Spanish Intensive Care Units. We included 192 (125 surviving and 67 nonsurviving) patients with severe sepsis and 50 age- and sex-matched healthy controls in the study. Serum levels of MMP-9, MMP-10, TIMP-1, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-10 were measured in patients with severe sepsis at the time of diagnosis and in healthy controls. Sepsis patients had higher levels of MMP-10 and TIMP-1, higher MMP-10/TIMP-1 ratios, and lower MMP-9/TIMP-1 ratios than did healthy controls (P < 0.001). An association was found between MMP-9, MMP-10, TIMP-1, and MMP-9/TIMP-1 ratios and parameters of sepsis severity, assessed by the SOFA score, the APACHE-II score, lactic acid, platelet count, and markers of coagulopathy. Nonsurviving sepsis patients had lower levels of MMP-9 (P = 0.037), higher levels of TIMP-1 (P < 0.001), lower MMP-9/TIMP-1 ratio (P = 0.003), higher levels of IL-10 (P < 0.001), and lower TNF-alpha/IL-10 ratio than did surviving patients. An association was found between MMP-9, MMP-10, and TIMP-1 levels, and TNF-alpha and IL-10 levels. The risk of death in sepsis patients with TIMP-1 values greater than 531 ng/ml was 80% higher than that in patients with lower values (RR = 1.80; 95% CI = 1.13 to 2.87;P = 0.01; sensitivity = 0.73; specificity = 0.45). The novel findings of our study on patients with severe sepsis (to our knowledge, the largest series reporting data about MMP levels in sepsis) are that reduced MMP-9/TIMP-1 ratios and increased MMP-10 levels may be of great pathophysiologic significance in terms of severity and mortality, and that TIMP-1 levels may represent a biomarker to predict the clinical outcome of patients with sepsis.

  17. Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis

    PubMed Central

    2009-01-01

    Introduction Matrix metalloproteinases (MMPs) play a role in infectious diseases through extracellular matrix (ECM) degradation, which favors the migration of immune cells from the bloodstream to sites of inflammation. Although higher levels of MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) have been found in small series of patients with sepsis, MMP-10 levels have not been studied in this setting. The objective of this study was to determine the predictive value of MMP-9, MMP-10, and TIMP-1 on clinical severity and mortality in a large series of patients with severe sepsis. Methods This was a multicenter, observational, and prospective study carried out in six Spanish Intensive Care Units. We included 192 (125 surviving and 67 nonsurviving) patients with severe sepsis and 50 age- and sex-matched healthy controls in the study. Serum levels of MMP-9, MMP-10, TIMP-1, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-10 were measured in patients with severe sepsis at the time of diagnosis and in healthy controls. Results Sepsis patients had higher levels of MMP-10 and TIMP-1, higher MMP-10/TIMP-1 ratios, and lower MMP-9/TIMP-1 ratios than did healthy controls (P < 0.001). An association was found between MMP-9, MMP-10, TIMP-1, and MMP-9/TIMP-1 ratios and parameters of sepsis severity, assessed by the SOFA score, the APACHE-II score, lactic acid, platelet count, and markers of coagulopathy. Nonsurviving sepsis patients had lower levels of MMP-9 (P = 0.037), higher levels of TIMP-1 (P < 0.001), lower MMP-9/TIMP-1 ratio (P = 0.003), higher levels of IL-10 (P < 0.001), and lower TNF-α/IL-10 ratio than did surviving patients. An association was found between MMP-9, MMP-10, and TIMP-1 levels, and TNF-α and IL-10 levels. The risk of death in sepsis patients with TIMP-1 values greater than 531 ng/ml was 80% higher than that in patients with lower values (RR = 1.80; 95% CI = 1.13 to 2.87;P = 0.01; sensitivity = 0.73; specificity = 0.45). Conclusions The novel findings of our study on patients with severe sepsis (to our knowledge, the largest series reporting data about MMP levels in sepsis) are that reduced MMP-9/TIMP-1 ratios and increased MMP-10 levels may be of great pathophysiologic significance in terms of severity and mortality, and that TIMP-1 levels may represent a biomarker to predict the clinical outcome of patients with sepsis. PMID:19799791

  18. Calcifying Cystic Odontogenic Tumour: immunohistochemical expression of matrix metalloproteinases, their inhibitors (TIMPs and RECK) and inducer (EMMPRIN).

    PubMed

    Prosdócimi, Fábio C; Rodini, Camila O; Sogayar, Mari C; Sousa, Suzana C O M; Xavier, Flávia C A; Paiva, Katiúcia B S

    2014-08-01

    Calcifying cyst odontogenic tumour (CCOT) is a rare benign cystic neoplasm of odontogenic origin. MMPs are responsible for extracellular matrix remodelling and, together their inhibitors and inducer, determinate the level of its turnover in pathological processes, leading to an auspicious microenvironment for tumour development. Thus, our goal was to evaluate matrix metalloproteinases (MMPs-2, -7, -9 and -14), their inhibitors (TIMPs-2, -3, -4 and RECK) and its inductor (EMMPRIN) expression in CCOT. We used 18 cases of CCOT submitted to immunolocalization of the target proteins and analysed in both neoplastic odontogenic epithelial and stromal compartments. All molecules evaluated were expressed in both compartments in CCOT. In epithelial layer, immunostaining for MMPs, TIMPs, RECK and EMMPRIN was found in basal, suprabasal spindle and stellate cells surrounding ghost cells and ghost cells themselves, except for MMP-9 and TIMP-2 which were only expressed by ghost cells. In stromal compartment, extracellular matrix, mesenchymal (MC) and endothelial cells (EC) were positive for MMP-2, -7, TIMP-3 and -4, while MMP-9, TIMP-2 and RECK were positive only in MC and MMP-14 only in EC. Statistical significance difference was found between both compartments for MMP-9 (P < 0.001), RECK (P = 0.004) and EMMPRIN (P < 0.001), being more expressed in epithelium than in stroma. Positive correlation between both stromal EMMPRIN and RECK expression was found (R = 0.661, P = 0.003). We concluded that these proteins/enzymes are differentially expressed in both epithelium and stroma of CCOT, suggesting an imbalance between MMPs and their inducer/inhibitors may contribute on the tumour behaviour. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Application of HPLC to study the kinetics of a branched bi-enzyme system consisting of hypoxanthine-guanine phosphoribosyltransferase and xanthine oxidase--an important biochemical system to evaluate the efficiency of the anticancer drug 6-mercaptopurine in ALL cell line.

    PubMed

    Kalra, Sukirti; Paul, Manash K; Balaram, Hemalatha; Mukhopadhyay, Anup Kumar

    2007-05-01

    The thiopurine antimetabolite 6-mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). 6MP is mainly catabolized by both hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine oxidase (XOD) to form thioinosinic monophosphate (TIMP) (therapeutically active metabolite) and 6-thiouric acid (6TUA) (inactive metabolite), respectively. The activity of both the enzymes varies among ALL patients governing the active and the inactive metabolite profile within the immature lymphocytes. Therefore, an attempt was made to study the kinetic nature of the branched bi-enzyme system acting on 6MP and to quantitate TIMP and 6TUA formed when the two enzymes are present in equal and variable ratios. The quantification of the branched kinetics using spectrophotometric method presents problem due to the closely apposed lambda(max) of the substrates and products. Hence, employing an HPLC method, the quantification of the products was done with the progress of time. The limit of quantification (LOQ) of substrate was found to be 10nM and for products as 50 nM. The limit of detection (LOD) was found to be 1 nM for the substrate and the products. The method exhibited linearity in the range of 0.01-100 microM for 6MP and 0.05-100 microM for both 6TUA and TIMP. The amount of TIMP formed was higher than that of 6TUA in the bi-enzyme system when both the enzymes were present in equivalent enzymatic ratio. It was further found that enzymatic ratios play an important role in determining the amounts of TIMP and 6TUA. This method was further validated using actively growing T-ALL cell line (Jurkat) to study the branched kinetics, wherein it was observed that treatment of 50 microM 6MP led to the generation of 12 microM TIMP and 0.8 microM 6TUA in 6 h at 37 degrees C.

  20. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Chowdhury, Priyanka; Ghosh, Utpal

    2016-09-22

    Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was the predominant mode of cell death and no autophagic death was observed. Our study demonstrates for the first time that PARP-1 inhibition in combination with carbon ion synergistically decreases MMPs activity along with overall increase of TIMPs. These data open up the possibilities of improvement of carbon ion therapy with PARP-1 inhibition to control highly metastatic cancers.

  1. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice

    NASA Technical Reports Server (NTRS)

    Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.

    2000-01-01

    Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.

  2. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling

    PubMed Central

    2011-01-01

    Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life. PMID:21481241

  3. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with conjugated linoleic acid during gestation and suckling.

    PubMed

    Selga, Elisabet; Pérez-Cano, Francisco J; Franch, Angels; Ramírez-Santana, Carolina; Rivero, Montserrat; Ciudad, Carlos J; Castellote, Cristina; Noé, Véronique

    2011-04-11

    Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip(®) Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life.

  4. Tissue Inhibitor of Metalloproteinase 1 Expression Associated with Gene Demethylation Confers Anoikis Resistance in Early Phases of Melanocyte Malignant Transformation1

    PubMed Central

    Ricca, Tatiana I; Liang, Gangning; Suenaga, Ana Paula M; Han, Sang W; Jones, Peter A; Jasiulionis, Miriam G

    2009-01-01

    Although anoikis resistance has been considered a hallmark of malignant phenotype, the causal relation between neoplastic transformation and anchorage-independent growth remains undefined. We developed an experimental model of murine melanocyte malignant transformation, where a melanocyte lineage (melan-a) was submitted to sequential cycles of anchorage blockade, resulting in progressive morphologic alterations, and malignant transformation. Throughout this process, cells corresponding to premalignant melanocytes and melanoma cell lines were established and show progressive anoikis resistance and increased expression of Timp1. In melan-a melanocytes, Timp1 expression is suppressed by DNA methylation as indicated by its reexpression after 5-aza-2′-deoxycytidine treatment. Methylation-sensitive single-nucleotide primer extension analysis showed increased demethylation in Timp1 in parallel with its expression along malignant transformation. Interestingly, TIMP1 expression has already been related with negative prognosis in some human cancers. Although described as a MMP inhibitor, this protein has been associated with apoptosis resistance in different cell types. Melan-a cells overexpressing Timp1 showed increased survival in suspension but were unable to form tumors in vivo, whereas Timp1-overexpressing melanoma cells showed reduced latency time for tumor appearance and increased metastatic potential. Here, we demonstrated for the first time an increment in Timp1 expression since the early phases of melanocyte malignant transformation, associated to a progressive gene demethylation, which confers anoikis resistance. In this way, Timp1 might be considered as a valued marker for melanocyte malignant transformation. PMID:19956395

  5. Expression of the membrane mucins MUC4 and MUC15, potential markers of malignancy and prognosis, in papillary thyroid carcinoma.

    PubMed

    Nam, Kee-Hyun; Noh, Tae-Woong; Chung, So-Hyang; Lee, So Hee; Lee, Mi Kyung; Hong, Soon Won; Chung, Woong Youn; Lee, Eun Jig; Park, Cheong Soo

    2011-07-01

    Papillary thyroid carcinoma (PTC) is the most frequent carcinoma of the thyroid gland and has a relatively good prognosis. However, it is important to identify PTC characteristics that indicate high risk for recurrence and metastasis. To date, overexpression of the membrane mucin, MUC1, has been investigated as a key molecular event in the pathogenesis of aggressive PTC. However, other membrane-associated mucins, matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-13 (TIMP-3), have not been studied yet. The aim of this study was to evaluate the expression levels of MUC4, MUC15, MMP-13, and TIMP-3 and their prognostic significance in PTC. We analyzed MUC4, MUC15, MMP-13, and TIMP-3 expression in 10 PTC and 10 normal thyroid tissue samples using real-time reverse transcription-polymerase chain reaction. Tissue array blocks were obtained from 98 PTC cases. Tumor regions and nontumor regions were analyzed in tissue array blocks and immunohistochemistry studies were conducted using sectioned slides. Semiquantitative scores were correlated with clinicopathological factors of 98 PTC patients. MUC4- and MUC15-specific mRNA was increased by 78-fold and 4.75-fold, respectively, in PTC samples compared with normal thyroid tissues. MMP-13 and TIMP-3 gene expression levels were decreased by approximately 0.39-fold and 0.53-fold, respectively. By immunohistochemistry, MUC4 and MUC15 expression levels were increased in PTC samples compared with normal thyroid tissues (p < 0.001). MMP-13 and TIMP-3 expression levels were decreased in PTC samples compared with normal thyroid tissues (p < 0.001). High MUC4 scores were significantly correlated with small tumor size and papillary thyroid microcarcinoma subtype. High MUC15 scores were significantly correlated with age (≥45 years), distant metastasis, and multifocality. MUC4 and MUC15 were overexpressed in PTC, and high MUC15 expression was associated with high malignant potential. MUC15 may serve as a prognostic marker and potential novel therapeutic target in PTC.

  6. [Analysis of correlation between pulmonary function and expression levels of matrix metalloproteinases-9 and tissue inhibitor of metalloproteinase-1 among toluene diisocyanate exposed workers].

    PubMed

    Miao, P P; Meng, T; Jia, Q; Niu, Y; Ye, M; Ji, Y Q; Ju, R; Chen, X L; Shao, H; Zheng, Y X; Dai, Y F

    2016-05-01

    To investigate the effect of occupational toluene diisocyanate(TDI) exposure on matrix metalloproteinases-9 (MMP-9) and tissue inhibitor of metalloproteinase-1(TIMP-1), and analysis of the correlation of MMP-9,TIMP-1,MMP-9/TIMP-1 and lung function. In October 2014, based on cluster sampling, we conducted a cross-sectional study in a TDI production factory located in China's western region. 61 exposed workers were recruited from workers engaged in packing, operating and checking. Based on different levels of the external exposure, the packers were classified as high exposed group, while operators and checkers as low exposed group. 58 factory managers, matching age and agent, were selected as controls, having same work intense and not contacting the TDI or other allergens. The questionnaire surveys were used to obtain the agent, age, work age, smoking and drinking, personal and family allergic history, occupational history, and the recent health conditions. The levels of MMP-9 and TIMP-1 in serum of subjects were determind by ELISA. The time weighted average concentrations (8h-TWA) were used to describe the levels of TDI air exposure in working environment. Spearman correlation assay was used to investigate the correlation of MMP-9, TIMP-1, MMP-9/TIMP-1 and lung function, exposure time. 8-hour TWA means of TDI air levels in exposed group, packers, operators and checkers were 0.39, 0.76, 0.25 mg/m(3), respectively . According to the external exposure concentration, the packers were classified as high exposed group, and the operators and checkers were classified as low exposed group. In controls, low exposed group and high exposed group, the levels of MMP-9, respectively, were (807.21±347.70),(586.91±317.50),(388.94±312.01) ng/ml (χ(2)=16.69, P<0.001), respectively, and the P50(P25-P75) of MMP-9/TIMP-1 were 4.67(2.87-6.68), 2.3(1.44-3.48), 1.11(0.59-1.48) (χ(2)=39.42, P<0.001), respectively, and the concentrations of TIMP-1, were (173.44±72.67), (236.12±51.98), (302.81±44.39) ng/ml (F=20.09, P< 0.001), respectively. The levels P50(P25-P75) of FVC, FEV1.0 and FEV1.0/FVC in exposed group were, 92.8% (86.0%-101.8%), 85.5%(76.7%-92.8%), 112.5(108.2-118.5), respectively, which were lower than that in control group (124.3%(107.9%-144.2%), 142.7%(119.1%-155.7%), 129.2(123.5-134))(Z values were 7.70, 8.97, 8.62, and all P<0.001). Spearman rank correlation analysis showed that levels of MMP-9 were positively associated with FEV1.0, and FEV1.0/FVC (r values were 0.27, 0.25, respectively, all P<0.05), and The levels of TIMP-1 were negatively associated with FVC, FEV1.0, and FEV1.0/FVC (r valuse were -0.33, -0.39, -0.39, all P<0.05).The levels of MMP-9 were negatively correlated with exposure time(r=-0.26, P=0.040). The positive correlations of MMP-9/TIMP-1 with FVC, FEV1.0, and FEV1.0/FVC were also found (r valuse were 0.34, 0.44, 0.40, all P<0.05). TDI exposure could induce the downs of MMP-9 and MMP-9/TIMP-1 associated with lung functions. The MMP-9 and MMP-9/TIMP-1,in a way, could reflect the respiratory inflammatory injury caused by TDI exposure.

  7. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants.

    PubMed

    Juica, Natalia E; Rodas, Paula I; Solar, Paula; Borda, Paula; Vargas, Renato; Muñoz, Cristobal; Paredes, Rodolfo; Christodoulides, Myron; Velasquez, Luis A

    2017-01-01

    Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase ( p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection.

  8. Anti-fibrotic effect of Cordyceps sinensis polysaccharide: Inhibiting HSC activation, TGF-β1/Smad signalling, MMPs and TIMPs.

    PubMed

    Peng, Jinghua; Li, Xuemei; Feng, Qin; Chen, Liang; Xu, Lili; Hu, Yiyang

    2013-06-01

    Cordyceps sinensis has been used to treat liver disease in traditional Chinese medicine for thousands of years. Polysaccharide extracted from cultured Cordyceps sinensis mycelia (CS-PS) is the major active components of cordyceps sinensis with anti-liver injury effects. In the present study, the effects of CS-PS on hepatic stellate cell (HSC) activation, transforming growth factor-β1 (TGF-β1)/Smad pathway, as well as matrix metalloproteinase (MMP) 2, MMP9 and tissue inhibitor of metalloproteinase (TIMP) 1, TIMP2, were investigated in liver fibrosis in rats induced by carbon tetrachloride (CCl4). Colchicine was used as a positive control. The effect of CS-PS inhibition liver injury and fibrosis was confirmed by decreasing serum alanine aminotransferase, aspartate aminotransferase, total bilirubin, hepatic hydroxyproline and increasing serum albumin, as well as alleviation of histological changes, which was comparable to that of colchicine. With CS-PS treatment, hepatic α-smooth muscle actin, TGF-β1, TGF-β1 receptor (TβR)-I, TβR-II, p-Smad2, p-Smad3 and TIMP2 proteins expression were down-regulated comparing to that in CCl4 group. The activities of MMP2 and MMP9 in liver tissue were also inhibited in CS-PS-treated group. It is indicated that the effects of CS-PS anti-liver fibrosis are probably associated with the inhibition on HSC activation, TGF-β1/Smads signalling pathway, as well as MMP2, MMP9 activity and TIMP2 expression.

  9. [The administration of interleukin-1beta during early postnatal develop ment impairs FGF2, but not TIMP1, mRNA expression in brain structures of adult rats].

    PubMed

    Trofimov, A N; Zubareva, O E; Shvarts, A P; Ishchenko, A M; Klimenko, V M

    2014-09-01

    According to the Neurodevelopmental hypothesis, the long-lasting cognitive deficit in schizophrenia and other types of neuropathology may occur by injurious factors, such as hypoxia, traumas, infections that take place during pre- and postnatal development, at least at early stages. These pathological conditions are often associated with the high production of pro-inflammatory cytokine interleukin-1B (IL-1B) by the cells of immune and nervous systems. We investigated the expression of genes involved in the neuroplastic regulation (Fgf2 and Timp2) in medial prefrontal cortex and dorsal and ventral regions of hippocampus of adult rats that were treated with IL-1beta between P15 and P21. The learning impairment in IL-1beta-treated rats is accompanied by lower FGF-2 mRNA levels in medial prefrontal cortex and ventral (not dorsal) hippocampus, but TIMP-1 was not affected. No differences in TIMP-1 and FGF-2 mRNA expressions were observed in untrained IL-1beta-treated when compared to control rats.

  10. Identification of patients with chronic obstructive pulmonary disease (COPD) by measurement of plasma biomarkers.

    PubMed

    Shaker, Saher B; von Wachenfeldt, Karin A; Larsson, Susanne; Mile, Iréne; Persdotter, Sofia; Dahlbäck, Magnus; Broberg, Per; Stoel, Berend; Bach, Karen S; Hestad, Marianne; Fehniger, Thomas E; Dirksen, Asger

    2008-01-01

    Inflammation is an important constituent of the pathology of chronic obstructive pulmonary disease (COPD), leading to alveolar destruction and airway remodelling. The aim of this study was to assess the difference in plasma biomarkers of inflammation between asymptomatic smokers and patients with COPD. We used commercially available enzyme-linked immunosorbent assay kits to measure the plasma levels of tumour necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9), monocyte chemotactic protein-1 (MCP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and tissue inhibitor of metalloproteinase-2 (TIMP-2) on two occasions with a 2-week interval in patients with COPD (n = 20), asymptomatic smokers (n = 10) and healthy lifelong non-smokers (n = 10). The participants were characterised clinically, physiologically and by quantitative computed tomography by measuring the relative area of emphysema below -910 Hounsfield units (RA-910). The results of the biomarker measurements on the two occasions were highly reproducible. Patients with COPD had significantly higher plasma levels of IL-8 (P = 0.004) and significantly lower levels of TIMP-1 (P = 0.02) than smokers and non-smokers. There was no statistically significant difference between the three groups in the level of TNF-alpha, MMP-9, MCP-1 and TIMP-2. The IL-8/TIMP-1 ratio correlated significantly with the degree of airway obstruction measured as forced expiratory volume in 1 second (FEV(1)) % predicted (r = -0.47, P < 0.01); with the diffusion capacity (r = -0.41, P < 0.01); and with the grade of emphysema measured as RA-910 (r = 0.39, P = 0.01). These findings suggest that the measurement of plasma biomarkers, such as IL-8/TIMP-1, may aid to discriminate patients with COPD from smokers at lower risk of developing COPD.

  11. C-type natriuretic peptide suppresses mesangial proliferation and matrix expression via a MMPs/TIMPs-independent pathway in vitro.

    PubMed

    Huang, Bao Yu; Hu, Peng; Zhang, Dong Dong; Jiang, Guang Mei; Liu, Si Yan; Xu, Yao; Wu, Yang Fang; Xia, Xun; Wang, Ya

    2017-08-01

    C-type natriuretic peptide (CNP) acts mainly in a local, paracrine fashion to regulate vascular tone and cell proliferation. Although several in vivo studies have demonstrated that CNP exerts an inhibitory effect on mesangial matrix generation, a limited number of reports exist about the anti-extracellular matrix (ECM) accumulation effect of CNP and its underlying mechanisms in mesangial cells (MCs) in vitro. In this study, human MCs were incubated in serum-containing medium in the absence or presence of CNP (0, 10 and 100 pM) for 24, 48 and 72 h, respectively. CNP administration significantly suppresses MCs proliferation and collagen (Col)-IV expression in a time- and dose-dependent manner. In addition, the study presented herein was designed as a first demonstration of the regulative effects of CNP on the metabolisms of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in MCs in vitro, and found that: (1) CNP administration significantly decreased the secretion and expression of MMP-2 and MMP-9 in the cultured MCs; (2) the secretion and expression of TIMP-1 progressively elevated after treatment with CNP for 24 and 48 h, whereas declined at later time point; (3) CNP expression was negatively correlated with MMP-2 and MMP-9 expression; (4) the balance of MMPs/TIMPs was shifted toward the reduction in MMP-2 and MMP-9 activity and/or the increment in TIMP-1 expression, which could not account for the down-regulation of Col-IV expression in CNP-treated MCs. In conclusion, CNP suppresses mesangial proliferation and ECM expression via a MMPs/TIMPs-independent pathway in vitro.

  12. Peripheral immune factors are elevated in women with current or recent alcohol dependence and associated with altered mood and memory.

    PubMed

    Wilhelm, Clare J; Fuller, Bret E; Huckans, Marilyn; Loftis, Jennifer M

    2017-07-01

    The adverse effects of alcohol on brain function result, in part, from inflammatory processes. The sex-specific neuropsychiatric consequences and inflammatory status of active alcohol dependence and early remission from dependence have not been investigated. Neuropsychiatric symptoms, inflammatory factors, and liver enzymes were compared in a prospective cohort study of adults with (n=51) or without (n=31) a current or recent history of alcohol dependence. Neuropsychiatric profiles were similar in adults with current or recent alcohol dependence regardless of sex. In male and female participants measures of depression (female p<0.05, male p<0.001), anxiety (female p<0.001, male p<0.001), and memory complaints (female p<0.001, male p<0.05) were elevated, relative to non-dependent controls. Significant sex×alcohol dependence history interactions were observed for plasma levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) and brain derived neurotrophic factor (BDNF), with women in the alcohol dependent group exhibiting increased levels of both analytes (p<0.05) relative to controls. Positive correlations between TIMP-1 levels and measures of depression (r 2 =0.35, p<0.01), anxiety (r 2 =0.24, p<0.05) and memory complaints (r 2 =0.44, p<0.01) were found in female, but not male, participants. Though neuropsychiatric profiles were similar for men and women with current or recent alcohol dependence, plasma factors associated with increases in depression, anxiety, and memory impairment differed and support the need to tailor treatments based on sex. Published by Elsevier B.V.

  13. Dietary Zinc Modulates Matrix Metalloproteinases in Traumatic Brain Injury.

    PubMed

    Scrimgeour, Angus; Carrigan, Christopher; Condlin, Michelle Lynn; Urso, Maria L; van den Berg, Roland M; van Helden, Herman P M; Montain, Scott J; Joosen, Marloes J A

    2018-05-18

    Animal models of mild traumatic brain injury (mTBI) provide opportunity to examine the extent to which dietary interventions can be used to improve recovery after injury. Animal studies also suggest that matrix metalloproteinases (MMPs) play a role in tissue remodeling post-TBI. Because dietary zinc (Zn) improved recovery in non-blast mTBI models, and the MMPs are Zn-requiring enzymes, we evaluated the effects of low- and adequate Zn diets on MMP expression and behavioral responses, following exposure to a single blast. MMP mRNA expression in soleus muscle and frontal cortex tissues were quantified at 48h and 14d post-blast. In muscle, blast resulted in significant upregulation of MT-MMP, MMP-2, TIMP-1 and TIMP-2 at 48h post-injury in rats consuming adequate Zn diets (AdZn). At 14d post-blast, there were no blast- or dietary-effects observed on MMP levels in muscle, supporting the existence of a Zn-responsive, functional repair and remodeling mechanism. In contrast, blast resulted in a significant down-regulation of MT-MMP, TIMP-1 and TIMP-2, and a significant up-regulation of MMP-3 levels at 48h post-injury in cortex tissue; while at 14d post-blast, MT-MMP, MMP-2 and TIMP-2 were all down-regulated in response to blast, independent of diet, and TIMP-1 were significantly increased in rats fed AdZn diets despite the absence of elevated MMPs. Because the blast injuries occurred while animals were under general anesthesia, the increased immobility observed post-injury in rats consuming LoZn diets, suggest that blast mTBI can, in the absence of any psychological stressor, induce PTSD-related traits that are chronic, but responsive to diet. Taken together, our results support a relationship between marginally Zn-deficient status and a compromised regenerative response post-injury in muscle, likely through the MMP pathway. However, in neuronal tissue changes in MMP/TIMP levels following blast indicate a variable response to marginally Zn-deficient diets that may help explain compromised repair mechanism(s) previously associated with the systemic hypozincemia that develops in patients with TBI.

  14. Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury.

    PubMed

    Lorente, Leonardo; Martín, María M; López, Patricia; Ramos, Luis; Blanquer, José; Cáceres, Juan J; Solé-Violán, Jordi; Solera, Jorge; Cabrera, Judith; Argueso, Mónica; Ortiz, Raquel; Mora, María L; Lubillo, Santiago; Jiménez, Alejandro; Borreguero-León, Juan M; González, Agustín; Orbe, Josune; Rodríguez, José A; Páramo, José A

    2014-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients.

  15. Increased matrix metalloproteinases as possible cause of osseoarticular tissue destruction in long-term haemodialysis and beta 2-microglobulin amyloidosis.

    PubMed

    Ohashi, K; Kawai, R; Hara, M; Okada, Y; Tachibana, S; Ogura, Y

    1996-04-01

    Immunolocalization of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in periarticular tissues of beta 2-microglobulin amyloidosis patients was investigated. MMP-1 (interstitial collagenase) the most strongly expressed of the MMPs, was localized in the synovial lining cells, mesenchymal cells in granulation tissue and nodular amyloid deposits, and chondrocytes within areas of cartilage erosion. Expression of MMP-1 was correlated with the degree of macrophage infiltration and synovial cell hyperplasia, but it was not correlated with the degree of amyloid deposition or haemodialysis period. Expression of MMP-1 appeared more intense than that of TIMP-1 and TIMP-2 in highly inflammatory cases. MMP-2 was mildly expressed in the interstitial fibroblasts and MMP-3 was faintly stained in the extracellular matrix of the synovial membrane. MMP-9 (gelatinase B) was found to be strongly positive in the osteoclasts which increased in the progressing osteolytic lesion from the destructive arthropathy. These results suggest involvement of MMPs in inflammation with an imbalance between expression of MMPs and TIMPs being closely related to pathogenesis of the destructive arthropathy.

  16. Activation of the P2X₇ receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1.

    PubMed

    Murphy, Niamh; Lynch, Marina A

    2012-12-01

    The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B. © 2012 International Society for Neurochemistry.

  17. MMP3 and TIMP1 variants contribute to chronic periodontitis and may be implicated in disease progression.

    PubMed

    Letra, Ariadne; Silva, Renato M; Rylands, Ryan J; Silveira, Elcia M; de Souza, Ana P; Wendell, Steven K; Garlet, Gustavo P; Vieira, Alexandre R

    2012-08-01

    Matrix metalloproteinases (MMPs) play a key role in the tissue destruction characteristic of chronic periodontitis. The purpose of this study was to investigate the association of MMP and TIMP polymorphisms with chronic periodontitis in two populations. A total of 34 polymorphisms spanning 12 MMP and 2 TIMP genes were genotyped in 401 individuals from Brazil (99 cases with chronic periodontitis and 302 controls), and 274 individuals from the US (70 cases and 204 controls). Individuals were considered cases if presenting at least three teeth exhibiting sites of clinical attachment loss ≥ 5 mm in two different quadrants. Controls were characterized by absence of clinical attachment loss and no sites with probing depth >3 mm. MMP3 and TIMP1 mRNA expression was evaluated in healthy and diseased periodontal tissues. TIMP1 showed association with chronic periodontitis in the Brazilian population (for rs5906435, p = 0.0004), whereas MMP3 showed association in the US population (for rs679620, p = 0.0003; and rs650108, p = 0.002) and in the Brazilian population (for rs639752, p = 0.005). MMP3 and TIMP1 mRNA expression was significantly higher in diseased tissues when compared to control tissues. Our results further support a role for variations in MMP3 in chronic periodontitis and report a novel association with TIMP1. These genes may be considered additional candidate genes for chronic periodontitis. © 2012 John Wiley & Sons A/S.

  18. Changes in matrix metalloproteinase network in a spontaneous autoimmune uveitis model.

    PubMed

    Hofmaier, Florian; Hauck, Stefanie M; Amann, Barbara; Degroote, Roxane L; Deeg, Cornelia A

    2011-04-08

    Autoimmune uveitis is a sight-threatening disease in which autoreactive T cells cross the blood-retinal barrier. Molecular mechanisms contributing to the loss of eye immune privilege in this autoimmune disease are not well understood. In this study, the authors investigated the changes in the matrix metalloproteinase network in spontaneous uveitis. Matrix metalloproteinase (MMP) MMP2, MMP9, and MMP14 expression and tissue inhibitor of metalloproteinase (TIMP)-2 and lipocalin 2 (LCN2) expression were analyzed using Western blot quantification. Enzyme activities were examined with zymography. Expression patterns of network candidates were revealed with immunohistochemistry, comparing physiological appearance and changes in a spontaneous recurrent uveitis model. TIMP2 protein expression was found to be decreased in both the vitreous and the retina of a spontaneous model for autoimmune uveitis (equine recurrent uveitis [ERU]), and TIMP2 activity was significantly reduced in ERU vitreous. Functionally associated MMPs such as MMP2, MMP14, and MMP9 were found to show altered or shifted expression and activity. Although MMP2 decreased in ERU vitreous, MMP9 expression and activity were found to be increased. These changes were reflected by profound changes within uveitic target tissue, where TIMP2, MMP9, and MMP14 decreased in expression, whereas MMP2 displayed a shifted expression pattern. LCN2, a potential stabilizer of MMP9, was found prominently expressed in equine healthy retina and displayed notable changes in expression patterns accompanied by significant upregulation in autoimmune conditions. Invading cells expressed MMP9 and LCN2. This study implicates a dysregulation or a change in functional protein-protein interactions in this TIMP2-associated protein network, together with altered expression of functionally related MMPs.

  19. LncRNA-LET inhibits cell viability, migration and EMT while induces apoptosis by up-regulation of TIMP2 in human granulosa-like tumor cell line KGN.

    PubMed

    Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua

    2018-04-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Clinical adjudication in acute kidney injury studies: findings from the pivotal TIMP-2*IGFBP7 biomarker study.

    PubMed

    Liu, Kathleen D; Vijayan, Anitha; Rosner, Mitchell H; Shi, Jing; Chawla, Lakhmir S; Kellum, John A

    2016-10-01

    The NEPROCHECK test (Astute Medical, San Diego, CA, USA) combines urinary tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7) to identify patients at high risk for acute kidney injury (AKI). In a US Food and Drug Administration registration trial (NCT01573962), AKI was determined by a three-member clinical adjudication committee. The objectives were to examine agreement among adjudicators as well as between adjudicators and consensus criteria for AKI and to determine the relationship of biomarker concentrations and adjudicator agreement. Subjects were classified as AKI 3/3, 2/3, 1/3 or 0/3 according to the proportion of adjudicators classifying the case as AKI. Subjects were classified as Kidney Disease: Improving Global Outcomes (KDIGO) AKI(+) when stage 2 or 3 AKI criteria were met. Concordance between adjudicators and between adjudicators and KDIGO criteria were lower for AKI than non-AKI subjects [78.9 versus 97.3% (P < 0.001) and 91.5 versus 97.9% (P = 0.01)]. Subjects who were AKI 3/3 or 2/3 but KDIGO AKI(-) had higher median [TIMP-2]•[IGFBP7] compared with those who were AKI-1/3 or 0/3 but KDIGO AKI(+) {2.78 [interquartile range (IQR) 2.33-3.56] versus 0.52 [IQR 0.26-1.64]; P = 0.008}. [TIMP-2]•[IGFBP7] levels were highest in patients with AKI 3/3 and lowest in AKI 0/3, whereas AKI 2/3 and 1/3 exhibited intermediate values. In this analysis, urine [TIMP-2]•[IGFBP7] levels correlated to clinically adjudicated AKI better than to KDIGO criteria. Furthermore, in difficult cases where adjudicators overruled KDIGO criteria, the biomarker test discriminated well. This study highlights the importance of clinical adjudication of AKI for biomarker studies and lends further support for the value of urine [TIMP-2]•[IGFBP7]. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA.

  1. Neutrophil Collagenase, Gelatinase and Myeloperoxidase in Tears of Stevens-Johnson Syndrome and Ocular Cicatricial Pemphigoid Patients

    PubMed Central

    Arafat, Samer N.; Suelves, Ana M.; Spurr-Michaud, Sandra; Chodosh, James; Foster, C. Stephen; Dohlman, Claes H.; Gipson, Ilene K.

    2013-01-01

    Objective To investigate the levels of matrix metalloproteinases (MMPs), myeloperoxidase (MPO) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in tears of patients with Stevens-Johnson syndrome (SJS) and ocular cicatricial pemphigoid (OCP). Design Prospective non-interventional cohort study. Participants Four SJS patients (7 eyes), 19 OCP patients (37 eyes) and 20 post-phacoemulsification healthy controls (40 eyes). Methods Tear washes were collected from all patients and were analyzed for levels of MMP-2, -3, -7, -8, -9, -12, MPO and TIMP-1 using multi-analyte bead-based enzyme-linked immunosorbent assays (ELISA). Total MMP activity was determined using a fluorimetric assay. Correlation studies were performed between the various analytes within study groups. Main Outcome Measures Levels of MMP-2, -3, -7, -8, -9, -12, MPO and TIMP-1 (in ng/µg protein), total MMP activity (in relative fluorescent units/min/µg protein) in tears, MMP-8/TIMP-1, MMP-9/TIMP-1 ratios and the correlations between MMP-8 and MMP-9 and each MMP and MPO. Results MMP-8, MMP-9 and MPO levels were significantly elevated in SJS and OCP tears (SJS > OCP) when compared to controls. MMP activity was highest in SJS while OCP and controls showed lower and similar activities. TIMP-1 levels were decreased in SJS and OCP when compared to controls with OCP levels reaching significance. MMP-8/TIMP-1 and MMP-9/TIMP-1 ratios were markedly elevated in SJS and OCP tears (SJS > OCP) when compared to controls. Across all study groups, MMP-9 levels correlated strongly with MMP-8 and MPO levels and MMP-8 correlated with MPO but did not reach significance in SJS. There was no relationship between MMP-7 and MPO. Conclusions Since MMP-8 and MPO are produced by inflammatory cells, particularly neutrophils, the correlation data indicate that they may be the common source of elevated enzymes including MMP-9 in SJS and OCP tears. Elevated MMP/TIMP ratios and MMP activity suggest an imbalance in tear MMP regulation that may explain the predisposition of these patients to develop corneal melting and chronic complications associated with persistent inflammation. MPO in tears may be a sensitive and specific marker for the quantification of ocular inflammation. PMID:23962653

  2. Serum MMP 2 and TIMP 2 in patients with inguinal hernias.

    PubMed

    Smigielski, Jacek; Brocki, Marian; Kuzdak, Krzysztof; Kołomecki, Krzysztof

    2011-06-01

      More than sixty thousand inguinal hernia operations are performed every year in Poland. Despite many years of related research, the exact pathologic mechanism of this condition is still not fully understood. Recent studies suggested a pronounced relationship between the molecular structure of collagen fibers and the activity of metalloproteinases, the enzymes taking part in the degradation of collagen, as well as their tissue inhibitors. A prospective study has been established to measure serum levels of the matrix metalloproteinase 2 (MMP-2) and Matrix metalloproteinase tissue inhibitor 2 (TIMP-2) in 150 males between the ages of 26 and 70. The control group (CG) consisted of thirty healthy male volunteers of a similar age distribution. Our results indicate that MMP-2 was highest in the direct hernia group, a statistically very significant elevation (P<0(.) 05) of 1562ng mL(-1) against the CG 684ng mL(-1) . The highest level of TIMP, 78ng mL(-1) , was found in the group with recurrent hernia, against 49(.) 5ng mL(-1) of the CG (statistical significance of P<0(.) 05). The MMP-2 and TIMP-2 levels were concurrently elevated only in the recurrent hernia group. The patients with inguinal hernia have a statistically significant increase in serum levels of MMP-2. Our finding of the MMP-2 and TIMP-2 distinctly higher in the patients suffering from recurrence of direct inguinal hernia (reflecting a previous surgical failure) may suggest the theory that the extracellular matrix defect lies at the basis of this disorder. © 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Intensive fibrosarcoma-binding capability of the reconstituted analog and its antitumor activity.

    PubMed

    Xu, Jian; Du, Yue; Liu, Wen-Juan; Li, Liang; Li, Yi; Wang, Xiao-Fei; Yi, Hong-Fei; Shan, Chuan-Kun; Xia, Gui-Min; Liu, Xiu-Jun; Zhen, Yong-Su

    2018-11-01

    Fibrosarcomas are highly aggressive malignant tumors. It is urgently needed to explore targeted drugs and modalities for more effective therapy. Matrix metalloproteinases (MMPs) play important roles in tumor progression and metastasis, while several MMPs are highly expressed in fibrosarcomas. In addition, tissue inhibitor of metalloproteinase 2 (TIMP2) displays specific interaction with MMPs. Therefore, TIMP2 may play an active role in the development of fibrosarcoma-targeting agents. In the current study, a TIMP2-based recombinant protein LT and its enediyne-integrated analog LTE were prepared; furthermore, the fibrosarcoma-binding intensity and antitumor activity were investigated. As shown, intense and selective binding capability of the protein LT to human fibrosarcoma specimens was confirmed by tissue microarray. Moreover, LTE, the enediyne-integrated analog of LT, exerted highly potent cytotoxicity to fibrosarcoma HT1080 cells, induced apoptosis, and caused G2/M arrest. LTE at 0.1 nM markedly suppressed the migration and invasion of HT1080 cells. LTE at tolerated dose of 0.6 mg/kg inhibited the tumor growth of fibrosarcoma xenograft in athymic mice. The study provides evidence that the TIMP2-based reconstituted analog LTE may be useful as a targeted drug for fibrosarcome therapy.

  4. [Correlation between the mRNA expression of tissue inhibitor of metalloproteinase-1 and apparent diffusion coefficient on diffusion-weighted imaging in rats' liver fibrosis].

    PubMed

    Zhan, Yuefu; Liang, Xianwen; Han, Xiangjun; Chen, Jianqiang; Zhang, Shufang; Tan, Shun; Li, Qun; Wang, Xiong; Liu, Fan

    2017-02-28

    To explore the correlation between the apparent diffusion coefficient (ADC) and mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of liver fibrosis in rats.
 Methods: A model of liver fibrosis in rats was established by intraperitoneal injection of high-fat diet combined with porcine serum. After drug administration for 4 weeks, 48 rats served as a model group and 12 rats served as a control group, then they underwent diffusion weighted imaging (DWI) scanning. The value of ADC was calculated at b value=800 s/mm2. The rats were sacrificed and carried out pathologic examination after DWI scanning immediately. The mRNA expression of TIMP-1 was detected by real time-polymerase chain reaction (RT-PCR). The rats of hepatic fibrosis were also divided into a S0 group (n=4), a S1 group (n=11), a S2 group (n=12), a S3 group (n=10), and a S4 group (n=9) according to their pathological stage. The value of ADC and the expression of TIMP-1 mRNA among the different stage groups of liver fibrosis were compared, and the correlation between ADC and the TIMP-1 mRNA were analyzed.
 Results: The ADC value and the TIMP-1 mRNA expression were significantly different between the control group and the liver fibrosis group (F=46.54 and 53.87, P<0.05). There were significant differences in the value of ADC between every two groups (all P<0.05), except the control group vs the S1 group, the S1 group vs the S2 group, and the S2 group vs the S3 group (all P>0.05). For the comparison of TIMP-1 mRNA, there was no significant difference between the S1 group and the S2 group, the S3 group and the S4 group (both P>0.05). There were significant differences among the rest of the groups (all P<0.05). Rank correlation analysis showed that there was a negative correlation between the ADC value and the TIMP-1 mRNA expression (r=-0.76, P<0.01).
 Conclusion: When the value of ADC decreases in the progress of rats' liver fibrosis, the mRNA expression of TIMP-1 increases gradually, and there is a negative correlation between them.

  5. Suppression of Matrix Metalloproteinase Production in Nasal Fibroblasts by Tranilast, an Antiallergic Agent, In Vitro

    PubMed Central

    Shimizu, Toshiyuki; Kanai, Kenichi; Asano, Kazuhito; Hisamitsu, Tadashi; Suzaki, Harumi

    2005-01-01

    Allergic rhinitis is an inflammatory disease characterized by nasal wall remodeling with intense infiltration of eosinophils and mast cells/basophils. Matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are the major proteolytic enzymes that induce airway remodeling. These enzymes are also important in the migration of inflammatory cells through basement membrane components. We evaluated whether tranilast (TR) could inhibit MMP production from nasal fibroblasts in response to tumor necrosis factor-α (TNF-α) stimulation in vitro. Nasal fibroblasts (NF) were established from nasal polyp tissues taken from patients with allergic rhinitis. NF (2 × 105 cells/mL) were stimulated with TNF-α in the presence of various concentrations of TR. After 24 hours, the culture supernatants were obtained and assayed for MMP-2, MMP-9, TIMP-1, and TIMP-2 levels by ELISA. The influence of TR on mRNA expression of MMPs and TIMPs in cells cultured for 12 hours was also evaluated by RT-PCR. TR at more than 5 × 10−5 M inhibited the production of MMP-2 and MMP-9 from NF in response to TNF-α stimulation, whereas TIMP-1 and TIMP-2 production was scarcely affected. TR also inhibited MMP mRNA expression in NF after TNF-α stimulation. The present data suggest that the attenuating effect of TR on MMP-2 and MMP-9 production from NF induced by inflammatory stimulation may underlie the therapeutic mode of action of the agent in patients with allergic diseases, including allergic rhinitis. PMID:16106101

  6. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity

    PubMed Central

    Brew, Keith; Nagase, Hideaki

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are widely distributed in the animal kingdom and the human genome contains four paralogous genes encoding TIMPs 1 to 4. TIMPs were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has now been found to be broader as it includes the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. TIMPs are therefore key regulators of the metalloproteinases that degrade the extracellular matrix and shed cell surface molecules. Structural studies of TIMP–MMP complexes have elucidated the inhibition mechanism of TIMPs and the multiple sites through which they interact with target enzymes, allowing the generation of TIMP variants that selectively inhibit different groups of metalloproteinases. Engineering such variants is complicated by the fact that TIMPs can undergo changes in molecular dynamics induced by their interactions with proteases. TIMPs also have biological activities that are independent of metalloproteinases; these include effects on cell growth and differentiation, cell migration, anti-angiogenesis, anti- and pro-apoptosis, and synaptic plasticity. Receptors responsible for some of these activities have been identified and their signaling pathways have been investigated. A series of studies using mice with specific TIMP gene deletions has illuminated the importance of these molecules in biology and pathology. PMID:20080133

  7. Matrix metalloproteinase-3 promoter polymorphisms but not dupA-H. pylori correlate to duodenal ulcers in H. pylori-infected females.

    PubMed

    Yeh, Yi-Chun; Cheng, Hsiu-Chi; Chang, Wei-Lun; Yang, Hsiao-Bai; Sheu, Bor-Shyang

    2010-08-13

    This study investigated if the H. pylori dupA genotype and certain host single nucleotide polymorphisms (SNPs) of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), including MMP-3, MMP-7, MMP-9, TIMP-1 and TIMP-2, might correlate with ulcer risk of H. pylori-infected Taiwanese patients. Of the 549 H. pylori-infected patients enrolled, 470 patients (265 with gastritis, 118 with duodenal ulcer, and 87 with gastric ulcer) received SNPs analysis of MMP-3-1612 6A > 5A, MMP-7-181 A > G, MMP-9exon 6 A > G, TIMP-1372 T > C and TIMP-2-418 G > C by PCR-RFLP. The 181 collected H. pylori isolates were detected for the dupA genotype by PCR. The rates of dupA-positive H. pylori infection were similar among patients with duodenal ulcer (22.8%), gastric ulcer (20.0%), and gastritis (25.5%) (p > 0.05). Males had higher rates of duodenal ulcer and gastric ulcer than females (p < 0.01). Of H. pylori-infected patients, the MMP-3 6A6A genotype were more common in patients with duodenal ulcers than in those with gastritis (87.7% vs. 74.9%, p < 0.05) in females. This genotype had a 2.4-fold (95% CI: 1.02-5.66) increased risk of duodenal ulcer, compared to those with the 5A carrier. Combining the MMP-3/TIMP-1 genotype as 6A6A/CC, the risk of duodenal ulcer increased up to 3.6 fold (p < 0.05) in H. pylori-infected females. The MMP-3 promoter polymorphism, but not the dupA-status, may correlate with susceptibility to duodenal ulcer after H. pylori infection in Taiwanese females.

  8. Matrix metalloproteinase-3 promoter polymorphisms but not dupA-H. pylori correlate to duodenal ulcers in H. pylori-infected females

    PubMed Central

    2010-01-01

    Background This study investigated if the H. pylori dupA genotype and certain host single nucleotide polymorphisms (SNPs) of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), including MMP-3, MMP-7, MMP-9, TIMP-1 and TIMP-2, might correlate with ulcer risk of H. pylori-infected Taiwanese patients. Results Of the 549 H. pylori-infected patients enrolled, 470 patients (265 with gastritis, 118 with duodenal ulcer, and 87 with gastric ulcer) received SNPs analysis of MMP-3-1612 6A > 5A, MMP-7-181 A > G, MMP-9exon 6 A > G, TIMP-1372 T > C and TIMP-2-418 G > C by PCR-RFLP. The 181 collected H. pylori isolates were detected for the dupA genotype by PCR. The rates of dupA-positive H. pylori infection were similar among patients with duodenal ulcer (22.8%), gastric ulcer (20.0%), and gastritis (25.5%) (p > 0.05). Males had higher rates of duodenal ulcer and gastric ulcer than females (p < 0.01). Of H. pylori-infected patients, the MMP-3 6A6A genotype were more common in patients with duodenal ulcers than in those with gastritis (87.7% vs. 74.9%, p < 0.05) in females. This genotype had a 2.4-fold (95% CI: 1.02-5.66) increased risk of duodenal ulcer, compared to those with the 5A carrier. Combining the MMP-3/TIMP-1 genotype as 6A6A/CC, the risk of duodenal ulcer increased up to 3.6 fold (p < 0.05) in H. pylori-infected females. Conclusions The MMP-3 promoter polymorphism, but not the dupA-status, may correlate with susceptibility to duodenal ulcer after H. pylori infection in Taiwanese females. PMID:20707923

  9. Longitudinal analysis of metalloproteinases, tissue inhibitors of metalloproteinases and clinical parameters in gingival crevicular fluid from periodontitis-affected patients.

    PubMed

    Pozo, P; Valenzuela, M A; Melej, C; Zaldívar, M; Puente, J; Martínez, B; Gamonal, J

    2005-06-01

    The aim of this work was to improve the assessment of the periodontal disease status through measurements of extracellular matrix metalloproteinases (MMPs) and their tissular inhibitors (TIMPs) in the gingival crevicular fluid from patients diagnosed with chronic periodontitis. Gingival crevicular fluid samples from patients (n = 13) were taken from 60 sites initially, and from 51 and 41 sites, respectively, 3 and 6 months after scaling and root planing. Gingival crevicular fluid samples were also taken from healthy subjects (n = 11, 24 sites). The presence of MMP-9 and MMP-8 was assessed by zymography and immunowestern blotting, respectively. The actual MMP activity (gelatinase and collagenase) was measured using the fluorogenic substrate assay. TIMP-1 and -2 levels were measured by immunodot blot. The fluorogenic substrate assay determinations showed higher MMP activity in sites with probing depth > or = 4 mm, with significant reduction post-treatment. Gelatinase activity followed by zymography consisted mainly of MMP-9. A different pattern of MMP-8 in control and patient sites was found. Controls only showed species of a partially active form (69 kDa), whereas patient sites showed a high frequency of the active form (56 kDa), and in some cases the latent form (85 kDa) was also observed. The active form reduced its frequency in sites with probing depth > or = 4 mm. TIMP-1 and -2 levels in patients were significantly lower than in controls, and after treatment the recovery of TIMP-1 level similar to control was observed. Significant correlations between the severity of the periodontal disease and the actual MMP activity, the active form of MMP-8 and the low level of both TIMP-1 and TIMP-2 were found.

  10. Ovarian Expression, Localization, and Function of Tissue Inhibitor of Metalloproteinase 3 (TIMP3) During the Periovulatory Period of the Human Menstrual Cycle1

    PubMed Central

    Rosewell, Katherine L.; Li, Feixue; Puttabyatappa, Muraly; Akin, James W.; Brännström, Mats; Curry, Thomas E.

    2013-01-01

    ABSTRACT Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability. PMID:24048576

  11. Ovarian expression, localization, and function of tissue inhibitor of metalloproteinase 3 (TIMP3) during the periovulatory period of the human menstrual cycle.

    PubMed

    Rosewell, Katherine L; Li, Feixue; Puttabyatappa, Muraly; Akin, James W; Brännström, Mats; Curry, Thomas E

    2013-11-01

    Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.

  12. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer.

    PubMed

    Komorowski, Jan; Pasieka, Z; Jankiewicz-Wika, J; Stepień, H

    2002-08-01

    Stimulation of growth of endothelial cells from preexisting blood vessels, i.e., angiogenesis, is one of the essential elements necessary to create a permissive environment in which a tumor can grow. During angiogenesis, the matrix metalloproteinase (MMP) family of tissue enzymes contributes to normal (embriogenesis or wound repair) and pathologic tissue remodeling (chronic inflammation and tumor genesis). The proposed pathogenic roles of MMPs in cancer are tissue breakdown and remodeling during invasive tumor growth and tumor angiogenesis. Tissue inhibitors of metalloproteinases (TIMPs) form a complex with MMPs, which in turn inhibits active MMPs. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are unique among mediators of angiogenesis with synergistic effect, and both can also be secreted by thyroid cancer cells. The goal of the study was to evaluate the plasma blood concentration of VEGF, bFGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and TIMP-2 in patients with cancer and in normal subjects. Twenty-two patients with thyroid cancers (papillary cancer, 11; partly papillary and partly follicular cancer, 3; anaplastic cancer, 5; medullary cancer, 3) and 16 healthy subjects (controls) were included in the study. VEGF, bFGF MMPs, and TIMPs were evaluated by enzyme-linked immunosorbent assay (ELISA). In patients with thyroid cancer, normal VEGF concentrations (74.29 +/- 13.38 vs. 84.85 +/- 21.71 pg/mL; p > 0.05) and increased bFGF (29.52 +/- 4.99 vs. 6.05 +/- 1.43 pg/mL; p < 0.001), MMP-2 (605.95 +/- 81.83 vs. 148.75 +/- 43.53 ng/mL; p < 0.001), TIMP-2 (114.19 +/- 6.62 vs. 60.75 +/- 9.18 ng/mL; p < 0.001), as well as lower MMP-1 (0.70 +/- 0.42 vs. 3.87 +/- 0.53; p < 0.001) levels have been noted. Increased plasma levels of MMP-3 and MMP-9 were also found in patients with medullary carcinoma. In conclusion, predominance of MMP-2 over TIMP-2 and TIMP-1 over MMP-1 as well as increased concentration of bFGF in peripheral blood are common features in patients with thyroid cancer.

  13. Assessment of MMP-9, TIMP-1, and COX-2 in normal tissue and in advanced symptomatic and asymptomatic carotid plaques

    PubMed Central

    2011-01-01

    Background Mature carotid plaques are complex structures, and their histological classification is challenging. The carotid plaques of asymptomatic and symptomatic patients could exhibit identical histological components. Objectives To investigate whether matrix metalloproteinase 9 (MMP-9), tissue inhibitor of MMP (TIMP), and cyclooxygenase-2 (COX-2) have different expression levels in advanced symptomatic carotid plaques, asymptomatic carotid plaques, and normal tissue. Methods Thirty patients admitted for carotid endarterectomy were selected. Each patient was assigned preoperatively to one of two groups: group I consisted of symptomatic patients (n = 16, 12 males, mean age 66.7 ± 6.8 years), and group II consisted of asymptomatic patients (n = 14, 8 males, mean age 67.6 ± 6.81 years). Nine normal carotid arteries were used as control. Tissue specimens were analyzed for fibromuscular, lipid and calcium contents. The expressions of MMP-9, TIMP-1 and COX-2 in each plaque were quantified. Results Fifty-eight percent of all carotid plaques were classified as Type VI according to the American Heart Association Committee on Vascular Lesions. The control carotid arteries all were classified as Type III. The median percentage of fibromuscular tissue was significantly greater in group II compared to group I (p < 0.05). The median percentage of lipid tissue had a tendency to be greater in group I than in group II (p = 0.057). The percentages of calcification were similar among the two groups. MMP-9 protein expression levels were significantly higher in group II and in the control group when compared with group I (p < 0.001). TIMP-1 expression levels were significantly higher in the control group and in group II when compared to group I, with statistical difference between control group and group I (p = 0.010). COX-2 expression levels did not differ among groups. There was no statistical correlation between MMP-9, COX-2, and TIMP-1 levels and fibrous tissue. Conclusions MMP-9 and TIMP-1 are present in all stages of atherosclerotic plaque progression, from normal tissue to advanced lesions. When sections of a plaque are analyzed without preselection, MMP-9 concentration is higher in normal tissues and asymptomatic surgical specimens than in symptomatic specimens, and TIMP-1 concentration is higher in normal tissue than in symptomatic specimens. PMID:21457581

  14. Effects of doxycycline on serum and endometrial levels of MMP-2, MMP-9 and TIMP-1 in women using a levonorgestrel-releasing subcutaneous implant.

    PubMed

    Zhao, Shumei; Choksuchat, Chainarong; Zhao, Yueqin; Ballagh, Susan A; Kovalevsky, George A; Archer, David F

    2009-06-01

    Endometrial spotting and/or bleeding (ESB) occurs in levonorgestrel subcutaneous implant (LNG SI) users. Matrix metalloproteinases (MMPs) may play a role in ESB. Women between 18 and 40 years with regular menstrual cycles had a baseline evaluation followed by LNG SI insertion and randomization to doxycycline (DOX; 20 mg) or placebo (PL) twice a day. MMP-2, MMP-9 and tissue inhibitor of MMP-1 (TIMP-1) in serum and the endometrium were estimated at baseline and at 1, 3 and 6 months after insertion. LNG increased serum MMP-9, while DOX decreased MMP-9 levels compared to PL after 1 month (p<.05). DOX decreased endometrial MMP-9 at 1 and 6 months compared to baseline and PL (p<.05). DOX increased endometrial TIMP-1 at 6 months compared with baseline and PL (p<.05). MMP-2 levels were unchanged. LNG SI increased serum MMP-9 and TIMP-1 levels, while DOX decreased both serum and endometrial MMP-9 levels.

  15. Atherosclerotic renal artery stenosis is associated with elevated cell cycle arrest markers related to reduced renal blood flow and postcontrast hypoxia.

    PubMed

    Saad, Ahmed; Wang, Wei; Herrmann, Sandra M S; Glockner, James F; Mckusick, Michael A; Misra, Sanjay; Bjarnason, Haraldur; Lerman, Lilach O; Textor, Stephen C

    2016-11-01

    Atherosclerotic renal artery stenosis (ARAS) reduces renal blood flow (RBF), ultimately leading to kidney hypoxia and inflammation. Insulin-like growth factor binding protein-7 (IGFBP-7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) are biomarkers of cell cycle arrest, often increased in ischemic conditions and predictive of acute kidney injury (AKI). This study sought to examine the relationships between renal vein levels of IGFBP-7, TIMP-2, reductions in RBF and postcontrast hypoxia as measured by blood oxygen level-dependent (BOLD) magnetic resonance imaging. Renal vein levels of IGFBP-7 and TIMP-2 were obtained in an ARAS cohort (n= 29) scheduled for renal artery stenting and essential hypertensive (EH) healthy controls (n = 32). Cortical and medullary RBFs were measured by multidetector computed tomography (CT) immediately before renal artery stenting and 3 months later. BOLD imaging was performed before and 3 months after stenting in all patients, and a subgroup (N = 12) underwent repeat BOLD imaging 24 h after CT/stenting to examine postcontrast/procedure levels of hypoxia. Preintervention IGFBP-7 and TIMP-2 levels were elevated in ARAS compared with EH (18.5 ± 2.0 versus 15.7 ± 1.5 and 97.4 ± 23.1 versus 62.7 ± 9.2 ng/mL, respectively; P< 0.0001); baseline IGFBP-7 correlated inversely with hypoxia developing 24 h after contrast injection (r = -0.73, P< 0.0001) and with prestent cortical blood flow (r = -0.59, P= 0.004). These data demonstrate elevated IGFBP-7 and TIMP-2 levels in ARAS as a function of the degree of reduced RBF. Elevated baseline IGFBP-7 levels were associated with protection against postimaging hypoxia, consistent with 'ischemic preconditioning'. Despite contrast injection and stenting, AKI in these high-risk ARAS subjects with elevated IGFBP-7/TIMP-2 was rare and did not affect long-term kidney function. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. Phylotranscriptomic analysis uncovers a wealth of tissue inhibitor of metalloproteinases variants in echinoderms

    PubMed Central

    Clouse, Ronald M.; Linchangco, Gregorio V.; Kerr, Alexander M.; Reid, Robert W.; Janies, Daniel A.

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) help regulate the extracellular matrix (ECM) in animals, mostly by inhibiting matrix metalloproteinases (MMPs). They are important activators of mutable collagenous tissue (MCT), which have been extensively studied in echinoderms, and the four TIMP copies in humans have been studied for their role in cancer. To understand the evolution of TIMPs, we combined 405 TIMPs from an echinoderm transcriptome dataset built from 41 specimens representing all five classes of echinoderms with variants from protostomes and chordates. We used multiple sequence alignment with various stringencies of alignment quality to cull highly divergent sequences and then conducted phylogenetic analyses using both nucleotide and amino acid sequences. Phylogenetic hypotheses consistently recovered TIMPs as diversifying in the ancestral deuterostome and these early lineages continuing to diversify in echinoderms. The four vertebrate TIMPs diversified from a single copy in the ancestral chordate, all other copies being lost. Consistent with greater MCT needs owing to body wall liquefaction, evisceration, autotomy and reproduction by fission, holothuroids had significantly more TIMPs and higher read depths per contig. Ten cysteine residues, an HPQ binding site and several other residues were conserved in at least 70% of all TIMPs. The conservation of binding sites and the placement of echinoderm TIMPs involved in MCT modification suggest that ECM regulation remains the primary function of TIMP genes, although within this role there are a large number of specialized copies. PMID:27017967

  17. Association between Serum Tissue Inhibitor of Matrix Metalloproteinase-1 Levels and Mortality in Patients with Severe Brain Trauma Injury

    PubMed Central

    Lorente, Leonardo; Martín, María M.; López, Patricia; Ramos, Luis; Blanquer, José; Cáceres, Juan J.; Solé-Violán, Jordi; Solera, Jorge; Cabrera, Judith; Argueso, Mónica; Ortiz, Raquel; Mora, María L.; Lubillo, Santiago; Jiménez, Alejandro; Borreguero-León, Juan M.; González, Agustín; Orbe, Josune; Rodríguez, José A.; Páramo, José A.

    2014-01-01

    Objective Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. Methods This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. Results Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001–1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624–0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. Conclusions The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients. PMID:24728097

  18. Establishment a real-time reverse transcription PCR based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Park, Hyun-Eui; Park, Hong-Tae; Jung, Young Hoon; Yoo, Han Sang

    2017-01-01

    Bovine paratuberculosis (PTB) is a chronic enteric inflammatory disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) that causes large economic losses in the dairy industry. Spread of PTB is mainly provoked by a long subclinical stage during which MAP is shed into the environment with feces; accordingly, detection of subclinical animals is very important to its control. However, current diagnostic methods are not suitable for detection of subclinical animals. Therefore, the current study was conducted to develop a diagnostic method for analysis of the expression of genes of prognostic potential biomarker candidates in the whole blood of cattle naturally infected with MAP. Real-time PCR with nine potential biomarker candidates was developed for the diagnosis of MAP subclinical infection. Animals were divided into four groups based on fecal MAP PCR and serum ELISA. Eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) were up-regulated in MAP-infected cattle (p <0.05). Moreover, ROC analysis revealed that eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) showed fair diagnostic performance (AUC≥0.8). Four biomarkers (Timp1, S100a8, Defb1, and Defb10) showed the highest diagnostic accuracy in the PCR positive and ELISA negative group (PN group) and three biomarkers (Tfrc, Hp, and Serpine1) showed the highest diagnostic accuracy in the PCR negative and ELISA positive group (NP group). Moreover, three biomarkers (S100a8, Hp, and Defb10) were considered the most reliable for the PCR positive and ELISA positive group (PP group). Taken together, our data suggest that real-time PCR based on eight biomarkers (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) might be useful for diagnosis of JD, including subclinical stage cases.

  19. Establishment a real-time reverse transcription PCR based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Park, Hyun-Eui; Park, Hong-Tae; Jung, Young Hoon

    2017-01-01

    Bovine paratuberculosis (PTB) is a chronic enteric inflammatory disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) that causes large economic losses in the dairy industry. Spread of PTB is mainly provoked by a long subclinical stage during which MAP is shed into the environment with feces; accordingly, detection of subclinical animals is very important to its control. However, current diagnostic methods are not suitable for detection of subclinical animals. Therefore, the current study was conducted to develop a diagnostic method for analysis of the expression of genes of prognostic potential biomarker candidates in the whole blood of cattle naturally infected with MAP. Real-time PCR with nine potential biomarker candidates was developed for the diagnosis of MAP subclinical infection. Animals were divided into four groups based on fecal MAP PCR and serum ELISA. Eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) were up-regulated in MAP-infected cattle (p <0.05). Moreover, ROC analysis revealed that eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) showed fair diagnostic performance (AUC≥0.8). Four biomarkers (Timp1, S100a8, Defb1, and Defb10) showed the highest diagnostic accuracy in the PCR positive and ELISA negative group (PN group) and three biomarkers (Tfrc, Hp, and Serpine1) showed the highest diagnostic accuracy in the PCR negative and ELISA positive group (NP group). Moreover, three biomarkers (S100a8, Hp, and Defb10) were considered the most reliable for the PCR positive and ELISA positive group (PP group). Taken together, our data suggest that real-time PCR based on eight biomarkers (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) might be useful for diagnosis of JD, including subclinical stage cases. PMID:28542507

  20. Preventive effects of β-thujaplicin against UVB-induced MMP-1 and MMP-3 mRNA expressions in skin fibroblasts.

    PubMed

    Cherng, Jong Yuh; Chen, Li Yin; Shih, Mei Fen

    2012-01-01

    Solar UV radiation damages human skin by affecting skin tone and resiliency and leads to premature aging (photoaging). The skin damage is caused by the activation of the AP-1 transcription factor, which increases matrix metalloproteinase (MMP) expression and collagen degradation. An increase of interleukin (IL)-6 is also correlated with the activation of MMP-1 expression. β-thujaplicin has shown both acaricidal and antimicrobial activities. Also, β-thujaplicin has been shown to be protective against apoptosis due to the oxidative effects of UV irradiation. However, the effect of β-thujaplicin on UVB-induced MMPs had not been investigated. In this study, after UVB exposure, MMP-1 and IL-6 production in human skin fibroblasts was examined in the presence of β-thujaplicin, vitamin C, and vitamin E. The expression of MMP-1, MMP-3, tissue inhibitor of metalloproteinase (TIMP-1, TIMP-3) and procollagen mRNA was also investigated. Results showed that UVB-induced MMP-1 production was suppressed by the β-thujaplicin treatment in a dose-dependent manner, but not by vitamin C and vitamin E. β-thujaplicin also prevented the up-regulation of MMP-1 and MMP-3 mRNA. Moreover, the UVB-suppressed procollagen gene expression was restored to normal by β-thujaplicin. Neither UVB nor β-thujaplicin affected the mRNA expression of TIMP-1 and TIMP-3. The IL-6 production induced by UVB was lower in β-thujaplicin treated fibroblasts than in the controls. In conclusion, this study shows the capability of β-thujaplicin in preventing MMP-1 production due to UVB irradiation via inhibition of MMP gene expression. Importantly, the UVB-suppressed procollagen gene expression can be restored to normal by β-thujaplicin. These findings indicate that β-thujaplicin is a promising and potent agent to inhibit UVB-induced MMP-1 and MMP-3 gene expression in skin fibroblasts.

  1. Identification of Fibroblast Growth Factor-18 as a Molecule to Protect Adult Articular Cartilage by Gene Expression Profiling*

    PubMed Central

    Mori, Yoshifumi; Saito, Taku; Chang, Song Ho; Kobayashi, Hiroshi; Ladel, Christoph H.; Guehring, Hans; Chung, Ung-il; Kawaguchi, Hiroshi

    2014-01-01

    To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression. PMID:24577103

  2. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy.

    PubMed

    Manousopoulou, A; Gatherer, M; Smith, C; Nicoll, J A R; Woelk, C H; Johnson, M; Kalaria, R; Attems, J; Garbis, S D; Carare, R O

    2017-10-01

    Amyloid beta (Aβ) accumulation in the walls of leptomeningeal arteries as cerebral amyloid angiopathy (CAA) is a major feature of Alzheimer's disease. In this study, we used global quantitative proteomic analysis to examine the hypothesis that the leptomeningeal arteries derived from patients with CAA have a distinct endophenotypic profile compared to those from young and elderly controls. Freshly dissected leptomeningeal arteries from the Newcastle Brain Tissue Resource and Edinburgh Sudden Death Brain Bank from seven elderly (82.9 ± 7.5 years) females with severe capillary and arterial CAA, as well as seven elderly (88.3 ± 8.6 years) and five young (45.4 ± 3.9 years) females without CAA were used in this study. Arteries from four patients with CAA, two young and two elderly controls were individually analysed using quantitative proteomics. Key proteomic findings were then validated using immunohistochemistry. Bioinformatics interpretation of the results showed a significant enrichment of the immune response/classical complement and extracellular matrix remodelling pathways (P < 0.05) in arteries affected by CAA vs. those from young and elderly controls. Clusterin (apolipoprotein J) and tissue inhibitor of metalloproteinases-3 (TIMP3), validated using immunohistochemistry, were shown to co-localize with Aβ and to be up-regulated in leptomeningeal arteries from CAA patients compared to young and elderly controls. Global proteomic profiling of brain leptomeningeal arteries revealed that clusterin and TIMP3 increase in leptomeningeal arteries affected by CAA. We propose that clusterin and TIMP3 could facilitate perivascular clearance and may serve as novel candidate therapeutic targets for CAA. © 2016 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  3. 4-Chloro-DL-phenylalanine protects against monocrotaline‑induced pulmonary vascular remodeling and lung inflammation.

    PubMed

    Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang

    2014-02-01

    The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.

  4. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia.

    PubMed

    Chen, Zheng; Soutto, Mohammed; Rahman, Bushra; Fazili, Muhammad W; Peng, DunFa; Blanca Piazuelo, Maria; Chen, Heidi; Kay Washington, M; Shyr, Yu; El-Rifai, Wael

    2017-07-01

    Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis. © 2017 Wiley Periodicals, Inc.

  5. Mating induces production of MMP2 in the llama oviduct: Analysis of MMP2 effect on semen.

    PubMed

    Zampini, Renato; Sari, Luciana M; Argañaraz, Martin E; Fumuso, Fernanda G; Barraza, Daniela E; Carretero, María I; Apichela, Silvana A

    2018-05-01

    Ovulation of South American Camelids is induced by mating. After copulation, sperm are stored into the oviduct to be released near ovulation time. To study whether copulation induces matrix metalloproteinase-2 (MMP2) secretion in the oviduct, the occurrence of MMP2 in oviductal tissue and oviductal fluid (OF) from 24 h post-mated was compared with non-mated llama females. There was an incremental increase of MMP2 in the oviductal epithelial cells, and MMP2 activity in OF after copulation. Additionally, MMP2 activator (MMP14), inducer (EMMPRIN) and inhibitor (TIMP2) were present in the oviductal epithelial cells of both non-mated and post-mated females. A post-mating segment-specific regulation occurred because relative abundance of TIMP2 mRNA was greater in the utero tubal-junction which was accompanied with a reduced amount of MMP14 in the ampulla in comparison with the non-mated females. To examine the effect of MMP2 on semen liquefaction and sperm physiology, the effects of addition of recombinant human MMP2 was evaluated. The MMP2 had no effect on semen thread formation and seminal plasma protein profile. Sperm viability and plasma membrane function were not influenced by the enzyme treatment either. In summary, in llamas the oviductal microenvironment changes in response to stimuli induced by copulation, increasing the production and secretion of MMP2. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    PubMed Central

    Pulido-Olmo, Helena; Rodríguez-Sánchez, Elena; Navarro-García, José Alberto; Barderas, María G.; Álvarez-Llamas, Gloria; Segura, Julián; Fernández-Alfonso, Marisol; Ruilope, Luis M.; Ruiz-Hurtado, Gema

    2017-01-01

    The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) based on AlphaLISA® technology. We describe two procedures: (i) one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii) the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid. PMID:28791014

  7. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells.

    PubMed

    Maturi, Varun; Enroth, Stefan; Heldin, Carl-Henrik; Moustakas, Aristidis

    2018-05-10

    Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30 bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT. © 2018 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  8. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    PubMed

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9: novel indicators of left ventricular remodelling and prognosis after acute myocardial infarction.

    PubMed

    Kelly, Dominic; Khan, Sohail Q; Thompson, Matt; Cockerill, Gillian; Ng, Leong L; Samani, Nilesh; Squire, Iain B

    2008-09-01

    Matrix metalloproteinase (MMP) activity is central to the development of left ventricular (LV) remodelling and dysfunction after acute myocardial infarction (AMI). We assessed the relationships with LV structure and function and outcome, of tissue inhibitors of metalloproteinase-1 (TIMP-1) and MMP-9, and compared with N-terminal pro-B-type natriuretic peptide (NTproBNP). We studied 404 patients with AMI. Primary outcome measures were the associations of TIMP-1, MMP-9, and NTproBNP with death or heart failure, and with LV dimensions, function and remodelling (ΔLVEDV, change in LV end-diastolic volume between discharge and follow-up). Cut-off concentrations for prediction of death or heart failure were identified from receiver operator characteristic (ROC) curves. In multivariable analysis, TIMP-1 and NTproBNP had predictive value for LV ejection fraction pre-discharge (TIMP-1 P = 0.023; N-BNP P = 0.007) and at follow-up (TIMP-1 P = 0.001; N-BNP P = 0.003). MMP-9, TIMP-1, and NTproBNP correlated directly with LV volumes. MMP-9 (P = 0.005) and TIMP-1 (P = 0.036), but not NTproBNP, correlated with ΔLVEDV. For the combined endpoint of death or heart failure the area under the ROC curve was 0.640 for MMP-9, 0.799 for NTproBNP and 0.811 for TIMP-1. Patients with TIMP-1 > 135 ng/mL (P < 0.001) or NTproBNP >1472 fmol/mL (P < 0.001) had increased risk of endpoint. Consideration of both NTproBNP and TIMP-1 further improved risk stratification. TIMP-1 and MMP-9 correlate with echocardiographic parameters of LV dysfunction and remodelling after AMI and may identify patients at risk of subsequent LV remodelling and adverse prognosis.

  10. Myocardial recovery from ischemia-reperfusion is compromised in the absence of tissue inhibitor of metalloproteinase 4.

    PubMed

    Takawale, Abhijit; Fan, Dong; Basu, Ratnadeep; Shen, Mengcheng; Parajuli, Nirmal; Wang, Wang; Wang, Xiuhua; Oudit, Gavin Y; Kassiri, Zamaneh

    2014-07-01

    Myocardial reperfusion after ischemia (I/R), although an effective approach in rescuing the ischemic myocardium, can itself trigger several adverse effects including aberrant remodeling of the myocardium and its extracellular matrix. Tissue inhibitor of metalloproteinases (TIMPs) protect the extracellular matrix against excess degradation by matrix metalloproteinases (MMPs). TIMP4 levels are reduced in myocardial infarction; however, its causal role in progression of post-I/R injury has not been explored. In vivo I/R (20-minute ischemia, 1-week reperfusion) resulted in more severe systolic and diastolic dysfunction in TIMP4(-/-) mice with enhanced inflammation, oxidative stress (1 day post-I/R), hypertrophy, and interstitial fibrosis (1 week). After an initial increase in TIMP4 (1 day post-I/R), TIMP4 mRNA and protein decreased in the ischemic myocardium from wild-type mice by 1 week post-I/R and in tissue samples from patients with myocardial infarction, which correlated with enhanced activity of membrane-bound MMP, membrane-type 1 MMP. By 4 weeks post-I/R, wild-type mice showed no cardiac dysfunction, elevated TIMP4 levels (to baseline), and normalized membrane-type 1 MMP activity. TIMP4-deficient mice, however, showed exacerbated diastolic dysfunction, sustained elevation of membrane-type 1 MMP activity, and worsened myocardial hypertrophy and fibrosis. Ex vivo I/R (20- or 30-minute ischemia, 45-minute reperfusion) resulted in comparable cardiac dysfunction in wild-type and TIMP4(-/-) mice. TIMP4 is essential for recovery from myocardial I/R in vivo, primarily because of its membrane-type 1 MMP inhibitory function. TIMP4 deficiency does not increase susceptibility to ex vivo I/R injury. Replenishment of myocardial TIMP4 could serve as an effective therapy in post-I/R recovery for patients with reduced TIMP4. © 2014 American Heart Association, Inc.

  11. Neutrophil collagenase, gelatinase, and myeloperoxidase in tears of patients with stevens-johnson syndrome and ocular cicatricial pemphigoid.

    PubMed

    Arafat, Samer N; Suelves, Ana M; Spurr-Michaud, Sandra; Chodosh, James; Foster, C Stephen; Dohlman, Claes H; Gipson, Ilene K

    2014-01-01

    To investigate the levels of matrix metalloproteinases (MMPs), myeloperoxidase (MPO), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in tears of patients with Stevens-Johnson syndrome (SJS) and ocular cicatricial pemphigoid (OCP). Prospective, noninterventional cohort study. Four SJS patients (7 eyes), 19 OCP patients (37 eyes), and 20 healthy controls who underwent phacoemulsification (40 eyes). Tear washes were collected from all patients and were analyzed for levels of MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MPO, and TIMP-1 using multianalyte bead-based enzyme-linked immunosorbent assays. Total MMP activity was determined using a fluorometric assay. Correlation studies were performed between the various analytes within study groups. Levels of MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MPO, and TIMP-1 (in nanograms per microgram of protein) and total MMP activity (in relative fluorescent units per minute per microgram of protein) in tears; MMP-8-to-TIMP-1 ratio; MMP-9-to-TIMP-1 ratio; and the correlations between MMP-8 and MMP-9 and both MMP and MPO. MMP-8, MMP-9, and MPO levels were elevated significantly in SJS and OCP tears (SJS>OCP) when compared with controls. The MMP activity was highest in SJS patients, whereas OCP patients and controls showed lower and similar activities. The TIMP-1 levels were decreased in SJS and OCP patients when compared with those in controls, with levels in OCP patients reaching significance. The MMP-8-to-TIMP-1 and MMP-9-to-TIMP-1 ratios were markedly elevated in SJS and OCP tears (SJS>OCP) when compared with those of controls. Across all study groups, MMP-9 levels correlated strongly with MMP-8 and MPO levels, and MMP-8 correlated with MPO, but it did not reach significance in SJS patients. There was no relationship between MMP-7 and MPO. Because MMP-8 and MPO are produced by inflammatory cells, particularly neutrophils, the correlation data indicate that they may be the common source of elevated enzymes, including MMP-9, in SJS and OCP tears. Elevated MMP-to-TIMP ratios and MMP activity suggest an imbalance in tear MMP regulation that may explain the predisposition of these patients to demonstrate corneal melting and chronic complications associated with persistent inflammation. Myeloperoxidase in tears may be a sensitive and specific marker for the quantification of ocular inflammation. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  12. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR).more » The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.« less

  13. Expression of matrix metalloproteinase enzymes in endometrium of women with abnormal uterine bleeding.

    PubMed

    Grzechocinska, Barbara; Dabrowski, Filip A; Chlebus, Marcin; Gondek, Agata; Czarzasta, Katarzyna; Michalowski, Lukasz; Cudnoch-Jedrzejewska, Agnieszka; Wielgos, Miroslaw

    2018-02-01

    Abnormal uterine bleeding (AUB) is caused by derangement of physiological processes of tissue growth, shedding and regeneration. It is known that interplay between metalloproteinases (MMP's) and tissue inhibitors of metalloproteinases (TIMP's) may play a crucial role in its occurrence. To define if expression of proMMP-2, MMP-2 and TIMP-1 in endometrium of women with AUB is dependent on steroid sex hormone concentration and histopathological picture. Endometrial scraps were taken from 21 women with AUB and 19 controls. Samples were evaluated in light microscopy by a certified pathologist. Activity of proMMP-2 and MMP-2 proteins levels were evaluated by gelatin zymography and TIMP-1 by reversed zymography. The results has been correlated with serum estradiol and progesterone concentrations in linear regression model. Expression: of proMMP-2 in endometrium of women with AUB is correlated with estradiol concentration and inversely correlated with progesterone levels. It was significantly higher in women with dysfunctional endometrium (p<0.001). Expression of MMP-2 was highest in women with endometrial polyps and longer bleeding (p<0.01), while expression of TIMP-1 was independent from hormone concentration. Lack of correlation between proMMP-2 and MMP-2 levels suggest different pathway of their activation in AUB. ProMMP-2 is up regulated by estradiol and down regulated by progesterone while MMP-2 levels increase with the length of bleeding.

  14. Biomarkers for identifying the early phases of osteoarthritis secondary to medial patellar luxation in dogs.

    PubMed

    Alam, Md Rafiqul; Ji, Joong Ryong; Kim, Min Su; Kim, Nam Soo

    2011-09-01

    The levels of tartrate resistant acid phosphatase (TRAP), matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in synovial fluid (SF) and serum in cases of canine osteoarthritis (OA) were measured. OA was induced by a surgically-created medial patellar luxation in the left stifle of 24 dogs. SF and blood samples were collected at 1.5- and 3-month intervals, respectively. Every 3 months, one dog was euthanatized to collect tissue samples from both stifles. TRAP levels in SF and serum were measured using a spectrophotometer, and TRAP-positive cells in joint tissues were identified by enzyme histochemistry. MMP-2 and TIMP-2 in SF and serum were detected by Western blotting and ELISA, respectively. TRAP in SF from the stifles and serum was significantly increased (p < 0.05) after 3 months. TIMP-2 in SF and serum was significantly decreased (p < 0.05), whereas MMP-2 in SF was significantly increased (p < 0.05) during the progression of OA. Histochemistry revealed an increased number of TRAP-positive cells in tissues from OA-affected joints. Assays measuring TRAP, MMP-2, and TIMP-2 in SF and serum, and methods that detect increased numbers of TRAP-positive cells in the joint tissues can play an important role in identifying the early phases of degenerative changes in canine joint components.

  15. Gelatinases and their tissue inhibitors in a group of subjects with obstructive sleep apnea syndrome.

    PubMed

    Hopps, Eugenia; Canino, Baldassare; Montana, Maria; Calandrino, Vincenzo; Urso, Caterina; Lo Presti, Rosalia; Caimi, Gregorio

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is associated with an elevated risk of cardiovascular events and stroke. Matrix metalloproteinases (MMPs) are endopeptidases involved in extracellular matrix degradation and then in the development and progression of cardiovascular diseases. Our aim was to evaluate plasma levels of gelatinases (MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) in a group of subjects with OSAS. We enrolled 48 subjects (36 men and 12 women; mean age 49.7 ± 14.68 yrs) with OSAS diagnosed with a 1-night cardiorespiratory study and then we subdivided these subjects into two subgroups according to the apnea/hypopnea index (AHI): Low (L = 21 subjects with AHI <30) and High (H = 27 subjects with AHI >30). We measured plasma concentration of the gelatinases and their inhibitors using ELISA kits. We observed a significant increase in plasma concentration of MMP-9, MMP-2, TIMP-1 and TIMP-2 in the entire group of OSAS subjects and in the two subgroups, with higher levels in the H in comparison with the L subgroup. In the whole group of OSAS subjects we also noted a significant decrease in MMP-9/TIMP-1 ratio in comparison with normal controls. Only MMP-9 was significantly correlated with the severity of the disease, expressed as AHI, with the oxygen desaturation index and also with the mean oxygen saturation. MMPs pattern is altered in OSAS and significantly influenced by the severity of the disease; it probably contributes to the vascular remodeling that leads to the atherosclerotic disease and cardiovascular complications.

  16. Gingival fibroblasts degrade type I collagen films when stimulated with tumor necrosis factor and interleukin 1: evidence that breakdown is mediated by metalloproteinases.

    PubMed

    Meikle, M C; Atkinson, S J; Ward, R V; Murphy, G; Reynolds, J J

    1989-05-01

    We previously suggested that periodontal pathogens might mediate connective tissue degradation in periodontal diseases through the ability of antigens from their cell walls to stimulate cytokine production by circulating mononuclear cells. Such cytokines would then induce metalloproteinase (MP) synthesis by resident gingival cells and thus initiate matrix degradation. In the present investigation human gingival fibroblasts (HGFs) were grown on [14C]-labelled type I collagen films and stimulated with either tumor necrosis factor (TNF) or interleukin-1 (IL-1) for 48 h. Collagenolysis occurred in a dose-dependent manner; the optimal dose for human rTNF alpha was 100 ng/ml and for rIL-1 alpha and rIL-1 beta, 1 ng/ml. Collagen degradation was accompanied by increased synthesis and release of the MPs collagenase, gelatinase and stromelysin, and there was a reduction in free TIMP (tissue inhibitor of metalloproteinases): collagenase and stromelysin were detected in both active and latent forms. Cytokine-stimulated collagenolysis was abolished by the addition of exogenous human rTIMP (5 units/ml). We also measured collagenase and TIMP by ELISAs which recognize all forms of collagenase (latent, active or complexed) and TIMP (free or complexed). These showed that while collagenase activity (0.6-1.2 microgram/ml) correlated with lysis, total TIMP levels remained unchanged at approximately 0.2 microgram/ml. These results demonstrate important roles for MPs and TIMP in regulating type I collagen degradation by HGFs, and support the hypothesis that connective tissue destruction during inflammatory diseases may be initiated, at least in part, by TNF and IL-1.

  17. TIMP-2 SNPs rs7342880 and rs4789936 are linked to risk of knee osteoarthritis in the Chinese Han Population

    PubMed Central

    Jin, Tianbo; Wang, Jihong; Fan, Dongsheng; Hao, Zengtao; Jing, Shangfei; Han, ChaoQian; Du, Jieli; Jiang, Dong; Wen, Shuzheng; Wang, Jianzhong

    2017-01-01

    This study aimed to investigate whether functional polymorphisms in the tissue inhibitors of metalloproteinase-2 (TIMP-2) gene are associated with susceptibility to knee osteoarthritis (OA) in the Chinese Han population. Six TIMP-2 single nucleotide polymorphisms (SNPs) were assayed using MassARRAY in 300 patients clinically and radiographically diagnosed with knee OA and in 428 controls. Allelic and genotypic frequencies were compared between groups. Logistic regression adjusting for age and gender was used to estimate risk associations between specific genotypes and knee OA by computing odds ratios (ORs) and 95% confidence intervals (95% CIs). We found that allele “A” in rs7342880 was significantly associated with increased risk of knee OA (OR = 1.44, 95%CI = 1.09-1.91, p = 0.035). In addition, in the over-dominant model, rs4789936 correlated with reduced risk of knee OA, adjusting for age and gender (OR = 0.69, 95%CI = 0.49-0.98, p = 0.036). Finally, rs7342880 correlated with increased risk of knee OA in females. This study provides evidence that TIMP-2 is a knee OA susceptibility gene in the Chinese population and a potential diagnostic and preventive marker for the disease. PMID:27901480

  18. Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer.

    PubMed

    Kettunen, Eeva; Anttila, Sisko; Seppänen, Jouni K; Karjalainen, Antti; Edgren, Henrik; Lindström, Irmeli; Salovaara, Reijo; Nissén, Anna-Maria; Salo, Jarmo; Mattson, Karin; Hollmén, Jaakko; Knuutila, Sakari; Wikman, Harriet

    2004-03-01

    The expression patterns of cancer-related genes in 13 cases of squamous cell lung cancer (SCC) were characterized and compared with those in normal lung tissue and 13 adenocarcinomas (AC), the other major type of nonsmall cell lung cancer (NSCLC). cDNA array was used to screen the gene expression levels and the array results were verified using a real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Thirty-nine percent of the 25 most upregulated and the 25 most downregulated genes were common to SCC and AC. Of these genes, DSP, HMGA1 (alias HMGIY), TIMP1, MIF, CCNB1, TN, MMP11, and MMP12 were upregulated and COPEB (alias CPBP), TYROBP, BENE, BMPR2, SOCS3, TIMP3, CAV1, and CAV2 were downregulated. The expression levels of several genes from distinct protein families (cytokeratins and hemidesmosomal proteins) were markedly increased in SCC compared with AC and normal lung. In addition, several genes, overexpressed in SCC, such as HMGA1, CDK4, IGFBP3, MMP9, MMP11, MMP12, and MMP14, fell into distinct chromosomal loci, which we have detected as gained regions on the basis of comparative genomic hybridization data. Our study revealed new candidate genes involved in NSCLC.

  19. Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial.

    PubMed

    Cerisano, Giampaolo; Buonamici, Piergiovanni; Gori, Anna Maria; Valenti, Renato; Sciagrà, Roberto; Giusti, Betti; Sereni, Alice; Raspanti, Silvia; Colonna, Paolo; Gensini, Gian Franco; Abbate, Rosanna; Schulz, Richard; Antoniucci, David

    2015-10-15

    The TIPTOP (Early Short-term Doxycycline Therapy In Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction to Prevent The Ominous Progression to Adverse Remodelling) trial demonstrated that a timely, short-term therapy with doxycycline is able to reduce LV dilation, and both infarct size and severity in patients treated with primary percutaneous intervention (pPCI) for a first ST-elevation myocardial infarction (STEMI) and left ventricular (LV) dysfunction. In this secondary, pre-defined analysis of the TIPTOP trial we evaluated the relationship between doxycycline and plasma levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). In 106 of the 110 (96%) patients enrolled in the TIPTOP trial, plasma MMPs and TIMPs were measured at baseline, and at post-STEMI days 1, 7, 30 and 180. To evaluate the remodeling process, 2D-Echo studies were performed at baseline and at 6months. A (99m)Tc-SPECT was performed to evaluate the 6-month infarct size and severity. Doxycycline therapy was independently related to higher plasma TIMP-2 levels at day 7 (p<0.05). Plasma TIMP-2 levels above the median value at day 7 were correlated with the 6-month smaller infarct size (3% [0%-16%] vs. 12% [0%-30%], p=0.002) and severity (0.55 [0.44-0.64] vs. 0.45 [0.29-0.60], p=0.002), and LV dilation (-1ml/m(2) [from -7ml/m(2) to 9ml/m(2)] vs. 3ml/m(2) [from -2ml/m(2) to 19ml/m(2)], p=0.04), compared to their counterpart. In this clinical setting, doxycycline therapy results in higher plasma levels of TIMP-2 which, in turn, inversely correlate with 6month infarct size and severity as well as LV dilation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H 2 S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H 2 S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H 2 S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  1. Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation.

    PubMed

    Sandri, Silvana; Faião-Flores, Fernanda; Tiago, Manoela; Pennacchi, Paula Comune; Massaro, Renato Ramos; Alves-Fernandes, Débora Kristina; Berardinelli, Gustavo Noriz; Evangelista, Adriane Feijó; de Lima Vazquez, Vinicius; Reis, Rui Manuel; Maria-Engler, Silvya Stuchi

    2016-09-01

    The BRAF(V600E) mutation confers constitutive kinase activity and accounts for >90% of BRAF mutations in melanoma. This genetic alteration is a current therapeutic target; however, the antitumorigenic effects of the BRAF(V600E) inhibitor vemurafenib are short-lived and the majority of patients present tumor relapse in a short period after treatment. Characterization of vemurafenib resistance has been essential to the efficacy of next generation therapeutic strategies. Herein, we found that acute BRAF inhibition induced a decrease in active MMP-2, MT1-MMP and MMP-9, but did not modulate the metalloproteinase inhibitors TIMP-2 or RECK in naïve melanoma cells. In vemurafenib-resistant melanoma cells, we observed a lower growth rate and an increase in EGFR phosphorylation followed by the recovery of active MMP-2 expression, a mediator of cancer metastasis. Furthermore, we found a different profile of MMP inhibitor expression, characterized by TIMP-2 downregulation and RECK upregulation. In a 3D spheroid model, the invasion index of vemurafenib-resistant melanoma cells was more evident than in its non-resistant counterpart. We confirmed this pattern in a matrigel invasion assay and demonstrated that use of a matrix metalloproteinase inhibitor reduced the invasion of vemurafenib resistant melanoma cells but not drug naïve cells. Moreover, we did not observe a delimited group of cells invading the dermis in vemurafenib-resistant melanoma cells present in a reconstructed skin model. The same MMP-2 and RECK upregulation profile was found in this 3D skin model containing vemurafenib-resistant melanoma cells. Acute vemurafenib treatment induces the disorganization of collagen fibers and consequently, extracellular matrix remodeling, with this pattern observed even after the acquisition of resistance. Altogether, our data suggest that resistance to vemurafenib induces significant changes in the tumor microenvironment mainly by MMP-2 upregulation, with a corresponding increase in cell invasiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A Comparison of Vascular Effects from Complex and Individual Air Pollutants Indicates a Role for Monoxide Gases and Volatile Hydrocarbons

    PubMed Central

    Campen, Matthew J.; Lund, Amie K.; Doyle-Eisele, Melanie L.; McDonald, Jacob D.; Knuckles, Travis L.; Rohr, Annette C.; Knipping, Eladio M.; Mauderly, Joe L.

    2010-01-01

    Background Emerging evidence suggests that the systemic vasculature may be a target of inhaled pollutants of vehicular origin. We have identified several murine markers of vascular toxicity that appear sensitive to inhalation exposures to combustion emissions. Objective We sought to examine the relative impact of various pollutant atmospheres and specific individual components on these markers of altered vascular transcription and lipid peroxidation. Methods Apolipoprotein E knockout (ApoE−/−) mice were exposed to whole combustion emissions (gasoline, diesel, coal, hardwood), biogenically derived secondary organic aerosols (SOAs), or prominent combustion-source gases [nitric oxide (NO), NO2, carbon monoxide (CO)] for 6 hr/day for 7 days. Aortas were assayed for transcriptional alterations of endothelin-1 (ET-1), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-2 (TIMP-2), and heme oxygenase-1 (HO-1), along with measures of vascular lipid peroxides (LPOs) and gelatinase activity. Results We noted transcriptional alterations with exposures to gasoline and diesel emissions. Interestingly, ET-1 and MMP-9 transcriptional effects could be recreated by exposure to CO and NO, but not NO2 or SOAs. Gelatinase activity aligned with levels of volatile hydrocarbons and also monoxide gases. Neither gases nor particles induced vascular LPO despite potent effects from whole vehicular emissions. Conclusions In this head-to-head comparison of the effects of several pollutants and pollutant mixtures, we found an important contribution to vascular toxicity from readily bioavailable monoxide gases and possibly from volatile hydrocarbons. These data support a role for traffic-related pollutants in driving cardiopulmonary morbidity and mortality. PMID:20197249

  3. Visfatin alters the cytokine and matrix-degrading enzyme profile during osteogenic and adipogenic MSC differentiation.

    PubMed

    Tsiklauri, Lali; Werner, Janina; Kampschulte, Marian; Frommer, Klaus W; Berninger, Lucija; Irrgang, Martina; Glenske, Kristina; Hose, Dirk; El Khassawna, Thaqif; Pons-Kühnemann, Jörn; Rehart, Stefan; Wenisch, Sabine; Müller-Ladner, Ulf; Neumann, Elena

    2018-06-13

    Age-related bone loss is associated with bone marrow adiposity. Adipokines (e.g. visfatin, resistin, leptin) are adipocyte-derived factors with immunomodulatory properties and might influence differentiation of bone marrow-derived mesenchymal stem cells (MSC) in osteoarthritis (OA) and osteoporosis. Thus, the presence of adipokines and MMPs in bone marrow and their effects on MSC differentiation were analyzed. MSC and RNA were isolated from femoral heads after hip replacement surgery of OA or osteoporotic femoral neck fracture (FF) patients. Bone structural parameters were evaluated by μCT. MSC were differentiated towards adipocytes or osteoblasts with/without adipokines. Gene expression (adipokines, bone marker genes, MMPs, TIMPs) and cytokine production was evaluated by realtime-PCR and ELISA. Matrix mineralization was quantified using Alizarin red S staining. μCT showed an osteoporotic phenotype of FF compared to OA bone (reduced trabecular thickness and increased ratio of bone surface vs. volume of solid bone). Visfatin and leptin were increased in FF vs OA. Visfatin induced the secretion of IL-6, IL-8, and MCP-1 during osteogenic and adipogenic differentiation. In contrast to resistin and leptin, visfatin increased MMP2 and MMP13 during Adipognesis. In osteogenically differentiated cells, MMPs and TIMPs were reduced by visfatin. Visfatin significantly increased matrix mineralization during osteogenesis, whereas collagen type I expression was reduced. Visfatin-mediated increase of matrix mineralization and reduced collagen type I expression could contribute to bone fragility. Visfatin is involved in impaired bone remodeling at the adipose tissue/bone interface through induction of proinflammatory factors and dysregulated MMP/TIMP balance during MSC differentiation. Copyright © 2018. Published by Elsevier Ltd.

  4. The Effect of TIMP-1 on the Cone Mosaic in the Retina of the Rat Model of Retinitis Pigmentosa

    PubMed Central

    Ji, Yerina; Yu, Wan-Qing; Eom, Yun Sung; Bruce, Farouk; Craft, Cheryl Mae; Grzywacz, Norberto M.; Lee, Eun-Jin

    2015-01-01

    Purpose. The array of photoreceptors found in normal retinas provides uniform and regular sampling of the visual space. In contrast, cones in retinas of the S334ter-line-3 rat model for RP migrate to form a mosaic of rings, leaving large holes with few or no photoreceptors. Similar mosaics appear in human patients with other forms of retinal dystrophy. In the current study, we aimed to investigate the effect of tissue inhibitor of metalloproteinase-1 (TIMP-1) on the mosaic of cones in S334ter-line-3 rat retinas. We focused on TIMP-1 because it is one of the regulators of the extracellular matrix important for cellular migration. Methods. Immunohistochemistry was performed to reveal M-opsin cone cells (M-cone) and the results were quantified to test statistically whether or not TIMP-1 restores the mosaics to normal. In particular, the tests focused on the Voronoi and nearest-neighbor distance analyses. Results. Our tests indicated that TIMP-1 led to significant disruption of the M-opsin cone rings in S334ter-line-3 rat retinas and resulted in almost complete homogeneous mosaics. In addition, TIMP-1 induced the M-cone spatial distribution to become closer to random with decreased regularity in S334ter-line-3 rat retinas. Conclusions. These findings confirm that TIMP-1 induced M-cone mosaics in S334ter-line-3 to gain homogeneity without reaching the degree of regularity seen in normal retinal mosaics. Even if TIMP-1 fails to promote regularity, the effects of this drug on homogeneity appear to be so dramatic that TIMP-1 may be a potential therapeutic agent. TIMP-1 improves sampling of the visual field simply by causing homogeneity. PMID:25515575

  5. TIMPs of parasitic helminths - a large-scale analysis of high-throughput sequence datasets.

    PubMed

    Cantacessi, Cinzia; Hofmann, Andreas; Pickering, Darren; Navarro, Severine; Mitreva, Makedonka; Loukas, Alex

    2013-05-30

    Tissue inhibitors of metalloproteases (TIMPs) are a multifunctional family of proteins that orchestrate extracellular matrix turnover, tissue remodelling and other cellular processes. In parasitic helminths, such as hookworms, TIMPs have been proposed to play key roles in the host-parasite interplay, including invasion of and establishment in the vertebrate animal hosts. Currently, knowledge of helminth TIMPs is limited to a small number of studies on canine hookworms, whereas no information is available on the occurrence of TIMPs in other parasitic helminths causing neglected diseases. In the present study, we conducted a large-scale investigation of TIMP proteins of a range of neglected human parasites including the hookworm Necator americanus, the roundworm Ascaris suum, the liver flukes Clonorchis sinensis and Opisthorchis viverrini, as well as the schistosome blood flukes. This entailed mining available transcriptomic and/or genomic sequence datasets for the presence of homologues of known TIMPs, predicting secondary structures of defined protein sequences, systematic phylogenetic analyses and assessment of differential expression of genes encoding putative TIMPs in the developmental stages of A. suum, N. americanus and Schistosoma haematobium which infect the mammalian hosts. A total of 15 protein sequences with high homology to known eukaryotic TIMPs were predicted from the complement of sequence data available for parasitic helminths and subjected to in-depth bioinformatic analyses. Supported by the availability of gene manipulation technologies such as RNA interference and/or transgenesis, this work provides a basis for future functional explorations of helminth TIMPs and, in particular, of their role/s in fundamental biological pathways linked to long-term establishment in the vertebrate hosts, with a view towards the development of novel approaches for the control of neglected helminthiases.

  6. TIMPs of parasitic helminths – a large-scale analysis of high-throughput sequence datasets

    PubMed Central

    2013-01-01

    Background Tissue inhibitors of metalloproteases (TIMPs) are a multifunctional family of proteins that orchestrate extracellular matrix turnover, tissue remodelling and other cellular processes. In parasitic helminths, such as hookworms, TIMPs have been proposed to play key roles in the host-parasite interplay, including invasion of and establishment in the vertebrate animal hosts. Currently, knowledge of helminth TIMPs is limited to a small number of studies on canine hookworms, whereas no information is available on the occurrence of TIMPs in other parasitic helminths causing neglected diseases. Methods In the present study, we conducted a large-scale investigation of TIMP proteins of a range of neglected human parasites including the hookworm Necator americanus, the roundworm Ascaris suum, the liver flukes Clonorchis sinensis and Opisthorchis viverrini, as well as the schistosome blood flukes. This entailed mining available transcriptomic and/or genomic sequence datasets for the presence of homologues of known TIMPs, predicting secondary structures of defined protein sequences, systematic phylogenetic analyses and assessment of differential expression of genes encoding putative TIMPs in the developmental stages of A. suum, N. americanus and Schistosoma haematobium which infect the mammalian hosts. Results A total of 15 protein sequences with high homology to known eukaryotic TIMPs were predicted from the complement of sequence data available for parasitic helminths and subjected to in-depth bioinformatic analyses. Conclusions Supported by the availability of gene manipulation technologies such as RNA interference and/or transgenesis, this work provides a basis for future functional explorations of helminth TIMPs and, in particular, of their role/s in fundamental biological pathways linked to long-term establishment in the vertebrate hosts, with a view towards the development of novel approaches for the control of neglected helminthiases. PMID:23721526

  7. Regulation of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of MMP, and progesterone secretion in luteinized granulosa cells from normally ovulating women with polycystic ovary disease.

    PubMed

    Ben-Shlomo, Izhar; Goldman, Shlomit; Shalev, Eliezer

    2003-03-01

    To investigate the regulation of MMP-9, TIMP-1, and progesterone via three signal transduction pathways in luteinized granulosa cells from normal ovulatory and PCOD women. In vitro study. Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Hospital, Afula, Israel. Ten normal ovulatory and 10 women with polycystic ovary disease (PCOD) treated in an assisted reproduction program. Cultured cells were exposed to phorbol 12-myristate 13-acetate (TPA), acting via protein kinase C (PKC), to epidermal growth factor (EGF), acting via protein tyrosine kinase (PTK), and to forskolin, acting via protein kinase A (PKA). Secretion of MMP-9, TIMP-1, and progesterone. Phorbol 12-myristate 13-acetate elicited an increase in MMP-9 and TIMP-1 secretion in both groups and apparently did not affect progesterone secretion. Epidermal growth factor did not change significantly neither MMP-9 nor TIMP-1 secretion but dose dependently decreased MMP-9-TIMP-1 ratio and increased progesterone secretion in the PCOD group. Forskolin inhibited MMP-9 activity and increased TIMP-1 and progesterone secretion in both groups. Progesterone production was inversely related to the ratio of MMP-9-TIMP-1 regardless of cell origin. In this preliminary study, similar and divergent patterns have emerged in the regulation of MMP-9 and TIMP-1 in human luteinized granulosa cells. Repressing MMP-9-TIMP-1 ratio may have an important modulatory effect on progesterone secretion.

  8. Peroxisome proliferator-activated receptor-γ in induced sputum is correlated with MMP-9/TIMP-1 imbalance and formation of emphysema in COPD patients.

    PubMed

    Zhou, Xiao-Ming; Hou, Gang; Gu, Dong-Xue; Wang, Qiu-Yue; Zhao, Li

    2017-10-01

    The development of chronic obstructive pulmonary disease (COPD) is modulated by the symmetry of matrix metalloproteinases (MMPs) and the counter-acting tissue inhibitors of metalloproteinases (TIMPs). We investigated the interaction between peroxisome proliferator-activated receptor gamma (PPARγ) expression and the imbalance of MMP-9/TIMP-1 in the induced sputum of stable COPD patients. Sixty-six stable COPD patients were enrolled and the induced sputum samples were gathered. The correlation between PPARγ and other index, including MMP-9, TIMP-1, pulmonary function and the index of emphysema-the percentage of low attenuation area (LAA%), was analyzed. PPARγ and TIMP-1 concentrations were decreased and the concentration of MMP-9 and the ratio of MMP9/TIMP1 were enhanced in the induced sputum of COPD patients, compared to the healthy controls. Among COPD patients, those with worse lung function or patients with emphysema exhibited increased MMP-9 expression with decreased TIMP-1 and PPARγ expression. Besides, the concentration of PPARγ of the induced sputum was correlated with the forced expiratory volume in one second percentage (FEV1%) positively and the expression of TIMP-1; while it was negatively correlated with the residual volume (RV), RV/total lung capacity (TLC), LAA%, and MMP-9 expression. Our findings reveal the protective role of PPARγ in the maintenance of the dynamic balance of MMP-9/TIMP-1 in COPD, thus providing evidence on which to base the potential COPD treatment.

  9. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling.

    PubMed

    Lin, Po-Shuen; Chang, Hsiao-Hua; Yeh, Chien-Yang; Chang, Mei-Chi; Chan, Chiu-Po; Kuo, Han-Yueh; Liu, Hsin-Cheng; Liao, Wan-Chuen; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2017-05-01

    In order to clarify the role of transforming growth factor beta 1 (TGF-β1) in pulp repair/regeneration responses, we investigated the differential signaling pathways responsible for the effects of TGF-β1 on collagen turnover, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human dental pulp cells. Pulp cells were exposed to TGF-β1 with/without pretreatment and coincubation by 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenyl mercapto)butadiene (U0126; a mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] inhibitor) and 4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H- imidazol-2-yl)-benzamide hydrate (SB431542; an activin receptor-like kinase-5/Smad signaling inhibitor). Sircol collagen assay was used to measure cellular collagen content. Culture medium procollagen I, TIMP-1, and MMP-3 levels were determined by enzyme-linked immunosorbent assay. TGF-β1 increased the collagen content, procollagen I, and TIMP-1 production, but slightly decreased MMP-3 production of pulp cells. SB431542 and U0126 prevented the TGF-β1-induced increase of collagen content and TIMP-1 production of dental pulp cells. These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling. Copyright © 2016. Published by Elsevier B.V.

  10. Effect of two different preparations of platelet-rich plasma on synoviocytes.

    PubMed

    Assirelli, Elisa; Filardo, Giuseppe; Mariani, Erminia; Kon, Elizaveta; Roffi, Alice; Vaccaro, Franca; Marcacci, Maurilio; Facchini, Andrea; Pulsatelli, Lia

    2015-09-01

    To analyse the modifications induced by two different platelet-rich plasma (PRP) preparations on osteoarthritis (OA) synoviocytes, by documenting changes in gene expression of factors involved in joint physiopathology. OA synoviocytes were cultured for 7 days in medium with different concentrations of either P-PRP (a pure platelet concentrate without leucocytes but with a limited number of platelets), L-PRP (a higher platelet concentrate containing leucocytes) or platelet-poor plasma (PPP). Gene expression of interleukin (IL)-1beta, IL-6, IL-8/CXCL8, tumour necrosis factor alpha, IL-10, IL-4, IL-13, metalloproteinase-13, tissue inhibitor of metalloproteinase (TIMP)-1, (TIMP)-3, (TIMP)-4, vascular endothelial growth factor, transforming growth factor beta1, fibroblast growth factor (FGF)-2, hepatocyte growth factor (HGF), hyaluronic acid (HA) synthases (HAS)-1, (HAS)-2, and (HAS)-3 was analysed by RT-PCR. HA production was determined in culture supernatants by ELISA. IL-1β, IL-8 and FGF-2 were significantly induced by L-PRP compared to both P-PRP and PPP; HGF was down-modulated by L-PRP versus both P-PRP and PPP, and an inverse dose-response influence was shown for all preparations. Expression level of TIMP-4 was lower in the presence of L-PRP compared with P-PRP. HA production and HAS gene expression did not seem to be modulated by PRP. L-PRP is able to sustain the up-regulation of proinflammatory factors, (IL-1beta, IL-8 and FGF-2), together with a down-modulation of HGF and TIMP-4 expression, two factors that have been recognized as anti-catabolic mediators in cartilage, thus supporting the need to further optimize the PRP preparations to be applied in clinical practice.

  11. A Computer Simulation Approach to Assessing Therapeutic Intervention Points for the Prevention of Cytokine-Induced Cartilage Breakdown

    PubMed Central

    Proctor, CJ; Macdonald, C; Milner, JM; Rowan, AD; Cawston, TE

    2014-01-01

    Objective To use a novel computational approach to examine the molecular pathways involved in cartilage breakdown and to use computer simulation to test possible interventions for reducing collagen release. Methods We constructed a computational model of the relevant molecular pathways using the Systems Biology Markup Language, a computer-readable format of a biochemical network. The model was constructed using our experimental data showing that interleukin-1 (IL-1) and oncostatin M (OSM) act synergistically to up-regulate collagenase protein levels and activity and initiate cartilage collagen breakdown. Simulations were performed using the COPASI software package. Results The model predicted that simulated inhibition of JNK or p38 MAPK, and overexpression of tissue inhibitor of metalloproteinases 3 (TIMP-3) led to a reduction in collagen release. Overexpression of TIMP-1 was much less effective than that of TIMP-3 and led to a delay, rather than a reduction, in collagen release. Simulated interventions of receptor antagonists and inhibition of JAK-1, the first kinase in the OSM pathway, were ineffective. So, importantly, the model predicts that it is more effective to intervene at targets that are downstream, such as the JNK pathway, rather than those that are close to the cytokine signal. In vitro experiments confirmed the effectiveness of JNK inhibition. Conclusion Our study shows the value of computer modeling as a tool for examining possible interventions by which to reduce cartilage collagen breakdown. The model predicts that interventions that either prevent transcription or inhibit the activity of collagenases are promising strategies and should be investigated further in an experimental setting. PMID:24757149

  12. Cell surface engineering using glycosylphosphatidylinositol anchored tissue inhibitor of matrix metalloproteinase-1 stimulates cutaneous wound healing.

    PubMed

    Djafarzadeh, Roghieh; Conrad, Claudius; Notohamiprodjo, Susan; Hipp, Stephanie; Niess, Hanno; Bruns, Christiane J; Nelson, Peter J

    2014-01-01

    The balance between matrix metalloproteinases and their endogenous tissue inhibitors (TIMPs) is an important component in effective wound healing. The biologic action of these proteins is linked in part to the stoichiometry of TIMP/matrix metalloproteinases/surface protein interactions. We recently described the effect of a glycosylphosphatidylinositol (GPI) anchored version of TIMP-1 on dermal fibroblast biology. Here, cell proliferation assays, in vitro wound healing, electrical wound, and impedance measurements were used to characterize effects of TIMP-1-GPI treatment on primary human epidermal keratinocytes. TIMP-1-GPI stimulated keratinocyte proliferation, as well as mobilization and migration. In parallel, it suppressed the migration and matrix secretion of dermal myofibroblasts, and reduced their secretion of active TGF-β1. Topical application of TIMP-1-GPI in an in vivo excisional wound model increased the rate of wound healing. The agent positively influenced different aspects of wound healing depending on the cell type studied. TIMP-1-GPI counters potential negative effects of overactive myofibroblasts and enhances the mobilization and proliferation of keratinocytes essential for effective wound healing. The application of TIMP-1-GPI represents a novel and practical clinical solution for facilitating healing of difficult wounds. © 2014 by the Wound Healing Society.

  13. Paracrine Potential of the Human Adipose Tissue-Derived Stem Cells to Modulate Balance between Matrix Metalloproteinases and Their Inhibitors in the Osteoarthritic Cartilage In Vitro

    PubMed Central

    Bagdonas, Edvardas; Kusleviciute, Ilona; Mackiewicz, Zygmunt; Unguryte, Ausra; Porvaneckas, Narunas; Fleury, Sandrine; Venalis, Algirdas

    2017-01-01

    Adipose tissue represents an abundant source of stem cells. Along with anti-inflammatory effects, ASC secrete various factors that may modulate metabolism of extracellular matrix in osteoarthritic (OA) cartilage, suggesting that the presence of ASC could be advantageous for OA cartilage due to the recovery of homeostasis between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs). To evaluate these effects, cartilage explants (CE) were cocultured with ASC for 3 and 7 days under stimulation with or without IL-1β. The pattern of gene expression in CE was modified by ASC, including the upregulation of COL1A1 and COL3A1 and the downregulation of MMP13 and COL10A1. The production of MMP-1, MMP-3, and MMP-13 by ASC was not significant; moreover, cocultures with ASC reduced MMP-13 production in CE. In conclusion, active production of TIMP-1, TIMP-2, TIMP-3, IL-6, IL-8, and gelatinases MMP-2 and MMP-9 by ASC may be involved in the extracellular matrix remodelling, as indicated by the altered expression of collagens, the downregulated production of MMP-13, and the reduced chondrocyte apoptosis in the cocultured CE. These data suggest that ASC modulated homeostasis of MMPs/TIMPs in degenerated OA cartilage in vitro and might be favourable in case of the intra-articular application of ASC therapy for the treatment of OA. PMID:28819366

  14. Matrix metalloproteinases and left ventricular function and structure in spinal cord injured subjects.

    PubMed

    Schreiber, Roberto; Paim, Layde R; de Rossi, Guilherme; Matos-Souza, José R; Costa E Silva, Anselmo de A; Souza, Cristiane M; Borges, Mariane; Azevedo, Eliza R; Alonso, Karina C; Gorla, José I; Cliquet, Alberto; Nadruz, Wilson

    2014-11-01

    Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The C-allele of tissue inhibitor of metalloproteinases 2 is associated with increased magnitude of QT dispersion prolongation in elderly Chinese - 4-year follow-up study.

    PubMed

    Lin, Tsung-Hsien; Chiu, Herng-Chia; Lee, Ya-Ting; Su, Ho-Ming; Juo, Suh-Hang Hank; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2007-01-01

    Matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinases (TIMP) trigger the signal cascade instigating cardiac remodeling and fibrosis, which lead to changes of repolarization variables. We investigate the influence of MMP9-1562 C/T and TIMP2-418 G/C gene polymorphisms on repolarization parameters including QT dispersion (QTd) and the peak and the end of the T wave interval (Tpe) in a prospective cohort. Of 1500 people screened, 106 elderly Chinese without organic heart disease were recruited and received electrocardiography at the baseline, second and 4th year follow-ups. The QTc (corrected QT), QTd, QTc dispersion (QTcd) and Tpe were manually calculated. Age was 72.7+/-4.1 y (range 62-81 y). QTd, QTcd and Tpe were significantly prolonged (all p <0.001 at the 2nd and 4th year). At the 4th year the magnitude of QTd prolongation but not Tpe was significantly higher in subjects carrying the TIMP2 C-allele than non C-allele carriers (p=0.033) as well as QTcd (p=0.010). This association was still significant in multivariate analyses (p=0.012 and p=0.003 for QTd and QTcd, respectively) but not in MMP9 genotype. The elderly Chinese with TIMP2 C-allele have higher magnitude of QTd and QTcd prolongation.

  16. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    PubMed Central

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction. PMID:28424512

  17. Quantitative Evaluation of MMP-9 and TIMP-1 Promoter Methylation in Chronic Periodontitis.

    PubMed

    Li, Xiting; Lu, Jiaxuan; Teng, Wei; Zhao, Chuanjiang; Ye, Xiaolei

    2018-03-01

    In this study, we investigated the promoter DNA methylation (DNAm) status of the MMP-9 and TIMP-1 genes in patients with chronic periodontitis to evaluate disease progression. Using pyrosequencing technology, DNAm levels of MMP-9 and TIMP-1 CpG islands were measured in 88 chronic periodontitis patients and 15 healthy controls. We found a positive correlation between methylation levels of MMP-9 CpG islands and the severity of chronic periodontitis. Methylated CpG islands were also closely associated with the duration of chronic periodontitis. Moreover, female patients exhibited lower methylation levels of MMP-9 but higher methylation levels of TIMP-1 compared with male patients, and the methylation levels of TIMP-1 gradually decreased with age. The findings of gender disparity in the DNAm of MMP-9 and TIMP-1 genes provide novel insights into chronic periodontitis.

  18. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization.

    PubMed

    Di, Yu; Nie, Qing-Zhu; Chen, Xiao-Long

    2016-01-01

    To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP.

  19. Cytokine expression profile in the bone-anchored hearing system: 12-week results from a prospective randomized, controlled study.

    PubMed

    Calon, Tim George Ate; van Tongeren, Joost; Omar, Omar; Johansson, Martin Lars; Stokroos, Robert-Jan

    2018-04-27

    To study the effect of implanting the percutaneous bone-anchored hearing system (BAHS) itself and inflammation of the peri-abutment skin warrant clarification. In this study, we aimed to acquire further insight into the immune responses related to BAHS surgery and peri-implant skin inflammation. During surgery and 12 weeks post-implantation, skin biopsies were obtained. If applicable, additional biopsies were taken during cases of inflammation. The mRNA expression of IL-1β, IL-6, IL-8, TNFα, IL-17, IL-10, TGF-ß, MIP-1α, MMP-9, TIMP-1, COL1α1, VEGF-A, FGF-2 TLR-2, and TLR-4 was quantified using qRT-PCR. Thirty-five patients agreed to the surgery and 12-week biopsy. Twenty-two patients had mRNA of sufficient quality for analysis. Ten were fitted with a BAHS using the minimally invasive Ponto surgery technique. Twelve were fitted with a BAHS using the linear incision technique with soft-tissue preservation. Five biopsies were obtained during episodes of inflammation. The post-implantation mRNA expression of IL-1β (P = .002), IL-8 (P = .003), MMP9 (P = .005), TIMP-1 (P = .002), and COL1α1 (P < .001) was significantly up-regulated. IL-6 (P = .009) and FGF-2 (P = .004) mRNA expression was significantly down-regulated after implantation. Within patients, no difference between post-implantation mRNA expression (at 12 weeks) and when inflammation was observed. Between patients, the expression of IL-1β (P = .015) and IL-17 (P = .02) was higher during cases of inflammation compared with patients who had no inflammation at 12-week follow-up. As part of a randomized, prospective, clinical trial, the present study reports the molecular profile of selected cytokines in the soft tissue around BAHS. Within the limit of this study, the results showed that 12 weeks after BAHS implantation the gene expression of some inflammatory cytokines (IL-8 and IL-1β) is still relatively high compared with the baseline, steady-state, expression. The up-regulation of anabolic (COL1α1) and tissue-remodeling (MMP-9 and TIMP1) genes indicates an ongoing remodeling process after 12 weeks of implantation. The results suggest that IL-1β, IL-17, and TNF-α may be interesting markers associated with inflammation. © 2018 The Authors. Clinical Implant Dentistry and Related Research published by Wiley Periodicals, Inc.

  20. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reductionmore » in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.« less

  1. Matrix Metalloproteinases and their Tissue Inhibitors in Cardiac Amyloidosis: Relationship to Structural, Functional Myocardial Changes and to Light Chain Amyloid Deposition

    PubMed Central

    Biolo, Andreia; Ramamurthy, Sujata; Connors, Lawreen H.; O'Hara, Carl J.; Meier-Ewert, Hans K.; Hoo, Pamela T. Soo; Sawyer, Douglas B.; Seldin, David S.; Sam, Flora

    2009-01-01

    Background Cardiac amyloidosis is characterized by amyloid infiltration resulting in extracellular matrix (ECM) disruption. Amyloid cardiomyopathy due to immunoglobulin light chain protein (AL-CMP) deposition, has an accelerated clinical course and a worse prognosis compared to non-light chain cardiac amyloidoses i.e., forms associated with wild-type or mutated transthyretin (TTR). We therefore tested the hypothesis that determinants of proteolytic activity of the ECM, the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), would have distinct patterns and contribute to the pathogenesis of AL-CMP vs. TTR. Methods / Results We studied 40 patients with systemic amyloidosis: 10 AL-CMP patients, 20 patients with TTR-associated forms of cardiac amyloidosis, i.e. senile systemic amyloidois (SSA, involving wild-type TTR) or mutant TTR (ATTR), and 10 patients with AL amyloidosis without cardiac involvement. Serum MMP-2 and −9, TIMP-1, −2 and −4, brain natriuretic peptide (BNP) values and echocardiography were determined. AL-CMP and SSA-ATTR groups had similar degrees of increased left ventricular wall thickness (LVWT). However, BNP, MMP-9 and TIMP-1 levels were distinctly elevated accompanied by marked diastolic dysfunction in the AL-CMP group vs. no or minimal increases in the SSA-ATTR group. BNP, MMPs and TIMPs were not correlated with the degree of LVWT but were correlated to each other and to measures of diastolic dysfunction. Immunostaining of human endomyocardial biopsies showed diffuse expression of MMP-9 and TIMP-1 in AL-CMP and limited expression in SSA or ATTR hearts. Conclusions Despite comparable LVWT with TTR-related cardiac amyloidosis, AL-CMP patients have higher BNP, MMPs and TIMPs, which correlated with diastolic dysfunction. These findings suggest a relationship between light chains and ECM proteolytic activation that may play an important role in the functional and clinical manifestations of AL-CMP, distinct from the other non-light chain cardiac amyloidoses. PMID:19808299

  2. Higher Dialysate Matrix Metalloproteinase-2 Levels Are Associated with Peritoneal Membrane Dysfunction

    PubMed Central

    Cho, Yeoungjee; Johnson, David W.; Vesey, David A.; Hawley, Carmel M.; Pascoe, Elaine M.; Clarke, Margaret; Topley, Nicholas

    2016-01-01

    ♦ Background: Peritoneal dialysis (PD) patients develop progressive and cumulative peritoneal injury with longer time spent on PD. The present study aimed to a) describe the trend of peritoneal injury biomarkers, matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), in incident PD patients, b) to explore the capacity of dialysate MMP-2 to predict peritoneal solute transport rate (PSTR) and peritonitis, and c) to evaluate the influence of neutral pH, low glucose degradation product (GDP) PD solution on these outcomes. ♦ Methods: The study included 178 participants from the balANZ trial who had at least 1 stored dialysate sample. Changes in PSTR and peritonitis were primary outcome measures, and the utility of MMP-2 in predicting these outcomes was analyzed using multilevel linear regression and multilevel Poisson regression, respectively. ♦ Results: Significant linear increases in dialysate MMP-2 and TIMP-1 concentrations were observed (p < 0.001), but neither was affected by the type of PD solutions received (MMP-2: p = 0.07; TIMP-1: p = 0.63). An increase in PSTR from baseline was associated with higher levels of MMP-2 (p = 0.02), and the use of standard solutions over longer PD duration (p = 0.001). The risk of peritonitis was independently predicted by higher dialysate MMP-2 levels (incidence rate ratio [IRR] per ng/mL 1.01, 95% confidence interval [CI] 1.005 – 1.02, p = 0.002) and use of standard solutions (Biocompatible solution: IRR 0.45, 95% CI 0.24 – 0.85, p = 0.01). ♦ Conclusion: Dialysate MMP-2 and TIMP-1 concentrations increased with longer PD duration. Higher MMP-2 levels were associated with faster PSTR and future peritonitis risk. Administration of biocompatible solutions exerted no significant effect on dialysate levels of MMP-2 or TIMP-1, but did counteract the increase in PSTR and the risk of peritonitis associated with the use of standard PD solutions. This is the first longitudinal study to examine the clinical utility of MMP-2 as a predictor of patient-level outcomes. PMID:25292407

  3. Effects of choline treatment in concentrations of serum matrix metalloproteinases (MMPs), MMP tissue inhibitors (TIMPs) and immunoglobulins in an experimental model of canine sepsis.

    PubMed

    Kocaturk, Meric; Eralp-Inan, Oya; Tvarijonaviciute, A; Cansev, Mehmet; Ozyigit, M Ozgur; Ceron, J J; Yilmaz, Zeki; Kahraman, M Mufit

    2016-11-01

    The aim of the present study was to investigate effects of intravenous (i.v.) choline treatment on serum matrix metalloproteinases (MMP), MMP tissue inhibitors (TIMP) and immunoglobulins (Igs), and to determine if there were relations between serum MMPs/TIMPs and C-reactive protein (CRP) (as a marker of the acute phase response), immunoglobulin G and M (IgG and IgM) (as a maker of the Ig responses) and markers of organ damage such as muscular damage (creatine phosphokinase, [CPK]), liver damage (alanine aminotransferase [ALT]) and renal dysfunction (blood urea nitrogen [BUN] and creatinine, [Cr]) in dogs with endotoxemia. Healthy dogs (n=24) were randomized to Saline, Choline (C), Lipopolysaccharide (LPS), and LPS+C groups and received 0.9% NaCl (5mL/i.v.), choline chloride (20mg/kg/i.v.), LPS (0.02mg/kg/i.v.) and LPS (0.02mg/kg/i.v.) plus choline chloride (20mg/kg/i.v.), respectively. Serum MMPs and TIMPs concentrations were analyzed by commercial ELISA kits. MMP and TIMP increased at 1-48h (P<0.05), whereas IgG and IgM decreased at 24-48h in LPS group, compared to their baselines. Choline treatment reduced changes in serum MMPs, TIMPs and markers of organ damage, and prevented the hypoimmunoglobulinemia in LPS+C. MMPs and TIMPs were correlated positively (P<0.05) with serum CRP, CPK, ALT, BUN and Cr, but not with serum Igs. Our findings suggest that the serum MMPs, TIMPs and Igs are involved in the pathophysiology of endotoxemia, and MMPs and TIMPs are correlated with the acute phase reaction and multi-organ failure. In addition, we demonstrated a direct effect of choline administration in decreasing serum MMPs and TIMPs, and preserving serum Igs in the course of endotoxemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cloning, expression and activation of a truncated 92-kDa gelatinase minienzyme.

    PubMed

    Kröger, M; Tschesche, H

    1997-09-01

    The matrix metalloproteinases (MMPs) are a family of highly homologous zinc-endopeptidases that degrade extracellular matrix components. Human 92-kDa gelatinase (MMP-9) represents one of the MMPs that cleaves native collagen type IV. As a basis for structural investigations, the short form (catalytic domain, amino acid residues 113-450) of the 92-kDa gelatinase cDNA was cloned and expressed in E. coli as a minienzyme. By combination of reverse transcription (RT) and polymerase chain reaction (PCR), the truncated 92-kDa gelatinase-cDNA was amplified from the corresponding mRNA derived from ovarian carcinoma cells. The cDNA fragment obtained was cloned in E. coli and sequenced. With the exception of one nucleotide inversion at position 745 (gt-->tg) the cDNA sequence was identical to the nucleotide sequence of the 92-kDa gelatinase as has been previously reported. The protein was expressed in E. coli using the vector pET-12b. The recombinant protein was stored in inclusion bodies and extracted as a 38 kDa species from the inclusion bodies by solubilization in 8 M urea. The product was purified by affinity chromatography and gel filtration. Amino-terminal sequence analysis confirmed the identity with the catalytic domain of 92-kDa gelatinase. The recombinant protein was refolded in the presence of Ca2+ and Zn2+ and yielded an active minienzyme with gelatinolytic activity. It degrades the native substrate collagen type IV and the synthetic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 x AcOH like the full-length 92-kDa gelatinase. The catalytic activity could be inhibited by the specific MMP inhibitors TIMP-1 and TIMP-2.

  5. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-08-29

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  6. Gestational diabetes is associated with changes in placental microbiota and microbiome.

    PubMed

    Bassols, Judit; Serino, Matteo; Carreras-Badosa, Gemma; Burcelin, Rémy; Blasco-Baque, Vincent; Lopez-Bermejo, Abel; Fernandez-Real, José-Manuel

    2016-12-01

    The human microbiota is a modulator of the immune system. Variations in the placental microbiota could be related with pregnancy disorders. We profiled the placental microbiota and microbiome in women with gestational diabetes (GDM) and studied its relation to maternal metabolism and placental expression of anti-inflammatory cytokines. Placental microbiota and microbiome and expression of anti-inflammatory cytokines (IL10, TIMP3, ITGAX, and MRC1MR) were analyzed in placentas from women with GDM and from control women. Fasting insulin, glucose, O'Sullivan glucose, lipids, and blood cell counts were assessed at second and third trimester of pregnancy. Bacteria belonging to the Pseudomonadales order and Acinetobacter genus showed lower relative abundance in women with GDM compared to control (P < 0.05). In GDM, lower abundance of placental Acinetobacter associated with a more adverse metabolic (higher O'Sullivan glucose) and inflammatory phenotype (lower blood eosinophil count and lower placental expression of IL10 and TIMP3) (P < 0.05 to P = 0.001). Calcium signaling pathway was increased in GDM placental microbiome. A distinct microbiota profile and microbiome is present in GDM. Acinetobacter has been recently shown to induce IL-10 in mice. GDM could constitute a state of placental microbiota-driven altered immunologic tolerance, making placental microbiota a new target for therapy in GDM.

  7. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  8. CDP-choline modulates matrix metalloproteinases in rat sciatic injury.

    PubMed

    Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet

    2016-02-01

    CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  10. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    PubMed Central

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  11. The Validity of Two Neuromotor Assessments for Predicting Motor Performance at 12 Months in Preterm Infants.

    PubMed

    Song, You Hong; Chang, Hyun Jung; Shin, Yong Beom; Park, Young Sook; Park, Yun Hee; Cho, Eun Sol

    2018-04-01

    To evaluate the validity of the Test of Infant Motor Performance (TIMP) and general movements (GMs) assessment for predicting Alberta Infant Motor Scale (AIMS) score at 12 months in preterm infants. A total of 44 preterm infants who underwent the GMs and TIMP at 1 month and 3 months of corrected age (CA) and whose motor performance was evaluated using AIMS at 12 months CA were included. GMs were judged as abnormal on basis of poor repertoire or cramped-synchronized movements at 1 month CA and abnormal or absent fidgety movement at 3 months CA. TIMP and AIMS scores were categorized as normal (average and low average and >5th percentile, respectively) or abnormal (below average and far below average or <5th percentile, respectively). Correlations between GMs and TIMP scores at 1 month and 3 months CA and the AIMS classification at 12 months CA were examined. The TIMP score at 3 months CA and GMs at 1 month and 3 months CA were significantly correlated with the motor performance at 12 months CA. However, the TIMP score at 1 month CA did not correlate with the AIMS classification at 12 months CA. For infants with normal GMs at 3 months CA, the TIMP score at 3 months CA correlated significantly with the AIMS classification at 12 months CA. Our findings suggest that neuromotor assessment using GMs and TIMP could be useful to identify preterm infants who are likely to benefit from intervention.

  12. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    PubMed

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  13. The roles of MMP-9/TIMP-1 in cerebral edema following experimental acute cerebral infarction in rats.

    PubMed

    Li, Dan-Dong; Song, Jin-Ning; Huang, Huan; Guo, Xiao-Ye; An, Ji-Yang; Zhang, Ming; Li, Yu; Sun, Peng; Pang, Hong-Gang; Zhao, Yong-Lin; Wang, Jun-Feng

    2013-08-29

    Matrix metalloproteinases 9 (MMP-9) and its endogenous inhibitor, tissue inhibitor of metalloproteinases 1 (TIMP-1), regulate homeostasis and turnover of the extra cellular matrix (ECM). They play important roles in acute cerebral infarction (ACI). The contributions of MMP-9 and TIMP-1 to the early stages of ACI are not completely understood. This study investigates the time course of MMP-9 and TIMP-1 and their relations to edema after ACI in rats. Serum concentrations of MMP-9 and TIMP-1 protein were measured using ELISA and mRNA level were measured using real-time PCR. Brain samples were harvested and the brain water content (BWC) was measured. Results revealed that MMP-9 concentration increased fast during the first 12 h after ACI, while after 12 h the increase was much slower. The MMP-9 protein concentration was elevated earlier than the mRNA level. BWC increased starting at 6 h after ACI to reach a peak at 12 h and decreased back to normal levels at 72 h. Both the MMP-9 protein and its mRNA were positively correlated with BWC, however no correlation was found between TIMP-1 levels and BWC. The MMP-9/TIMP-1 protein ratio was more closely correlated with BWC than the MMP-9 concentration. These results indicate that brain edema induced by ACI is associated with increased MMP-9 levels and MMP-9/TIMP-1 ratio in serum. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    PubMed

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p < 0.05), allografts (1.43 ±0.98) and autografts (0.86 ±0.69); no statistical diferences existed between them. An increased level of metalloproteinases and TIMP-2 expression was obreved only after allografts with statistical differences among the allograft group, the autograft group nad the control group (p < 0.05). Our findings suggest that the meniscal graft does not protect the hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  15. Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway.

    PubMed

    Aroui, Sonia; Najlaoui, Feten; Chtourou, Yassine; Meunier, Annie-Claire; Laajimi, Amel; Kenani, Abderraouf; Fetoui, Hamadi

    2016-03-01

    Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways.

  16. Controlled release of ascorbic acid from gelatin hydrogel attenuates abdominal aortic aneurysm formation in rat experimental abdominal aortic aneurysm model.

    PubMed

    Tanaka, Akiko; Hasegawa, Tomomi; Morimoto, Keisuke; Bao, Wulan; Yu, Jie; Okita, Yutaka; Tabata, Yasuhiko; Okada, Kenji

    2014-09-01

    Abdominal aortic aneurysms (AAAs) are associated with oxidative stress and inflammatory response. We investigated the hypothesis that the known antioxidant ascorbic acid, which can also promote elastin and collagen production by smooth muscle cells, would prevent AAA formation in a rat model. An intraluminal elastase and extraluminal calcium chloride-induced rat AAA model was used, and the animals were divided into three groups: control (group C, n = 18), the aorta wrapped with a saline-impregnated gelatin hydrogel sheet (group G, n = 18), and the aorta wrapped with a gelatin hydrogel sheet incorporating ascorbic acid (group A, n = 18). Wrapping of the sheet was completed at the end of treatment for AAA creation. The aortic dilatation ratio was measured, and aortic tissues were further examined for oxidative stress and oxidative DNA damage using biochemical and histologic techniques. Aortic dilatation at both 4 and 8 weeks was inhibited in group A (dilatation ratio [%] at 4 weeks: 186.2 ± 21.8 in group C, 152.3 ± 10.2 in group G, 126.8 ± 11.6 in group A; P < .0001; dilatation ratio [%] at 8 weeks: 219.3 ± 37.5 in group C, 194.0 ± 11.6 in group G, 145.7 ± 8.3 in group A; P = .0002). Elastin and collagen content were significantly preserved in group A (elastin, P = .0015; collagen, P < .0001). The messenger RNA expressions of matrix metalloproteinase (MMP)-9, monocyte chemotactic protein-1, interleukin-1β, and tissue necrosis factor-α (P = .0024, P < .0001, P < .0001, and P < .0001, respectively) were downregulated in group A (P = .0024), whereas tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 were both upregulated in group A (TIMP-1, P = .0014; TIMP-2, P < .0001). Gelatin zymography showed activities of pro-MMP-2, MMP-2, and MMP-9 were significantly suppressed in group C (P < .0001 for each). Reactive oxygen species expression and 8-hydroxydeoxyguanosine and cluster of differentiation 68 staining were significantly suppressed in group A (reactive oxygen species expression, P < .0001; 8-hydroxydeoxyguanosine-positive cells, P < .0001; cluster of differentiation 68 positive cells, P < .0001). Controlled release of ascorbic acid using gelatin hydrogel sheet-attenuated AAA formation through antioxidant and anti-inflammatory effect, regulation of MMP-2, TIMP-1, and TIMP-2, and preserving elastin and collagen in this animal model. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  17. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.

  18. Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation

    PubMed Central

    Kübler, André; Luna, Brian; Larsson, Christer; Ammerman, Nicole C.; Andrade, Bruno B.; Orandle, Marlene; Bock, Kevin W.; Xu, Ziyue; Bagci, Ulas; Molura, Daniel J.; Marshall, John; Burns, Jay; Winglee, Kathryn; Ahidjo, Bintou Ahmadou; Cheung, Laurene S.; Klunk, Mariah; Jain, Sanjay K.; Kumar, Nathella Pavan; Babu, Subash; Sher, Alan; Friedland, Jon S.; Elkington, Paul T. G.; Bishai, William R.

    2014-01-01

    Active tuberculosis (TB) often presents with advanced pulmonary disease, including irreversible lung damage and cavities. Cavitary pathology contributes to antibiotic failure, transmission, morbidity and mortality. Matrix metalloproteinases (MMPs), in particular MMP-1 are implicated in TB pathogenesis. We explored the mechanisms relating MMP/TIMP imbalance to cavity formation in a modified rabbit model of cavitary TB. Our model results in consistent progression of consolidation to human-like cavities (100% by day 28) with resultant bacillary burdens (>107 CFU/g) far greater than those found in matched granulomatous tissue (105 CFU/g). Using a novel, breath-hold computerized tomography scanning and image analysis protocol. We show that cavities develop rapidly from areas of densely consolidated tissue. Radiological change correlated with a decrease in functional lung tissue as estimated by changes in lung density during controlled pulmonary expansion (R2=0.6356, p<0.0001). We demonstrated that the expression of interstitial collagenase (MMP-1) is specifically greater in cavitary compared to granulomatous lesions (p<0.01), and that TIMP-3 significantly decreases at the cavity surface. Our findings demonstrate that an MMP-1/TIMP imbalance, is associated with the progression of consolidated regions to cavities containing very high bacterial burdens. Our model provided mechanistic insight, correlating with human disease at the pathological, microbiological and molecular levels,. It also provides a strategy to investigate therapeutics in the context of complex TB pathology. We used these findings to predict a MMP/TIMP balance in active TB; and confirmed this in human plasma, revealing the potential of MMP/TIMP levels as key components of a diagnostic matrix aimed at distinguishing active from latent TB (PPV=92.9%; 95%CI 66.1–99.8%, NPV=85.6%; 95%CI 77.0–91.9%). PMID:25186281

  19. Matrix metalloproteinases and airway remodeling and function in primary ciliary dyskinesia.

    PubMed

    Pifferi, Massimo; Bush, Andrew; Caramella, Davide; Metelli, Maria Rita; Di Cicco, Maria; Piras, Martina; Gherarducci, Giulia; Capristo, Carlo; Maggi, Fabrizio; Peroni, Diego; Boner, Attilio L

    2017-03-01

    The balance between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) is important in the regulation of airway damage. To evaluate whether they are important in the pathophysiology of primary and secondary ciliary dyskinesia (PCD, SCD). We measured sputum bacteriology, lung CT changes, MMPs, TIMPs and lung function in 86 patients (51 PCD, 35 SCD) in a cross-sectional study; the 10 controls studied did not have HRCT or sputum cultures. MMPs, TIMPs and lung function were evaluated longitudinally for up to one year in 38 PCD patients. At baseline, there were no differences in MMPs, TIMPs and MMPs/TIMPs, between PCD and SCD but lower levels were found in controls. There was an association between poorer lung function with increasing levels of MMPs in PCD, while in SCD only MMP-9/TIMP-1 values correlated with FRC z-scores. Levels of MMPs and TIMPs significantly correlated with severity HRCT changes. Longitudinally, there were significant correlations between slope of changes in spirometric parameters and slope of change in sputum MMPs in PCD patients. In conclusion, we report for the first time that increased MMPs are associated with worse airway damage in PCD and SCD, and thus are potential therapeutic targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Expression of molecular markers detected by immunohistochemistry and risk of lymph node metastasis in stage T1 and T2 colorecrectal cancers].

    PubMed

    Wang, Fu-long; Wan, De-sen; Lu, Zhen-hai; Fang, Yu-jing; Li, Li-ren; Chen, Gong; Wu, Xiao-jun; Ding, Pei-rong; Kong, Ling-heng; Lin, Jun-zhong; Pan, Zhi-zhong

    2013-04-01

    To study the molecular risk factors of lymph node metastasis in stage T1 and T2 colorectal cancers by tissue microarray and immunohistochemistry techniques. Two hundred and three patients with stage T1 and T2 colorectal carcinoma who underwent radical surgery from 1999 to 2010 in our department were included in this study. Their clinicopathological data were retrospectively analyzed. Expression of the following 14 molecular markers were selected and assayed by tissue microarray and immunohistochemistry: VEGFR-3, HER2, CD44v6, CXCR4, TIMP-1, EGFR, IGF-1R, IGF-2, IGFBP-1, ECAD, MMP-9, RKIP, CD133, MSI. Chi-squared test and logistic regression were used to evaluate the variables as potential risk factors for lymph node metastasis. The positive expression rates of biomarkers were as following: VEGFR-3 (44.3%), EGFR (30.5%), HER-2 (28.1%), IGF-1R (63.5%), IGF-2 (44.8%), IGFBP-1 (70.9%), ECAD (45.8%), CD44v6 (51.2%), MMP-9 (44.3%), TIMP-1 (41.4%), RKIP (45.3%), CXCR4 (40.9%), and CD133 (49.8%). The positive rate of MSI expression was 22.2%. Both univariate and multivariate analyses showed that VEGFR-3, HER-2, and TIMP-1 were significant predictors of lymph node metastasis. Univariate analysis showed that CD44v6 and CXCR4 were significant significant predictors of lymph node metastasis. VEGFR-3, HER2 and TIMP-1 are independent factors for lymph node metastasis in stage T1 and T2 colorectal cancers.

  1. Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinases as novel stress markers in children and young adults on chronic dialysis.

    PubMed

    Musiał, Kinga; Zwolińska, Danuta

    2011-03-01

    Phenomena related to chronic kidney disease, such as atherosclerosis, aggravate with the introduction of dialysis. Matrix metalloproteinases (MMP) and factors modifying their activity, such as their tissue inhibitors (TIMP) or neutrophil gelatinase-associated lipocalin (NGAL), take part in the matrix turnover and the endothelial damage characteristic for atherogenesis. However, there are no data on the associations between these parameters and other known pro-atherogenic factors, or on the impact of various dialysis modalities on them. The aim of our study was to assess the serum concentrations of NGAL, MMP-7, MMP-9, and TIMP-1, as well as their correlations with human heat shock proteins (Hsp90α, anti-Hsp60), endothelial dysfunction (sE-selectin), and inflammation (hsCRP) in pediatric patients chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 17 patients on hemodialysis (HD) and 24 controls were examined. The serum concentrations of NGAL, MMP-7, MMP-9, TIMP-1, Hsp90α, anti-Hsp60, and sE-selectin were assessed by enzyme-linked immunosorbent assay (ELISA). The median values of NGAL, MMP-7, MMP-9, TIMP-1, and MMP-9/NGAL ratio were significantly elevated in all dialyzed children vs. controls and were higher in HD than in APD. The values of MMP-9/TIMP-1 and MMP-7/TIMP-1 ratios in the HD subjects were lower than those in the APD children. Hsp90α and anti-Hsp60 predicted the values of NGAL, MMPs, and TIMP-1. Additionally, sE-selectin was a predictor of NGAL levels, whereas NGAL predicted the MMP and TIMP-1 concentrations. The increased concentrations of examined parameters indicate the dysfunction of MMP/TIMP/NGAL system in the dialyzed children, more pronounced on hemodialysis. The discrepancies between dialysis modalities and correlations with heat shock proteins (HSPs) suggest that NGAL may be considered a novel stress protein, whereas MMP-7, MMP-9, and TIMP-1 may be regarded as indicators of stress response in the pediatric population on chronic dialysis.

  2. Novel Therapeutic Targets to Inhibit Tumor Microenvironment-Induced Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    0.000247918 NM_012219 MRAS 6.906686977 0.120416016 3.32E-05 NM_000428 LTBP2 6.530185903 0.17879509 0.00021206 NM_002317 LOX 6.253405306 0.162652276...cultures include TIMP3, COMP, FN1, TSPAN2, CILP, TNFAIP6, ENC1, CDKN2B, MRAS , LTBP2, LOX, POSTN, LRRC32 etc., as well as notably KLK3 (PSA), a prostate...7.070540703 NM_007115 TNFAIP6 6.750100868 X77690 TIMP3 6.366782695 NM_004385 VCAN 6.149750603 NM_012219 MRAS 5.992620419 NM_000501 ELN 5.807745301 NM_006216

  3. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    PubMed

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro.

    PubMed

    Zhou, Yan; Qiu, Lian-Bo; An, Guang-Zhou; Zhou, Jia-Xing; Du, Le; Ma, Ya-Hong; Guo, Guo-Zhen; Ding, Gui-Rong

    2017-01-01

    The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.

  5. Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats.

    PubMed

    Qiu, Lian-Bo; Zhou, Yan; Wang, Qi; Yang, Long-Long; Liu, Hai-Qiang; Xu, Sheng-Long; Qi, Yu-Hong; Ding, Gui-Rong; Guo, Guo-Zhen

    2011-07-11

    Previously we found that exposure to electromagnetic pulse (EMP) induced an increase in blood-brain-barrier (BBB) permeability and the degradation of tight junction protein ZO-1 in rats. Matrix metalloproteinases (MMPs), in particular gelatinases (MMP-2 and MMP-9), play a key role in degradation of tight junction proteins, are known mediators of BBB compromise. We hypothesized that the degradation of ZO-1 by gelatinases contributed to EMP-induced BBB opening. To test this hypothesis, the mRNA level of ZO-1, protein levels of MMP-2, MMP-9 and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) were detected in rat cerebral cortex after exposing rats to EMP at 200 kV/m for 200 pulses. It was found that the mRNA level of ZO-1 was unaltered at different time points after EMP exposure. The protein levels of MMP-2 and MMP-9 significantly increased at 3 h and 0.5 h, respectively. However, TIMP-1 (inhibitor of MMP-9) and TIMP-2 (inhibitor of MMP-2) only moderately increased after EMP exposure. In addition, in situ zymography results showed that the gelatinase activity increased in cerebral microvessels at 3 h after EMP exposure. When rats were treated with gelatinases inhibitor (SB-3CT) before EMP exposure, the EMP-induced BBB opening was attenuated and the ZO-1 degradation was reversed. Our results suggested that EMP-induced BBB opening was related to gelatinase mediated ZO-1 degradation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Fish oil decreases matrix metalloproteinases in knee synovia of dogs with inflammatory joint disease.

    PubMed

    Hansen, Rodney A; Harris, Mary A; Pluhar, G Elizabeth; Motta, Tatiana; Brevard, Sean; Ogilvie, Gregory K; Fettman, Martin J; Allen, Kenneth G D

    2008-02-01

    This study was designed to determine whether dietary fish oil affects the expression and activity of matrix metalloproteinases (MMP), tissue inhibitors of MMP-2 (TIMP-2) and urokinase plasminogen activator (uPA) in synovial fluid from dogs with spontaneously occurring stifle (knee) instability in a single hind limb resulting from acute cranial cruciate ligament (CCL) injury. Two groups of 12 dogs were fed diets from 1 week prior to surgery on the affected knee to 56 days post-surgery. The fish oil and control diets provided 90 and 4.5 mg, respectively, of combined eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)/kg body weight per day. Plasma and synovial fluid, from both surgical and nonsurgical knee joints, were obtained at start of the diet (-7), surgery day (0) and 7, 14, 28 and 56 days post-surgery. Plasma total EPA and DHA were significantly increased, and plasma total arachidonic acid (AA) was significantly decreased by the fish oil diet. In synovial fluid from the nonsurgical knee, fish oil treatment significantly decreased proMMP-2 expression at Days 7 and 14, and proMMP-9 expression at Day 56, and uPA activity at 28 days and significantly increased TIMP-2 expression at Days 7 and 28. There were no differences in MMP expression or activity, TIMP-2 expression and uPA activity in the surgical joint synovial fluid at any time throughout the study. These results suggest that dietary fish oil may exert beneficial effects on synovial fluid MMP and TIMP-2 equilibrium in the uninjured stifle of dogs with unilateral CCL injury.

  7. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer.

    PubMed

    Lee, J H; Koh, J T; Shin, B A; Ahn, K Y; Roh, J H; Kim, Y J; Kim, K K

    2001-02-01

    Genes involving angiogenesis and metastasis play an important role in the progression and infiltration of cancer. We examined the expressions of various angiostatic and potential invasion/metastasis suppressor genes through RT-PCR analyses in 32 gastric cancer specimens with or without distant metastasis. The expressions of the invasion/metastasis suppressor, nm23 and E-cadherin increased much more in the cancer tissue (CT) and metastatic lymph node (MLN) than in the extraneoplastic mucosa (EM) and non-metastatic lymph node (NLN), respectively. The expressions of the angiostatic factor, angiopoietin 2 and thrombospondin 2 increased in the CT and MLN as compared with the EM and NLN, respectively. The newly cloned angiostatic factor, brain-specific angiogenesis inhibitor 1 (BAI1) decreased much more in the CT and MLN than the EM and NLN, respectively. However, BAI1 increased in the CT compared with the EM among the patients with poor prognosis and distant metastasis, such as liver or peritoneum. The expressions of the invasive factor, matrix metalloproteinase-2 and its suppressor, tissue inhibitor metalloproteinase-2 (TIMP-2) increased in the CM as compared with the EM, but the increased expression pattern of these genes in the CT became blunted among the patients with good prognosis. Our results indicate that BAI1 and TIMP-2 expressions in the extraneoplastic mucosa and non-metastatic lymph nodes were not suppressed in the patients with good prognosis, but increased expressions of angiopoietin 2, thrombospondin 2, TIMP-2, nm23 and E-cadherin in the tumor tissue did not lead to a long survival after operation. It is suggested that the extent of BAI1 and TIMP-2 expression in the gastric mucosa may be an important prognostic factor for predicting survival in gastric cancer.

  8. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1.

    PubMed

    Ramer, Robert; Bublitz, Katharina; Freimuth, Nadine; Merkord, Jutta; Rohde, Helga; Haustein, Maria; Borchert, Philipp; Schmuhl, Ellen; Linnebacher, Michael; Hinz, Burkhard

    2012-04-01

    Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.

  9. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT).

    PubMed

    Tayebjee, Muzahir H; Nadar, Sunil; Blann, Andrew D; Gareth Beevers, D; MacFadyen, Robert J; Lip, Gregory Y H

    2004-09-01

    Hypertension results in structural changes to the cardiac and vascular extracellular matrix (ECM). Matrix metalloproteinases (MMP) and their inhibitors (TIMP) may play a central role in the modulation of this matrix. We hypothesized that both MMP-9 and TIMP-1 would be abnormal in hypertension, reflecting alterations in ECM turnover, and that their circulating levels should be linked to cardiovascular (CHD) and stroke (CVA) risk scores using the Framingham equation. Second, we hypothesized that treatment would result in changes in ECM indices. Plasma MMP-9 and TIMP-1 were measured before and after treatment (median 3 years) from 96 patients with uncontrolled hypertension participating in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Pretreatment values were compared to circulating MMP-9 and TIMP-1 levels in 45 age- and sex-matched healthy controls. Circulating pretreatment MMP-9 and TIMP-1 levels were significantly higher in patients with hypertension than in the normotensive controls (P =.0041 and P =.0166, respectively). Plasma MMP-9 levels decreased, and TIMP-1 levels increased after treatment (P =.035 and P =.005, respectively). Levels of MMP-9 correlated with CHD risk (r = 0.317, P =.007) and HDL cholesterol (r = -0.237, P =.022), but not CVA risk. There were no significant correlations between TIMP-1 and CVA or CHD scores. Increased circulating MMP-9 and TIMP-1 at baseline in patients with hypertension could reflect an increased deposition and retention of type I collagen at the expense of other components of ECM within the cardiac and vascular ECM. After cardiovascular risk management, MMP-9 levels decreased and TIMP-1 levels increased. Elevated levels of MMP-9 also appeared to be associated with higher Framingham cardiovascular risk scores. Our observations suggest a possible role for these surrogate markers of tissue ECM composition and the prognosis of cardiovascular events in hypertension. Copyright 2004 American Journal of Hypertension, Ltd.

  10. Serum and biliary MMP-9 and TIMP-1 concentrations in the diagnosis of cholangiocarcinoma

    PubMed Central

    İnce, Ali Tüzün; Yıldız, Kemal; Gangarapu, Venkatanarayana; Kayar, Yusuf; Baysal, Birol; Karatepe, Oğuzhan; Kemik, Ahu Sarbay; Şentürk, Hakan

    2015-01-01

    Aim: Cholangiocarcinoma is generally detected late in the course of disease, and current diagnostic techniques often fail to differentiate benign from malignant disease. Ongoing biomarker studies for early diagnosis of cholangiocarcinoma are still continues. By this study, we analyzed the roles of serum and biliary MMP-9 and TIMP-1 concentrations in the diagnosis of cholangiocarcinoma. Materials and methods: The 113 patients (55 males, 58 females) were included; 33 diagnosed with cholangiocarcinoma (malignant group) and 80 diagnosed with choledocholithiasis (benign group). MMP-9 and TIMP-1 concentrations were analyzed in serum and bile and compared in the malignant and benign groups. Results were evaluated statistically. Results: Biliary MMP-9 concentrations were significantly higher (576 ± 209 vs. 403 ± 140 ng/ml, p < 0.01) and biliary TIMP-1 concentrations were significantly lower (22.4 ± 4.9 vs. 29.4 ± 6.1 ng/ml, p < 0.01) in the malignant than in the benign group. In contrast, serum MMP-9 and TIMP-1 concentrations were similar in the two groups. Receiver operating curve analysis revealed that the areas under the curve of bile MMP-9 and TIMP-1 were significantly higher than 0.5 (p < 0.001). The sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios and accuracy were 0.94, 0.32, 0.36, 0.93, 1.40, 0.19 and 0.5 for biliary MMP-9, respectively, and 0.97, 0.36, 0.39, 0.97, 1.5, 0.08 and 0.54 for biliary TIMP-1, respectively. Conclusion: Serum and biliary MMP-9 and TIMP-1 tests do not appear to be useful in the diagnosis of cholangiocarcinoma. PMID:25932227

  11. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  12. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9.

    PubMed

    Su, Mei-Tsz; Tsai, Pei-Yin; Tsai, Hui-Ling; Chen, Yi-Chi; Kuo, Pao-Lin

    2017-03-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an important regulator for embryo implantation and placental development, and is clinically associated with several obstetric disorders related to insufficient or inappropriate trophoblast invasion, such as recurrent abortion, preeclampsia, and intrauterine fetal growth restriction. This study was performed to identify the microRNAs targeting EG-VEGF, and evaluate the regulatory effect on trophoblast biology. miR-346 and miR-582-3p were initially identified via bioinformatic tools, and their specific binding sites on the EG-VEGF 3'UTR were further confirmed using dual luciferase and a co-transfection assays. miR-346 and miR-582-3p were demonstrated not only to suppress EG-VEGF expression, but also inhibit trophoblast invasion and migration in the JAR and HTR-8/SVneo cell lines. We further evaluated the effect of microRNAs in HTR-8/SVneo cells coexpressing EG-VEGF and miR-346 or miR-582-3p on matrix metalloproteinase (MMP 2 and MMP 9) and the tissue inhibitors of metalloproteinase (TIMP 1 and TIMP 2) using RT-PCR, western blotting and gelatin zymography. TIMP 1 and TIMP 2 were not affected by the two microRNAs, whereas the expressions and activities of MMP 2 and MMP 9 were significantly downregulated, which in turn inhibited the invasion ability of trophoblasts. In conclusion, miR-346 and miR-582-3p regulate EG-VEGF-induced trophoblast invasion through repressing MMP 2 and MMP 9, and may become novel diagnostic biomarkers or therapeutic targets for EG-VEGF-related obstetric disorders. © 2016 BioFactors, 43(2):210-219, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Altered Serum Levels of Matrix Metalloproteinase-2, -9 in Response to Electroconvulsive Therapy for Mood Disorders.

    PubMed

    Shibasaki, Chiyo; Takebayashi, Minoru; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami; Yamawaki, Shigeto

    2016-09-01

    Inflammatory processes could underlie mood disorders. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMP) are inflammation-related molecules. The current study sought an association between mood disorders and systemic levels of MMPs and TIMPs. Serum was obtained from patients with mood disorders (n=21) and patients with schizophrenia (n=13) scheduled to undergo electroconvulsive therapy. Serum was also obtained from healthy controls (n=40). Clinical symptoms were assessed by the Hamilton Rating Score for Depression and the Brief Psychiatric Rating Scale. Serum levels of MMPs and TIMPs were quantified by ELISA. The serum levels of MMP-2 in mood disorder patients, but not in schizophrenia patients, prior to the first electroconvulsive therapy session (baseline) was significantly lower than that of healthy controls. At baseline, levels of MMP-9 and TIMP-2, -1 were not different between patients with mood disorder and schizophrenia and healthy controls. After a course of electroconvulsive therapy, MMP-2 levels were significantly increased in mood disorder patients, but MMP-9 levels were significantly decreased in both mood disorder and schizophrenia patients. In mood disorder patients, there was a significant negative correlation between depressive symptoms and serum levels of MMP-2 and a positive correlation between depressive symptoms and MMP-9. In addition, alterations of serum levels of MMP-2 and MMP-9 were significantly correlated each other and were associated with certain depressive symptoms. A change in inflammatory homeostasis, as indicated by MMP-2 and MMP-9, could be related to mood disorders, and these markers appear to be sensitive to electroconvulsive therapy. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  14. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    PubMed

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.

  15. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  16. Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model

    PubMed Central

    Stefano, J.T.; Pereira, I.V.A.; Torres, M.M.; Bida, P.M.; Coelho, A.M.M.; Xerfan, M.P.; Cogliati, B.; Barbeiro, D.F.; Mazo, D.F.C.; Kubrusly, M.S.; D'Albuquerque, L.A.C.; Souza, H.P.; Carrilho, F.J.; Oliveira, C.P.

    2015-01-01

    Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH. PMID:25714891

  17. Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation.

    PubMed

    Levitsky, Josh; Baker, Talia B; Jie, Chunfa; Ahya, Shubhada; Levin, Murray; Friedewald, John; Al-Saden, Patrice; Salomon, Daniel R; Abecassis, Michael M

    2014-12-01

    Biomarkers predictive of recovery from acute kidney injury (AKI) after liver transplantation (LT) could enhance decision algorithms regarding the need for liver-kidney transplantation or renal sparing regimens. Multianalyte plasma/urine kidney injury protein panels were performed immediately before and 1 month post-LT in an initial test group divided by reversible pre-LT AKI (rAKI = post-LT renal recovery) versus no AKI (nAKI). This was followed by a larger validation set that included an additional group: irreversible pre-LT AKI (iAKI = no post-LT renal recovery). In the test group (n = 16), six pre-LT plasma (not urine) kidney injury proteins (osteopontin [OPN], neutrophil gelatinase-associated lipocalin, cystatin C, trefoil factor 3, tissue inhibitor of metalloproteinase [TIMP]-1, and β-2-microglobulin) were higher in rAKI versus nAKI (P < 0.05) and returned to normal values with renal recovery post-LT. In the validation set (n = 46), a number of proteins were significantly higher in both rAKI and iAKI versus nAKI. However, only pre-LT plasma OPN (P = 0.009) and TIMP-1 (P = 0.019) levels were significantly higher in rAKI versus iAKI. Logistic regression modeling was used to correlate the probability of post-LT rAKI, factoring in both pre-LT protein markers and clinical variables. A combined model including elevated OPN and TIMP-1 levels, age <57, and absence of diabetes had the highest area under the curve of 0.82, compared to protein-only and clinical variable-only models. These data suggest that plasma protein profiles might improve the prediction of pre-LT kidney injury recovery after LT. However, multicenter, prospective studies are needed to validate these findings and ultimately test the value of such protein panels in perioperative management and decision making. © 2014 by the American Association for the Study of Liver Diseases.

  18. Maintenance of a Protein Structure in the Dynamic Evolution of TIMPs over 600 Million Years

    PubMed Central

    Nicosia, Aldo; Maggio, Teresa; Costa, Salvatore; Salamone, Monica; Tagliavia, Marcello; Mazzola, Salvatore; Gianguzza, Fabrizio; Cuttitta, Angela

    2016-01-01

    Deciphering the events leading to protein evolution represents a challenge, especially for protein families showing complex evolutionary history. Among them, TIMPs represent an ancient eukaryotic protein family widely distributed in the animal kingdom. They are known to control the turnover of the extracellular matrix and are considered to arise early during metazoan evolution, arguably tuning essential features of tissue and epithelial organization. To probe the structure and molecular evolution of TIMPs within metazoans, we report the mining and structural characterization of a large data set of TIMPs over approximately 600 Myr. The TIMPs repertoire was explored starting from the Cnidaria phylum, coeval with the origins of connective tissue, to great apes and humans. Despite dramatic sequence differences compared with highest metazoans, the ancestral proteins displayed the canonical TIMP fold. Only small structural changes, represented by an α-helix located in the N-domain, have occurred over the evolution. Both the occurrence of such secondary structure elements and the relative solvent accessibility of the corresponding residues in the three-dimensional structures raises the possibility that these sites represent unconserved element prone to accept variations. PMID:26957029

  19. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases

    PubMed Central

    Harvey, P; Clark, I M; Jaurand, M-C; Warn, R M; Edwards, D R

    2000-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional factor involved both in development and tissue repair, as well as pathological processes such as cancer and metastasis. It has been identified in vivo in many types of tumours together with its tyrosine kinase receptor, Met. We show here that exogenous HGF/SF acts as a strong chemoattractant for human mesothelioma cell lines. The factor also enhanced cell adhesion to and invasion into Matrigel. The mesothelioma cell lines synthesized a panel of matrix metalloproteinases critical for tumour progression such as MMP-1, 2, 3, 9 and membrane-bound MT1-MMP. HGF/SF stimulated the expression of MMP-1, 9 and MT1-MMP and had a slight effect on expression of the MMP inhibitor TIMP-1 but not TIMP-2. However, there was no simple correlation between the levels of MMPs and TIMPs of the cell lines and their different invasion properties or between HGF/SF stimulatory effects on MMP expression and invasion. In addition, effects of protease inhibitors on invasion suggested that serine proteases were also expressed in human mesothelioma cell lines and were involved in HGF/SF-induced invasion. The results show a predominant role for HGF/SF in mesothelioma cell invasion, stimulating simultaneously adhesion, motility, invasion and regulation of MMP and TIMP levels. © 2000 Cancer Research Campaign PMID:11027427

  20. Relationship between Investigative Biomarkers and Radiographic Grading in Patients with Knee Osteoarthritis

    PubMed Central

    Anitua, Eduardo; Sánchez, Mikel; de la Fuente, Maria; Azofra, Juan; Zalduendo, Mar; Aguirre, Jose J.; Andía, Isabel

    2009-01-01

    Objective. To examine new investigative biomarkers and their relevance for radiographic severity in knee osteoarthritis. Methods. The group comprised 63 patients with 73 knees examined. Patients were divided according to radiographic severity to allow for comparison of biomarker levels. Hyaluronic acid (HA), matrix metalloproteases (MMP-1, MMP-3 and MMP-13), tissue inhibitors of metalloproteases (TIMP-1 and TIMP-2), platelet-derived growth factor (PDGF-AB), transformed growth factor (TGF-β), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-I) were measured on synovial fluid and in plasma releasate at a single time point. Principal component analysis (PCA) followed by analysis of covariance were applied to evaluate data. Results. Four different groups of biomarker were identified in plasma releasates. The first (platelet number, PDGF-AB and TGF-β) and second groups (HA and IGF-I) were related to radiographic severity, P = .005 and P = .022, respectively. The third (MMP-1 and TIMP-2) and fourth groups (MMP-3 and TIMP-1) represented the catabolic balance, but were not associated to radiographic grading. Three different clusters of biomarkers were found in synovial fluid but did not show any significant association to radiographic grading. Conclusions. New imaging approaches to assess structural deterioration and correlation with biomarker levels are warranted to advance in OA research. PMID:20130801

  1. Overexpression of MMP-9 and its inhibitors in blood mononuclear cells after myocardial infarction--is it associated with depressive symptomatology?

    PubMed

    Jönsson, Simon; Lundberg, Anna K; Jonasson, Lena

    2014-01-01

    Matrix metalloproteinase (MMP)-9 may play a central role in the development and progression of atherosclerosis. Emerging evidence also indicates an association between MMP-9 and depressive symptomatology. Here, we investigated whether expression of MMP-9 and its inhibitors in blood mononuclear cells and plasma were related to depressive symptoms in patients with a recent myocardial infarction (MI). Blood sampling was performed between 6 and 18 months after MI in 57 patients. Forty-one clinically healthy subjects were included as controls. Gene expression of MMP-9 and its main tissue inhibitors TIMP-1 and -2 were analyzed in freshly isolated or cultured blood mononuclear cells. Corresponding protein levels were assessed in cell supernatants and plasma. In post-MI patients, mRNA levels of MMP-9 and TIMP-1 and -2 were significantly higher than in controls while protein levels in cell supernatants and plasma did not differ between groups. The Center for Epidemiological Studies - Depression (CES-D) scale was used to assess depressive symptomatology. Repeated assessments during the first 18 months after MI showed significantly higher CES-D scores in patients compared with controls. However, there were no relationships between depressive mood and any of the measurements of MMP-9 or TIMPs. Our findings indicate that overexpression of MMP-9 and TIMPs in blood mononuclear cells and elevated depressive symptoms represent two unrelated phenomena after MI.

  2. Differential expression levels of collagen 1A2, tissue inhibitor of metalloproteinase 4, and cathepsin B in intracranial aneurysms.

    PubMed

    Babu, R Arun; Paul, Pradip; Purushottam, Meera; Srinivas, Dwarakanath; Somanna, Sampath; Jain, Sanjeev

    2016-01-01

    Intracranial aneurysms (IAs) express a variety of differentially expressed genes when compared to the normal artery. The aim of this study was to evaluate the expression level of a few genes in the aneurysm wall and to correlate them with various clinicoradiological factors. The mRNA level of collagen 1A2 (COL1A2), tissue inhibitor of metalloproteinase 4 (TIMP4), and cathepsin B (CTSB) genes were studied in 23 aneurysmal walls and 19 superficial temporal arteries harvested from 23 patients undergoing clipping of IAs, by real-time polymerase chain reaction method. The mean fold change of COL1A2 gene between the aneurysm sample and the superficial temporal artery (STA) sample was 2.46 ± 0.12, that of TIMP4 gene was 0.31 ± 0, and that of CTSB gene was 31.47 ± 39.01. There was a positive correlation of TIMP4 expression level with maximum diameter of aneurysm (P = 0.008) and fundus of aneurysm (P = 0.012). The mean fold change of CTSB of patients who had preoperative hydrocephalus in the computed tomogram (CT) scan of the head at admission was 56.16 and that of the patients who did not have hydrocephalus was 13.51 (P = 0.008). The mean fold change of CTSB of patients who developed fresh postoperative deficits or worsening of the preexisting deficits was 23.64 and that of the patients who did not develop was 42.22 (P = 0.039). COL1A2 gene and CTSB genes were overexpressed, and TIMP4 gene was underexpressed in the aneurysmal sac compared to STA and their expression levels were associated with a few clinicoradiological factors.

  3. The effect of adjunctive chlorhexidine mouthrinse on GCF MMP-8 and TIMP-1 levels in gingivitis: a randomized placebo-controlled study.

    PubMed

    Türkoğlu, Oya; Becerik, Sema; Tervahartiala, Taina; Sorsa, Timo; Atilla, Gül; Emingil, Gülnur

    2014-05-20

    The aim of the present study was to evaluate the effect of adjunctive chlorhexidine (CHX) mouthrinse on gingival crevicular fluid (GCF) MMP-8 and TIMP-1 levels in plaque-associated gingivitis. A total of 50 gingivitis patients were included in the present study. In addition to daily plaque control, CHX group rinsed with CHX, while placebo group rinsed with placebo mouthrinse for 4 weeks. GCF samples were collected, and clinical parameters including plaque index, papillary bleeding index, calculus index and pocket depth were recorded at baseline and 4 weeks. GCF MMP-8 and TIMP-1 levels were determined by immunofluorometric assay (IFMA) and enzyme-linked immunosorbent assay (ELISA), respectively. In both groups, GCF MMP-8 levels of anterior and posterior sites at four weeks were not different from baseline (p > 0.05). There were no significant differences in GCF MMP-8 levels between the study groups at four weeks (p > 0.05). GCF TIMP-1 levels of anterior and posterior sites at four weeks were higher compared to baseline in both groups (p < 0.05). There was no significant difference in GCF TIMP level between the study groups at four weeks (p > 0.05). CHX usage had no significant effects on the GCF MMP-8 and TIMP-1 levels in plaque-associate gingivitis. However, daily plaque control resulted in the increase of GCF TIMP-1 levels regardless of CHX usage.

  4. The effect of adjunctive chlorhexidine mouthrinse on GCF MMP-8 and TIMP-1 levels in gingivitis: a randomized placebo-controlled study

    PubMed Central

    2014-01-01

    Background The aim of the present study was to evaluate the effect of adjunctive chlorhexidine (CHX) mouthrinse on gingival crevicular fluid (GCF) MMP-8 and TIMP-1 levels in plaque-associated gingivitis. Methods A total of 50 gingivitis patients were included in the present study. In addition to daily plaque control, CHX group rinsed with CHX, while placebo group rinsed with placebo mouthrinse for 4 weeks. GCF samples were collected, and clinical parameters including plaque index, papillary bleeding index, calculus index and pocket depth were recorded at baseline and 4 weeks. GCF MMP-8 and TIMP-1 levels were determined by immunofluorometric assay (IFMA) and enzyme-linked immunosorbent assay (ELISA), respectively. Results In both groups, GCF MMP-8 levels of anterior and posterior sites at four weeks were not different from baseline (p > 0.05). There were no significant differences in GCF MMP-8 levels between the study groups at four weeks (p > 0.05). GCF TIMP-1 levels of anterior and posterior sites at four weeks were higher compared to baseline in both groups (p < 0.05). There was no significant difference in GCF TIMP level between the study groups at four weeks (p > 0.05). Conclusions CHX usage had no significant effects on the GCF MMP-8 and TIMP-1 levels in plaque-associate gingivitis. However, daily plaque control resulted in the increase of GCF TIMP-1 levels regardless of CHX usage. PMID:24886536

  5. X-Linked Hereditary Nephropathy in Navasota Dogs: Clinical Pathology, Morphology, and Gene Expression During Disease Progression.

    PubMed

    Benali, S L; Lees, G E; Nabity, M B; Aricò, A; Drigo, M; Gallo, E; Giantin, M; Aresu, L

    2016-07-01

    X-linked hereditary nephropathy (XLHN) in Navasota dogs is a spontaneously occurring disease caused by a mutation resulting in defective production of type IV collagen and juvenile-onset renal failure. The study was aimed at examining the evolution of renal damage and the expression of selected molecules potentially involved in the pathogenesis of XLHN. Clinical data and renal samples were obtained in 10 XLHN male dogs and 5 controls at 4 (T0), 6 (T1), and 9 (T2) months of age. Glomerular and tubulointerstitial lesions were scored by light microscopy, and the expression of 21 molecules was investigated by quantitative real-time polymerase chain reaction with selected proteins evaluated by immunohistochemistry. No significant histologic lesions or clinicopathologic abnormalities were identified in controls at any time-point. XLHN dogs had progressive proteinuria starting at T0. At T1, XLHN dogs had a mesangioproliferative glomerulopathy with glomerular loss, tubular necrosis, and interstitial fibrosis. At T2, glomerular and tubulointerstitial lesions were more severe, particularly glomerular loss, interstitial fibrosis, and inflammation. At T0, transforming growth factor β, connective tissue growth factor, and platelet-derived growth factor α mRNA were overexpressed in XLHN dogs compared with controls. Clusterin and TIMP1 transcripts were upregulated in later stages of the disease. Transforming growth factor β, connective tissue growth factor, and platelet-derived growth factor α should be considered as key players in the initial events of XHLN. Clusterin and TIMP1 appear to be more associated with the progression rather than initiation of tubulointerstitial damage in chronic renal disease. © The Author(s) 2016.

  6. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages.

    PubMed

    Ghezzi, Chiara E; Marelli, Benedetto; Donelli, Ilaria; Alessandrino, Antonio; Freddi, Giuliano; Nazhat, Showan N

    2017-07-01

    Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors

    PubMed Central

    Gao, W; McGarry, T; Orr, C; McCormick, J; Veale, D J; Fearon, U

    2016-01-01

    Background Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by synovitis and destruction of articular cartilage/bone. Janus-kinase and signal transducer and activator of transcription (JAK-STAT) signalling pathway is implicated in the pathogenesis of PsA. Objectives To examine the effect of tofacitinib (JAK inhibitor) on proinflammatory mechanisms in PsA. Methods Primary PsA synovial fibroblasts (PsAFLS) and ex vivo PsA synovial explants were cultured with tofacitinib (1 µM). PhosphoSTAT3 (pSTAT3), phosphoSTAT1 (pSTAT1), suppressor of cytokine signaling-3 (SOCS3), protein inhibitor of activated Stat3 (PIAS3) and nuclear factor kappa B cells (NFκBp65) were quantified by western blot. The effect of tofacitinib on PsAFLS migration, invasion, Matrigel network formation and matrix metallopeptidase (MMP)2/9 was quantified by invasion/migration assays and zymography. Interleukin (IL)-6, IL-8, IFN-gamma-inducible protein 10 (IP-10) monocyte chemoattractant protein (MCP)-1, IL-17, IL-10, MMP3 and tissue inhibitor of metalloproteinases 3 (TIMP3) were assessed by ELISA. Results Tofacitinib significantly decreased pSTAT3, pSTAT1, NFκBp65 and induced SOCS3 and PIAS3 expression in PsAFLS and synovial explant cultures (p<0.05). Functionally, PsAFLS invasion, network formation and migration were inhibited by tofacitinib (all p<0.05). In PsA explant, tofacitinib significantly decreased spontaneous secretion of IL-6, IL-8, MCP-1, MMP9/MMP2, MMP3 (all p<0.05) and decreased the MMP3/TIMP3 ratio (p<0.05), with no effect observed for IP-10 or IL-10. Conclusions This study further supports JAK-STAT inhibition as a therapeutic target for the treatment of PsA. PMID:26353790

  8. Identifying ultrasensitive HGF dose-response functions in a 3D mammalian system for synthetic morphogenesis.

    PubMed

    Senthivel, Vivek Raj; Sturrock, Marc; Piedrafita, Gabriel; Isalan, Mark

    2016-12-16

    Nonlinear responses to signals are widespread natural phenomena that affect various cellular processes. Nonlinearity can be a desirable characteristic for engineering living organisms because it can lead to more switch-like responses, similar to those underlying the wiring in electronics. Steeper functions are described as ultrasensitive, and can be applied in synthetic biology by using various techniques including receptor decoys, multiple co-operative binding sites, and sequential positive feedbacks. Here, we explore the inherent non-linearity of a biological signaling system to identify functions that can potentially be exploited using cell genome engineering. For this, we performed genome-wide transcription profiling to identify genes with ultrasensitive response functions to Hepatocyte Growth Factor (HGF). We identified 3,527 genes that react to increasing concentrations of HGF, in Madin-Darby canine kidney (MDCK) cells, grown as cysts in 3D collagen cell culture. By fitting a generic Hill function to the dose-responses of these genes we obtained a measure of the ultrasensitivity of HGF-responsive genes, identifying a subset with higher apparent Hill coefficients (e.g. MMP1, TIMP1, SNORD75, SNORD86 and ERRFI1). The regulatory regions of these genes are potential candidates for future engineering of synthetic mammalian gene circuits requiring nonlinear responses to HGF signalling.

  9. The complete sequence and promoter activity of the human A-raf-1 gene (ARAF1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.E.; Beck, T.W.; Brennscheidt, U.

    1994-03-01

    The raf proto-oncogenes encode cytoplasmic protein serine/threonine kinases, which play a critical role in cell growth and development. One of these, A-raf-1 (human gene symbol, ARAF1), which is predominantly expressed in mouse urogenital tissues, has been mapped to an evolutionarily conserved linkage group composed of ARAF1, SYN1, TIMP, and properdin located at human chromosome Xp11.2. The authors have isolated human genomic DNA clones containing the expressed gene (ARAF1) on the X chromosome and a pseudogene (ARAF2) on chromosome 7p12-q11.21. Analysis of the nucleotide sequence from the ARAF1 genomic clones demonstrated that it consists of 16 exons encoded by minimally 10,776more » nucleotides. The major transcriptional start site (+1) was determined by RNase protection and primer extension assays. Promoter activity was confirmed by functional assays using DNA fragments fused to a CAT reporter gene. The ARAF1 minimal promoter, located between nucleotides -59 and +93, has a low G + C content and lacks consensus TATA and Inr sequences but shows sequence similarity at position -1 to the E box that is known to interact with USF and TFII-I transcription factors. 65 refs., 7 figs., 1 tab.« less

  10. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity.

    PubMed

    Jasson, Fiona; Nagy, Istvan; Knol, Anne Chantal; Zuliani, Thomas; Khammari, Amir; Dréno, Brigitte

    2013-09-01

    Acne is a chronic inflammatory illness of the pilosebaceous follicle where innate immunity plays a central role. In acne, the density of Propionibacterium acnes is increased in the pilosebaceous unit. We hypothesized that the severity of acne is not only dependent on the proliferation of P. acnes but also dependent on the pro-inflammatory potential of P. acnes strains and consequently constitutes potential triggering factor for acne scarring. We investigated pro-inflammatory potential of five different strains of P. acnes and P. avidum in skin explants and the preventive effect of zinc gluconate. The expression of immune markers was studied by immunohistochemistry, RT-qPCR and ELISA. P. acnes strains modulate differently the expression of immune markers both at gene and at protein levels. P. acnes type III had the highest pro-inflammatory potential by up-regulating the expression of PAR-2, TNF-alpha, MMP-13 and TIMP-2, whereas P. avidum had the weakest by up-regulating only MMP-13 and TIMP-2. Preincubation of zinc gluconate, which is a modulator of innate immunity, down-regulates the expression of most immune markers induced by P. acnes, PAR-2, TIMP-2, up-regulates MMP-1, TIMP-1. Our results demonstrate that different P. acnes strains have different inflammatory potential targeting markers of cutaneous innate immunity, and that inflammatory potential can be down-regulated by zinc gluconate. As such, the inflammatory potential of P. acnes strains on acne skin may influence the severity of inflammatory acne lesions and scars. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Epigenetic regulation of metalloproteinases and their inhibitors in rotator cuff tears

    PubMed Central

    Caires dos Santos, Leonardo; Martins de Oliveira, Adrielle; Santoro Belangero, Paulo; Antônio Figueiredo, Eduardo; Cohen, Carina; de Seixas Alves, Felipe; Hiromi Yanaguizawa, Wânia; Vicente Andreoli, Carlos; de Castro Pochini, Alberto; Ejnisman, Benno; Cardoso Smith, Marília; de Seixas Alves, Maria Teresa; Cohen, Moises

    2017-01-01

    Rotator cuff tear is a common orthopedic condition. Metalloproteinases (MMP) and their inhibitors (TIMP) seem to play a role in the development of joint injuries and in the failure of tissue healing. However, the mechanisms of regulation of gene expression in tendons are still unknown. Epigenetic mechanisms, such as DNA methylation and microRNAs regulation, are involved in the dynamic control of gene expression. Here, the mRNA expression and DNA methylation status of MMPs (MMP1, MMP2, MMP3, MMP9, MMP13, and MMP14) and TIMPs (TIMP1-3) and the expression of miR-29 family members in ruptured supraspinatus tendons were compared with non-injured tendons of individuals without this lesion. Additionally, the gene expression and methylation status at the edge of the ruptured tendon were compared with macroscopically non-injured rotator cuff tendon samples from the anterior and posterior regions of patients with tendon tears. Moreover, the possible associations between the molecular alterations and the clinical and histologic characteristics were investigated. Dysregulated expression and DNA methylation of MMP and TIMP genes were found across the rotator cuff tendon samples of patients with supraspinatus tears. These alterations were influenced at least in part by age at surgery, sex, smoking habit, tear size, and duration of symptoms. Alterations in the studied MMP and TIMP genes may contribute to the presence of microcysts, fissures, necrosis, and neovascularization in tendons and may thus be involved in the tendon healing process. In conclusion, MMPs and their inhibitors are regulated by epigenetic modifications and may play a role in rotator cuff tears. PMID:28902861

  12. Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via PI3K/AKT and NF-κB signaling pathways.

    PubMed

    Shih, Yung-Luen; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Chu, Yung-Lin; Shang, Hung-Sheng; Chung, Jing-Gung

    2017-09-01

    Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future. © 2017 Wiley Periodicals, Inc.

  13. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    PubMed Central

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  14. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes.

    PubMed

    Wong, Marcy; Siegrist, Mark; Goodwin, Kelly

    2003-10-01

    Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.

  15. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production

    PubMed Central

    Matsui, Futoshi; Babitz, Stephen A.; Rhee, Audrey; Hile, Karen L.; Zhang, Hongji

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 106/rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson’s trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. PMID:27760767

  16. Evaluation of tissue metalloproteinase inhibitor TIMP-1 and Survivin levels during third trimester pregnancy - a preliminary report.

    PubMed

    Karowicz-Bilińska, Agata; Kowalska-Koprek, Urszula; Estemberg, Dorota; Sikora-Szubert, Anita

    2017-01-01

    A proper implantation of trophoblastic cells and an appropriate metalloproteinases activity is required to cause disintegration of basal membranes of cells. The activity of tissue matrix metaloproteinases can be inhibited by their matrix inhibitors - TIMP-s. Survivin is a member of inhibitor of apoptosis proteins family (IAP), that suppresses caspase activation, influences VEGF expression and promotes proliferative action of endothelial cells. The aim of the study was to assess concentrations of two independent anti-apoptotic factors. TIMP-1 and survivin in serum of women in their third trimester of pregnancy and in umbilical cord blood of neonates - drawn separately from veins and arteries. The study group consisted of 29 pregnant women in physiological pregnancy and with correct fetal development, in gestational age between 37 to 40 weeks of gestation. Blood used in the study was collected from maternal cubital fossa veins and from neonatal umbilical cords (from veins and from arteries separately). The research was conducted using TIMP-1 and Survivin ELISA kits from R & D Systems according to manufacturers' recommendations and protocols. The concentrations of TIMP-1 were similar and independent of the source of blood samples. Arterial values of TIMP-1 in umbilical cord compared to maternal and fetal veins were slightly lower, but no statistical difference was found. The mean concentrations of Survivin were comparable but we found that in some cases the results in cord blood serum in both vessels-vein and arteries were almost negative. Arterial values of Survivin in umbilical cord compared to maternal blood were higher, but no statistical difference was found. In III-rd trimester of pregnancy parameters of Timp-1 and Survivin - anti-apoptotic substances concentration were similar in maternal and cord blood in both artery and vein. We found no increased activity of selected antiapoptotic factors.

  17. Towards cloning the WAS-gene locus: YAC-contigs and PFGE analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meindi, A.; Schindelhauer, D.; Hellebrand, H.

    1994-09-01

    Patients with X-linked recessive Wiskott-Aldrich syndrome (WAS) manifest eczema, thrombocytopenia and severe immunodeficiency. Mapping studies place the WAS gene locus between the markers TIMP and DXS255 which both have been shown to be recombinant with the disease locus. Linkage analysis in eight families including a large Swiss family showed tight linkage of the disease to the loci DXS255 and DXS1126 and exclusion of TIMP as well as polymorphic loci adjacent to the OATL1 pseudogene cluster (e.g., DXS6616). Physical mapping with established YAC contigs and a radiation hybrid encompassing the Xp11.22-11.3 region revealed the loci order TIMP-PFC-elk1-DXS1367-DXS6616-OATL1-(DXS11260DXS226)-C5-3-TGE-3, SYP and (DXS255-DXS146). Themore » markers TIMP and C5-3 are contained on the same 1.6 Mb MluI-fragment. A novel expressed sequence (R1) could be placed between elk-1 and the PFC gene while the STS C5-3 could be localized adjacent to DXS1126. The gene cluster around DXS1126 could be connected with the TFE-3 and synaptophysin genes which map on the same 400 kb MluI fragment and two overlapping YACs. The minimum distance between SYP and DXS255 is 1.2 Mb; the maximum distance is 2.2 Mb. Expressed sequences which are obtained from a cosmid contig around DXS1126 and C5-3 are being used for mutation screening in WAS patients.« less

  18. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    PubMed

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  19. The SGBS cell strain as a model for the in vitro study of obesity and cancer.

    PubMed

    Allott, Emma H; Oliver, Elizabeth; Lysaght, Joanne; Gray, Steven G; Reynolds, John V; Roche, Helen M; Pidgeon, Graham P

    2012-10-01

    The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans. Pre-adipocyte 3T3-L1 and SGBS were differentiated according to standard protocols. Morphology was assessed by Oil Red O staining. Adipocyte-specific gene expression was measured by qPCR and biochemical function was assessed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity. Differential gene expression in oesophageal adenocarcinoma cell line OE33 following co-culture with SGBS or primary omental human adipocytes was investigated using Human Cancer Profiler qPCR arrays. During the process of differentiation, SGBS expressed higher levels of adipocyte-specific transcripts and fully differentiated SGBS expressed more similar morphology, transcript levels and biochemical function to primary omental adipocytes, relative to 3T3-L1. Co-culture with SGBS or primary omental adipocytes induced differential expression of genes involved in adhesion (ITGB3), angiogenesis (IGF1, TEK, TNF, VEGFA), apoptosis (GZMA, TERT) and invasion and metastasis (MMP9, TIMP3) in OE33 tumour cells. Comparable adipocyte-specific gene expression, biochemical function and a shared induced gene signature in co-cultured OE33 cells indicate that SGBS is a relevant in vitro model for obesity and cancer research in humans.

  20. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  1. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein

    PubMed Central

    Alqahtani, Mashael F.; Smith, Craig M.; Weiss, Scott L.; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S.

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004–0.174, 13), day 2 (0.020, 0.002–0.109, 10), and day 3 (0.018, 0.003–0.058, 23) compared with febrile (0.705, 0.187–1.778, 22) and healthy (0.7, 0.4–1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2–54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3–20.6, 11). MMP-9/TIMP-1 ratios were significantly lower, while A-FaBP and mrProANP were higher in septic patients compared to the control groups. Each biomarker was associated with hospital morbidity and length of stay. These results suggest that these biomarkers merit further prospective study for the early identification of children with sepsis. PMID:27089280

  2. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein.

    PubMed

    Alqahtani, Mashael F; Smith, Craig M; Weiss, Scott L; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004-0.174, 13), day 2 (0.020, 0.002-0.109, 10), and day 3 (0.018, 0.003-0.058, 23) compared with febrile (0.705, 0.187-1.778, 22) and healthy (0.7, 0.4-1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2-54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3-20.6, 11). MMP-9/TIMP-1 ratios were significantly lower, while A-FaBP and mrProANP were higher in septic patients compared to the control groups. Each biomarker was associated with hospital morbidity and length of stay. These results suggest that these biomarkers merit further prospective study for the early identification of children with sepsis.

  3. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    PubMed

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P < 0.01). After 72 hours of transfection, average down-regulation rate of CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P < 0.05), while TIMP-2 mRNA expression showed no significant deference (P > 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P < 0.05). After 24 hours of transection, average migration distance of MDA-MB-231 cell line and control group were (0.64 ± 0.12) mm and (4.69 ± 0.85) mm, respectively, which indicated a lower migrate speed. Down regulation of CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P < 0.05), with an average tumor mass of (1.85 ± 0.98) g and both reduction of tumor size and tumor mass. CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  4. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheis, Katja A., E-mail: katja.matheis@boehringer-ingelheim.com; Com, Emmanuelle; High-Throughput Proteomics Core Facility OUEST-genopole

    2011-04-15

    The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinicalmore » chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.« less

  5. Tocotrienols: The lesser known form of natural vitamin E

    PubMed Central

    Patel, Viren; Rink, Cameron; Khanna, Savita; Sen, Chandan K

    2014-01-01

    A recent and growing body of research has shown that members of this vitamin E family posses unique biologic functions. Tocotrienols have garnered much of this recent attention, and in particular α-tocotrienol has been shown to be the most potent neuroprotective form of vitamin E. Protection exclusively mediated through tocotrienols has been arbitrated to many mechanisms including inhibition of 12-LOX, c-Src, PLA2 and through up-regulation of MRP1. Further, tocotrienols have recently been shown to induce arteriogenesis through induction of TIMP1 and decreased activation of MMP2. However, the unique therapeutic potential of tocotrienols is not limited to neuroprotection. Tocotrienols have been shown to have molecular targets including: apoptotic regulators, cytokines, adhesion molecules, enzymes, kinases, receptors, transcription factors, and growth factors. In spite of this large and unique therapeutic potential, scientific literature on tocotrienols only accounts for approximately 1% of vitamin E research. Given the potential of tocotrienols and relatively scant literature, further investigation is warranted. PMID:22013739

  6. Possible mechanism by which renal sympathetic denervation improves left ventricular remodelling after myocardial infarction.

    PubMed

    Zheng, Xiao-Xin; Li, Xiao-Yan; Lyu, Yong-Nan; He, Yi-Yu; Wan, Wei-Guo; Zhu, Hong-Ling; Jiang, Xue-Jun

    2016-02-01

    What is the central question of this study? The enzyme system that is responsible for extracellular matrix (ECM) turnover is the matrix metalloproteinases (MMPs), which can be blocked by the tissue inhibitors of MMPs (TIMPs). Whether renal sympathetic denervation (RSD) is able to ameliorate post-myocardial infarction left ventricular remodelling through attenuation of ECM via regulation of MMP activity and/or the MMP-TIMP complex remains unknown. What is the main finding and its importance? Renal sympathetic denervation has therapeutic effects on post-myocardial infarction left ventricular remodelling, probably by attenuating the ECM through regulation of the MMP9-TIMP1 complex in the transforming growth factor-β1 (a profibrotic cytokine that accelerates ECM remodelling after ischaemia) signalling pathway. Whether renal sympathetic denervation (RSD) is able to ameliorate post-myocardial infarction (post-MI) left ventricular (LV) remodelling by attenuation of the extracellular matrix via regulation of matrix metalloproteinase (MMP) activity and/or the MMP-tissue inhibitor of matrix metalloproteinase (TIMP) complex remains unknown. Sixty-five Sprague-Dawley rats were randomly divided into the following four groups: normal (N, n = 15), RSD (RSD, n = 15), myocardial infarction (MI, n = 15) and RSD 3 days after MI (MI3d+RSD, n = 20). The bilateral renal nerves were surgically denervated 3 days after MI had been induced by coronary artery ligation. Left ventricular function was assessed using echocardiography and a Millar catheter at 6 weeks post-MI. Plasma noradrenaline, angiotensin II and aldosterone, collagen volume fraction, transforming growth factor-β1 (TGF-β1), MMP2, MMP9 and TIMP1 in heart tissue were measured 6 weeks after MI. In rats with MI3d+RSD compared with MI rats, RSD improved systolic and diastolic function, resulting in an improvement in ejection fraction (P < 0.05), fractional shortening (P < 0.05) and LV internal dimension in systole (P < 0.05) and diastole (P < 0.05). Additionally, RSD treatment decreased left ventricular end-diastolic pressure (P < 0.05) and increased LV systolic pressure (P < 0.05) and maximal and minimal rate of LV pressure (both P < 0.05). Meanwhile, RSD reduced collagen content (P < 0.01). TIMP1 was upregulated (P < 0.05), whereas MMP2, MMP9 and TGF-β1 were downregulated in the LV of RSD-treated animals (P < 0.05). Renal sympathetic denervation has therapeutic effects on post-MI LV remodelling, probably owing to effects on the extracellular matrix by regulation of the MMP9-TIMP1 balance in the TGF-β1 signalling pathway. Renal sympathetic denervation may be considered as a non-pharmacological approach for the improvement of post-MI cardiac dysfunction. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  7. [Dynamic changes of MMP-1, MMP-9 and TIMP-1 in the refractory diabetic dermal ulcers treated by autologous Platelet-rich gel].

    PubMed

    He, Li-Ping; Wang, Chun; Chen, Da-Wei; Li, Xiu-Jun; Ran, Xing-wu

    2012-09-01

    To investigate the dynamic changes of matrix metalloproteinase-1,-9 (MMP-1, MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1 ) in the refractory diabetic dermal ulcers treated with autologous platelet-rich gel (APG). 86 patients with nonhealing diabetic dermal ulcers were randomly assigned to two groups treated with standard procedures and APG (standard care plus topic application of autologous platelet-rich gel). The granulation tissues were collected at d0, d3, d6, d9, and d15 in patients in the APG group and at d0, d6, d15 in patients in the standard care group. The areas of ulcers were measured. The protein levels of MMP-1, MMP-9 and TIMP-1 in the tissues were determined with ELISA. The ratio of MMP-9/TIMP-1 and its relationship with the areas of ulcers were examined. The areas of ulcers of patients in the APG group decreased significantely (vs. do, P < 0.05). The concentrations of MMP-1 in the granulation tissues of patients treated with APG fluctuated and reached the lowest level at d15 (vs. d6, P < 0.05). The concentrations of MMP-9 in the patients treated with AGP decreased from d3 to d15, but without statistical significance compared with d0 (P > 0.05). The concentrations of TIMP-1 in the patients treated with AGP increased from d3 and reached the peak at d6 (P < 0.05). The ratio of MMP-9/TIMP-1 at both d6 and d15 decreased significantly compared with d0 (P < 0.05) in the patients treated with AGP. The areas of ulcers in the patients with standard care decreased significantly at d15 (vs. d6, P < 0.05). The concentrations of MMP-1 reached the peak at d6 (P < 0.05) and then decreased in the patients with standard care but was still higher than the patients treated with APG (P < 0.05). The concentrations of MMP-9 decreased significantly at d15 compared with d0 in the patients treated with standard care (P < 0.05), but the change of TIMP-1 was not significant. The ratio of MMP-9/TIMP-1 in the patients with standard care decreased at d15 compared with the d0 (P < 0.05). The ratio of MMP-9/TIMP-1 was positively correlated with the areas of ulcers (r = 0.353, P < 0.05). Topical application of APG might redress the proteolytic imbalance of refractory diabetic dermal ulcers by decreasing the concentration of MMPs and increasing that of TIMPs in granulation tissues. The ratio of MMP-9/TIMP-1 is a predictor of poor healing of refractory diabetic dermal ulcers.

  8. Serum tissue inhibitor of matrix metalloproteinase-1 levels are associated with mortality in patients with malignant middle cerebral artery infarction.

    PubMed

    Lorente, Leonardo; Martín, María M; Ramos, Luis; Cáceres, Juan J; Solé-Violán, Jordi; Argueso, Mónica; Jiménez, Alejandro; Borreguero-León, Juan M; Orbe, Josune; Rodríguez, José A; Páramo, José A

    2015-07-11

    In the last years, circulating matrix metalloproteinases (MMP)-9 levels have been associated with functional outcome in ischemic stroke patients. However the prognostic value of circulating levels of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and MMP-10 in functional outcome of ischemic stroke patients has been scarcely studied. In addition, to our knowledge, serum MMP-9, MMP-10 and TIMP-1 levels in patients with malignant middle cerebral artery infarction (MMCAI) for mortality prediction have not been studied, and these were the objectives of this study. This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. We included patients with severe MMCAI defined as Glasgow Coma Scale (GCS) lower than 9. We measured circulating levels of MMP-9, MMP-10, TIMP-1, in 50 patients with severe MMCAI at diagnosis and in 50 healthy subjects. Endpoint was 30-day mortality. Patients with severe MMCAI showed higher serum levels of MMP-9 (p = 0.001), MMP-10 (p < 0.001), and TIMP-1 (p = 0.02) than healthy subjects. Non-surviving MMCAI patients (n = 26) compared to survivor ones (n = 24) showed higher circulating levels of TIMP-1 (p < 0.001), MMP-10 (p = 0.02) and PAI-1(p = 0.02), and lower MMP-9 levels (p = 0.04). Multiple binomial logistic regression analysis showed that serum TIMP-1 levels > 239 ng/mL are associated with 30-day mortality (OR = 5.82; 95% CI = 1.37-24.73; P = 0.02) controlling for GCS and age. The area under the curve for TIMP-1 as predictor of 30-day mortality was 0.81 (95% CI = 0.67-0.91; P < 0.001). We found an association between circulating levels of TIMP-1 and MMP-10 (rho = 0.45; P = 0.001), plasminogen activator inhibitor (PAI)-1 (rho = 0.53; P < 0.001), and tumor necrosis factor (TNF)-alpha (rho = 0.70; P < 0.001). The most relevant and new findings of our study, were that serum TIMP-1 levels in MMCAI patients were associated with mortality, and could be used as a prognostic biomarker of mortality in MMCAI patients.

  9. Is it possible to predict the infant's neurodevelopmental outcome at 14 months of age by means of a single preterm assessment of General Movements?

    PubMed Central

    Manacero, Sonia Aparecida; Marschik, Peter B.; Nunes, Magda Lahorgue; Einspieler, Christa

    2012-01-01

    Background It continues to be a challenge for clinicians to identify preterm infants likely to experience subsequent neurodevelopmental deficits. The Test of Infant Motor Performance (TIMP) and the assessment of spontaneous general movements (GMs) are the only reliable diagnostic and predictive tools for the functionality of the developing nervous system, if applied before term. Aim To determine to what extent singular preterm assessments of motor performance can predict the neurodevelopmental outcome in 14-month olds. Methods Thirty-seven preterm infants born < 34 weeks gestational age were recruited for the study at the NICU of the São Lucas University Hospital, Porto Alegre, RS, Brazil. At 34 weeks, their GMs were assessed; and the Test of Infant Motor Performance (TIMP) was applied. A prospective design was used to examine (A) the association between the GM assessment and the TIMP; and (B) the relation between GMs or the TIMP and the developmental status at 14 months, assessed by means of Alberta Infant Motor Scales (AIMS) and the Pediatric Evaluation of Disability Inventory (PEDI). Results Nineteen infants (41%) had abnormal GMs; only one scored within the TIMP average range. Hence, GMs and TIMP were not related. Children with cramped-synchronized GMs at 34 weeks preterm had a lower AIMS centile rank than those with poor repertoire or normal GMs. There was a marginal association between cramped-synchronized GMs and a lower PEDI mobility score. Conclusions A single preterm GM assessment is only fairly to moderately associated with the 14-month motor development. The TIMP is not suitable as a complementary assessment tool at such a young age. PMID:21775078

  10. Inhibition of bleomycin-induced pulmonary fibrosis by bone marrow-derived mesenchymal stem cells might be mediated by decreasing MMP9, TIMP-1, INF-γ and TGF-β.

    PubMed

    Yu, Shi-huan; Liu, Li-jie; Lv, Bin; Che, Chun-li; Fan, Da-ping; Wang, Li-feng; Zhang, Yi-mei

    2015-08-01

    The study was aimed to investigate the mechanism and administration timing of bone marrow-derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)-induced pulmonary fibrosis mice. Thirty-six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP-1), γ-interferon (INF-γ) and transforming growth factor β1 (TGF-β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up-regulated MMP9, TIMP-1, INF-γ and TGF-β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down-regulating MMP9, TIMP-1, INF-γ and TGF-β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Highlights are as follows: 1. BMSCs repair lung injury induced by BLM. 2. BMSCs attenuate pulmonary fibrosis induced by BLM. 3. BMSCs transplantation down-regulates MMP9 and TIMP-1. 4. BMSCs transplantation down-regulates INF-γ and TGF-β. 5. Delayed transplantation timing of BMSCs might exhibit a better effect against BLM. Copyright © 2015 John Wiley & Sons, Ltd.

  11. The Development of Translational Biomarkers as a Tool for Improving the Understanding, Diagnosis and Treatment of Chronic Neuropathic Pain.

    PubMed

    Buckley, David A; Jennings, Elaine M; Burke, Nikita N; Roche, Michelle; McInerney, Veronica; Wren, Jonathan D; Finn, David P; McHugh, Patrick C

    2018-03-01

    Chronic neuropathic pain (CNP) is one of the most significant unmet clinical needs in modern medicine. Alongside the lack of effective treatments, there is a great deficit in the availability of objective diagnostic methods to reliably facilitate an accurate diagnosis. We therefore aimed to determine the feasibility of a simple diagnostic test by analysing differentially expressed genes in the blood of patients diagnosed with CNP of the lower back and compared to healthy human controls. Refinement of microarray expression data was performed using correlation analysis with 3900 human 2-colour microarray experiments. Selected genes were analysed in the dorsal horn of Sprague-Dawley rats after L5 spinal nerve ligation (SNL), using qRT-PCR and ddPCR, to determine possible associations with pathophysiological mechanisms underpinning CNP and whether they represent translational biomarkers of CNP. We found that of the 15 potential biomarkers identified, tissue inhibitor of matrix metalloproteinase-1 (TIMP1) gene expression was upregulated in chronic neuropathic lower back pain (CNBP) (p = 0.0049) which positively correlated (R = 0.68, p = ≤0.05) with increased plasma TIMP1 levels in this group (p = 0.0433). Moreover, plasma TIMP1 was also significantly upregulated in CNBP than chronic inflammatory lower back pain (p = 0.0272). In the SNL model, upregulation of the Timp1 gene was also observed (p = 0.0058) alongside a strong trend for the upregulation of melanocortin 1 receptor (p = 0.0847). Our data therefore highlights several genes that warrant further investigation, and of these, TIMP1 shows the greatest potential as an accessible and translational CNP biomarker.

  12. Sclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model.

    PubMed

    Zhong, Ying; Huang, Yi; Santoso, Marcel B; Wu, Li-Dong

    2015-01-01

    Sclareol is a natural product initially isolated form Salvia sclarea which possesses immune-regulation and anti-inflammatory activities. However, the anti-osteoarthritic properties of sclareol have not been investigated. The present study is aimed at evaluating the potential effects of sclareol in interleukin-1β (IL-1β)-induced rabbit chondrocytes as well as an experimental rabbit knee osteoarthritis model induced by anterior cruciate ligament transection (ACLT). Cultured rabbit chondrocytes were pretreated with 1, 5 and 10 μg/mL sclareol for 1 h and followed by stimulation of IL-1β (10 ng/mL) for 24 h. Gene expression of matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-13, tissue inhibitors of metalloproteinase-1 (TIMP-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). MMP-3, TIMP-1, iNOS and COX-2 proteins were measured by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was applied for nitric oxide (NO) and prostaglandin E2 (PGE2) assessment. For the in vivo study, rabbits received six weekly 0.3 mL sclareol (10 μg/mL) intra-articular injections in the knees four weeks after ACLT surgery. Cartilage was harvested for measurement of MMP-1, MMP-3, MMP-13, TIMP-1, iNOS and COX-2 by qRT-PCR, while femoral condyles were used for histological evaluation. The in vitro results we obtained showed that sclareol inhibited the MMPs, iNOS and COX-2 expression on mRNA and protein levels, while increased the TIMP-1 expression. And over-production of NO and PGE2 was also suppressed. For the in vivo study, both qRT-PCR results and histological evaluation confirmed that sclareol ameliorated cartilage degradation. Hence, we speculated that sclareol may be an ideal approach for treating osteoarthritis.

  13. Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry.

    PubMed

    Hmmier, Abduladim; O'Brien, Michael Emmet; Lynch, Vincent; Clynes, Martin; Morgan, Ross; Dowling, Paul

    2017-06-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women throughout the world. The need to detect lung cancer at an early, potentially curable stage, is essential and may reduce mortality by 20%. The aim of this study was to identify distinct proteomic profiles in bronchoalveolar fluid (BALF) and plasma that are able to discriminate individuals with benign disease from those with non-small cell lung cancer (NSCLC). Using label-free mass spectrometry analysis of BALF during discovery-phase analysis, a significant number of proteins were found to have different abundance levels when comparing control to adenocarcinoma (AD) or squamous cell lung carcinoma (SqCC). Validation of candidate biomarkers identified in BALF was performed in a larger cohort of plasma samples by detection with enzyme-linked immunoassay. Four proteins (Cystatin-C, TIMP-1, Lipocalin-2 and HSP70/HSPA1A) were selected as a representative group from discovery phase mass spectrometry BALF analysis. Plasma levels of TIMP-1, Lipocalin-2 and Cystatin-C were found to be significantly elevated in AD and SqCC compared to control. The results presented in this study indicate that BALF is an important proximal biofluid for the discovery and identification of candidate lung cancer biomarkers. There is good correlation between the trend of protein abundance levels in BALF and that of plasma which validates this approach to develop a blood biomarker to aid lung cancer diagnosis, particularly in the era of lung cancer screening. The protein signatures identified also provide insight into the molecular mechanisms associated with lung malignancy.

  14. MT1-MMP is a crucial promotor of synovial invasion in human rheumatoid arthritis

    PubMed Central

    Miller, Mary-Clare; Manning, Hugh B.; Jain, Abhilash; Troeberg, Linda; Dudhia, Jayesh; Essex, David; Sandison, Ann; Seiki, Motoharu; Nanchahal, Jagdeep; Nagase, Hideaki; Itoh, Yoshifumi

    2010-01-01

    Objective A hallmark of rheumatoid arthritis (RA) is invasion of the synovial pannus into cartilage and this step requires degradation of the collagen matrix. The aim of this study was to explore the role of one of the collagen-degrading matrix metalloproteinases (MMPs), membrane-type 1 MMP (MT1-MMP), in synovial pannus invasiveness. Methods Expression and localization of MT1-MMP in human RA pannus were investigated by Western blot analysis of primary synovial cells and immunohistochemistry of RA joints specimens. The functional role of MT1-MMP was analyzed by 3D collagen invasion assays and a cartilage invasion assay in the presence or absence of tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, or GM6001. The effect of adenoviral expression of a dominant negative MT1-MMP construct lacking a catalytic domain was also examined. Results MT1-MMP was highly expressed at the pannus-cartilage junction of RA joints. Freshly isolated rheumatoid synovial tissues and isolated RA synovial fibroblasts invaded into a 3D collagen matrix in an MT1-MMP-dependent manner. Invasion was blocked by TIMP-2 and GM6001, but not by TIMP-1. It was also inhibited by the over-expression of a dominant negative MT1-MMP which inhibits collagenolytic activity and proMMP-2 activation by MT1-MMP on the cell surface. Synovial fibroblasts also invaded into cartilage in an MT1-MMP-dependent manner. This process was further enhanced by removing aggrecan from the cartilage matrix. Conclusion MT1-MMP is an essential collagen-degrading proteinase during pannus invasion in human RA. Specific inhibition of MT1-MMP-dependent invasion may form a novel therapeutic strategy for RA. PMID:19248098

  15. Gamete therapeutics: recombinant protein adsorption by sperm for increasing fertility via artificial insemination.

    PubMed

    Alvarez-Gallardo, Horacio; Kjelland, Michael E; Moreno, Juan F; Welsh, Thomas H; Randel, Ronald D; Lammoglia, Miguel A; Pérez-Martínez, Mario; Lara-Sagahón, Alma V; Esperón-Sumano, A Enrique; Romo, Salvador

    2013-01-01

    A decrease in fertility can have a negative economic impact, both locally and over a broader geographical scope, and this is especially the case with regard to the cattle industry. Therefore, much interest exists in evaluating proteins that might be able to increase the fertility of sperm. Heparin binding proteins (HBPs), specifically the fertility associated antigen (FAA) and the Type-2 tissue inhibitor of metalloproteinase (TIMP-2), act to favor the capacitation and acrosome reaction and perhaps even modulate the immune system's response toward the sperm. The objective of this research was to determine the effect on fertility of adding recombinant FAA (rFAA) and recombinant TIMP-2 (rTIMP-2) to bovine semen before cryopreservation for use in an artificial insemination (AI) program in a tropical environment. For this experiment, 100 crossbred (Bos taurus x Bos indicus) heifers were selected based on their estrus cycle, body condition score (BCS), of 4 to 6 on a scale of 1 to 9, and adequate anatomical conformation evaluated by pelvic and genital (normal) measurements. Heifers were synchronized using estradiol benzoate (EB), Celosil® (PGF2α) (Shering-Plough) and a controlled internal drug release (CIDR) device was inserted that contained progesterone. Inseminations were performed in two groups at random, 50 animals per group. The control group was inseminated with conventional semen. The treatment group was inseminated with semen containing rFAA (25 µg/mL) and rTIMP-2 (25 µg/mL). In the control group a 16% pregnancy rate was obtained versus a 40% pregnancy rate for the HBP treatment group, resulting in a significant difference (P = 0.0037). Given the results herein, one may conclude that the HBPs can increase fertility and could be an option for cattle in tropical conditions; however, one needs to consider the environment, nutrition, and the genetic interaction affecting the final result in whatever reproductive program that is implemented.

  16. Gamete Therapeutics: Recombinant Protein Adsorption by Sperm for Increasing Fertility via Artificial Insemination

    PubMed Central

    Alvarez-Gallardo, Horacio; Kjelland, Michael E.; Moreno, Juan F.; Welsh, Thomas H.; Randel, Ronald D.; Lammoglia, Miguel A.; Pérez-Martínez, Mario; Lara-Sagahón, Alma V.; Esperón-Sumano, A. Enrique; Romo, Salvador

    2013-01-01

    A decrease in fertility can have a negative economic impact, both locally and over a broader geographical scope, and this is especially the case with regard to the cattle industry. Therefore, much interest exists in evaluating proteins that might be able to increase the fertility of sperm. Heparin binding proteins (HBPs), specifically the fertility associated antigen (FAA) and the Type-2 tissue inhibitor of metalloproteinase (TIMP-2), act to favor the capacitation and acrosome reaction and perhaps even modulate the immune system’s response toward the sperm. The objective of this research was to determine the effect on fertility of adding recombinant FAA (rFAA) and recombinant TIMP-2 (rTIMP-2) to bovine semen before cryopreservation for use in an artificial insemination (AI) program in a tropical environment. For this experiment, 100 crossbred (Bos taurus x Bos indicus) heifers were selected based on their estrus cycle, body condition score (BCS), of 4 to 6 on a scale of 1 to 9, and adequate anatomical conformation evaluated by pelvic and genital (normal) measurements. Heifers were synchronized using estradiol benzoate (EB), Celosil® (PGF2α) (Shering-Plough) and a controlled internal drug release (CIDR) device was inserted that contained progesterone. Inseminations were performed in two groups at random, 50 animals per group. The control group was inseminated with conventional semen. The treatment group was inseminated with semen containing rFAA (25 µg/mL) and rTIMP-2 (25 µg/mL). In the control group a 16% pregnancy rate was obtained versus a 40% pregnancy rate for the HBP treatment group, resulting in a significant difference (P = 0.0037). Given the results herein, one may conclude that the HBPs can increase fertility and could be an option for cattle in tropical conditions; however, one needs to consider the environment, nutrition, and the genetic interaction affecting the final result in whatever reproductive program that is implemented. PMID:23762288

  17. THE EFFECT OF TARGETED KNOCKOUT MUTATION ON THE TRANSCRIPTIONAL PROFILE OF THE KIDNEY IN TSC2 MUTANT LONG-EVANS (EKER) RATS.

    EPA Science Inventory

    The effect of a targeted knockout mutation on the transcriptional profile of the kidney in
    Tsc2 mutant Long-Evans (Eker) rats.

    Renal cell carcinoma (RCC) is the most common tumor of the adult kidney, accounting
    for up to 80% of malignant renal neoplasms. Hereditary...

  18. Establishment of a New Quality Control and Vaccine Safety Test for Influenza Vaccines and Adjuvants Using Gene Expression Profiling

    PubMed Central

    Momose, Haruka; Mizukami, Takuo; Kuramitsu, Madoka; Takizawa, Kazuya; Masumi, Atsuko; Araki, Kumiko; Furuhata, Keiko; Yamaguchi, Kazunari; Hamaguchi, Isao

    2015-01-01

    We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine. PMID:25909814

  19. Profiles of blood biomarkers in alternating hemiplegia of childhood--increased MMP-9 and decreased substance P indicates its pathophysiology.

    PubMed

    Inui, Takehiko; Saito, Yoshiaki; Sakuma, Hiroshi; Hatakeyama, Hideyuki; Goto, Yu-ichi; Arai, Hidee; Sasaki, Masayuki

    2012-03-01

    Alternating hemiplegia of childhood (AHC) is a rare disorder characterized by repeated plegic attacks, movement disorders, autonomic phenomena, and developmental delay. To obtain insights into the pathophysiology of AHC, we determined the concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of MMP-1 (TIMP-1), calcitonin gene-related peptide (CGRP), and substance P (SP) in the serum/plasma of AHC patients (n=6) and control subjects (n=11) by performing enzyme-linked immunosorbent assay (ELISA). Decreased levels of serum SP (382±161 pg/ml), increased levels of plasma MMP-9 (111.0±99.3 ng/mL) and increased MMP-9/TIMP-1 ratio (0.65±0.44) were revealed, compared to those in control subjects (SP: 620±223 pg/mL, p<0.05; MMP-9: 33.5±20.3 ng/mL, p<0.05; MMP-9/TIMP-1 ratio 0.21±0.09, p<0.005). Serum CGRP levels in AHC patients (32.6±14.4 pg/mL) were comparable to those in control subjects (37.0±17.0 pg/mL). Increased MMP-9 levels may be linked to the vascular insult and is common in migraineurs. However, because AHC patients showed different changes in SP and CGRP levels compared to those shown by migraineurs, these results suggest that AHC has a pathomechanism different from the hypothesis of trigeminovascular theory. Decreased SP may represent the autonomic dysfunction in AHC, for which an etiology with progressive neuronal damage can be hypothesized. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    PubMed Central

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  1. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions.

    PubMed

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.

  2. Cerebrospinal fluid levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in subacute sclerosing panencephalitis.

    PubMed

    Ichiyama, Takashi; Matsushige, Takeshi; Siba, Peter; Suarkia, Dagwin; Takasu, Toshiaki; Miki, Kenji; Furukawa, Susumu

    2008-05-01

    To investigate the brain inflammation and damage in subacute sclerosing panencephalitis (SSPE), the cerebrospinal fluid (CSF) concentrations of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined in SSPE patients. CSF MMP-9 and TIMP-1 levels were measured in 23 patients with SSPE in Papua New Guinea by ELISA. CSF MMP-9 levels and MMP-9/TIMP-1 ratios of SSPE patients were significantly higher than controls (p<0.001 and p=0.005, respectively). There were no significant differences in CSF TIMP-1 levels between SSPE patients and controls. Previous studies suggested that CSF MMP-9 levels reflect inflammatory damage to the brain. Our findings suggest that the MMP-9 level in CSF is an indicator of inflammatory damage to the brain in SSPE.

  3. Cholestasis-induced fibrosis is reduced by interferon alpha-2a and is associated with elevated liver metalloprotease activity.

    PubMed

    Bueno, M R; Daneri, A; Armendáriz-Borunda, J

    2000-12-01

    Several drugs have been tested for the treatment of hepatic cirrhosis induced by various etiologic agents. Although interferon (IFN)alpha-2a has mostly been used to treat viral hepatitis, its anti-fibrogenic properties remain to be established. An experimental model of cholestasis-induced cirrhosis was used to test the effect of IFNalpha-2a. Cirrhosis was induced in rats via ligation of the common bile duct. IFNalpha-2a (100,000 IU/rat, s.c.) was administered daily throughout the experiment. Collagens and TIMP-1 mRNA transcripts were determined by semi-quantitative reverse transcriptase-polymerase chain reaction in liver tissue samples. Activity of metalloproteases (MMPs) was measured using gelatin (denatured collagen) as substrate and the specific size of the enzymes was estimated by zymograms. Histology was performed using Sirius red as a specific stain for collagenous material, and computer-assisted morphometric analyses were carried out. A polyclonal mouse anti-plasminogen activator inhibitor (PAI-1) antibody was used to evaluate the distribution during treatment with IFNalpha-2a. MMP-activity was up-regulated in bile duct ligated rats treated with IFNalpha-2a. MMP-activity in homogenates of total liver was minimal as compared with activity in non-parenchymal cells isolated from the same parental perfused liver, indicating a cryptic MMP activity which was completely abolished by EDTA and 1,10 phenanthroline. Three bands of gelatin degradation were detected by zymography, corresponding to 95, 75 and 65 kDa. IFNalpha-2a decreased PAI-1 immunoreactivity in liver tissue slices as well as biochemical activity in non-parenchymal cell extracts (3.3+/-0.08 vs 7.4+/-1.1 U/mg protein). Procollagen alpha1 (III) and alpha1 (IV) genes expression were also down-regulated 1.5 and 4-fold, respectively. Interestingly, TIMP-1 gene expression did not change. Functional hepatic tests: alanine aminotransferase, aspartate aminotransferase, bilirubins and alkaline phosphatase were significantly lower in IFNalpha-2a treated animals. Analysis of histology demonstrated that IFNalpha-2a promoted resolution of fibrosis and decreased bile duct proliferation.

  4. A pilot study evaluating protein abundance in pressure ulcer fluid from people with and without spinal cord injury

    PubMed Central

    Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela

    2015-01-01

    Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005

  5. Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression

    PubMed Central

    Torzilli, P. A.; Bhargava, M.; Chen, C. T.

    2011-01-01

    Objective: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. Design: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. Results: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. Conclusions: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA. PMID:22039566

  6. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes.

    PubMed

    Natsu-Ume, Takashi; Majima, Tokifumi; Reno, Carol; Shrive, Nigel G; Frank, Cyril B; Hart, David A

    2005-07-01

    The purpose of this study was to examine the influence of removing menisci from their in vivo loading environment on gene expression patterns and to determine whether in vitro loading can maintain the tissues in their in vivo phenotype. Lateral and medial rabbit meniscal explants from one leg were cultured in vitro and subjected to intermittent cyclic hydrostatic pressure (CHP) of 1 MPa at 0.5 Hz for 1 min and a rest period of 14 min (4 h of culture). The contralateral menisci were incubated at atmospheric pressure for 4 h. Menisci from both legs of another set of rabbits were frozen immediately to yield time zero values reflective of in vivo mRNA levels. Total RNA was isolated from all groups and processed for reverse transcription-polymerase chain reaction analysis for a subset of relevant genes (matrix molecules, cytokines, proteinases and inhibitors, enzymes). It was found that mRNA levels for MMP-1, MMP-3, TIMPs, iNOS, COX-2, interleukin-1beta in both menisci, and interleukin-6 in medial menisci were significantly elevated in tissues cultured under nonloading conditions compared to the time zero controls. Subjecting menisci to CHP significantly prevented these increases in mRNA levels for nearly all of the indicated molecules. In contrast, there were no significant differences in mRNA levels for collagens, biglycan, MMP-13, or TIMP-4 between the time zero values and those cultured under either nonloading or loading conditions. These studies demonstrate that removing rabbit menisci from their normal in vivo mechanical environment leads to an apparent up-regulation of a subset of potent effector molecules that could mediate catabolic activities, and that in vitro CHP can largely prevent this apparent up-regulation.

  7. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production.

    PubMed

    Matsui, Futoshi; Babitz, Stephen A; Rhee, Audrey; Hile, Karen L; Zhang, Hongji; Meldrum, Kirstan K

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 10 6 /rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson's trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Copyright © 2017 the American Physiological Society.

  8. A 1.8-Mb YAC contig in Xp11.23: identification of CpG islands and physical mapping of CA repeats in a region of high gene density.

    PubMed

    Coleman, M P; Németh, A H; Campbell, L; Raut, C P; Weissenbach, J; Davies, K E

    1994-05-15

    The genes ARAF1, SYN1, TIMP, and PFC are clustered within 70 kb of one another, and, as reported in the accompanying paper (J. Knight et al., 1994, Genomics 21: 180-187), at least four more genes map within 400 kb: a cluster of Krüppel-type zinc finger genes (including ZNF21, ZNF41, and ZNF81) and ELK-1, a member of the ets oncogene superfamily. This gene-rich region is of particular interest because of the large number of disease genes mapping to Xp11.23: at least three eye diseases (retinitis pigmentosa type 2, congenital stationary night blindness CSNB1, and Aland Island eye disease), Wiskott-Aldrich syndrome, X-linked nephrolithiasis, and a translocation breakpoint associated with synovial sarcoma. We have constructed a 1.8-Mb YAC contig in this region, confirming the link between TIMP and OATL1 reported by Knight et al. (1994) and extending the map in the distal direction. To investigate the likelihood that more genes are located within this region, we have carried out detailed mapping of rare-cutter restriction sites in these YACs and identified seven CpG islands. At least six of these islands are located over 50 kb from any known gene locations, suggesting that the region contains at least this many as yet unidentified genes. We have also mapped the physical locations of six highly polymorphic CA repeats within the contig, thus integrating the physical, genetic, and transcriptional maps of the region and facilitating the mapping and identification of disease genes.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Molecular screening of the CYP4V2 gene in Bietti crystalline dystrophy that is associated with choroidal neovascularization

    PubMed Central

    Mamatha, Gandra; Umashankar, Vetrivel; Kasinathan, Nachiappan; Krishnan, Tandava; Sathyabaarathi, Ravichandran; Karthiyayini, Thirumalai; Amali, John; Rao, Chetan

    2011-01-01

    Purpose Bietti crystalline dystrophy (BCD) is an autosomal recessive disease characterized by intraretinal deposits of multiple small crystals, with or without associated crystal deposits in the cornea. The disease is caused by mutation in the cytochrome p450, family 4, subfamily v, polypeptide 2 (CYP4V2) gene. Choroidal neovascularization (CNV) is a rare event in BCD. We report two cases of BCD associated with CNV. CYP4V2 and exon 5 of tissue inhibitor of metalloproteinase 3 (TIMP3) were screened in both cases. A patient with BCD, but without CNV, was also screened to identify pathogenic variations. Methods Three BCD families of Asian Indian origin were recruited after a comprehensive ophthalmic examination. Genomic DNA was isolated from blood leukocytes, and coding exons and flanking introns of CYP4V2 and exon 5 of TIMP3 were amplified via polymerase chain reaction (PCR) and were sequenced. Family segregation, control screening, and bioinformatics tools were used to assess the pathogenicity of the novel variations. Results Of the three BCD patients, two had parafoveal CNV. The patient with BCD, but without CNV had novel single base-pair duplication (c.1062_1063dupA). This mutation results in a structurally defective and unstable protein with impaired protein function. Four novel benign variations (three in exons and one in an intron) were observed in the cohort. Screening of exon 5 of TIMP3 did not reveal any variation in these families. Conclusions A novel mutation was found in a patient with BCD but without CNV, while patients with BCD and CNV did not show any pathogenic variation. The modifier role of TIMP3 in the pathogenesis of CNV in BCD was partly ruled out, as no variation was observed in exon 5 of the gene. A larger BCD cohort with CNV needs to be studied and screened to understand the genetics of CNV in BCD. PMID:21850171

  10. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC) Promote Trophoblast Cell Invasion

    PubMed Central

    Wang, Yaqin; Guo, Yue; Zhou, Danni; Xu, Mei; Ding, Jinli; Yang, Jing

    2015-01-01

    Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo–secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion. PMID:26087261

  11. Identification of low-abundance cancer biomarker candidate TIMP1 from serum with lectin fractionation and peptide affinity enrichment by ultrahigh-resolution mass spectrometry.

    PubMed

    Ahn, Yeong Hee; Kim, Kwang Hoe; Shin, Park Min; Ji, Eun Sun; Kim, Hoguen; Yoo, Jong Shin

    2012-02-07

    As investigating a proteolytic target peptide originating from the tissue inhibitor of metalloproteinase 1 (TIMP1) known to be aberrantly glycosylated in patients with colorectal cancer (CRC), we first confirmed that TIMP1 is to be a CRC biomarker candidate in human serum. For this, we utilized matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) showing ultrahigh-resolution and high mass accuracy. This investigation used phytohemagglutinin-L(4) (L-PHA) lectin, which shows binding affinity to the β-1,6-N-acetylglucosamine moiety of N-linked glycan on a protein, to compare fractionated aberrant protein glycoforms from both noncancerous control and CRC serum. Each lectin-captured fraction containing aberrant glycoforms of TIMP1 was digested by trypsin, resulting in the tryptic target peptide, representative of the serum glycoprotein TIMP1. The resulting target peptide was enriched using a stable isotope standard and capture by the antipeptide antibody (SISCAPA) technique and analyzed by a 15 T MALDI FTICR mass spectrometer with high mass accuracy (Δ < 0.5 ppm to the theoretical mass value of the target peptide). Since exact measurement of multiplex isotopic peaks of the target peptide could be accomplished by virtue of high mass resolution (Rs > 400,000), robust identification of the target peptide is only achievable with 15 T FTICR MS. Also, MALDI data obtained in this study showed that the L-PHA-captured glycoforms of TIMP1 were measured in the pooled CRC serum with about 5 times higher abundance than that in the noncancerous serum, and were further proved by MRM mass analysis. These results confirm that TIMP1 in human serum is a potent CRC biomarker candidate, demonstrating that ultrahigh-resolution MS can be a powerful tool toward identifying and verifying potential protein biomarker candidates. © 2011 American Chemical Society

  12. TIMP-2 mediates the anti-invasive effects of the nitric oxide-releasing prodrug JS-K in breast cancer cells.

    PubMed

    Simeone, Ann-Marie; McMurtry, Vanity; Nieves-Alicea, René; Saavedra, Joseph E; Keefer, Larry K; Johnson, Marcella M; Tari, Ana M

    2008-01-01

    Tumor invasion and metastasis remain a major cause of mortality in breast cancer patients. High concentrations of nitric oxide (NO) suppress tumor invasion and metastasis in vivo. NO prodrugs generate large amounts of NO upon metabolism by appropriate intracellular enzymes, and therefore could have potential in the prevention and therapy of metastatic breast cancer. The present study was designed to determine the effects of the NO-releasing prodrug O2-(2,4-dinitrophenyl) 1- [(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) on breast cancer invasion and the mechanisms involved. MDA-MB-231, MDA-MB-231/F10, and MCF-7/COX-2 were the three breast cancer cell lines tested. NO levels were determined spectrophotometrically using a NO assay kit. Invasion and the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs were determined using Matrigel invasion assays, an MMP array kit and ELISAs. The activity and expression of extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase mitogen-activated protein kinases were determined using western blot analyses. Under conditions by which JS-K was not cytotoxic, JS-K significantly decreased (P < 0.05) the invasiveness of breast cancer cells across the Matrigel basement membrane, which was directly correlated with NO production. JS-43-126, a non-NO-releasing analog of JS-K, had no effect on NO levels or invasion. JS-K increased (P < 0.05) TIMP-2 production, and blocking TIMP-2 activity with a neutralizing antibody significantly increased (P < 0.05) the invasive activity of JS-K-treated cells across Matrigel. JS-K decreased p38 activity, whereas the activity and the expression of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase were unaffected. We report the novel findings that JS-K inhibits breast cancer invasion across the Matrigel basement membrane, and NO production is vital for this activity. Upregulation of TIMP-2 production is one mechanism by which JS-K mediates its anti-invasive effects. JS-K and other NO prodrugs may represent an innovative biological approach in the prevention and treatment of metastatic breast cancer.

  13. Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Pawagi, Sujata; Prabhu, Padmaja; Cao, Jian; Zucker, Stanley; Pfeiffer, Laurence; Garfield, Jacqueline; Fusenig, Norbert E; Garlick, Jonathan A

    2006-02-15

    The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.

  14. Structural Requirements For Bone Sialoprotein Binding And Modulation Of Matrix Metalloproteinase-2

    PubMed Central

    Jain, Alka; Karadag, Abdullah; Fisher, Larry W.; Fedarko, Neal S.

    2008-01-01

    Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2′s propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation. PMID:18729384

  15. Structural requirements for bone sialoprotein binding and modulation of matrix metalloproteinase-2.

    PubMed

    Jain, Alka; Karadag, Abdullah; Fisher, Larry W; Fedarko, Neal S

    2008-09-23

    Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2's propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation.

  16. Efficacy of a collagen-based dressing in an animal model of delayed wound healing.

    PubMed

    Guillemin, Y; Le Broc, D; Ségalen, C; Kurkdjian, E; Gouze, J N

    2016-07-02

    The aim of this study was to evaluate in vitro and in vivo the efficacy of GBT013, a collagen-based dressing, for the treatment of chronic wounds, in a db/db mouse model of diabetes. Macroscopic and histologic analyses of db/db mice wound healing with GBT013 or saline gauze were assessed. The mRNA expression and the proliferation of dermal fibroblast were investigated. Matrix metalloproteinases (MMP)-2 and MMP-9 activities were quantified. In db/db mice, GBT013 improves wound epithelialisation when compared with saline gauze. Histological analysis of scar tissue also shows an enhancement of remodelling associated with no sign of acute inflammation. In addition, GBT013 significantly decreases interleukin (IL)-6 and IL-8, significantly increases tissue inhibitors of metalloproteinases (TIMP)-1 and TIMP-2 fibroblast mRNA expression and significantly reduces in vitro MMP-2 and MMP-9 enzymatic activities. Moreover, GBT013 allows cell growth inside the matrix and stimulates proliferation of human dermal fibroblast. By contributing to restore MMPs/TIMPs balance, GBT013 may function in all key stages of wound healing, such as inflammation, proliferation and tissue remodelling, and ultimately may provide a favourable environment for skin repair. This work was supported by Genbiotech, the R&D subsidiary of Laboratoires Genévrier, a pharmaceutical company.

  17. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat.

    PubMed

    Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel

    2014-04-01

    Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    PubMed Central

    Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John

    2012-01-01

    Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488

  19. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in Vitro and in Vivo.

    PubMed

    Yang, Fan; Luo, Lei; Zhu, Zhi-De; Zhou, Xuan; Wang, Yao; Xue, Juan; Zhang, Juan; Cai, Xin; Chen, Zhi-Lin; Ma, Qian; Chen, Yun-Fei; Wang, Yu-Jie; Luo, Ying-Ying; Liu, Pan; Zhao, Lei

    2017-01-01

    Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo . Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.

  20. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy.

    PubMed

    Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre

    2012-01-01

    To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.

  1. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Alexi, Pascal; Tihaa, Lidia

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model{sub ,} PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparisonmore » to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities.« less

  2. Role of myocardial collagen degradation and fibrosis in right ventricle dysfunction in transposition of the great arteries after atrial switch.

    PubMed

    Ladouceur, Magalie; Baron, Stephanie; Nivet-Antoine, Valérie; Maruani, Gérard; Soulat, Gilles; Pereira, Helena; Blanchard, Anne; Boutouyrie, Pierre; Paul, Jean Louis; Mousseaux, Elie

    2018-05-01

    Heart failure is a serious event in patients with transposition of the great arteries (D-TGA) after atrial redirection surgery. We aimed to determine the association between myocardial fibrosis and systolic and diastolic systemic right ventricle (sRV) dysfunction. Diastolic and systolic function of sRV was prospectively assessed using echocardiography and cardiac magnetic resonance imaging (CMR) in 48 patients with atrially switched D-TGA and 26 healthy subjects. Diastolic function of the subaortic ventricle was assessed by echocardiography Doppler and DTI. In CMR, ejection fraction of sRV and wall stress defined as the product of the systolic blood pressure and volume/mass ratio were assessed. Fibrosis extent within sRV myocardium was evaluated using gadolinium-enhanced magnetic resonance and serum collagen turnover biomarkers. Late gadolinium enhancement (LGE) was found in 35% of D-TGA patients, and the collagen degradation biomarker pro-MMP1:TIMP1 ratio was significantly increased in D-TGA patients compared to healthy subjects (1.0 × 10 -2 vs. 2.5 × 10 -2 , p = 0.04). Increase in sRV wall stress was significantly associated with LGE (p = 0.01) and pro-MMP1:TIMP1 ratio (r = 0.77, p < 0.01). After adjustment for age, sex, BMI, blood pressure and cardiac treatment, pro-MMP1:TIMP1 ratio was the strongest determinant of sRVEF (R 2  = 0.85, p < 0.01). Pro-MMP1:TIMP1 ratio was also significantly correlated with the early diastolic filling parameter E/E' (r = 0.53, p = 0.02), but this was not anymore the case after adjustment. Diastolic and systolic sRV dysfunction is related to myocardial collagen degradation and fibrosis. Research in medical therapies that reduce systemic sRV afterload and limit collagen degradation is warranted in this setting. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    PubMed Central

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-01

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777

  4. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.

    PubMed

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-18

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  5. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussa, Mayssam, E-mail: Moussa-mayssam@hotmail.com; Lajeunesse, Daniel, E-mail: daniel.lajeunesse@umontreal.ca; Hilal, George, E-mail: George2266@gmail.com

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes weremore » co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is chondroprotection. • Chondroprotection is assumed via two major mechanisms:1-by increasing the major players in cartilage protection as as autophagy 2-by decreasing the markers of cartilage degradation such as MMPs.« less

  6. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy

    PubMed Central

    Weymann, Alexander; Arif, Rawa; Weber, Antje; Zaradzki, Marcin; Richter, Karsten; Ensminger, Stephan; Robinson, Peter Nicholas; Wagner, Andreas H.; Karck, Matthias; Kallenbach, Klaus

    2016-01-01

    Objectives Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1) in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR) in order to reduce elastolysis. Methods We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group). Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6) were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1) or β-galactosidase (Ad.β-Gal). As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC) and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI), and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM). Results IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43), but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00). Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001). As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001). However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1 (compared to untreated Marfan aorta: Ad.hTIMP-1 p = 0.902; control Ad.β-Gal. p = 0.165). The virus-untreated and not transplanted mgR/mgR aorta revealed a significant increase of albumin diffusion through the endothelial barrier (p = 0.037). TEM analysis of adenovirus-exposed mgR/mgR aortas displayed disruption of the basement membrane and basolateral space. Conclusions Murine Marfan aortic grafts developed severe inflammation after adenoviral contact. We demonstrated that fibrillin-1 deficiency is associated with relevant dysfunction of the endothelial barrier that enables adenovirus to induce vessel-harming inflammation. Endothelial dysfunction may play a pivotal role in the development of the vascular phenotype of Marfan syndrome. PMID:26840980

  7. APRI, the FIB-4 score, and Forn's index have noninvasive diagnostic value for liver fibrosis in patients with chronic hepatitis B.

    PubMed

    Ucar, Fatma; Sezer, Sevilay; Ginis, Zeynep; Ozturk, Gulfer; Albayrak, Aynur; Basar, Omer; Ekiz, Fuat; Coban, Sahin; Yuksel, Osman; Armutcu, Ferah; Akbal, Erdem

    2013-09-01

    The aim of this study was to evaluate the potential use of serum transforming growth factor-β1 (TGF-β1), tissue inhibitor of metalloproteinase-1 (TIMP-1), fetuin-A, and fibroblast growth factor 21 (FGF21) in the detection of liver fibrosis in patients with chronic hepatitis B (CHB). The value of the noninvasive fibrosis models - that is, the aspartate aminotransferase to platelet ratio index (APRI), the fibrosis index based on the four factors (FIB-4) score, and Forn's index - was also examined. CHB patients who underwent liver biopsy for the evaluation of fibrosis were included in the study. A total of 73 patients were divided into two groups according to their METAVIR scores (F0-1, no/minimal fibrosis; F2-4, significant fibrosis). Serum levels of TGF-β1, TIMP-1, fetuin-A, and FGF21 were measured besides APRI, FIB-4, and Forn's scores. The area under the receiver operating characteristic curve was measured for each parameter, followed by calculation of sensitivity, specificity, and positive and negative predictive values. APRI, FIB-4, and Forn's index scores were significantly higher in patients with significant fibrosis (P<0.05). There was no difference between no/minimal fibrosis and significant fibrosis groups in terms of serum levels of TGFβ-1, TIMP-1, fetuin-A, and FGF21 (P>0.05). The areas under the receiver operating characteristic curve for TGF-β1, TIMP-1, fetuin-A, FGF21, APRI, FIB-4, and Forn's index were 0.445, 0.483, 0.436, 0.585, 0.662, 0.687, and 0.680, respectively. Our results suggest that serum TGF-β1, TIMP-1, fetuin-A, and FGF21 are not useful for the assessment of the extent of liver fibrosis in CHB in this patient group. However, APRI, FIB-4, and Forn's index have a better diagnostic value in patients with significant fibrosis than in those with no/minimal fibrosis.

  8. Cleaved high molecular weight kininogen, a novel factor in the regulation of matrix metalloproteinases in vascular smooth muscle cells.

    PubMed

    Vosgerau, Uwe; Lauer, Diljara; Unger, Thomas; Kaschina, Elena

    2010-01-15

    We previously reported that Brown Norway Katholiek rats, which feature a deficiency of plasma kininogens, develop severe abdominal aortic aneurysm. Increased activity of matrix metalloproteinases (MMPs) in the aortic wall, leading to degradation of extracellular matrix components, is considered to play a crucial role in aneurysm formation. Using an in vitro model of vascular smooth muscle cells (VSMCs), cultured from the rat aorta, we investigated whether the cleaved form of high molecular weight kininogen, designated HKa, affects the expression of MMP-9 and MMP-2 and their tissue inhibitors (TIMPs). Treatment of VSMCs with HKa reduced in a concentration-dependent manner IL-1alpha-induced release of MMP-9 and MMP-2, associated with decreased MMP enzymatic activity levels in conditioned media, as demonstrated by gelatin zymography and fluorescein-labeled gelatin substrate assay, respectively. Real-time PCR revealed that HKa reduced corresponding MMP-9 mRNA levels. Further investigations showed that this effect did not result from a modified rate of MMP-9 mRNA degradation. TIMP-1 mRNA levels, already increased as a result of cytokine-stimulation, were significantly enhanced by HKa. Furthermore, we found elevated basal mRNA expression levels of MMP-2 and TIMP-2 in VSMCs derived from kininogen-deficient Brown Norway Katholiek rats. These results demonstrate for the first time that HKa affects the regulation of MMPs in VSMCs.

  9. Preeclampsia

    PubMed Central

    Lee, Soo Bong; Wong, Amy P.; Kanasaki, Keizo; Xu, Yong; Shenoy, Vivek K.; McElrath, Thomas F.; Whitesides, George M.; Kalluri, Raghu

    2010-01-01

    Inadequate invasion of the uterus by cytotrophoblasts is speculated to result in pregnancy-induced disorders such as preeclampsia. However, the molecular mechanisms that govern appropriate invasion of cytotrophoblasts are unknown. Here, we demonstrate that under low-oxygen conditions (2.5% oxygen), 2-methoxyestradiol (2-ME), which is a metabolite of estradiol and is generated by catechol-o-methyltransferase (COMT), induces invasion of cytotrophoblasts into a naturally-derived, extracellular matrix. Neither low-oxygen conditions nor 2-ME alone induces the invasion of cytotrophoblasts in this system; however, low-oxygen conditions combined with 2-ME result in the appropriate invasion of cytotrophoblasts into the extracellular matrix. Cytotrophoblast invasion under these conditions is also associated with a decrease in the expression of hypoxia-inducible factor-1α (HIF-1α), transforming growth factor-β3 (TGF-β3), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Pregnant COMT-deficient mice with hypoxic placentas and preeclampsia-like features demonstrate an up-regulation of HIF-1α, TGF-β3, and TIMP-2 when compared with wild-type mice; normal levels are restored on administration of 2-ME, which also results in the resolution of preeclampsia-like features in these mice. Indeed, placentas from patients with preeclampsia reveal lower levels of COMT and higher levels of HIF-1α, TGF-β3, and TIMP-2 when compared with those from normal pregnant women. We demonstrate that low-oxygen conditions of the placenta are a critical co-stimulator along with 2-ME for the proper invasion of cytotrophoblasts to facilitate appropriate vascular development and oxygenation during pregnancy. PMID:20075204

  10. A transcriptional profile of the decidua in preeclampsia

    PubMed Central

    LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor

    2010-01-01

    OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677

  11. Cytokine and growth factor concentration in cerebrospinal fluid from patients with hydrocephalus following endovascular embolization of unruptured aneurysms in comparison with other types of hydrocephalus.

    PubMed

    Killer, Monika; Arthur, Adam; Al-Schameri, Abdul Rahman; Barr, John; Elbert, Donald; Ladurner, Gunther; Shum, Julie; Cruise, Gregory

    2010-10-01

    To better understand the development of hydrocephalus of different origins, we evaluated cytokine and growth factor concentration in cerebrospinal fluid from patients with hydrocephalus. CSF was collected from patients developing hydrocephalus following hemorrhage (n = 15), patients with normal pressure hydrocephalus (n = 10), and following the embolization of unruptured intracranial aneurysms (n = 9). Myelography patients (n = 15) served as controls. Quantification of 11 molecules relating angiogenesis, inflammation, and wound healing in the CSF was performed using ELISA. All three hydrocephalus groups had decreased concentration of TIMP-4 compared to the normal group. The hemorrhage group showed increased concentration of IL-6, IL-8, MCP-1, MMP-9, and TIMP-1 compared to the control group. The unruptured aneurysm group had increased concentration of IL-6 and decreased concentration of TIMP-2 compared to the control group. Compared to the normal patients, increased concentrations of wound healing molecules were evident in all three groups. Increased inflammation was evident in the hemorrhage and unruptured aneurysm groups.

  12. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    PubMed

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  13. HSV-1 interaction to 3-O-sulfated heparan sulfate in mouse-derived DRG explant and profiles of inflammatory markers during virus infection.

    PubMed

    Sharthiya, Harsh; Seng, Chanmoly; Van Kuppevelt, T H; Tiwari, Vaibhav; Fornaro, Michele

    2017-06-01

    The molecular mechanism of herpes simplex virus (HSV) entry and the associated inflammatory response in the nervous system remain poorly understood. Using mouse-derived ex vivo dorsal root ganglia (DRG) explant model and single cell neurons (SCNs), in this study, we provided a visual evidence for the expression of heparan sulfate (HS) and 3-O-sulfated heparan sulfate (3-OS HS) followed by their interactions with HSV-1 glycoprotein B (gB) and glycoprotein D (gD) during cell entry. Upon heparanase treatment of DRG-derived SCN, a significant inhibition of HSV-1 entry was observed suggesting the involvement of HS role during viral entry. Finally, a cytokine array profile generated during HSV-1 infection in DRG explant indicated an enhanced expression of chemokines (LIX, TIMP-2, and M-CSF)-known regulators of HS. Taken together, these results highlight the significance of HS during HSV-1 entry in DRG explant. Further investigation is needed to understand which isoforms of 3-O-sulfotransferase (3-OST)-generated HS contributed during HSV-1 infection and associated cell damage.

  14. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps.

    PubMed

    Wang, Chengshuo; Lou, Hongfei; Wang, Xiangdong; Wang, Yang; Fan, Erzhong; Li, Ying; Wang, Hong; Bachert, Claus; Zhang, Luo

    2015-04-01

    There is little evidence on the efficacy of glucocorticoid transnasal nebulization therapy in patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP). We sought to evaluate the immunologic and remodeling effects of budesonide transnasal nebulization in patients with eosinophilic CRSwNP. Sixty patients with eosinophilic CRSwNP were randomized to receive budesonide or placebo treatment for 14 days by means of transnasal nebulization in a double-blind manner. Endoscopic polyp size scores (maximum = 6 points, Kennedy score) and visual analog scale scores for nasal symptoms were assessed before and after treatment. Similarly, polyp samples were evaluated for inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) by using an immunoassay; collagen by using histochemistry; eosinophils by using hematoxylin and eosin stain; and T-cell subsets by using flow cytometry. Budesonide transnasal nebulization significantly reduced polyp size compared with placebo (mean difference between groups, -0.73 units; 95% CI, -1.15 to -0.32 units; P = .002) and improved symptoms. Polyp IL-5 and eotaxin expression decreased significantly, whereas TGF-β and IL-10 expression increased. Expression of IFN-γ and IL-17 was not altered. Budesonide transnasal nebulization consistently reduced eosinophil infiltration and TH2 cell frequency and increased natural regulatory T-cell and type 1 regulatory T-cell frequencies. Indices of remodeling, including albumin, MMP-2, MMP-7, MMP-8, and MMP-9, were significantly decreased, whereas collagen deposition and TIMP-1, TIMP-2, and TIMP-4 levels were significantly increased. Budesonide transnasal nebulization did not suppress the hypothalamic-pituitary-adrenal axis or cause any serious side effects. Short-term budesonide transnasal nebulization is an effective and safe treatment option in patients with eosinophilic CRSwNP, achieving clinical improvement by regulating remodeling, cytokine expression, and T-cell subset distribution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis.

    PubMed

    Jia, Hui-Miao; Huang, Li-Feng; Zheng, Yue; Li, Wen-Xiong

    2017-03-25

    Tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7), inducers of G 1 cell cycle arrest, are two recently discovered good biomarkers for early diagnosis of acute kidney injury (AKI). To obtain a more robust performance measurement, the present meta-analysis was performed, pooling existing studies. Literature in the MEDLINE (via PubMed), Ovid, Embase, and Cochrane Library databases was systematically searched from inception to 12 October 2016. Studies that met the set inclusion and exclusion criteria were identified by two independent investigators. The diagnostic value of urinary [TIMP-2] × [IGFBP7] for AKI was evaluated by pooled sensitivity, specificity, likelihood ratio (LR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) curve analyses. The causes of heterogeneity were explored by sensitivity and subgroup analyses. A total of nine published and eligible studies assessing 1886 cases were included in this meta-analysis. Early diagnostic value of urinary [TIMP-2] × [IGFBP7] for AKI was assessed using a random-effects model. Pooled sensitivity and specificity with corresponding 95% CIs were 0.83 (95% CI 0.79-0.87, heterogeneity I 2  = 68.8%) and 0.55 (95% CI 0.52-0.57, I 2  = 92.9%), respectively. Pooled positive LR, negative LR, and DOR were 2.37 (95% CI 1.87-2.99, I 2  = 82.6%), 0.30 (95% CI 0.21-0.41, I 2  = 43.4%), and 9.92 (95% CI 6.09-16.18, I 2  = 38.5%), respectively. The AUC estimated by SROC was 0.846 (SE 0.027) with a Q* value of 0.777 (SE 0.026). Sensitivity analysis indicated that one study significantly affected the stability of pooled results. Subgroup analysis showed that population setting and AKI threshold were the key factors causing heterogeneity in pooled sensitivity and specificity. On the basis of recent evidence, urinary [TIMP-2] × [IGFBP7] is an effective predictive factor of AKI. PROSPERO registration number: CRD42016051186 . Registered on 10 November 2016.

  16. All-trans retinoic acid results in irregular repair of septa and fails to inhibit proinflammatory macrophages.

    PubMed

    Seifart, C; Muyal, J P; Plagens, A; Yildirim, A Ö; Kohse, K; Grau, V; Sandu, S; Reinke, C; Tschernig, T; Vogelmeier, C; Fehrenbach, H

    2011-08-01

    All-trans retinoic acid (ATRA) is controversially discussed in emphysema therapy. We re-evaluated ATRA in the elastase model and hypothesised that beneficial effects should be reflected by increased alveolar surface area, elastin expression and downregulation of inflammatory mediators and matrix metalloproteinases (MMPs). Emphysema was induced by porcine pancreatic elastase versus saline in Sprague-Dawley rats. On days 26-37, rats received daily intraperitoneal injections with ATRA (500 μg · kg(-1) body weight) versus olive oil. Lungs were removed at day 38. Rat alveolar epithelial L2 cells were incubated with/without elastase followed by ATRA- or vehicle-treatment, respectively. ATRA only partially ameliorated structural defects. Alveolar walls exhibited irregular architecture: increased arithmetic mean thickness, reduction in surface coverage by alveolar epithelial cells type II. ATRA only partially restored reduced soluble elastin. It tended to increase the ratio of ED1(+):ED2(+) macrophages. Bronchoalveolar lavage (BAL) cells exhibited a proinflammatory state and high expression of interleukin-1β, cytokine-induced neutrophil chemoattractant-1, tumour necrosis factor-α, nuclear factor-κB, MMP-2, MMP-9, MMP-12, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in emphysema, with ATRA exerting only few effects. MMP-7 was highly induced by ATRA in healthy but not in emphysematous lungs. ATRA reduced both MMP-2 and TIMP-1 activity in BAL fluid of emphysematous lungs. ATRA-therapy may bear the risk of unwanted side-effects on alveolar septal architecture in emphysematous lungs.

  17. Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense.

    PubMed

    Tan, Yung-Chie; Yeoh, Keat-Ai; Wong, Mui-Yun; Ho, Chai-Ling

    2013-11-01

    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. The effect of chrysin-loaded nanofiber on wound healing process in male rat.

    PubMed

    Mohammadi, Zoheyr; Sharif Zak, Mohsen; Majdi, Hasan; Seidi, Khaled; Barati, Meisam; Akbarzadeh, Abolfazl; Latifi, Ali Mohammad

    2017-12-01

    Wound healing is an inflammatory process. Chrysin, a natural flavonoid found in honey, has been recently investigated to have anti-inflammatory and antioxidant effects. In this work, the effects of chrysin-loaded nanofiber on the expressions of genes that are related to wound healing process such as P53, TIMPs, MMPs, iNOS, and IL-6 in an animal model study were evaluated. The electrospinning method was used for preparation the different concentrations of chrysin-loaded PCL-PEG nanofiber (5%, 10%, and 20% [w/w]) and characterized by FTIR and SEM. The wound healing effects of chrysin-loaded PCL-PEG nanofiber were in vivo investigated in rats, and the expressions of genes related to wound healing process were evaluated by real-time PCR. The study results showed chrysin-loaded PLC-PEG compared to chrysin ointment and control groups significantly increase IL-6, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 (p < .05). On the other hand, nanofibers containing chrysin significantly decreased p53 and iNOS expression compared to chrysin ointment and control groups (p < .05). According to the results, chrysin-loaded PCL-PEG-PCL nanofibers have positive effects on the expression of the genes that have pivotal role in wound healing. © 2017 John Wiley & Sons A/S.

  19. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer.

    PubMed

    Strzelczyk, Joanna Katarzyna; Gołąbek, Karolina; Cuber, Piotr; Krakowczyk, Łukasz; Owczarek, Aleksander Jerzy; Fronczek, Martyna; Choręża, Piotr; Hudziec, Edyta; Ostrowska, Zofia

    2017-08-01

    Oral cavity cancer belongs to head-and-neck squamous cell carcinoma group. The purpose of the study was to assess the levels of certain proteins in a tumour and surgical margin in a group of patients with oral cavity cancer. The levels of DAPK1, MGMT, CDH1, SFRP1, SFRP2, RORA, TIMP3, p16, APC and RASSF1 proteins were measured by ELISA in tissue homogenates. The protein levels of DAPK1, MGMT, CDH1, SFRP2 and RASSF1 were significantly higher in tumour tissue than in the margin, contrary to TIMP3 which was lower in the tumour itself. DAPK1 level in the tumour was significantly higher in females than in males, the MGMT and p16 levels were lower in the tumours with lymph node metastasis (N1 + N2) than in N0 samples. The CDH1 expression was higher in a group with smoking habits, whereas TIMP3 was lower in this group. Changes in the levels of proteins in tumour and surgical margin may be either reflective of tumour occurrence and development, or they might be also responsible for the progress and reoccurrence of the disease. Levels of the studied proteins might be good prognostic factors; however, further studies are required.

  20. Left and right ventricle late remodeling following myocardial infarction in rats.

    PubMed

    Stefanon, Ivanita; Valero-Muñoz, María; Fernandes, Aurélia Araújo; Ribeiro, Rogério Faustino; Rodríguez, Cristina; Miana, Maria; Martínez-González, José; Spalenza, Jessica S; Lahera, Vicente; Vassallo, Paula F; Cachofeiro, Victoria

    2013-01-01

    The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals.

  1. The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice.

    PubMed

    Wang, Hong-Wei; Zhao, Wen-Peng; Tan, Pan-Pan; Liu, Jing; Zhao, Jing; Zhou, Bian-Hua

    2017-08-01

    A total of 84 healthy female mice were kept with various concentrations of sodium fluoride (F) (0, 50, 100, 150 mg F - /L in drinking water for 90 days) and were then mated with healthy male mice for 1 week to study the effect of excessive fluoride on female reproductive function, particularly in embryo implantation. The rate of pregnancy, litter size, and the birth weight of female mice were evaluated. Ultrastructural changes of uteri tissues were observed by transmission electron microscopy (TEM). The mRNA expression levels of MMP-9 and TIMP-1 were determined by quantitative real-time PCR. The protein expression levels of MMP-9 and TIMP-1 were analyzed by western blotting. Results showed a significant decrease of litter size in mice exposed to fluoride. TEM images of uteri tissue of mice that underwent a 150 mg/L F - treatment for 90 days showed a vague nucleus, reduced microvilli, increased lysosomes, a dilated endoplasmic reticulum, and a vacuolization mitochondrion when compared with the control group. Following the damage of the structure, the expression levels of MMP-9 and TIMP-1 in uteri tissues were significantly unregulated in the F 150 group. These results show that MMP-9/TIMP-1 system disturbance and changes of histological structure in uteri tissue are involved in fluoride-induced reproductive dysfunctions.

  2. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation.

    PubMed

    Beer, Lucian; Warszawska, Joanna Maria; Schenk, Peter; Debreceni, Tamás; Dworschak, Martin; Roth, Georg A; Szerafin, Tamás; Ankersmit, Hendrik Jan

    2015-05-01

    Patients undergoing open heart surgery with cardiopulmonary bypass (CPB) often develop a systemic immune reaction, characterized by an increase of proinflammatory and anti-inflammatory mediators. We previously demonstrated that continued mechanical ventilation during CPB reduces this response. We hypothesized that this strategy may also impact on matrix metalloproteinase (MMP) release. Thirty consecutive patients undergoing coronary artery bypass grafting with CPB were randomized into a ventilated (VG) (n = 15) and a standard non-ventilated group (NVG) (n = 15). Blood was collected at the beginning, at the end of surgery, and on the five consecutive days. MMPs, tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), and lipocalin 2 (LCN2) were measured by enzyme-linked immunosorbent assay. Parameters of transpulmonary oxygen transport were assessed at different time points. MMP-8, MMP-9, and LCN2 were significantly lower at the end of surgery in VG compared with those in NVG patients (MMP-8 [ng/mL]: 7.1 [3.5] versus 12.5 [7.7], P = 0.02; MMP-9 [ng/mL]: 108 [42] versus 171 [98], P = 0.029; LCN2 [ng/mL]: 109 [42] versus 171 [98], P = 0.03). TIMP-1 concentrations were lower on postoperative day one, (TIMP-1 [ng/mL]: 174 [55] versus 273 [104], P = 0.003), whereas MMP-3 levels were lower on postoperative days four and five (MMP-3 [ng/mL]: 44 [17] versus 67 [35], P = 0.026). The arterial partial pressure of oxygen/fraction of inspired oxygen ratio was significantly higher in VG patients throughout the postoperative observation period, which did not affect the length of postoperative ventilatory support. Continued mechanical ventilation during CPB reduces serum levels of MMPs, their inhibitor TIMP-1 and LCN2, which preserves MMP-9 activity. The present study suggests that continued mechanical ventilation improves postoperative oxygenation and could potentially prevent aggravation of lung injury after CPB. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Temporal effects in porcine skin following bromine vapor exposure.

    PubMed

    Price, Jennifer A; Rogers, James V; Wendling, Morgan Q S; Plahovinsak, Jennifer L; Perry, Mark R; Reid, Frances M; Kiser, Robyn C; Graham, John S

    2011-09-01

    Bromine is an industrial chemical that causes severe cutaneous burns. When selecting or developing effective treatments for bromine burns, it is important to understand the molecular mechanisms of tissue damage and wound healing. This study investigated the effect of cutaneous bromine vapor exposure on gene expression using a weanling swine burn model by microarray analysis. Ventral abdominal sites were exposed to a mean calculated bromine vapor concentration of 0.51 g/L for 7 or 17 min. At 6 h, 48 h, and 7 days post-exposure, total RNA from skin samples was isolated, processed, and analyzed with Affymetrix GeneChip® Porcine Genome Arrays (N = 3 per experimental group). Differences in gene expression were observed with respect to exposure duration and sampling time. Ingenuity Pathways Analysis (IPA) revealed four common biological functions (cancer, cellular movement, cell-to-cell signaling and interaction, and tissue development) among the top ten functions of each experimental group, while canonical pathway analysis revealed 9 genes (ARG2, CCR1, HMOX1, ATF2, IL-8, TIMP1, ESR1, HSPAIL, and SELE) that were commonly shared among four significantly altered signaling pathways. Among these, the transcripts encoding HMOX1 and ESR1 were identified using IPA as common potential therapeutic targets for Phase II/III clinical trial or FDA-approved drugs. The present study describes the transcriptional responses to cutaneous bromine vapor exposure identifying molecular networks and genes that could serve as targets for developing therapeutics for bromine-induced skin injury.

  4. Modulation of mammary gland development in pre-pubertal mice as affected by soya and milk protein supplements.

    PubMed

    Alston-Mills, Brenda; Lepri, J J; Martin, C A

    2011-08-01

    The objective of the present study was to determine the effects of soya and whey milk protein, α-lactalbumin (α-LA), on mammary gland morphology and the structural support of the gland, in pre-pubertal mice after 7 d of treatment. In Expt 1, weaned (day 21) CD1 mice were given one of the four treatments, three included dietary supplements: (1) control diet, casein, (2) soya, (3) α-LA and (4) subcutaneous injection of 2·5 μg oestradiol benzoate in 20 μl maize oil and fed the control diet. All diets were isoenergetic with equal protein concentrations. All groups that were not treated with oestradiol received the vehicle. Whole-mount analyses were performed to determine longitudinal ductal growth and terminal end bud development. DNA was extracted from the gland and assessed by spectrophotometry (260/280 nm). Tissue extracts for extracellular matrix (ECM) proteins, matrix metalloproteinase-2 (MMP(2)), tissue inhibitor of MMP(2) (TIMP(2)), and serum oestradiol and mammary tissue epidermal growth factors (EGF) were measured by immunoassays. Expt 2 utilised the Her2/neu transgenic strain, with the same protocols. Statistical significance was determined by one-way ANOVA. From Expt 1 and 2, soya and α-LA significantly increased ductal elongation when compared with the oestrogen and control groups. These results were corroborated by data on total DNA and the ratio of MMP(2):TIMP(2). The ratio of MMP(2):TIMP(2) was affected by α-LA. Serum oestradiol was decreased only in the oestradiol-treated groups in both experiments. Soya is known to be oestrogenic and can act on epithelia directly. The mechanism by which α-LA affects glandular development is by modulating the ECM or by promoting the synthesis/activity of EGF.

  5. Tissue-Specific Profiling Reveals Transcriptome Alterations in Arabidopsis Mutants Lacking Morphological Phenotypes[C][W

    PubMed Central

    Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John

    2013-01-01

    Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549

  6. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.

    PubMed

    Lupia, E; Elliot, S J; Lenz, O; Zheng, F; Hattori, M; Striker, G E; Striker, L J

    1999-08-01

    Nonobese diabetic (NOD) mice develop glomerulosclerosis shortly after the onset of diabetes. We showed that mesangial cells (MCs) from diabetic mice exhibited a stable phenotypic switch, consisting of both increased IGF-1 synthesis and proliferation (Elliot SJ, Striker LJ, Hattori M, Yang CW, He CJ, Peten EP, Striker GE: Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology 133:1783-1788, 1993). Because the extracellular matrix (ECM) accumulation in diabetic glomerulosclerosis may be partly due to decreased degradation, we examined the effect of excess IGF-1 on collagen turnover and the activity of metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in diabetic and nondiabetic NOD-MC. Total collagen degradation was reduced by 58 +/- 18% in diabetic NOD-MCs, which correlated with a constitutive decrease in MMP-2 activity and mRNA levels, and nearly undetectable MMP-9 activity and mRNA. TIMP levels were slightly decreased in diabetic NOD-MC. The addition of recombinant IGF-1 to nondiabetic NOD-MC resulted in a decrease in MMP-2 and TIMP activity. Furthermore, treatment of diabetic NOD-MC with a neutralizing antibody against IGF-1 increased the latent form, and restored the active form, of MMP-2. In conclusion, the excessive production of IGF-1 contributes to the altered ECM turnover in diabetic NOD-MC, largely through a reduction of MMP-2 activity. These data suggest that IGF-1 could be a major contributor to the development of diabetic glomerulosclerosis.

  7. c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation

    PubMed Central

    2013-01-01

    Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026

  8. Matrix-Embedded Cytokines to Simulate Osteoarthritis-Like Cartilage Microenvironments

    PubMed Central

    Murab, Sumit; Chameettachal, Shibu; Bhattacharjee, Maumita; Das, Sanskrita; Kaplan, David L.

    2013-01-01

    In vivo, cytokines noncovalently bind to the extracellular matrix (ECM), to facilitate intimate interactions with cellular receptors and potentiate biological activity. Development of a biomaterial that simulates this type of physiological binding and function is an exciting proposition for designing controlled advanced delivery systems for simulating in vivo conditions in vitro. We have decorated silk protein with sulfonated moieties through diazonium coupling reactions to noncovalently immobilize pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in such a biomimetic manner. After adsorption of the cytokines to the diazonium-modified silk matrix, constant release of cytokines up to at least 3 days was demonstrated, as an initial step to simulate an osteoarthritic (OA) microenvironment in vitro. Matrix-embedded cytokines induced the formation of multiple elongated processes in chondrocytes in vitro, akin to what is seen in OA cartilage in vivo. Gene expression profiles with this in vitro tissue model of OA showed significant similarities to profiles from explanted OA cartilage tissues collected from patients who underwent total knee replacement surgery. The common markers of OA, including COL, MMP, TIMP, ADAMTS, and metallothioneins, were upregulated at least 35-fold in the in vitro model when compared to the control—non-OA in vitro generated tissue-engineered cartilage. The microarray data were validated by reverse transcriptase–polymerase chain reaction. Mechanistically, protein interaction studies indicated that TNF-α and IL-1β synergistically controlled the equilibrium between MMPs and their inhibitors, TIMPs, resulting in ECM degradation through the MAPK pathway. This study offers a promising initial step toward establishing a relevant in vitro OA disease model, which can be further modified to assess signaling mechanisms, responses to cell or drug treatments and patient-specific features. PMID:23470228

  9. Right ventricular effects of intracoronary delivery of mesenchymal stem cells (MSC) in an animal model of pressure overload heart failure.

    PubMed

    Molina, Ezequiel J; Palma, Jon; Gupta, Dipin; Gaughan, John P; Houser, Steven; Macha, Mahender

    2009-12-01

    In a rat model of left ventricular pressure overload hypertrophy with biventricular failure, we studied the effects of intracoronary delivery of mesenchymal stem cells (MCS) upon right ventricular hemodynamic performance, profiles of local inflammation and apoptosis, and determinants of extracellular matrix remodeling. Sprague-Dawley rats underwent aortic banding and were followed by echocardiography. After a decrease in left ventricular fractional shortening of 25% from the baseline (relative 50% reduction), animals were randomized to an intracoronary injection of MSC (n=28) or PBS (n=20). Right ventricular hemodynamic assessment and measurement of local inflammatory markers, proapoptotic factors, and determinants of extracellular matrix remodeling were performed on post-transplantation day 7, 14, 21 or 28. MSC injection improved right ventricular systolic function in the MSC group compared to the control group (mean+/-SD, max dP/dt 772+/-272 mm Hg/s vs. 392+/-132 at 28 days, P<0.01). Diastolic function was similarly improved (mean+/-SD, max -dP/dt -558+/-171 mm Hg/s vs. -327+/-131 at 28 days, P<0.05). Right ventricular levels of IL-1, IL-6, TNF-alpha, bax, bak and p38 were significantly decreased in the MSC treated animals. Expression of MMP-3, MMP-6, MMP-9, TIMP-1 and TIMP-3 declined in the MSC group compared with controls after 28 days. In this model of left ventricular pressure overload hypertrophy and biventricular failure, intracoronary delivery of MSC was associated with an improvement in the right ventricular hemodynamic performance, profiles of local inflammation and apoptosis, and determinants of extracellular matrix remodeling.

  10. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney.

    PubMed

    Lindström, Nils O; Guo, Jinjin; Kim, Albert D; Tran, Tracy; Guo, Qiuyu; De Sena Brandine, Guilherme; Ransick, Andrew; Parvez, Riana K; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-03-01

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2 + nephron progenitor cells (NPCs) and Foxd1 + interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1 , were readily detected within SIX2 + NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2 + NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2 , are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs. Copyright © 2018 by the American Society of Nephrology.

  11. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability.

    PubMed

    Min, Kyung-Won; Zealy, Richard W; Davila, Sylvia; Fomin, Mikhail; Cummings, James C; Makowsky, Daniel; Mcdowell, Catherine H; Thigpen, Haley; Hafner, Markus; Kwon, Sang-Ho; Georgescu, Constantin; Wren, Jonathan D; Yoon, Je-Hyun

    2018-06-01

    Gene expression is dynamically regulated in a variety of mammalian physiologies. During mammalian aging, there are changes that occur in protein expression that are highly controlled by the regulatory steps in transcription, post-transcription, and post-translation. Although there are global profiles of human transcripts during the aging processes available, the mechanism(s) by which transcripts are differentially expressed between young and old cohorts remains unclear. Here, we report on N6-methyladenosine (m6A) RNA modification profiles of human peripheral blood mononuclear cells (PBMCs) from young and old cohorts. An m6A RNA profile identified a decrease in overall RNA methylation during the aging process as well as the predominant modification on proteincoding mRNAs. The m6A-modified transcripts tend to be more highly expressed than nonmodified ones. Among the many methylated mRNAs, those of DROSHA and AGO2 were heavily methylated in young PBMCs which coincided with a decreased steady-state level of AGO2 mRNA in the old PBMC cohort. Similarly, downregulation of AGO2 in proliferating human diploid fibroblasts (HDFs) also correlated with a decrease in AGO2 mRNA modifications and steady-state levels. In addition, the overexpression of RNA methyltransferases stabilized AGO2 mRNA but not DROSHA and DICER1 mRNA in HDFs. Moreover, the abundance of miRNAs also changed in the young and old PBMCs which are possibly due to a correlation with AGO2 expression as observed in AGO2-depleted HDFs. Taken together, we uncovered the role of mRNA methylation on the abundance of AGO2 mRNA resulting in the repression of miRNA expression during the process of human aging. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects. PMID:23894529

  13. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  14. Identification of Key Pathways and Genes in L4 Dorsal Root Ganglion (DRG) After Sciatic Nerve Injury via Microarray Analysis.

    PubMed

    Zhao, He; Duan, Li-Jun; Sun, Qing-Ling; Gao, Yu-Shan; Yang, Yong-Dong; Tang, Xiang-Sheng; Zhao, Ding-Yan; Xiong, Yang; Hu, Zhen-Guo; Li, Chuan-Hong; Chen, Si-Xue; Liu, Tao; Yu, Xing

    2018-04-19

    Peripheral nerve injury (PNI) has devastating consequences. Dorsal root ganglion as a pivotal locus participates in the process of neuropathic pain and nerve regeneration. In recent years, gene sequencing technology has seen rapid rise in the biomedicine field. So, we attempt to gain insight into in the mechanism of neuropathic pain and nerve regeneration in the transcriptional level and to explore novel genes through bioinformatics analysis. The gene expression profiles of GSE96051 were downloaded from GEO database. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. Our results showed that both IL-6 and Jun genes and the signaling pathway of MAPK, apoptosis, P53 present their vital modulatory role in nerve regeneration and neuropathic pain. Noteworthy, 13 hub genes associated with neuropathic pain and nerve regeneration, including Ccl12, Ppp1r15a, Cdkn1a, Atf3, Nts, Dusp1, Ccl7, Csf, Gadd45a, Serpine1, Timp1 were rarely reported in PubMed database, these genes may provide us the new orientation in experimental research and clinical study. Our results may provide more deep insight into the mechanism and a promising therapeutic target. The next step is to put our emphasis on an experiment level and to verify the novel genes from 13 hub genes.

  15. MMP-TIMP interactions in cancer invasion: An evolutionary game-theoretical framework.

    PubMed

    Salimi Sartakhti, Javad; Manshaei, Mohammad Hossein; Sadeghi, Mehdi

    2017-01-07

    One of the main steps in solid cancers to invade surrounding tissues is degradation of tissue barriers in the extracellular matrix. This operation that leads to initiate, angiogenesis and metastasis to other organs, is essentially consequence of collapsing dynamic balance between matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP). In this work, we model the MMP-TIMP interaction in both normal tissue and invasive cancer using evolutionary game theory. Our model explains how invasive cancer cells get the upper hand in MMP-TIMP imbalance scenarios. We investigate dynamics of them over time and discuss stable and nonstable states in the population. Numerical simulations presented here provide the identification of key genotypic features in the tumor invasion and a natural description for phenotypic variability. The simulation results are consistent with the experimental results in vitro observations presented in medical literature. Finally, by the provided results the necessary conditions to inhibit cancer invasion or prolong its course are explained. In this way, two therapeutic approaches with respect to how they could meet the required conditions are considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wang, Sen; Li, Feng; Wu, Xiaofang; Ma, Jing; Shi, Xiaowei; Guo, Xiong; Bai, Chuanyi

    2017-02-01

    The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.

  17. [Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in human and nude mouse ectopic endometrium and the effect of estrogen and progestin on their expression].

    PubMed

    Lou, Yan-hui; Guo, Xin-hua; Jiang, Hua; Xia, Yu-fang

    2010-04-01

    To explore the roles of matrix metalloproteinase-1(MMP-1) and tissue inhibitor of metalloproteinase-1(TIMP-1) in the pathogenesis of endometriosis and the effects of estrogen and progestin on their expression. Immunohistochemistry and RT-PCR were employed to detect the expression of MMP-1 and TIMP-1 in the ectopic tissues of 35 patients with endometriosis, 22 eutopic endometrium tissues from women with endometriosis and 28 normal controls. Fifty-nine nude mice were injected with human late secretory endometrial chippings and randomized into estrogen group, progestin group, estrogen-progestin group and control group with corresponding treatments. The implantation rates and graft morphology were observed and MMP-1 and TIMP-1 expressions in the grafts detected by immunohistochemistry. Typical endometrial glands and stroma were observed in all the groups with comparable implantation rates. The administration of progestin was associated with multiple peritoneal implantation sites and significantly larger implants. The transplanted endometria showed proliferative or secretory changes with estrogen or progestin administration. MMP-1 expression significantly increased and TIMP-1 expression decreased with increased MMP-1/TIMP-1 ratio in human and nude mouse ectopic endometria in comparison with those in normal endometria (P<0.05, P<0.01). MMP-1 expression was higher in estrogen and estrogen-progestin groups than in the control group, and was lower in the 3 sexual hormone-treated groups than in the control group. MMP-1 mRNA expression in the eutopic endometrium was significantly higher than that in the normal endometria. Progestrin can not inhibit MMP-1 expression or the effect of estrogen on ectopic endometrium known as progestin resistance. The high expression of MMP-1 and low expression of TIMP-1 in endometriotic tissues confer strong invasiveness of ectopic endometrial tissue, especially in eutopic endometrial tissue, and may play an important role in the pathogenesis of endometriosis.

  18. Effect of QiShenYiQi pill on myocardial collagen metabolism in experimental autoimmune myocarditis rats.

    PubMed

    Lv, Shi-Chao; Wu, Meifang; Li, Meng; Wang, Qiang; Wang, Xiao-Jing; Zhang, Ao; Xu, Ling; Zhang, Jun-Ping

    2017-04-01

    To observe the effect of QiShenYiQi pill (QSYQ) on myocardial collagen metabolism in experimental autoimmune myocarditis rats, and to explore its mechanism of action. Lewis rats underwent the injection of myocardial myosin mixed with freund's complete adjuvant were randomized into three groups: model, valsartan and QSYQ groups. And we treated rats which were injected phosphate buffered saline (PBS) mixed with freund's complete adjuvant as control group. Rats were intervened and euthanized at 4 and 8 weeks. We use alkaline hydrolysis to detect the content of myocardial hydroxyproline (HYP), and ELISA to detect the level of serum procollagen type I carboxyterminal peptide (PICP), procollagen type III amino-terminal peptide (PIIINP), and collagen C telopeptide type I (CTX-I). Myocardial MMP-1 and TIMP-1 protein expression was detected by immunohistochemistry, and myocardial MMP-1 and TIMP-1 mRNA expression was detected by real-time qPCR. QSYQ reduced the content of myocardial HYP, and this reduction was greater over time. QSYQ also reduced the serum concentration of PICP, PIIINP, CTX-I and the PICP/PIIINP ratio, which further reduced over time, whereas its effect on lowering PICP was significantly greater than that of valsartan at 4 and 8 weeks, and lowering CTX-I was significantly greater than that of valsartan at 8 weeks. In addition, after 4 weeks, QSYQ enhanced the protein and mRNA expression of MMP-1 and TIMP-1, and its effect on highering TIMP-1 was significantly greater than that of valsartan, whereas there was no significant difference in the expression of myocardial MMP-1 or TIMP-1 at 8 weeks. QSYQ reduced the ratio of MMP-1/TIMP-1, which further reduced over time, and the effect of QYSQ was significantly greater than that of valsartan after 4 weeks. This study provides evidence that QSYQ can reduce the rate of myocardial collagen synthesis and degradation. It also effectively improved the degree of myocardial fibrosis in experimental autoimmune myocarditis rats and it had a tendency to have a greater effect with longer treatment duration, which is related to the mechanism of regulation of MMP-1 and TIMP-1 expression in the myocardial rat. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Left and Right Ventricle Late Remodeling Following Myocardial Infarction in Rats

    PubMed Central

    Stefanon, Ivanita; Valero-Muñoz, María; Fernandes, Aurélia Araújo; Ribeiro, Rogério Faustino; Rodríguez, Cristina; Miana, Maria; Martínez-González, José; Spalenza, Jessica S.; Lahera, Vicente; Vassallo, Paula F.; Cachofeiro, Victoria

    2013-01-01

    Background The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). Methods MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Results Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. Conclusions INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals. PMID:23741440

  20. Targeting matrix metalloproteinases with intravenous doxycycline in severe sepsis--A randomised placebo-controlled pilot trial.

    PubMed

    Nukarinen, Eija; Tervahartiala, Taina; Valkonen, Miia; Hynninen, Marja; Kolho, Elina; Pettilä, Ville; Sorsa, Timo; Backman, Janne; Hästbacka, Johanna

    2015-09-01

    An overwhelming inflammatory process is the hallmark of severe sepsis and septic shock. Matrix metalloproteinases (MMPs)-8 and -9 are released from neutrophils and activated in sepsis to participate in inflammation in several ways. High levels of MMP-8 may associate with increased ICU mortality. The activity of MMP-8 and -9 is regulated by a natural inhibitor, tissue inhibitor of metalloproteinases-1 (TIMP-1). Moreover, MMPs are chemically inhibited by tetracycline-group antibiotics, such as doxycycline. We therefore aimed to study plasma concentration and MMP inhibition after intravenous doxycycline in critically ill patients with severe sepsis and septic shock in a prospective, randomised, placebo-controlled double-blinded pilot trial. Twenty-four patients with severe sepsis or septic shock were randomised in 3 groups. Group 1 received 200, 100 and 100mg, group 2 100, 50 and 50mg of intravenous doxycycline and group 3 placebo on three consecutive days. We measured doxycycline concentrations from baseline up to day 5. MMPs and TIMP-1 concentrations were measured from baseline up to day 10 of study and we compared their changes over time from baseline to 72 h and from baseline to 120 h. Data from 23 patients were analysed. At 72 h all patients in group 1 showed doxycycline concentrations >1 mg/l, whereas none in group 2 did. No serious adverse effects of the drug were recorded. We observed no differences over time up to 72 or up to 120 h in the concentrations or activities of MMP-8, -9 or TIMP-1 in any of the groups. We found intravenous doxycycline 100, 50 and 50mg to be adequate to achieve a sub-antimicrobial concentration in patients with severe sepsis or septic shock but having no impact on MMP-8, -9 or TIMP-1 concentrations or activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.

    PubMed

    Greijer, A E; Ramayanti, O; Verkuijlen, S A W M; Novalić, Z; Juwana, H; Middeldorp, J M

    2017-03-01

    Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    EPA Science Inventory

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  3. Dissecting the role of matrix metalloproteinases (MMP) and integrin alpha(v)beta3 in angiogenesis in vitro: absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and alpha(v)beta3 are critical.

    PubMed

    Nisato, Riccardo E; Hosseini, Ghamartaj; Sirrenberg, Christian; Butler, Georgina S; Crabbe, Thomas; Docherty, Andrew J P; Wiesner, Matthias; Murphy, Gillian; Overall, Christopher M; Goodman, Simon L; Pepper, Michael S

    2005-10-15

    Matrix metalloproteinase (MMP)-2 and its hemopexin C domain autolytic fragment (also called PEX) have been proposed to be crucial for angiogenesis. Here, we have investigated the dependency of in vitro angiogenesis on MMP-mediated extracellular proteolysis and integrin alpha(v)beta3-mediated cell adhesion in a three-dimensional collagen I model. The hydroxamate-based synthetic inhibitors BB94, CT1399, and CT1847 inhibited endothelial cell invasion, as did neutralizing anti-membrane-type 1-MMP (MT1-MMP) antibodies and tissue inhibitor of MMP (TIMP)-2 and TIMP-3 but not TIMP-1. This confirmed the pivotal importance of MT1-MMP over other MMPs in this model. Invasion was also inhibited by a nonpeptidic antagonist of integrin alpha(v)beta3, EMD 361276. Although PEX strongly inhibited pro-MMP-2 activation, when contaminating lipopolysaccharide was neutralized, PEX neither affected angiogenesis nor bound integrin alpha(v)beta(3). Moreover, no specific binding of pro-MMP-2 to integrin alpha(v)beta3 was found, whereas only one out of four independently prepared enzymatically active MMP-2 preparations could bind integrin alpha(v)beta3 , and this in a PEX-independent manner. Likewise, integrin alpha(v)beta3 -expressing cells did not bind MMP-2-coated surfaces. Hence, these findings show that endothelial cell invasion of collagen I gels is MT1-MMP and alpha(v)beta3 - dependent but MMP-2 independent and does not support a role for PEX in alpha(v)beta3 integrin binding or in modulating angiogenesis in this system.

  4. Differences in extracellular matrix remodeling in the placenta of mares that retain fetal membranes and mares that deliver fetal membranes physiologically.

    PubMed

    Rapacz-Leonard, A; Kankofer, M; Leonard, M; Wawrzykowski, J; Dąbrowska, M; Raś, A; Paździor-Czapula, K; Janowski, T

    2015-10-01

    In mammals, placenta separation at term may involve degradation of the extracellular matrix by matrix metalloproteinases (MMPs). The activity of MMPs is modulated by TIMPs. We hypothesized that the placentas of mares that deliver fetal membranes physiologically and those that retain fetal membranes (FMR) differ in terms of histology; mRNA expression of MMP-2 and MMP-9; protein expression of MMP-2, MMP-9, and TIMP-2; and the potential activity of both MMPs. Placenta biopsies were taken from mares (n = 9; 4 FMR, 5 controls) immediately after foal expulsion. Retention was defined as failure to expel all fetal membranes within 3 h of expulsion. All mares were monitored for time of expulsion. The degree of allantochorial/endometrial adhesion was determined in FMR mares, and biopsies from all mares were histologically examined. mRNA expression, protein immunolocalization, protein amount and potential enzyme activity were determined with RT-PCR, immunohistochemistry, Western Blotting and zymography, respectively. FMR mares had strong to extremely strong allantochorial/endometrial adhesion, and significantly more connective tissue in the allantochorial villi than controls. The range of MMP-2 mRNA expression levels was more than 13 times greater in FMR mares than in controls. Protein content of both MMPs and TIMP-2 differed significantly between groups. The range of potential MMP-2 and MMP-9 activity was larger in FMR mares, and MMP-2 potential activity was 1.4 times higher in controls (P = 0.02). These results indicate differences in extracellular matrix remodeling in FMR mares and controls, and suggest dysregulation of MMP expression and activation in FMR mares. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation.

    PubMed

    Haeusler, G; Walter, I; Helmreich, M; Egerbacher, M

    2005-05-01

    Numerous studies have focused on the expression, regulation, and biological significance of matrix metalloproteinases (MMPs) in the growth plate. Findings in mouse knockout models and in vitro data from various species indicate that MMPs not only degrade extracellular matrix components but may regulate the activity of local growth factors. In this study we investigated the presence, distribution, and activity of various MMPs and inhibitors, tissue transglutaminase (tTG or TG2) and vascular endothelial growth factor (VEGF) in the human child and adolescent growth plates by means of immunohistochemistry and gelatin zymography. Tissue was derived during orthopedic surgery (epiphysiodesis) in two prepubertal and four pubertal patients.MMP-2 and MMP-14 were present in reserve cell chondrocytes. MMP-14 was the most prominent MMP within all zones of the growth plate including proliferating chondrocytes. MMP-1 and MMP-13 (collagenases 1 and 3), MMP-9 (gelatinases B), MMP-10, and MMP-11 (stromelysins) and VEGF were positive in hypertrophic chondrocytes and osteoblasts. MMP-2 showed the same expression pattern but was negative in osteoblasts. Osteoclasts stained positive for MMP-9, MMP-2, and TG2. Tissue inhibitor of MMP (TIMP)-1 was present in all zones of the growth plate, osteoblasts, and osteoclasts; TIMP-2 was found in hypertrophic chondrocytes and osteoblasts. In summary, the presence of MMPs, TIMPs, TG2, and VEGF in our study indicated that the MMPs are relevant in growth plate physiology during the postnatal period in humans. The specific location of MMP expression within the growth plate may be the basis for further studies on the role of MMPs in the local regulation of chondrocyte differentiation, proliferation, and ossification at the chondroosseus junction.

  6. Contribution of TIMP4 rs3755724 polymorphism to susceptibility to focal epilepsy in Malaysian Chinese.

    PubMed

    Haerian, Batoul Sadat; Sha'ari, Hidayati Mohd; Fong, Choong Yi; Tan, Hui Jan; Wong, Sau Wei; Ong, Lai Choo; Raymond, Azman Ali; Tan, Chong Tin; Mohamed, Zahurin

    2015-01-15

    Neuroinflammation can damage the brain and plays a critical role in the pathophysiology of epilepsy. Tissue inhibitor of metalloproteinase 4 (TIMP4) is an inflammation-induced apoptosis and matrix turnover factor involved in several neuronal disorders and inflammatory diseases. Evidence has shown linkage disequilibrium between rs3755724 (-55C/T) of this gene with synapsin 2 (SYN2) rs3773364 and peroxisome proliferator-activated G receptor (PPARG) rs2920502 loci, which contribute to epilepsy in Caucasians. The aim of this study was to examine the association of these loci alone or their haplotypes with the risk of epilepsy in the Malaysian population. Genomic DNA of 1241 Malaysian Chinese, Indian, and Malay subjects (670 patients with epilepsy and 571 healthy individuals) was genotyped for the candidate loci by using the Sequenom MassArray method. Allele and genotype association of rs3755724 with susceptibility to epilepsy was significant in the Malaysian Chinese with focal epilepsy under codominant and dominant models (C vs. T: 1.5 (1.1-2.0), p=0.02; CT vs. TT: 1.8 (1.2-2.8), p=0.007 and 1.8 (1.2-2.7), p=0.006, respectively). The T allele and the TT genotype were more common in patients than in controls. No significant association was found between rs2920502 and rs3773364-rs3755724-rs2920502 haplotypes for susceptibility to epilepsy in each ethnicity. This study provides evidence that the promoter TIMP4 rs3755724 is a new focal epilepsy susceptibility variant that is plausibly involved in inflammation-induced seizures in Malaysian Chinese. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression.

    PubMed

    Tsai, Chun-Hao; Yang, Dong-Ying; Lin, Chih-Yang; Chen, Tsung-Ming; Tang, Chih-Hsin; Huang, Yuan-Li

    2017-10-01

    Chondrosarcoma is the second most common primary malignancy form of bone cancer, exhibiting resistance to chemotherapy and radiation therapy as well as developing high metastasis ability in late-stage tumors. Thus, understanding the metastatic processes of chondrosarcoma is considered a strategy for the treatment of this disease. Sphingosine 1-phosphate (S1P), a bioactive sphingolipid, is produced intracellularly by sphingosine kinase (SphK) and is regarded as a second signaling molecule that regulates inflammation, proliferation, angiogenesis, and metastasis. However, the effect of S1P on chondrosarcoma remains uncertain. As demonstrated by the transwell, immunoblotting, and real-time PCR analyses, we found that S1P inhibited cell migration and MMP-2 expression through the upregulation of the tissue inhibitor of metalloproteinase-3 (TIMP-3) expression in human chondrosarcoma cells. Additionally, we also showed that microRNA (miRNA)-101, which targets the 3' untranslated region (3'UTR) of TIMP-3, decreased significantly following S1P treatment. After transfection with miR-101 mimics, the S1P-regulated cell migration and TIMP-3 expression were both reversed. Furthermore, we also showed that the S1P-inhibited cell migration is mediated through the c-Src/MEK/ERK signaling axis. Meanwhile, the in vivo study indicated that overexpression of SphK1 decreases chondrosarcoma metastasis to the lungs. Our results illustrate the clinical significance between SphK1, TIMP-3, and miR-101 in human chondrosarcoma patients. Taken together, our results suggest that S1P and miR-101 may prove to be potential therapeutic targets for future chondrosarcoma treatment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  8. [Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extra- cellular matrix].

    PubMed

    Linyi, Cai; Xiangli, Kong; Jing, Xie

    2016-06-01

    This study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM). Enzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities. After continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P < 0.05), and it was almost negatively expressed by P5 chondrocytes. By contrast, the down regulation of routine genes was insignificant. The gene expression levels of MMPs and TIMPs both decreased (P < 0.05), but the change in MMP-1 and TIMP-1 was not statistically significant (P > 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P < 0.05). Serially passaged chondrocytes dedifferentiated and lost specific phenotypic characteristics during in vitro expansion culture. Simultaneously, the anabolism and catabolism of the cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.

  9. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi.

    PubMed

    Aoyagi, Luciano N; Lopes-Caitar, Valéria S; de Carvalho, Mayra C C G; Darben, Luana M; Polizel-Podanosqui, Adriana; Kuwahara, Marcia K; Nepomuceno, Alexandre L; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C

    2014-12-01

    Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functions, these genes are promising targets for developing crop varieties resistant to diseases. In the present study, the identification and phylogenetic analysis of the soybean R2R3-MYB (GmMYB) transcription factor family was performed and the expression profiles of these genes under biotic stress were determined. GmMYBs were identified from the soybean genome using bioinformatic tools, and their putative functions were determined based on the phylogenetic tree and classified into subfamilies using guides AtMYBs describing known functions. The transcriptional profiles of GmMYBs upon infection with different pathogen were revealed by in vivo and in silico analyses. Selected target genes potentially involved in disease responses were assessed by RT-qPCR after different times of inoculation with P. pachyrhizi using different genetic backgrounds related to resistance genes (Rpp2 and Rpp5). R2R3-MYB transcription factors related to lignin synthesis and genes responsive to chitin were significantly induced in the resistant genotypes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

    PubMed Central

    2013-01-01

    Introduction Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI. Methods We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection. Results Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P <0.002), none of which achieved an AUC >0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method. Conclusions Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration ClinicalTrials.gov number NCT01209169. PMID:23388612

  11. Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line.

    PubMed

    Coppola, Nicola; Perna, Angelica; Lucariello, Angela; Martini, Salvatore; Macera, Margherita; Carleo, Maria A; Guerra, Germano; Esposito, Vincenzo; De Luca, Antonio

    2018-08-01

    After an acute liver damage, tissue regeneration repairs lesions with degradation of deposed fibrotic material, while mechanisms of tissue restoration are persistently activated following several repeated injuries, inducing deposition of extracellular matrix. (ECM). Factors responsible for ECM remodeling have been identified in a pathway involving a family of zinc-dependent enzyme matrix metalloproteinases (MMPs), together with tissue inhibitor of metalloproteinases (TIMPs). Recent experimental models suggested a role of CCR5 receptor in the genesis of liver fibrosis. Drawing from these background we decided to evaluate the effects of the treatment with the CCR5 inhibitor Maraviroc on LX-2, a human hepatic stellate cell line (HSC). Treatment with Maraviroc resulted in a block in S phase of LX-2 cells with increased expression levels of cyclin D1 and p21 while the expression of p53 was reduced. Treatment with Maraviroc was also able to block the accumulation of fibrillar collagens and extracellular matrix proteins (ECM), as demonstrated by the decrease of specific markers as Collagen type I, α-SMA, and TGF-β1. In addition we observed a down regulation of both metalloproteins (MMP-2, MMP-9), used for the degradation of the extracellular matrix and their inhibitors (TIMP-1, TIMP-2). The identification of a compound that may modulate the dynamic of liver fibrosis could be crucial in all chronic liver diseases. Maraviroc could play an important role because, in addition to its own anti-HIV activity, it could reduce the release of pro-inflammatory citokynes implicated in liver fibrogenesis. © 2018 Wiley Periodicals, Inc.

  12. Distinct Transcriptional Changes and Epithelial-stromal Interactions are Altered in Early Stage Colon Cancer Development

    PubMed Central

    Mo, Allen; Jackson, Stephen; Varma, Kamini; Carpino, Alan; Giardina, Charles; Devers, Thomas J.; Rosenberg, Daniel W.

    2016-01-01

    While the progression of mutated colonic cells is dependent upon interactions between the initiated epithelium and surrounding stroma, the nature of these interactions is poorly understood. Here the development of an ultra-sensitive laser-capture microdissection (LCM)/RNA-seq approach for studying the epithelial and stromal compartments of aberrant crypt foci (ACF) is described. ACF are the earliest identifiable pre-neoplastic lesion found within the human colon and are detected using high-definition endoscopy with contrast dye-spray. The current analysis focused on the epithelium of ACF with somatic mutations to either KRAS, BRAF, or APC, with expression patterns compared to normal mucosa from each patient. By comparing gene expression patterns between groups, an increase in a number of pro-inflammatory NF-κB target genes were identified that were specific to ACF epithelium, including TIMP1, RELA and RELB. Distinct transcriptional changes associated with each somatic mutation were observed and a subset display a BRAFV600E-mediated senescence-associated transcriptome characterized by increased expression of CDKN2A. Finally, LCM-captured ACF-associated stroma was found to be transcriptionally distinct from normal stroma, with an up-regulation of genes related to immune cell infiltration and fibroblast activation. Immunofluorescence confirmed increased CD3+ T cells within the stromal microenvironment of ACF and an abundance of activated fibroblasts. Collectively, these results provide new insight into the cellular interplay that occurs at the earliest stages of colonic neoplasia, highlighting the important role of NF-kB, activated stromal fibroblasts and lymphocyte infiltration. Implications Fibroblasts and immune cells in the stromal microenvironment play an important role during the earliest stages of colon carcinogenesis. PMID:27353028

  13. Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions.

    PubMed

    Lee, Hae-In; Donati, Andrew J; Hahn, Dittmar; Tisa, Louis S; Chang, Woo-Suk

    2013-12-01

    We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.

  14. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood–brain barrier

    PubMed Central

    Chaturvedi, Mayank; Molino, Yves; Sreedhar, Bojja; Khrestchatisky, Michel; Kaczmarek, Leszek

    2014-01-01

    Aim The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs). Materials and methods The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo. PMID:24531257

  15. Increased expression of matrix metalloproteinase-9 associated with gastric ulcer recurrence.

    PubMed

    Li, Sen-Lin; Zhao, Jing-Run; Ren, Xiao-Yan; Xie, Jia-Ping; Ma, Qing-Zhu; Rong, Qiu-Hua

    2013-07-28

    To compare matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 in gastric ulcer (GU) and chronic superficial gastritis (CSG). This study enrolled 63 patients with GU and 25 patients with CSG. During upper gastroduodenal endoscopy, we took samples of gastric mucosa from the antrum and ulcer site from patients with GU, and samples of antral mucosa from patients with CSG. Mucosal biopsy tissues were cultured for 24 h, and the culture supernatant was measured for levels of MMP-9 and TIMP-1. After receiving eradication therapy for Helicobacter pylori (H. pylori) and 8 wk proton-pump inhibitor therapy for GU, follow-up endoscopy examination was performed after 6 mo and whenever severe symptoms occurred. Levels of MMP-9 and TIMP-1 at the ulcer site or in the antrum were significantly higher in GU than CSG patients. MMP-9 levels at the ulcer site were significantly higher than in the antrum in GU patients, and had a significantly positive correlation with TIMP-1. MMP-9 levels were significantly higher in H. pylori-positive than H. pylori-negative GU and CSG patients. Levels of MMP-9 or TIMP-1 at the ulcer site were associated with the histological severity of activity and inflammation. About 57 GU patients were followed up, and seven had GU recurrence. H. pyloriinfection and MMP-9 levels were risk factors for the recurrence of GU adjusted for age and sex by multiple logistic regression analysis. MMP-9 may perform an important function in gastric ulcer formation and recurrence.

  16. Methylation signature of lymph node metastases in breast cancer patients

    PubMed Central

    2012-01-01

    Background Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. Methods The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Results The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. Conclusions The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis. PMID:22695536

  17. The Role of Histone Deacetylase and DNA Methylation in Estrogen a Expression in Breast Cancer

    DTIC Science & Technology

    2001-06-01

    ever, in other cases, both demethylation and HDAC inhibition appear to be necessary. For example, certain hypermethylated genes like 231C MLH1 , TIMP3...Treatment of these cells with the demethylat- permethylated genes, such as MLH1 , TIMP3, INK4B ing agent, deoxyC, led to partial demethylation of the (p15

  18. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells

    DTIC Science & Technology

    2006-08-01

    depsipeptide with 5-aza-dC has been shown to synergistically reactivate silenced tumor suppressor genes in human cancer cells, including MLH1 , TIMP3...depsipeptide with 5- aza-dC has been shown to synergistically reactivate silenced tumor suppressor genes in human cancer cells, including MLH1 , TIMP3

  19. Role of Copper and Homocysteine in Pressure Overload Heart Failure

    PubMed Central

    Hughes, William M.; Rodriguez, Walter E.; Rosenberger, Dorothea; Chen, Jing; Sen, Utpal; Tyagi, Neetu; Moshal, Karni S.; Vacek, Thomas; Kang, Y. James

    2009-01-01

    Elevated levels of homocysteine (Hcy) (known as hyperhomocysteinemia HHcy) are involved in dilated cardiomyopathy. Hcy chelates copper and impairs copper-dependent enzymes. Copper deficiency has been linked to cardiovascular disease. We tested the hypothesis that copper supplement regresses left ventricular hypertrophy (LVH), fibrosis and endothelial dysfunction in pressure overload DCM mice hearts. The mice were grouped as sham, sham + Cu, aortic constriction (AC), and AC + Cu. Aortic constriction was performed by transverse aortic constriction. The mice were treated with or without 20 mg/kg copper supplement in the diet for 12 weeks. The cardiac function was assessed by echocardiography and electrocardiography. The matrix remodeling was assessed by measuring matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMPs), and lysyl oxidase (LOX) by Western blot analyses. The results suggest that in AC mice, cardiac function was improved with copper supplement. TIMP-1 levels decreased in AC and were normalized in AC + Cu. Although MMP-9, TIMP-3, and LOX activity increased in AC and returned to baseline value in AC + Cu, copper supplement showed no significant effect on TIMP-4 activity after pressure overload. In conclusion, our data suggest that copper supplement helps improve cardiac function in a pressure overload dilated cardiomyopathic heart. PMID:18679830

  20. A fraction of methylene chloride from Geum japonicum Thunberg inhibits tumor metastatic and angiogenic potential.

    PubMed

    Heo, Jin-Chul; Son, Minsik; Woo, Sang-Uk; Kweon, Mi-Ae; Yoon, Eun Kyung; Lee, Hee Kyung; Choi, Won-Sik; Cho, Kang-Jin; Lee, Sang-Han

    2008-06-01

    The plant Geum japonicum Thunberg (GjT) has been used as a diuretic in traditional medicine. Herein, we report that the GjT extract blocks both the spread of human umbilical vein endothelial cells (HUVECs) on matrigel and the migration of B16 cells. We used various assays to test for cell attachment, spreading, wound healing and angiogenesis. A reverse transcription-polymerase chain reaction (RT-PCR) and a mitogen-activated protein kinase (MAPK) assay were also carried out for the mechanistic study of GjT. Our results showed that a fraction of methylene chloride fraction from GjT inhibited B16 cells during cell attachment and migration and suppressed tube formation in a dose-dependent manner. An RT-PCR analysis showed that the methylene chloride extract decreased the mRNA expression of CD44 and TIMP-2. A Western blot analysis of the phosphorylation of MAPK kinases (ERK, JNK and p38) showed that the GjT fraction increased the expression of phospho-JNK, suggesting that GjT has the potential to alleviate metastatic and angiogenic activity, via a phospho-JNK signaling pathway.

  1. Endothelin-1 stimulates colon cancer adjacent fibroblasts.

    PubMed

    Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena

    2012-03-15

    Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.

  2. Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck

    2017-01-01

    Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F 2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.

  3. Staying alive in adversity: transcriptome dynamics in the stress-resistant dauer larva.

    PubMed

    Holt, Suzan J

    2006-10-01

    In response to food depletion and overcrowding, the soil nematode Caenorhabditis elegans can arrest development and form an alternate third larval stage called the dauer. Though nonfeeding, the dauer larva is long lived and stress resistant. Metabolic and transcription rates are lowered but the transcriptome of the dauer is complex. In this study, distribution analysis of transcript profiles generated by Serial Analysis of Gene Expression (SAGE) in dauer larvae and in mixed developmental stages is presented. An inverse relationship was observed between frequency and abundance/copy number of SAGE tag types (transcripts) in both profiles. In the dauer profile, a relatively greater proportion of highly abundant transcripts was counterbalanced by a smaller fraction of low to moderately abundant transcripts. Comparisons of abundant tag counts between the two profiles revealed relative enrichment in the dauer profile of transcripts with predicted or known involvement in ribosome biogenesis and protein synthesis, membrane transport, and immune responses. Translation-coupled mRNA decay is proposed as part of an immune-like stress response in the dauer larva. An influence of genomic region on transcript level may reflect the coordination of transcription and mRNA turnover.

  4. Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro.

    PubMed

    Trindade, Michael C D; Shida, Jun-ichi; Ikenoue, Takashi; Lee, Mel S; Lin, Eric Y; Yaszay, Burt; Yerby, Scott; Goodman, Stuart B; Schurman, David J; Smith, R Lane

    2004-09-01

    This study tested the hypothesis that intermittent hydrostatic pressure applied to human osteoarthritic chondrocytes modulates matrix metalloproteinase and pro-inflammatory mediator release in vitro. Human osteoarthritic articular chondrocytes were isolated and cultured as primary high-density monolayers. For testing, chondrocyte cultures were transferred to serum-free medium and maintained without loading or with exposure to intermittent hydrostatic pressure (IHP) at 10 MPa at a frequency of 1 Hz for periods of 6, 12 and 24 h. Levels of matrix metalloproteinase-2, -9 (MMP-2, -9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and the pro-inflammatory mediators, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), released into the culture medium were assessed by ELISA. Matrix metalloproteinase activity was confirmed by zymographic analysis. In the absence of IHP, levels of MMP-2, TIMP-1, IL-6, and MCP-1 in the chondrocyte culture medium increased in a time-dependent manner. Application of IHP decreased MMP-2 levels at all time periods tested, relative to unloaded control cultures maintained for the same time periods. Although 84/82 kDa bands were faintly detectable by zymography, MMP-9 levels were not quantifiable in medium from loaded or unloaded cultures by ELISA. TIMP-1 levels were not altered in response to IHP at any time period tested. IL-6 and MCP-1 levels decreased in cultures exposed to IHP at 12 and 24 h, relative to unloaded control cultures maintained for the same time periods. IHP decreased release of MMP-2, IL-6 and MCP-1 by osteoarthritic chondrocytes in vitro suggesting that pressure influences cartilage stability by modulating chondrocyte expression of these degradative and pro-inflammatory proteins in vivo.

  5. Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa

    PubMed Central

    Gonçalves, A. P.; Monteiro, João; Lucchi, Chiara; Kowbel, David J.; Cordeiro, J. M.; Correia-de-Sá, Paulo; Rigden, Daniel J.; Glass, N. L.; Videira, Arnaldo

    2014-01-01

    Alterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the Neurospora crassa response to staurosporine. We highlight the importance of the extracellular availability of Ca2+ for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS). Conversely, an approximately 30-fold excess of external Ca2+ leads to increased drug tolerance and lower ROS generation. In line with this, distinct staurosporine-induced cytosolic Ca2+ signaling profiles were observed in the absence or presence of excessive external Ca2+. High-throughput RNA sequencing revealed that different concentrations of extracellular Ca2+ define distinct transcriptional programs. Our transcriptional profiling also pointed to two putative novel Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes, and provides a reference dataset for future investigations on the role of Ca2+ in fungal biology. PMID:28357255

  6. Relevance of matrix metalloproteases in non-small cell lung cancer diagnosis.

    PubMed

    Blanco-Prieto, Sonia; Barcia-Castro, Leticia; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco Javier; Vázquez-Iglesias, Lorena; Botana-Rial, María Isabel; Fernández-Villar, Alberto; De Chiara, Loretta

    2017-12-05

    The need for novel biomarkers that could aid in non-small cell lung cancer (NSCLC) detection, together with the relevance of Matrix Metalloproteases (MMPs) -1, -2, -7, -9 and -10 in lung tumorigenesis, prompted us to assess the diagnostic usefulness of these MMPs and the Tissue Inhibitor of Metalloproteinase (TIMP) -1 in NSCLC patients. Markers were evaluated in an initial study cohort (19 NSCLC cases and 19 healthy controls). Those that better performed were analyzed in a larger sample including patients with benign lung diseases. Serum MMPs and TIMP-1 were determined by multiplexed immunoassays. Logistic regression was employed for multivariate analysis of biomarker combinations. MMPs and TIMP-1 were elevated in the serum of NSCLC patients compared to healthy controls. MMP-1, -7 and -9 performed at best and were further evaluated in the sample including benign pathologies, corroborating the superiority of MMP-9 in NSCLC discrimination, also at early-stage NSCLC. The optimal diagnostic value was obtained with the model including MMP-9, gender, age and smoking history, that demonstrated an AUC of 0.787, 85.54% sensitivity and 64.89% specificity. Our results suggest that MMP-9 is a potential biomarker for NSCLC diagnosis and its combined measurement with other biomarkers could improve NSCLC detection.

  7. Evaluation by microarray of the potential safety of Sarracenia purpurea L. (Sarraceniaceae) a traditional medicine used by the Cree of Eeyou Istchee.

    PubMed

    Cieniak, Carolina; McDonald, Charlotte; Nash, John; Muhammad, Asim; Badawi, Alaa; Haddad, Pierre S; Cuerrier, Alain; Bennett, Steffany A L; Foster, Brian C; Arnason, John T

    2015-01-01

    The purpose of this study was to assess safety of the traditional antidiabetic extracts of either S. purpurea or its lead active principle, morroniside at the transcriptional level. The overarching objective was to profile and validate transcriptional changes in the cytochrome P450 family of genes, in response to treatment with S. purpurea ethanolic extract or its lead active, morroniside. Transcriptional activity was profiled using a 19K human cDNA microarray in C2BBe1 cells, clone of Caco-2 intestinal cells, which are a model of first-pass metabolism (1, 2). Cells were treated with S. purpurea extract for 4 and 24 hrs, as well as the pure compound morroniside for 4 hrs, to determine their effects. No evidence of cytochrome P450 transcriptome regulation or of transcriptional activation of other diabetes relevant mRNA was detected after rigorous quantitative-PCR validation of microarray results. Our data do not support a transcriptional mechanism of action for either S. purpurea extract or its lead active, morroniside. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  8. Changes of Gene Expression after Bone Marrow Cell Transfusion in Rats with Monocrotaline-Induced Pulmonary Hypertension

    PubMed Central

    Kim, Kwan Chang; Lee, Hae Ryun; Kim, Sung Jin; Cho, Min-Sun

    2012-01-01

    Pulmonary artery hypertension (PAH) causes right ventricular failure and possibly even death by a progressive increase in pulmonary vascular resistance. Bone marrow-derived mesenchymal stem cell therapy has provided an alternative treatment for ailments of various organs by promoting cell regeneration at the site of pathology. The purpose of this study was to investigate changes of pulmonary haemodynamics, pathology and expressions of various genes, including ET (endothelin)-1, ET receptor A (ERA), endothelial nitric oxide synthase (NOS) 3, matrix metalloproteinase (MMP) 2, tissue inhibitor of matrix metalloproteinase (TIMP), interleukin (IL)-6 and tumor necrosis factor (TNF)-α in monocrotaline (MCT)-induced PAH rat models after bone marrow cell (BMC) transfusion. The rats were grouped as the control (C) group, monocrotaline (M) group, and BMC transfusion (B) group. M and B groups received subcutaneous (sc) injection of MCT (60 mg/kg). BMCs were transfused by intravenous injection at the tail 1 week after MCT injection in B group. Results showed that the average RV pressure significantly decreased in the B group compared with the M group. RV weight and the ratio of RH/LH+septum significantly decreased in the B group compared to the M group. Gene expressions of ET-1, ERA, NOS 3, MMP 2, TIMP, IL-6, and TNF-α significantly decreased in week 4 in the B group compared with the M group. In conclusion, BMC transfusion appears to improve survival rate, RVH, and mean RV pressure, and decreases gene expressions of ET-1, ERA, NOS 3, MMP 2, TIMP, IL-6, and TNF-α. PMID:22690090

  9. MMP‐2 and MMP‐14 Silencing Inhibits VEGFR2 Cleavage and Induces the Differentiation of Porcine Adipose‐Derived Mesenchymal Stem Cells to Endothelial Cells

    PubMed Central

    Almalki, Sami G.; Llamas Valle, Yovani

    2017-01-01

    Abstract The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine 2017;6:1385–1398 PMID:28213979

  10. Prediction of gross motor development and independent walking in infants born very preterm using the Test of Infant Motor Performance and the Alberta Infant Motor Scale.

    PubMed

    Nuysink, Jacqueline; van Haastert, Ingrid C; Eijsermans, Maria J C; Koopman-Esseboom, Corine; Helders, Paul J M; de Vries, Linda S; van der Net, Janjaap

    2013-09-01

    One objective of a neonatal follow-up program is to examine and predict gross motor outcome of infants born preterm. To assess the concurrent validity of the Test of Infant Motor Performance (TIMP) and the Alberta Infant Motor Scale (AIMS), the ability to predict gross motor outcome around 15 months corrected age (CA), and to explore factors associated with the age of independent walking. 95 infants, born at a gestational age <30 weeks, were assessed around 3, 6 and 15 months CA. At 3 months CA, correlations of raw-scores, Z-scores, and diagnostic agreement between TIMP and AIMS were determined. AIMS-score at 15 months CA and parental-reported walking age were outcome measures for regression analyses. The correlation between TIMP and AIMS raw-scores was 0.82, and between Z-scores 0.71. A cut-off Z-score of -1.0 on the TIMP had 92% diagnostic agreement (κ = 0.67) with an AIMS-score < P10. Neither TIMP- nor AIMS-scores at 3 months CA were associated with the gross motor outcome at 15 months CA. The AIMS-scores at 6 months CA predicted the AIMS-scores at 15 months CA with an explained variance of 19%. Median walking age was 15.7 months CA, with which only the hazard ratio of the AIMS at 6 months CA and ethnicity were significantly associated. Prediction of gross motor development at 15 months CA and independent walking was not possible prior to 6 months CA using the AIMS, with restricted predictive value. Cultural and infant factors seem to influence the onset of independent walking. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com; Chai, Jin Choul, E-mail: jincchai@gmail.com; Jung, Kyoung Hwa, E-mail: khjung2@gmail.com

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuationmore » significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup −/−} NE4C cells. • Finding JMJD2A-based molecular targets and crucial pathways in p53{sup −/−} NE4C cells.« less

  12. Renin-angiotensin system inhibition ameliorates CCl4-induced liver fibrosis in mice through the inactivation of nuclear transcription factor kappa B.

    PubMed

    Saber, Sameh; Mahmoud, Amr A A; Helal, Noha S; El-Ahwany, Eman; Abdelghany, Rasha H

    2018-06-01

    Therapeutic interventions for liver fibrosis are still limited due to the complicated molecular pathogenesis. Renin-angiotensin system (RAS) seems to contribute to the development of hepatic fibrosis. Therefore, we aimed to examine the effect of RAS inhibition on CCl 4 -induced liver fibrosis. Mice were treated with silymarin (30 mg·kg -1 ), perindopril (1 mg·kg -1 ), fosinopril (2 mg·kg -1 ), or losartan (10 mg·kg -1 ). The administration of RAS inhibitors improved liver histology and decreased protein expression of alpha smooth muscle actin (α-SMA) and hepatic content of hydroxyproline. These effects found to be mediated via inactivation of nuclear transcription factor kappa B (NFκB) pathway by the inhibition of NFκB p65 phosphorylation at the Ser536 residue and phosphorylation-induced degradation of nuclear factor kappa-B inhibitor alpha (NFκBia) subsequently inhibited NFκB-induced TNF-α and TGF-β1, leading to lower levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF). We concluded that the tissue affinity of the angiotensin converting enzyme inhibitors (ACEIs) has no impact on its antifibrotic activity and that interfering the RAS either through the inhibition of ACE or the blockade of AT1R has the same therapeutic benefit. These results suggest RAS inhibitors as promising candidates for further clinical trials in the management of hepatic fibrosis.

  13. Comparison of Promoter Hypermethylation Pattern in Salivary Rinses Collected with and without an Exfoliating Brush from Patients with HNSCC

    PubMed Central

    Sun, Wenyue; Zaboli, David; Liu, Yan; Arnaoutakis, Demetri; Khan, Tanbir; Wang, Hao; Koch, Wayne; Khan, Zubair; Califano, Joseph A.

    2012-01-01

    Background Salivary rinses have been recently proposed as a valuable resource for the development of epigenetic biomarkers for detection and monitoring of head and neck squamous cell carcinoma (HNSCC). Both salivary rinses collected with and without an exfoliating brush from patients with HNSCC are used in detection of promoter hypermethylation, yet their correlation of promoter hypermethylation has not been evaluated. This study was to evaluate the concordance of promoter hypermethylation between salivary rinses collected with and without an exfoliating brush from patients with HNSCC. Methodolgy 57 paired salivary rinses collected with or without an exfoliating brush from identical HNSCC patients were evaluated for promoter hypermethylation status using Quantitative Methylation-Specific PCR. Target tumor suppressor gene promoter regions were selected based on our previous studies describing a panel for HNSCC screening and surveillance, including P16, CCNA1, DCC, TIMP3, MGMT, DAPK and MINT31. Principal Findings In salivary rinses collected with and without brush, frequent methylation was detected in P16 (8.8% vs. 5.2%), CCNA1 (26.3% vs. 22.8%), DCC (33.3% vs. 29.8%), TIMP3 (31.6% vs. 36.8%), MGMT (29.8% vs. 38.6%), DAPK (14.0% vs. 19.2%), and MINT31 (10.5% vs. 8.8%). Spearman's rank correlation coefficient showed a positive correlation between salivary rinses collected with and without brush for P16 (ρ = 0.79), CCNA1 (ρ = 0.61), DCC (ρ = 0.58), TIMP3 (ρ = 0.10), MGMT (ρ = 0.70), DAPK (ρ = 0.51) and MINT31 (ρ = 0.72) (P<0.01). The percent agreement of promoter methylation between salivary rinses with brush and without brush were 96.5% for P16, 82.5% for CCNA1, 78.9% for DCC, 59.7% for TIMP3, 84.2% for MGMT, 84.2% for DAPK, and 94.7% for MINT31. Conclusions Our study demonstrated strong correlations of gene promoter hypermethylation between salivary rinses collected with and without an exfoliating brush. Salivary rinse collection without using an exfoliating brush may offer a cost effective, rapid, non-invasive, and reliable means for development of epigenetic salivary rinse biomarkers. PMID:22438973

  14. Decreased salivary matrix metalloproteinase-8 reflecting a defensive potential in juvenile parotitis.

    PubMed

    Saarinen, Riitta; Pitkäranta, Anne; Kolho, Kaija-Leena; Tervahartiala, Taina; Sorsa, Timo; Lauhio, Anneli

    2016-01-01

    Matrix metalloproteinases MMP-2 and MMP-9 have been associated with juvenile parotitis. However, the role of MMP-8 has not been addressed previously. This work focuses on salivary MMP-8 and -9 levels in juvenile parotitis. During a five-year period at Helsinki University Hospital, a tertiary care hospital, 41 patients aged 17 or under, were identified as having parotitis; from 36 of these patients, saliva samples were collected for MMP-8 IFMA (time-resolved immunofluorometric assay) analyses. Control saliva samples were collected from 34 age- and gender-matched children admitted for an elective surgery who had no history of parotitis. For comparison, salivary levels of MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP-1), MMP-8/TIMP-1 ratio, human neutrophil elastase (HNE), and myeloperoxidase (MPO) were analyzed by ELISA. Additionally, salivary MMP-8 levels were compared to historical saliva samples from 18 adult gingivitis patients as well as to 10 healthy adult controls. The median (25%, 75% percentile) MMP-8 concentration in saliva of parotitis patients was significantly lower than MMP-8 concentration in saliva of their controls [50.4ng/ml (37.5, 72.9) vs. 148.5ng/ml (101.2, 178.5) p<0.0001] and lower than in patients with gingivitis [347.9ng/ml (242.6, 383.2) p<0.0001] or healthy adult controls [257.2ng/ml (164.9, 320.7) p<0.0001]. The MMP-8/TIMP-1 ratio was lower than in controls [0.13 (0.05-0.02) vs. 0.3 (0.17-0.46) p<0.0001]. The median MMP-9 concentration in saliva of parotitis patients was significantly higher than in controls [143.9ng/m (68.8-189.0) vs. 34.9ng/ml (16.3-87.6) p<0.0001]. Neither HNE, MPO, nor TIMP-1 alone separated the patients from the control groups. MMP-9 was up-regulated in juvenile parotitis saliva, suggesting that MMP-9 may play a destructive role in juvenile parotitis, as others have suggested. The present novel findings reveal a decreased salivary MMP-8 concentration, suggesting that MMP-8 may reflect in juvenile parotitis down-regulated or anti-inflammatory immune characteristics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    PubMed Central

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray chip was confirmed by qRT-PCR for all 51 genes. Western blot analysis showed that the p42/p44 family of MAPK was phosphorylated within 2 hours of retinal-RPE separation. This phosphorylation was detachment-induced and could be inhibited by specific inhibitors of MAPK phosphorylation. Conclusions: Separation of the retina from the RPE induces significant alteration in the gene transcription profile within the retina. These profiles are not static, but change as a function of time after detachment. These gene transcription changes are preceded by the activation of the p42/p44 family of MAPK. This altered transcription may serve as the basis for many of the morphologic, biochemical, and functional changes seen within the detached retina. PMID:20126507

  16. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway

    PubMed Central

    2013-01-01

    Background The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. Results Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. Conclusions Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude. PMID:24099172

  17. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    PubMed

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fraxinus rhynchophylla ethanol extract attenuates carbon tetrachloride-induced liver fibrosis in rats via down-regulating the expressions of uPA, MMP-2, MMP-9 and TIMP-1.

    PubMed

    Peng, Wen-Huang; Tien, Yun-Chen; Huang, Chih-Yang; Huang, Tai-Hung; Liao, Jung-Chun; Kuo, Chao-Lin; Lin, Ying-Chih

    2010-02-17

    To investigate the effect of Fraxinus rhynchophylla ethanol extract (FR(EtOH)) on liver fibrosis induced by carbon tetrachloride (CCl(4)) in rats. Rat hepatic fibrosis was induced by oral administration of CCl(4). Sixty SD rats were divided randomly into 6 groups: control, CCl(4) group, silymarin group and three FR(EtOH)-treated groups. Except for the rats in control group, all rats were administered orally with CCl(4) (20%, 0.2 mL/100g body weight) twice a week for 8 weeks. Rats in FR(EtOH) groups were treated daily with FR(EtOH) (0.1, 0.5 and 1.0 g/kg, p.o.) throughout the whole experimental period. Liver function parameters (such as activities of serum GOT and GPT levels), activities of liver anti-oxidant enzymes (such as catalase, SOD, GPx) and expressions of uPA, tPA, MMP-2, MMP-9 and TIMP-1, -2, -3, -4 in the liver fibrosis pathway were detected. The results showed that FR(EtOH) (0.1, 0.5 and 1.0 g/kg BW) significantly reduced the elevated activities of sGOT and sGPT caused by CCl(4). FR(EtOH) (0.1 and 0.5 g/kg BW) and significantly increased the activities of GSH-Px. The histopathological study showed that FR(EtOH) (0.1 and 0.5 g/kg BW) reduced the incidence of liver lesions, including hepatic cells cloudy swelling, lymphocytes infiltration, cytoplasm vacuolization hepatic necrosis and fibrous connective tissue proliferated induced by CCl(4) in rats. In our study it was showed that CCl(4)-treated group significantly increased the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. FR(EtOH) (0.1 and 0.5 g/kg BW) could inhibit the protein levels of uPA, MMP-2, MMP-9 and TIMP-1. Finally, the amount of esculetin in the FR(EtOH) was 33.54 mg/g extract. Oral administration of FR(EtOH) significantly reduces CCl(4)-induced hepatic fibrosis in rats, probably by exerting a protective effect against hepatocellular fibrosis by its free radical scavenging ability. FR(EtOH) down-regulated the expressions of uPA, MMP-2 and MMP-9 in CCl(4)-induced liver fibrosis in rats. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. [Prevention and treatment of age-related macular degeneration by extract of Fructus lycii and its constituents lutein/zeaxanthin: an in vive and in vitro experimental research].

    PubMed

    Huang, Bing-Lin; Ding, Shu-Hua; Hang, Li; Zheng, Shi-Zhong; Li, Wei; Xu, Xin-rong

    2013-04-01

    To investigate the in vivo inhibition of extract of Fructus lycii (FL) on the expressions of cathepsin B (Cat B) and cystatin C (Cys C) in high-fat diet and hydroquinone (HQ) induced model mice with age-related macular degeneration (AMD), and to explore the in vitro effects of lutein and zeaxanthin on hydrogen peroxide (H2O2,) induced expressions of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) on ARPE-19 cells. Fifty female 8-month-old C57BL/6 mice were recruited in this research. Ten mice fed with regular diet was taken as the age control group. The rest 40 mice were fed with high fat diet for 6 months, followed by adding HQ (0. 8%) in the drinking water for 3 consecutive months. Then the modeled mice were randomly divided into the model control group (n =10), the high (at the daily dose of 3.75 g/kg), middle (at the daily dose of 2.50 g/kg), and low dose (at the daily dose of 1.25 g/kg) FL groups, 10 in each group. The extract of FL at each dose was respectively administered to mice by gastrogavage for 3 successive months. By the end of the experiment, the mice were killed and their eyeballs were removed. The protein expressions of Cat B and Cys C were observed by immunohistochemical assay. The mRNA and protein expressions of Cat B and Cys C were detected by real-time PCR and Western blot respectively. The drug concentrations of H2O2, lutein, and zeaxanthin were screened and detected using the activity of cell proliferation. The protein expressions of MMP-2 and TIMP-2 were detected using Western blot. Compared with the age control group, the mRNA and protein expressions of Cat B and Cys C were significantly higher in the in vivo model control group (P <0.05, P <0.01). The mRNA expressions of Cat B and Cys C were weaker in the middle and high dose FL groups than in the model control group (P <0. 05, P <0. 01). In in vitro cells, lutein and zeaxanthin could down-regulate the protein expressions of MMP-2 and TIMP-2 in H202 induced ARPE-19 cells (P <0. 05, P <0. 01). Extract of FL could down-regulate the high protein expressions of Cat B and Cys C in high-fat diet and HQ induced model mice. Lutein and zeaxanthin could down-regulate the protein expressions of MMP-2 and TIMP-2 in H202 induced ARPE-19 cells.

  20. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    PubMed

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  1. Thermodynamic Basis of Selectivity in the Interactions of Tissue Inhibitors of Metalloproteinases N-domains with Matrix Metalloproteinases-1, -3, and -14*

    PubMed Central

    Zou, Haiyin; Wu, Ying

    2016-01-01

    The four tissue inhibitors of metalloproteinases (TIMPs) are potent inhibitors of the many matrixins (MMPs), except that TIMP1 weakly inhibits some MMPs, including MMP14. The broad-spectrum inhibition of MMPs by TIMPs and their N-domains (NTIMPs) is consistent with the previous isothermal titration calorimetric finding that their interactions are entropy-driven but differ in contributions from solvent and conformational entropy (ΔSsolv, ΔSconf), estimated using heat capacity changes (ΔCp). Selective engineered NTIMPs have potential applications for treating MMP-related diseases, including cancer and cardiomyopathy. Here we report isothermal titration calorimetric studies of the effects of selectivity-modifying mutations in NTIMP1 and NTIMP2 on the thermodynamics of their interactions with MMP1, MMP3, and MMP14. The weak inhibition of MMP14 by NTIMP1 reflects a large conformational entropy penalty for binding. The T98L mutation, peripheral to the NTIMP1 reactive site, enhances binding by increasing ΔSsolv but also reduces ΔSconf. However, the same mutation increases NTIMP1 binding to MMP3 in an interaction that has an unusual positive ΔCp. This indicates a decrease in solvent entropy compensated by increased conformational entropy, possibly reflecting interactions involving alternative conformers. The NTIMP2 mutant, S2D/S4A is a selective MMP1 inhibitor through electrostatic effects of a unique MMP-1 arginine. Asp-2 increases reactive site polarity, reducing ΔCp, but increases conformational entropy to maintain strong binding to MMP1. There is a strong negative correlation between ΔSsolv and ΔSconf for all characterized interactions, but the data for each MMP have characteristic ranges, reflecting intrinsic differences in the structures and dynamics of their free and inhibitor-bound forms. PMID:27033700

  2. Innovative use of novel biomarkers to improve the safety of renally-eliminated and nephrotoxic medications.

    PubMed

    Barreto, Erin F; Rule, Andrew D; Voils, Stacy A; Kane-Gill, Sandra L

    2018-06-08

    Over the last decade, the discovery and research into the application of novel renal biomarkers to improve medication efficacy and safety has expanded considerably. Pharmacists are uniquely positioned to leverage this new technology for renal assessment to improve medication dosing and monitoring. Serum cystatin C is a relatively new, inexpensive, functional renal biomarker that responds more quickly to changing renal function than creatinine and is not meaningfully affected by age, sex, skeletal muscle mass, dietary intake, or deconditioning. Cystatin C has been proposed as an adjunct or alternative to creatinine for glomerular filtration rate (GFR) assessment and estimation of drug clearance. Tissue inhibitor of metalloproteinase-2●insulin-like growth factor-binding protein 7 ([TIMP-2]●[IGFBP7]) is a composite of two damage biomarkers released into the urine at a checkpoint in mitosis when renal cells undergo stress or sense a future risk of damage. Concentrations of [TIMP-2]●[IGFBP7] increase before a rise in serum creatinine is evident, thus providing insightful information for evaluation in the context of other patient data to predict the risk for impending kidney injury. The purpose for this article is to provide a brief overview of novel renal biomarkers that are being used as a mechanism to improve medication safety, including discussion of cystatin C, as part of drug-dosing algorithms and specifically for vancomycin dosing, and use of [TIMP-2]●[IGFBP7] for risk prediction in acute kidney injury and drug-induced kidney disease. Select cases of clinical experience with use of novel renal biomarkers are outlined, and lessons learned and future applications are described. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem Cells Revealed by Genomic Profiling

    PubMed Central

    Lorz, Corina; García-Escudero, Ramón; Segrelles, Carmen; Garín, Marina I.; Ariza, José M.; Santos, Mirentxu; Ruiz, Sergio; Lara, María F.; Martínez-Cruz, Ana B.; Costa, Clotilde; Buitrago-Pérez, Águeda; Saiz-Ladera, Cristina; Dueñas, Marta

    2010-01-01

    Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We observed that a large number of transcripts are underexpressed in hair follicle stem cells when compared to non-stem cells. Importantly, the majority of these downregulated genes are involved in cell cycle. Using bioinformatics tools, we identified the E2F transcription factor family as a potential element involved in the regulation of these transcripts. To determine their functional role, we used engineered mice lacking Rb gene in epidermis, which showed increased expression of most E2F family members and increased E2F transcriptional activity. Experiments designed to analyze epidermal stem cell functionality (i.e.: hair regrowth and wound healing) imply a role of the Rb-E2F axis in the control of stem cell quiescence in epidermis. Electronic supplementary material The online version of this article (doi:10.1007/s12015-010-9139-0) contains supplementary material, which is available to authorized users. PMID:20376578

  4. The CD147/MMP-2 signaling pathway may regulate early stage cardiac remodelling in spontaneously hypertensive rats.

    PubMed

    Li, Bowei; Zhou, Wanxing; Yang, Xiaorong; Zhou, Yuliang; Tan, Yongjing; Yuan, Congcong; Song, Yulan; Chen, Xiao; Zhang, Wei

    2016-11-01

    Previous studies have reported that decreased matrix metalloproteinase-2 (MMP-2) is associated with early stage (age 8-16 weeks) ventricular remodelling in spontaneously hypertensive rats (SHR). We hypothesized that inhibited CD147/MMP-2 signalling might down-regulate MMP-2 expression and augment remodelling in spontaneously hypertensive rats. Twenty-nine male SHR (8 weeks) were randomly assigned to SHR, CD147, and CD147+DOX groups. The control group included eight age-matched WKY rats. CD147 and CD147+DOX groups received recombinant human CD147 (600 ng/kg in 1.5 mL saline, weekly). The SHR and WKY groups received the vehicle. The CD147+DOX group also received doxycycline, an inhibitor of MMPs (daily, 30 mg/kg in 1.5 mL saline, iG). On day 56 echocardiography and left ventricular mass index (LVWI) measurements were collected and histological sections were stained for cell and collagen content. Myocardium MMP-2, TIMP-1, CD147, and collagens types I and III were estimated by western blot. CD147 and the ratio of MMP-2/TIMP-1 were lower in SHR than WKY rats (P<.05). Myocyte hypertrophy, partial fibre breaks, plasmolysis, necrosis and collagen content (collagen volume fraction [CVF], I and III) in SHR were above control levels (P<.05). CD147 rats showed CD147, MMP-2 and MMP-2/TIMP-1 were increased (P<.05), CVF, LVWI, and collagen I and III were decreased (P<.05) and myocyte morphology was improved. CD147 levels did not differ between CD147+DOX and CD147 groups, CVF, collagens type I and III and partial fiber breaks were more abundant in CD147+DOX (P<.05). In summary, an inhibited CD147/MMP-2 pathway was associated with early stage cardiac remodelling, and CD147 supplementation may attenuate this response. © 2016 John Wiley & Sons Australia, Ltd.

  5. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis. PMID:22086422

  6. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.

  7. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    PubMed

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  8. Murine mesenchymal and embryonic stem cells express a similar Hox gene profile.

    PubMed

    Phinney, Donald G; Gray, Andrew J; Hill, Katy; Pandey, Amitabh

    2005-12-30

    Using degenerate oligonucleotide primers targeting the homeobox domain, we amplified by PCR and sequenced 723 clones from five murine cell populations and lines derived from embryonic mesoderm and adult bone marrow. Transcripts from all four vertebrate Hox clusters were expressed by the different populations. Hierarchical clustering of the data revealed that mesenchymal stem cells (MSCs) and the embryonic stem (ES) cell line D3 shared a similar Hox expression profile. These populations exclusively expressed Hoxb2, Hoxb5, Hoxb7, and Hoxc4, transcripts regulating self-renewal and differentiation of other stem cells. Additionally, Hoxa7 transcript quantified by real-time PCR strongly correlated (r2=0.89) with the number of Hoxa7 clones identified by sequencing, validating that data from the PCR screen reflects differences in Hox mRNA abundance between populations. This is the first study to catalogue Hox transcripts in murine MSCs and by comparative analyses identify specific Hox genes that may contribute to their stem cell character.

  9. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    PubMed

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Predicting motor outcomes with 3 month prone hip angles in premature infants.

    PubMed

    Shehee, Lindsey; Coker-Bolt, Patty; Barbour, Andrew; Moss, Hunter; Brown, Truman; Jenkins, Dorothea

    2016-09-02

    This study used kinematic analysis to identify a reliable and rapid assessment method for abnormal patterns of motor development in preterm infants. In a retrospective analysis, we examined video of n= 35 preterm infants at 3mo corrected age (CA) who had concurrent Test of Infant Motor Performance (TIMP) scores. Hyperflexion at the hip produces common gait anomalies seen in children with CP, therefore we analyzed hip angle in the prone head lift position at 3 months CA. Magnetic Resonance Spectroscopy (MRS) was performed at term equivalent (n= 23) and Bayley-III neurodevelopmental tests were performed at 1 year (n= 28). We correlated hip angles with TIMP and Bayley-III scores, and MRS neuronal metabolites. Hip angle positively correlated with TIMP at 3 months (r= 0.642, p≤ 0.001), but not with Bayley-III at 1 year (r= 0.122, p= 0.529). Hip angle correlated negatively with myo-inositol (mI) ratios in frontal white matter tracts (mI/Cr r= -0.520, p= 0.011). These results suggest prone hip angle may be a quantitative proxy for the 42-item TIMP at 3 months, and that hypertonicity in the hip flexor musculature is a manifestation of white matter metabolic abnormalities (elevated mI ratios) that may indicate occult white matter injury.

  11. Matrix MetalloProteinases (MMPs) andTissue Inhibitors of MetalloProteinases (TIMPs): positive and negative regulators intumor cell adhesion

    PubMed Central

    Bourboulia, Dimitra; Stetler-Stevenson, William G.

    2010-01-01

    Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of humancancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell propertyengaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPsdegrade the ECMand, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue Inhibitors of Metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. PMID:20470890

  12. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    PubMed Central

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E.; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I.; Quigley, James P.; Moestrup, Søren K.; Rudd, Pauline M.; Sagi, Irit; Opdenakker, Ghislain

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers, and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical, and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast to a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM), we generated a 3Dstructure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers versus monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1. PMID:25360794

  13. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  14. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  15. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling

    PubMed Central

    Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda

    2017-01-01

    Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our home-made device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)-1β expression, and downregulating IL-10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen I and III were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)-13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP-1 and TIMP-2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD-induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue. PMID:28290607

  16. CAR and PXR-dependent transcriptional changes in the mouse liver after exposure to propiconazole

    EPA Science Inventory

    Exposure to the conazoles propiconazole and triadimefon but not myclobutanilled to tumors in mice after 2 years. Transcript profiling studies in the livers ofwild-type mice after short-term exposure to the conazoles revealed signatures indicating the involvement ofthe nuclear rec...

  17. Divergent transcription is associated with promoters of transcriptional regulators

    PubMed Central

    2013-01-01

    Background Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. Results We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. Conclusions We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription. PMID:24365181

  18. Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers

    PubMed Central

    Bloom, Chloe I.; Graham, Christine M.; Berry, Matthew P. R.; Rozakeas, Fotini; Redford, Paul S.; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A.; Wilkinson, Robert J.; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-pei; Lipman, Marc; O’Garra, Anne

    2013-01-01

    Rationale New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. Objectives To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. Methods We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. Measurements and Main Results An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Conclusions Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment. PMID:23940611

  19. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  20. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenbin; Cui Zhihong; Ao Lin

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less

  1. Levels of biomarkers correlate with magnetic resonance imaging progression of knee cartilage degeneration: a study on canine.

    PubMed

    Qi, Chang; Changlin, Huang

    2007-07-01

    To examine the association between levers of cartilage oligomeric matrix protein (COMP), matrix metalloproteinases-1 (MMP-1), matrix metalloproteinases-3 (MMP-3), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in serum and synovial fluid, and MR imaging of cartilage degeneration in knee joint, and to understand the effects of movement training with different intensity on cartilage of knee joint. 20 adult canines were randomly divided into three groups (8 in the light training group; 8 in the intensive training group; 4 in the control group), and canines of the two training groups were trained daily at different intensity. The training lasted for 10 weeks in all. Magnetic resonance imaging (MRI) examinations were performed regularly (2, 4, 6, 8, 10 week) to investigate the changes of articular cartilage in the canine knee, while concentrations of COMP, MMP-1, MMP-3, TIMP-1 in serum and synovial fluid were measured by ELISA assays. We could find imaging changes of cartilage degeneration in both the training groups by MRI examination during training period, compared with the control group. However, there was no significant difference between these two training groups. Elevations of levels of COMP, MMP-1, MMP-3, TIMP-1, MMP-3/TIMP-1 were seen in serum and synovial fluid after training, and their levels had obvious association with knee MRI grades of cartilage lesion. Furthermore, there were statistically significant associations between biomarkers levels in serum and in synovial fluid. Long-time and high-intensity movement training induces cartilage degeneration in knee joint. Within the intensity extent applied in this study, knee cartilage degeneration caused by light training or intensive training has no difference in MR imaging, but has a comparatively obvious difference in biomarkers level. To detect articular cartilage degeneration in early stage and monitor pathological process, the associated application of several biomarkers has a very good practical value, and can be used as a helpful supplement to MRI.

  2. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken.

    PubMed

    Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan

    2016-11-01

    Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure.

    PubMed

    Tsoutsman, Tatiana; Wang, Xiaoyu; Garchow, Kendra; Riser, Bruce; Twigg, Stephen; Semsarian, Christopher

    2013-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited primary myocardial disorder. HCM is characterized by interstitial fibrosis and excessive accumulation of extracellular matrix (ECM) proteins. Fibrosis in HCM has been associated with impaired cardiac function and heart failure, and has been considered a key substrate for ventricular arrhythmias and sudden death. The molecular triggers underpinning ECM production are not well established. We have previously developed a double-mutant mouse model of HCM that recapitulates the phenotype seen in humans with multiple mutations, including earlier onset of the disease, progression to a dilated phenotype, severe heart failure and premature mortality. The present study investigated the expression of ECM-encoding genes in severe HCM and heart failure. Significant upregulation of structural Fn1, regulatory Mmp14, Timp1, Serpin3A, SerpinE1, SerpineE2, Tgfβ1, and Tgfβ2; and matricellular Ccn2, Postn, Spp1, Thbs1, Thbs4, and Tnc was evident from the early, pre-phenotype stage. Non-myocytes expressed ECM genes at higher levels than cardiomyocytes in normal and diseased hearts. Synchronous increase of secreted CCN2 and TIMP1 plasma levels and decrease of MMP3 levels were observed in end-stage disease. CCN2 protein expression was increased from early disease in double-mutant hearts and played an important role in ECM responses. It was a powerful modulator of ECM regulatory (Timp1 and SerpinE1) and matricellular protein-encoding (Spp1, Thbs1, Thbs4 and Tnc) gene expression in cardiomyocytes when added exogenously in vitro. Modulation of CCN2 (CTGF, connective tissue growth factor) and associated early ECM changes may represent a new therapeutic target in the treatment and prevention of heart failure in HCM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A biomarker-based screen of a gene expression compendium ...

    EPA Pesticide Factsheets

    Computational approaches were developed to identify factors that regulate Nrf2 in a large gene expression compendium of microarray profiles including >2000 comparisons which queried the effects of chemicals, genes, diets, and infectious agents on gene expression in the mouse liver. A gene expression biomarker of 48 genes which accurately predicted Nrf2 activation was used to identify factors which resulted in a gene expression profile with significant correlation to the biomarker. A number of novel insights were made. Chemicals that activated the xenosensor constitutive activated receptor (CAR) consistently activated Nrf2 across hundreds of profiles, possibly downstream of Cyp-induced increases in oxidative stress. Nrf2 activation was also found to be negatively regulated by the growth hormone (GH)- and androgen-regulated transcription factor STAT5b, a transcription factor suppressed by CAR. Nrf2 was activated when STAT5b was suppressed in female mice vs. male mice, after exposure to estrogens, or in genetic mutants in which GH signaling was disrupted. A subset of the mutants that show STAT5b suppression and Nrf2 activation result in increased resistance to environmental stressors and increased longevity. This study describes a novel approach for understanding the network of factors that regulate the Nrf2 pathway and highlights novel interactions between Nrf2, CAR and STAT5b transcription factors. (This abstract does not represent EPA policy.) Computational appr

  5. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin. PMID:22768087

  6. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  7. Exhaled breath condensate MMP-9 levels in children with bronchiectasis.

    PubMed

    Karakoc, Gulbin Bingol; Inal, Ayfer; Yilmaz, Mustafa; Altintas, Derya Ufuk; Kendirli, Seval Guneser

    2009-10-01

    Bronchiectasis (BE) is still an important cause of chronic supurative respiratory diseases in developing countries. Neutrophil-derived proteases such as neutrophil elastase and matrix metalloproteases (MMPs) are implicated in causing airway damage in chronic pulmonary disease. In this study, we aimed to evaluate the MMP-9 and its natural tissue inhibitors of metalloproteinases (TIMP-1) levels utilizing the exhaled breath condensate (EBC) method and their relationship with radiological findings and pulmonary functions in children with BE.Thirty-eight children with BE and 12 healthy children were included: Group 1 (cystic fibrosis [CF] BE), Group 2 (non-CF BE), Group 3 (control group). High-resolution computerized tomography (HRCT) scores were calculated according to the anatomic extent of BE. Pulmonary function tests were performed, and MMP-9 and TIMP-1 levels in EBC were analyzed by ELISA.Exhaled breath condensate MMP-9 level was 48.9 +/- 26.8 ng/ml for Group 1, and for Group 2, 42.8 +/- 18.1 ng/ml; and for Group 3, 30 +/- 3.7 ng/ml. Although no statistically significant difference was found between the Groups 1 and 2, a significant difference was detected between these groups and controls. No statistically significant difference was found in TIMP-1 levels regarding all groups. EBC MMP-9 levels were inversely correlated with pulmonary functions test, and positively with HRCT scores and annual number of pulmonary infections.In conclusion, this study showed that EBC of children with both CF BE and non-CF BE contained higher levels of MMP-9 in comparison to controls. We suggest that EBC MMP-9 level may be a useful marker of airway injury in patients with BE however prospective studies are needed.

  8. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines.

    PubMed

    Marcus, Hani J; Carpenter, Keri L H; Price, Stephen J; Hutchinson, Peter J

    2010-03-01

    Microdialysis enables measurement of the chemistry of the cerebral extracellular fluid. This study's objective was to utilise microdialysis to monitor levels of glucose, lactate, pyruvate, glutamate and glycerol in patients following surgery for intrinsic brain tumours, and to assess the concentration of growth factors, cytokines and other proteins involved in the pathogenesis of high-grade gliomas in vivo. Eight patients with suspected high-grade gliomas were studied. Seven of these underwent resection with one microdialysis catheter placed at the tumour resection margin and, in six of these seven cases, a second microdialysis catheter in macroscopically normal peritumour tissue. The remaining glioma patient had an image-guided biopsy with a single catheter inserted stereotactically at the tumour margin. Histology demonstrated WHO IV glioblastoma in five cases, WHO III anaplastic astrocytoma in two cases, and one cerebral lymphoma. In the high-grade gliomas (WHO IV and III), tumour margin microdialysates consistently showed significantly lower glucose, higher lactate/pyruvate (L/P) ratio, higher glutamate and higher glycerol, relative to peritumour microdialysates (P < 0.05). These results indicate that malignant glioma margin tissue is metabolically extremely active. There was great variability in the microdialysate concentrations of growth factors (TGFalpha, EGF, VEGF), cytokines (IL-1alpha, IL-1beta, IL-1ra, IL-6, IL-8), matrix metalloproteinases (MMP-2, MMP-9) and their endogenous inhibitors (TIMP-1, TIMP-2). Notably, microdialysates from the glioma resection margin demonstrated significantly higher IL-8 concentration and higher MMP-2/TIMP-1 ratio when compared to peritumour microdialysates (P < 0.05), suggesting an environment favouring invasion and angiogenesis at the tumour margin. Microdialysis is a promising technique to study in vivo glioma metabolism, and may assist in the development of new therapies.

  9. [Tissue collagenase MMP-14 and endogenous regulators of its activity in the corpus uteri in squamous cell carcinoma of the cervix].

    PubMed

    Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I

    to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.

  10. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    PubMed

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the expression of Smad3, the TGF-β1 downstream signaling molecule. Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-β1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis. © 2015 Wiley Periodicals, Inc.

  11. Effect of the Direct Renin Inhibitor Aliskiren on Urinary Albumin Excretion in Spontaneous Type 2 Diabetic KK-A y Mouse

    PubMed Central

    Furukawa, Masako; Horikoshi, Satoshi; Funabiki, Kazuhiko; Tomino, Yasuhiko

    2013-01-01

    Objective. Although angiotensin II-mediated inflammation and extracellular matrix accumulation are considered to be associated with the progression of diabetic nephropathy, these processes have not yet been sufficiently clarified. The objective of this study was to determine whether the correction of the abnormal renal expression of MMPs and its inhibitors (MMPs/TIMPs) and cytokines following the administration of aliskiren to KK-A y mice results in a renoprotective effect. Methods. KK-A y mice were divided into two groups, that is, untreated (saline) and treated (aliskiren) groups. Systolic BP, HbA1c levels, and the albumin-creatinine ratio (ACR) were measured. The renal expression of MMPs/TIMPs, fibronectin, type IV collagen, MCP-1, and (pro)renin receptor ((P)RR) was examined using real-time PCR and/or immunohistochemical staining. Renal MAPK and NF-κB activity were also examined by Western blot analyses and ELISA, respectively. Results. Significant decreases in systolic BP and ACR levels were observed in treated KK-A y mice compared with the findings in untreated KK-A y mice. Furthermore, increases in MMPs/TIMPs, fibronectin, type IV collagen, MCP-1, and (P)RR expression, in addition to MAPK and NF-κB activity, were significantly attenuated by aliskiren administration. Conclusions. It appears that aliskiren improves albuminuria and renal fibrosis by regulating inflammation and the alteration of collagen synthesis and degradation. PMID:23819050

  12. Multi-analyte profiling of inflammatory mediators in COPD sputum--the effects of processing.

    PubMed

    Pedersen, Frauke; Holz, Olaf; Lauer, Gereon; Quintini, Gianluca; Kiwull-Schöne, Heidrun; Kirsten, Anne-Marie; Magnussen, Helgo; Rabe, Klaus F; Goldmann, Torsten; Watz, Henrik

    2015-02-01

    Prior to using a new multi-analyte platform for the detection of markers in sputum it is advisable to assess whether sputum processing, especially mucus homogenization by dithiothreitol (DTT), affects the analysis. In this study we tested a novel Human Inflammation Multi Analyte Profiling® Kit (v1.0 Luminex platform; xMAP®). Induced sputum samples of 20 patients with stable COPD (mean FEV1, 59.2% pred.) were processed in parallel using standard processing (with DTT) and a more time consuming sputum dispersion method with phosphate buffered saline (PBS) only. A panel of 47 markers was analyzed in these sputum supernatants by the xMAP®. Twenty-five of 47 analytes have been detected in COPD sputum. Interestingly, 7 markers have been detected in sputum processed with DTT only, or significantly higher levels were observed following DTT treatment (VDBP, α-2-Macroglobulin, haptoglobin, α-1-antitrypsin, VCAM-1, and fibrinogen). However, standard DTT-processing resulted in lower detectable concentrations of ferritin, TIMP-1, MCP-1, MIP-1β, ICAM-1, and complement C3. The correlation between processing methods for the different markers indicates that DTT processing does not introduce a bias by affecting individual sputum samples differently. In conclusion, our data demonstrates that the Luminex-based xMAP® panel can be used for multi-analyte profiling of COPD sputum using the routinely applied method of sputum processing with DTT. However, researchers need to be aware that the absolute concentration of selected inflammatory markers can be affected by DTT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. DNA methylation profiling of esophageal adenocarcinoma using Methylation Ligation-dependent Macroarray (MLM).

    PubMed

    Guilleret, Isabelle; Losi, Lorena; Chelbi, Sonia T; Fonda, Sergio; Bougel, Stéphanie; Saponaro, Sara; Gozzi, Gaia; Alberti, Loredana; Braunschweig, Richard; Benhattar, Jean

    2016-10-14

    Most types of cancer cells are characterized by aberrant methylation of promoter genes. In this study, we described a rapid, reproducible, and relatively inexpensive approach allowing the detection of multiple human methylated promoter genes from many tissue samples, without the need of bisulfite conversion. The Methylation Ligation-dependent Macroarray (MLM), an array-based analysis, was designed in order to measure methylation levels of 58 genes previously described as putative biomarkers of cancer. The performance of the design was proven by screening the methylation profile of DNA from esophageal cell lines, as well as microdissected formalin-fixed and paraffin-embedded (FFPE) tissues from esophageal adenocarcinoma (EAC). Using the MLM approach, we identified 32 (55%) hypermethylated promoters in EAC, and not or rarely methylated in normal tissues. Among them, 21promoters were found aberrantly methylated in more than half of tumors. Moreover, seven of them (ADAMTS18, APC, DKK2, FOXL2, GPX3, TIMP3 and WIF1) were found aberrantly methylated in all or almost all the tumor samples, suggesting an important role for these genes in EAC. In addition, dysregulation of the Wnt pathway with hypermethylation of several Wnt antagonist genes was frequently observed. MLM revealed a homogeneous pattern of methylation for a majority of tumors which were associated with an advanced stage at presentation and a poor prognosis. Interestingly, the few tumors presenting less methylation changes had a lower pathological stage. In conclusion, this study demonstrated the feasibility and accuracy of MLM for DNA methylation profiling of FFPE tissue samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Transcriptional Profiling of Antigen-Dependent Murine B Cell Differentiation and Memory Formation1

    PubMed Central

    Bhattacharya, Deepta; Cheah, Ming T.; Franco, Christopher B.; Hosen, Naoki; Pin, Christopher L.; Sha, William C.; Weissman, Irving L.

    2015-01-01

    Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071

  15. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana.

    PubMed

    Wollmann, Heike; Stroud, Hume; Yelagandula, Ramesh; Tarutani, Yoshiaki; Jiang, Danhua; Jing, Li; Jamge, Bhagyshree; Takeuchi, Hidenori; Holec, Sarah; Nie, Xin; Kakutani, Tetsuji; Jacobsen, Steven E; Berger, Frédéric

    2017-05-18

    Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.

  16. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)*

    PubMed Central

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang

    2015-01-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  17. Expression profiles of selected genes in tumors and matched surgical margins in oral cavity cancer: Do we have to pay attention to the molecular analysis of the surgical margins?

    PubMed

    Strzelczyk, Joanna K; Krakowczyk, Łukasz; Gołąbek, Karolina; Owczarek, Aleksander J

    2018-04-24

    Head and neck squamous cell carcinomas (HNSCCs) are associated with an interplay between genetics and the environment; they account for 3% of all diagnosed malignant tumors in men and 2% of those in women. The aim of the study was to analyze the significance of TIMP3, SFRP1, SFRP2, CDH1, RASSF1, RORA, and DAPK1 gene expression in head and neck squamous cell carcinoma tumors, and in matching surgical margin samples. We also analyzed the association between clinical parameters and the expression of the selected genes. Following surgical resection, 56 primary HNSCC tumors and matching surgical margin samples were collected from patients at the Clinic of Oncological and Reconstructive Surgery of Maria Skłodowska-Curie Memorial Cancer Center and the Institute of Oncology in Gliwice, Poland. The gene expression levels were analyzed by quantitative reverse transcription (qRT)-PCR. SFRP1 gene expression was statistically significantly lower in the tumor samples than in the surgical margins (0.30 ±0.36 vs 0.62 ±0.36; p < 0.01). No correlation was found between gene expression and clinical parameters, except DAPK1, where low expression correlated with alcohol abuse (0.85 ±1.19 vs 1.97 ±3.22; p = 0.074). Moreover, patients with G3 grade tumors, i.e., poorly differentiated tumors, had significantly higher values of DAPK1 gene expression than the G1 (well-differentiated tumors) and G2 (moderately differentiated) groups. There are many different reasons and concepts for altered gene expression in tumors and surgical margin tissue. Tumor heterogeneity and its microenvironment are undoubtedly linked to the biology of HNSCC. In order to understand specific tumor behavior and the microenvironment, further studies are needed. To find markers connected with cancer development and to provide insight into the earliest stages of cancer development, attention should also be focused on molecular analysis of the surgical margins.

  18. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients.

    PubMed

    Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A; Rozenchan, Patricia Bortman; Nunes, Bárbara Dos Santos; Góes, João Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida

    2014-09-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs.

  19. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients

    PubMed Central

    Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A.; Rozenchan, Patricia Bortman; Nunes, Bárbara dos Santos; Góes, João Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida

    2014-01-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs. PMID:25249769

  20. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor

    PubMed Central

    Feng, Xiaowen; Zhang, Feng; Xie, Haiyang

    2017-01-01

    Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL) in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA), and connective tissue growth factor (CTGF); increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2); increased oxidative stress and reactive oxygen species- (ROS-) inducing enzymes (NOX2 and iNOS); dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity). Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models. PMID:28757911

  1. miRNA Signature and Dicer Requirement during Human Endometrial Stromal Decidualization In Vitro

    PubMed Central

    Estella, Carlos; Herrer, Isabel; Moreno-Moya, Juan Manuel; Quiñonero, Alicia; Martínez, Sebastián; Pellicer, Antonio; Simón, Carlos

    2012-01-01

    Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs) decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human endometrial decidualization. PMID:22911744

  2. Matrix Metalloproteinase Expression in the Rat Myometrium During Pregnancy, Term Labor, and Postpartum1

    PubMed Central

    Nguyen, Tina Tu-Thu Ngoc; Shynlova, Oksana; Lye, Stephen J.

    2016-01-01

    Pregnancy, spontaneous term labor (TL), and postpartum (PP) involution are associated with changes in the cellular and extracellular matrix composition of the uterus. Both the uterine smooth muscle (myometrium) and the infiltrating peripheral blood leukocytes involved in the activation of labor secrete extracellular matrix-degrading enzymes (matrix metalloproteinases, MMPs) that can modulate cellular behavior and barrier function. MMP expression is induced by mechanical stretch in several tissues. We hypothesized that the expression and activity of myometrial MMPs and their tissue inhibitors (TIMPs) are modulated in preparation for TL and PP involution and are regulated by mechanical stretch of uterine walls imposed by the growing fetus. Myometrial tissues were collected from bilaterally and unilaterally pregnant rats across gestation, TL, and PP. Total RNA and proteins were subjected to real-time PCR and immunoblotting, respectively, and tissue localization and activity was examined by immunohistochemistry and in situ zymography. We found that Mmp7, Mmp11, and Mmp12 mRNA levels were upregulated during TL and PP, while Mmp2, Mmp3, Mmp8, Mmp9, Mmp10, and Mmp13 mRNAs were only upregulated during PP. Timp1–Timp4 were stably expressed throughout gestation with some fluctuations PP. Active MMP2 was induced in the empty uterine horn during gestation and in the gravid PP uterus, suggesting negative regulation by biological mechanical stretch. We conclude that specific subsets of uterine MMPs are differentially regulated in the rat myometrium in preparation for two major events: TL and PP uterine involution. PMID:27251092

  3. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    PubMed

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  4. Starch as a major integrator in the regulation of plant growth

    PubMed Central

    Sulpice, Ronan; Pyl, Eva-Theresa; Ishihara, Hirofumi; Trenkamp, Sandra; Steinfath, Matthias; Witucka-Wall, Hanna; Gibon, Yves; Usadel, Björn; Poree, Fabien; Piques, Maria Conceição; Von Korff, Maria; Steinhauser, Marie Caroline; Keurentjes, Joost J. B.; Guenther, Manuela; Hoehne, Melanie; Selbig, Joachim; Fernie, Alisdair R.; Altmann, Thomas; Stitt, Mark

    2009-01-01

    Rising demand for food and bioenergy makes it imperative to breed for increased crop yield. Vegetative plant growth could be driven by resource acquisition or developmental programs. Metabolite profiling in 94 Arabidopsis accessions revealed that biomass correlates negatively with many metabolites, especially starch. Starch accumulates in the light and is degraded at night to provide a sustained supply of carbon for growth. Multivariate analysis revealed that starch is an integrator of the overall metabolic response. We hypothesized that this reflects variation in a regulatory network that balances growth with the carbon supply. Transcript profiling in 21 accessions revealed coordinated changes of transcripts of more than 70 carbon-regulated genes and identified 2 genes (myo-inositol-1-phosphate synthase, a Kelch-domain protein) whose transcripts correlate with biomass. The impact of allelic variation at these 2 loci was shown by association mapping, identifying them as candidate lead genes with the potential to increase biomass production. PMID:19506259

  5. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182

  6. Finasteride Inhibits Human Prostate Cancer Cell Invasion through MMP2 and MMP9 Downregulation

    PubMed Central

    Moroz, Andrei; Delella, Flávia K.; Almeida, Rodrigo; Lacorte, Lívia Maria; Fávaro, Wágner José; Deffune, Elenice; Felisbino, Sérgio L.

    2013-01-01

    Introduction The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines. Materials and Methods RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate. Results Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells. Conclusions Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells. PMID:24386413

  7. Effect of acute and chronic exercise on plasma matrix metalloproteinase and total antioxidant levels

    PubMed Central

    Mergen-Dalyanoglu, Mukaddes; Turgut, Sebahat; Turgut, Günfer

    2017-01-01

    The relationship between acute and chronic exercise and expression of matrix metalloproteinases (MMPs) in muscles is unknown. There happen some alterations in the oxidant-antioxidant balance due to exercise. This study aimed to investigate the levels of MMP-1, tissue inhibitors of metalloproteinases (TIMP-1), hyaluronic acid (HA), total antioxidant status (TAS), and total oxidant status (TOS) following acute and chronic exercising in rats. Twenty-six Wistar Albino male rats were divided in to three groups: control, acute, and chronic groups. In acute group, treadmill exercise was performed 3 days/wk, 10 min/day for 1 week. In chronic group, exercise performed 7 days/wk, 60 min/day for 4 weeks. At the end of the experiment, plasma MMP-1, TIMP-1, HA, TAS, and TOS levels were measured. In current study, the MMP-1, TIMP-1, HA, and TOS levels not observed statistically significant difference among all groups, but in chronic group, there was a significantly difference (P<0.05) between the control and experimental groups in terms of TAS and oxidative stress index (OSI) levels. TAS, TOS, and OSI levels were significantly different between control and chronic exercise group (P<0.01, P<0.05, and P<0.01, respectively). According to these results, we can say acute and chronic exercise does not effect on plasma MMP-1, TIMP-1, and HA levels. PMID:29114524

  8. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion.

    PubMed

    Bourboulia, Dimitra; Stetler-Stevenson, William G

    2010-06-01

    Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of human cancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell property engaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPs degrade the ECM and, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue inhibitors of metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. Published by Elsevier Ltd.

  9. An Ex Vivo Model for Studying Hepatic Schistosomiasis and the Effect of Released Protein from Dying Eggs

    PubMed Central

    Gobert, Geoffrey N.; Nawaratna, Sujeevi K.; Harvie, Marina; Ramm, Grant A.; McManus, Donald P.

    2015-01-01

    Background We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis. Methods and Findings Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5. Conclusions This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs. PMID:25965781

  10. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles.

    PubMed

    Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2017-01-01

    Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.

  11. Time frequency power profile of QRS complex obtained with wavelet transform in spontaneously hypertensive rats.

    PubMed

    Takano, Nami K; Tsutsumi, Takeshi; Suzuki, Hiroshi; Okamoto, Yoshiwo; Nakajima, Toshiaki

    2012-02-01

    We evaluated whether frequency analysis could detect the development of interstitial fibrosis in rats. SHR/Izm and age-matched WKY/Izm were used. Limb lead II electrocardiograms were recorded. Continuous wavelet transform (CWT) was applied for the time-frequency analysis. The integrated time-frequency power (ITFP) between QRS complexes was measured and compared between groups. The ITFP at low-frequency bands (≤125Hz) was significantly higher in SHR/Izm. The percent change of ITFP showed the different patterns between groups. Prominent interstitial fibrosis with an increase in TIMP-1 mRNA expression was also observed in SHR/Izm. These results were partly reproduced in a computer simulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Divergent transcriptional profiles in pediatric asthma patients of low and high socioeconomic status.

    PubMed

    Miller, Gregory E; Chen, Edith; Shalowitz, Madeleine U; Story, Rachel E; Leigh, Adam K K; Ham, Paula; Arevalo, Jesusa M G; Cole, Steve W

    2018-06-01

    There are marked socioeconomic disparities in pediatric asthma control, but the molecular origins of these disparities are not well understood. To fill this gap, we performed genome-wide expression profiling of monocytes and T-helper cells from pediatric asthma patients of lower and higher socioeconomic status (SES). Ninety-nine children with asthma participated in a cross-sectional assessment. Out of which 87% were atopic, and most had disease of mild (54%) or moderate (29%) severity. Children were from lower-SES (n = 49; household income <$50 000) or higher-SES (n = 50; household income >$140 000) families. Peripheral blood monocytes and T-helper cells were isolated for genome-wide expression profiling of mRNA. Lower-SES children had worse asthma quality of life relative to higher-SES children, by both their own and their parents' reports. Although the groups had similar disease severity and potential confounds were controlled, their transcriptional profiles differed notably. The monocytes of lower-SES children showed transcriptional indications of up-regulated anti-microbial and pro-inflammatory activity. The T-helper cells of lower-SES children also had comparatively reduced expression of genes encoding γ-interferon and tumor necrosis factor-α, cytokines that orchestrate Type 1 responses. They also showed up-regulated activity of transcription factors that polarize cells towards Type 2 responses and promote Th17 cell maturation. Collectively, these patterns implicate pro-inflammatory monocytes and Type 2 cytokine activity as mechanisms contributing to worse asthma control among lower-SES children. © 2018 Wiley Periodicals, Inc.

  13. Monitoring of thiopurine metabolites in patients with inflammatory bowel disease-what is actually measured?

    PubMed

    Vikingsson, Svante; Carlsson, Björn; Almer, Sven H C; Peterson, Curt

    2009-06-01

    Azathioprine and 6-mercaptopurine are often used in the treatment of patients with inflammatory bowel disease (IBD). They are prodrugs and undergo a complex metabolism to active and inactive metabolites. Thiopurine treatment is monitored in many laboratories by measuring metabolite concentrations in erythrocytes (red blood cells). The metabolites of interest are not measured directly but as hydrolysis products, which can be produced from several metabolites. The aim of this study was to examine which metabolites are actually measured during routine monitoring. Samples from 18 patients treated with a thiopurine were analyzed by a typical routine high-performance liquid chromatography method for therapeutic drug monitoring and by a newly developed specific method measuring thioguanosine monophosphate (TGMP), thioguanosine diphosphate (TGDP), and thioguanosine triphosphate (TGTP), as well as methylthioinosine monophosphate (meTIMP), and the results were compared. 6-Thioguanine nucleotide (TGN) values detected by the routine method were 69% (range 40%-90%) of the sum of TGMP, TGDP, and TGTP measured by the specific method. TGTP and TGDP contributed 85% (range 78%-90%) and 14% (range 10%-21%) of the TGN total, respectively. Thioguanosine was not found in any patient sample. The concentration of meTIMP obtained by the routine method was 548% of the value obtained by the specific method (range 340%-718%). The difference in TGN measurements between the routine and specific methods can be explained by low hydrolysis efficiency in the routine method, although the most likely explanation for the difference in meTIMP values is that not yet identified metabolites are codetermined in the routine high-performance liquid chromatography method. Concentrations reported as TGN during therapeutic drug monitoring of thiopurine metabolites consist of TGDP and TGTP with a minor contribution of the TGMP. Concentrations reported as meTIMP or methyl mercaptopurine consist in part of meTIMP, but other not yet identified metabolites are codetermined.

  14. Increased Notch3 Activity Mediates pathological Changes in Structure of Cerebral arteries

    PubMed Central

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank; Joutel, Anne

    2016-01-01

    CADASIL, the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred prior to myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. PMID:27821617

  15. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.

    PubMed

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne

    2017-01-01

    CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.

  16. Expression profiles of Astakine-like transcripts in the tarnished plant bug, Lygus lineolaris, exposed to fungal spores of Beauveria bassiana

    USDA-ARS?s Scientific Manuscript database

    Astakines are hematopoietic cytokines originally isolated from crustaceans. We identified three astakine-like transcripts in the tarnished plant bug, LlAst-1, LlAst-2, and LlAst-3, containing prokineticin domains. Quantitative real-time PCR demonstrated variation in expression patterns of astakines ...

  17. SAGE analysis of early oogenesis in the silkworm, Bombyx mori.

    PubMed

    Funaguma, Shunsuke; Hashimoto, Shin-ichi; Suzuki, Yutaka; Omuro, Naoko; Sugano, Sumio; Mita, Kazuei; Katsuma, Susumu; Shimada, Toru

    2007-02-01

    To identify genes involved in the differentiation of Bombyx cystoblast, we constructed two 3' long serial analysis of gene expression (Long SAGE) libraries from stage 1-3 or stage 2-3 egg chambers and compared their gene expression profiles. In both libraries, the most frequent tags were derived from the same novel transcript. The transcript does not have any open reading frame capable of encoding a protein with over 100 amino acids in length. RNA blot analysis revealed that this transcript is specifically and abundantly expressed in the Bombyx ovary, mainly the germ line cells in the ovarioles. These results suggest that Bombyx oogenesis may be regulated by a previously unidentified non-coding RNA. Comparison of the gene expression profiles between the stage 1-3 and stage 2-3 egg chamber libraries revealed that 272 tags were significantly more abundant in stage 1-3 egg chambers (p<0.05 and at least two-fold change) than in library 2. Among the differentially expressed transcripts were the sequences that correspond to ATP synthase subunit d (3.1-fold enriched) and ATP synthase coupling factor 6 (9.1-fold enriched), suggesting that they are involved in regulation of cell cycle of cystocytes.

  18. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    PubMed

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  19. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast.

    PubMed

    Chumnanpuen, Pramote; Zhang, Jie; Nookaew, Intawat; Nielsen, Jens

    2012-07-01

    In the yeast Saccharomyces cerevisiae many genes involved in lipid biosynthesis are transcriptionally controlled by inositol-choline and the protein kinase Snf1. Here we undertook a global study on how inositol-choline and Snf1 interact in controlling lipid metabolism in yeast. Using both a reference strain (CEN.PK113-7D) and a snf1Δ strain cultured at different nutrient limitations (carbon and nitrogen), at a fixed specific growth rate of 0.1 h(-1), and at different inositol choline concentrations, we quantified the expression of genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through integrated analysis of the transcriptome, the lipid profiling and the fluxome, it was possible to obtain a high quality, large-scale dataset that could be used to identify correlations and associations between the different components. At the transcription level, Snf1 and inositol-choline interact either directly through the main phospholipid-involving transcription factors (i.e. Ino2, Ino4, and Opi1) or through other transcription factors e.g. Gis1, Mga2, and Hac1. However, there seems to be flux regulation at the enzyme levels of several lipid involving enzymes. The analysis showed the strength of using both transcriptome and lipid profiling analysis for mapping the co-influence of inositol-choline and Snf1 on phospholipid metabolism.

  20. Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures

    PubMed Central

    Castanera, Raúl; Pérez, Gúmer; Omarini, Alejandra; Alfaro, Manuel; Pisabarro, Antonio G.; Faraco, Vincenza; Amore, Antonella

    2012-01-01

    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors. PMID:22467498

  1. [Relationship between the changes in ischemia/reperfusion cerebro-microvessel basement membrane injury and gelatinase system in senile rat].

    PubMed

    Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo

    2008-11-01

    To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (P<0.05 or P<0.01). In addition, changes in MMP-2 and MMP-9 contents as determined by zymogram analysis method coincided with their immunoexpression. With the increase of age, alteration in membrane components of cerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.

  2. Vernonia cinerea Less. inhibits tumor cell invasion and pulmonary metastasis in C57BL/6 mice.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2011-06-01

    The effect of Vernonia cinerea Less. extract on the inhibition of lung metastasis induced by B16F-10 melanoma cells was studied in C57BL/6 mice. V cinerea extract significantly (P < .001) inhibited lung tumor formation (78.8%) and significantly increased the life span (72.5%). Moreover, lung collagen hydroxyproline, uronic acid, and hexosamine and also serum sialic acid, γ-glutamyltransferase (GGT), and vascular endothelial growth factor (VEGF) levels were found to be significantly (P < .001) lower in treated animals compared with untreated controls. Histopathological analysis of the lung tissues also correlated with these findings. V cinerea treatment significantly inhibited the invasion of B16F-10 melanoma cells across the collagen matrix of the Boyden chamber. V cinerea also inhibited the migration of B16F-10 melanoma cells across a polycarbonate filter in vitro. It downregulated the production and expression of proinflammatory cytokines such as TNF (tumor necrosis factor)-α, IL (interleukin)-1β, IL-6, and GM-CSF (granulocyte monocyte colony-stimulating factor). V cinerea extract administration could suppress or downregulate the expression of matrix metalloproteinase (MMP)-2, MMP-9, lysyl oxidase, prolyl hydroxylase, K-ras, extracellular signal-regulated kinase (ERK)-1, ERK-2, and VEGF and also upregulate the expression of nm-23, tissue inhibitor of metalloproteinase (TIMP-1), and TIMP-2 in the lung tissue of metastasis-induced animals. It also inhibited the protein expression of MMP-2 and MMP-9 in gelatin zymographic analysis of B16F-10 cells. These results indicate that V cinerea could inhibit the metastatic progression of B16F-10 melanoma cells in C57BL/6 mice by regulating MMPs, VEGF, prolyl hydroxylase, lysyl oxidase, ERK-1, ERK-2, TIMPs, nm23, and proinflammatory cytokine gene expression in metastatic lung tissue.

  3. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B

    PubMed Central

    Lee, Chih-Yung Sean; Lu, Tu

    2017-01-01

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin. PMID:29111977

  4. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B.

    PubMed

    Lee, Chih-Yung Sean; Lu, Tu; Seydoux, Geraldine

    2017-11-07

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.

  5. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli.

    PubMed

    Rodriguez, Jose A; Orbe, Josune; Martinez de Lizarrondo, Sara; Calvayrac, Olivier; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Paramo, Jose A

    2008-01-01

    Atherosclerosis is the common pathophysiological substrate of ischemic vascular diseases and their thrombotic complications. The unbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) has been hypothesized to be involved in the growth, destabilization, and eventual rupture of atherosclerotic lesions. Different MMPs have been assigned relevant roles in the pathology of vascular diseases and MMP-10 (stromelysin-2) has been involved in vascular development and atherogenesis. This article examines the pathophysiological role of MMPs, particularly MMP-10, in the onset and progression of vascular diseases and their regulation by pro-inflammatory stimuli. MMP-10 over-expression has been shown to compromise vascular integrity and it has been associated with aortic aneurysms. MMP-10 is induced by C-reactive protein in endothelial cells, and it is over-expressed in atherosclerotic lesions. Additionally, higher MMP-10 serum levels are associated with inflammatory markers, increased carotid intima-media thickness and the presence of atherosclerotic plaques. We have cloned the promoter region of the MMP-10 gene and studied the effect of inflammatory stimuli on MMP-10 transcriptional regulation, providing evidences further supporting the involvement of MMP-10 in the pathophysiology of atherothrombosis.

  6. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development

    PubMed Central

    Shamimuzzaman, Md.

    2018-01-01

    To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the chloroplast were relatively translationally inactive during seed development. PMID:29570733

  7. Use of DNA Microarrays to Identify Diagnostic Signature Transcription Profiles for Host Responses to Infectious Agents

    DTIC Science & Technology

    2004-10-01

    informative in this regard. Key signature genes will serve as the basis for rapid diagnostic approaches that could be accessed when an outbreak is suspected...AD Award Number: DAMD17-01-1-0787 TITLE: Use of DNA Microarrays to Identify Diagnostic Signature Transcription Profiles for Host Responses to...Sep 2004) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Use of DNA Microarrays to Identify Diagnostic Signature DAMD17-01-1-0787 Transcription Profiles for

  8. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress

    PubMed Central

    Lehman, Stacey L.; Cerniglia, George J.; Johannes, Gregg J.; Ye, Jiangbin; Ryeom, Sandra; Koumenis, Constantinos

    2015-01-01

    Multiple transcripts encode for the cell cycle inhibitor p21Cip1. These transcripts produce identical proteins but differ in their 5’ untranslated regions (UTRs). Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through 35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress. PMID:26102367

  9. Expression Profiling Smackdown: Human Transcriptome Array HTA 2.0 vs. RNA-Seq

    PubMed Central

    Palermo, Meghann; Driscoll, Heather; Tighe, Scott; Dragon, Julie; Bond, Jeff; Shukla, Arti; Vangala, Mahesh; Vincent, James; Hunter, Tim

    2014-01-01

    The advent of both microarray and massively parallel sequencing have revolutionized high-throughput analysis of the human transcriptome. Due to limitations in microarray technology, detecting and quantifying coding transcript isoforms, in addition to non-coding transcripts, has been challenging. As a result, RNA-Seq has been the preferred method for characterizing the full human transcriptome, until now. A new high-resolution array from Affymetrix, GeneChip Human Transcriptome Array 2.0 (HTA 2.0), has been designed to interrogate all transcript isoforms in the human transcriptome with >6 million probes targeting coding transcripts, exon-exon splice junctions, and non-coding transcripts. Here we compare expression results from GeneChip HTA 2.0 and RNA-Seq data using identical RNA extractions from three samples each of healthy human mesothelial cells in culture, LP9-C1, and healthy mesothelial cells treated with asbestos, LP9-A1. For GeneChip HTA 2.0 sample preparation, we chose to compare two target preparation methods, NuGEN Ovation Pico WTA V2 with the Encore Biotin Module versus Affymetrix's GeneChip WT PLUS with the WT Terminal Labeling Kit, on identical RNA extractions from both untreated and treated samples. These same RNA extractions were used for the RNA-Seq library preparation. All analyses were performed in Partek Genomics Suite 6.6. Expression profiles for control and asbestos-treated mesothelial cells prepared with NuGEN versus Affymetrix target preparation methods (GeneChip HTA 2.0) are compared to each other as well as to RNA-Seq results.

  10. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL.

  11. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles

    PubMed Central

    Alameddine, Hala S.; Morgan, Jennifer E.

    2016-01-01

    In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs’ overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis. PMID:27911334

  12. Gonadal development and transcript profiling of steroidogenic enzymes in response to 17α-methyltestosterone in the rare minnow Gobiocypris rarus.

    PubMed

    Liu, Shaozhen; Wang, Lihong; Qin, Fang; Zheng, Yao; Li, Meng; Zhang, Yingying; Yuan, Cong; Wang, Zaizhao

    2014-09-01

    It is well known that natural and anthropogenic chemicals interfere with the hormonal system of vertebrate and invertebrate organisms. How these chemicals regulate gonadal steroidogenesis remains to be determined. The main objective of this study was to evaluate the effects of 17α-methyltestosterone (MT), a synthetic model androgen, on gene expression profiles of six key steroidogenic genes in adult rare minnow. The full-length cDNA encoding 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2) was firstly isolated and characterized by RT-PCR and RACE methods. The gonadal transcript changes of StAR, cyp11a1, 3β-HSD, cyp17a1, 11β-HSD2 and cyp19a1a in 6-month adult Gobiocypris rarus exposed to MT and 17α-ethinylestradiol (EE2) for 7, 14 and 21 days were detected by qRT-PCR. To make an effort to connect the transcriptional changes of steroidogenic enzymes with effects on higher levels of biological organization and on VTG, one remarkable sensitive target of steroids, body and gonad weights, histology of gonads, and hepatic vtg mRNA level were measured. MT caused varying degree of abnormalities in ovaries and testes. The hepatic vtg mRNA level was highly inhibited in females and slightly altered in males by MT. Transcripts of several steroidogenic genes including StAR, cyp17a1, and cyp11a1 showed high responsiveness to MT exposure in G. rarus. The gene expression profiles of these steroidogenic genes in MT-treated groups were much distinct with the EE2-treated group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy.

    PubMed

    Honeyborne, Isobella; McHugh, Timothy D; Kuittinen, Iitu; Cichonska, Anna; Evangelopoulos, Dimitrios; Ronacher, Katharina; van Helden, Paul D; Gillespie, Stephen H; Fernandez-Reyes, Delmiro; Walzl, Gerhard; Rousu, Juho; Butcher, Philip D; Waddell, Simon J

    2016-04-07

    New treatment options are needed to maintain and improve therapy for tuberculosis, which caused the death of 1.5 million people in 2013 despite potential for an 86 % treatment success rate. A greater understanding of Mycobacterium tuberculosis (M.tb) bacilli that persist through drug therapy will aid drug development programs. Predictive biomarkers for treatment efficacy are also a research priority. Genome-wide transcriptional profiling was used to map the mRNA signatures of M.tb from the sputa of 15 patients before and 3, 7 and 14 days after the start of standard regimen drug treatment. The mRNA profiles of bacilli through the first 2 weeks of therapy reflected drug activity at 3 days with transcriptional signatures at days 7 and 14 consistent with reduced M.tb metabolic activity similar to the profile of pre-chemotherapy bacilli. These results suggest that a pre-existing drug-tolerant M.tb population dominates sputum before and after early drug treatment, and that the mRNA signature at day 3 marks the killing of a drug-sensitive sub-population of bacilli. Modelling patient indices of disease severity with bacterial gene expression patterns demonstrated that both microbiological and clinical parameters were reflected in the divergent M.tb responses and provided evidence that factors such as bacterial load and disease pathology influence the host-pathogen interplay and the phenotypic state of bacilli. Transcriptional signatures were also defined that predicted measures of early treatment success (rate of decline in bacterial load over 3 days, TB test positivity at 2 months, and bacterial load at 2 months). This study defines the transcriptional signature of M.tb bacilli that have been expectorated in sputum after two weeks of drug therapy, characterizing the phenotypic state of bacilli that persist through treatment. We demonstrate that variability in clinical manifestations of disease are detectable in bacterial sputa signatures, and that the changing M.tb mRNA profiles 0-2 weeks into chemotherapy predict the efficacy of treatment 6 weeks later. These observations advocate assaying dynamic bacterial phenotypes through drug therapy as biomarkers for treatment success.

  14. Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology.

    PubMed

    Adamopoulos, Panagiotis G; Kontos, Christos K; Scorilas, Andreas

    2018-03-31

    Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer. Copyright © 2018. Published by Elsevier Inc.

  15. The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice

    PubMed Central

    Ahmed, Farid; Plantman, Stefan; Cernak, Ibolja; Agoston, Denes V.

    2015-01-01

    Time-dependent changes in blood-based protein biomarkers can help identify the ­pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits. PMID:26124743

  16. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  17. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men.

    PubMed

    Gliemann, Lasse; Olesen, Jesper; Biensø, Rasmus Sjørup; Schmidt, Jakob Friis; Akerstrom, Thorbjorn; Nyberg, Michael; Lindqvist, Anna; Bangsbo, Jens; Hellsten, Ylva

    2014-10-15

    In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis. Copyright © 2014 the American Physiological Society.

  18. [Effects of fasudil on bleomycin-induced pulmonary fibrosis in mice and on the biological behaviors in NIH3T3 mouse fibroblast cell line].

    PubMed

    Jiang, Chunguo; Huang, Hui; Liu, Jia; Wang, Yanxun; Zhao, Yuyue; Xu, Zuojun

    2014-09-01

    To determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice and to determine the effects and mechanisms of fasudil on the biological behaviors in NIH3T3 mouse fibroblast cell line. The BPF model was induced by a single dosage of 2.5 mg/kg bleomycin intratracheal injection in mice and fasudil intraperitoneal injection was given to the mice. The fibrosis degree was determined pathologically by using the Ashcroft scoring method and biochemically by hydroxyproline assay in lung tissue. NIH3T3 mouse fibroblast cell line was cultured in vitro and fasudil was given to the cell. The proliferation activity in NIH3T3 cells were detected by MTT assay and flat colony forming experiment. The migration activity in NIH3T3 cells were detected by scratch test and transwell chamber experiment. The expression of CyclinD1, MMP2 and TIMP1 mRNA in NIH3T3 cells was detected by RT-PCR. The expression of CyclinD1, MMP2 and TIMP1 protein and the level of MYPT1 phosphorylation in NIH3T3 cells was detected by Western blot. Compare to the mice administrated by bleomycin, the Ashcroft score and hydroxyproline content were significantly decreased in the mice administered fasudil. Administration of fasudil can reduce the ability of proliferation and migration in a dose-dependent manner in NIH3T3 cells. The effect of fasudil was possibly related to increase the production of TIMP1 and decrease the production of CyclinD1 and MMP2. Administration of fasudil can attenuate pulmonary fibrosis both in vivo and in vitro. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.

  19. Thermodynamic Basis of Selectivity in the Interactions of Tissue Inhibitors of Metalloproteinases N-domains with Matrix Metalloproteinases-1, -3, and -14.

    PubMed

    Zou, Haiyin; Wu, Ying; Brew, Keith

    2016-05-20

    The four tissue inhibitors of metalloproteinases (TIMPs) are potent inhibitors of the many matrixins (MMPs), except that TIMP1 weakly inhibits some MMPs, including MMP14. The broad-spectrum inhibition of MMPs by TIMPs and their N-domains (NTIMPs) is consistent with the previous isothermal titration calorimetric finding that their interactions are entropy-driven but differ in contributions from solvent and conformational entropy (ΔSsolv, ΔSconf), estimated using heat capacity changes (ΔCp). Selective engineered NTIMPs have potential applications for treating MMP-related diseases, including cancer and cardiomyopathy. Here we report isothermal titration calorimetric studies of the effects of selectivity-modifying mutations in NTIMP1 and NTIMP2 on the thermodynamics of their interactions with MMP1, MMP3, and MMP14. The weak inhibition of MMP14 by NTIMP1 reflects a large conformational entropy penalty for binding. The T98L mutation, peripheral to the NTIMP1 reactive site, enhances binding by increasing ΔSsolv but also reduces ΔSconf However, the same mutation increases NTIMP1 binding to MMP3 in an interaction that has an unusual positive ΔCp This indicates a decrease in solvent entropy compensated by increased conformational entropy, possibly reflecting interactions involving alternative conformers. The NTIMP2 mutant, S2D/S4A is a selective MMP1 inhibitor through electrostatic effects of a unique MMP-1 arginine. Asp-2 increases reactive site polarity, reducing ΔCp, but increases conformational entropy to maintain strong binding to MMP1. There is a strong negative correlation between ΔSsolv and ΔSconf for all characterized interactions, but the data for each MMP have characteristic ranges, reflecting intrinsic differences in the structures and dynamics of their free and inhibitor-bound forms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Effects of moving training on histology and biomarkers levels of articular cartilage.

    PubMed

    Qi, Chang; Changlin, Huang

    2006-10-01

    To study the adaptation process and extent of articular cartilage in the canine knee joint to different modes of movements and to investigate if levels of cartilage oligomeric matrix protein (COMP), matrix metalloproteinases-1 (MMP-1), matrix metalloproteinases-3 (MMP-3), and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in serum and synovial fluid can be used to predict effectively early sports injury and remolding degree of articular cartilage in the canine knee. Twenty adult dogs divided randomly into three groups (eight in the common training group, Training Group; eight in the intensified training group, Intensified Group; and four in the Control Group) were trained daily at different intensities. Magnetic resonance imaging (MRI) examinations were performed regularly (0, 2, 4, 6, 8, 10 weeks) to investigate changes of articular cartilage in the canine knee, while concentrations of COMP, MMP-1, MMP-3, and TIMP-1 in serum and synovial fluid were measured by ELISA assays. All of the dogs were euthanized after training for 10 weeks, and all of the knee joints were taken out to be examined histologically. We could find imaging changes of early sport injury of articular cartilage in the Training Group and Intensified Group by MRI examination after 2 weeks of training; the damage images were most severe in 4-6 weeks, and then lightened gradually. We could not find the difference of cartilage injury and repair degree in MRI images between these two groups at different time points. Elevations of levels of COMP, MMP-1, MMP-3, TIMP-1, and MMP-3/TIMP-1 in serum and synovial fluid were seen during the training period, and their levels changed remarkably at different times. Levels of MMP-1, MMP-3, and MMP-3/TIMP-1 in the Intensified Group were lower than that in the Training Group in general, and levels of COMP were higher, which hinted that the injury trend of articular cartilage in the Intensified Group was lower than that in the Training group, and the repair trend was higher. Furthermore, there were statistically significant associations between biomarker levels in serum and in synovial fluid. Histological examinations in 10 weeks demonstrated that the signs of cartilage damage and repair in canine knee joint in the Training Group and the Intensified Group were obvious, and the Intensified Group could do better than the Training Group in promoting remodeling reconstruction of articular cartilage. High-intensity and repetitive movement may easily induce sports injury, and it is followed with a repair process; intensified training can do better than common training in promoting remodeling reconstruction of articular cartilage. The sensitivity of these biomarkers reflecting articular cartilage pathological changes is better than MRI, and the associated application of several biomarkers to predict the extent of damage and repair, as well as changes of metabolism in articular cartilage, and to monitor change of disease course has very good value for clinical application.

Top