Sample records for tiny video camera

  1. Splenectomy

    MedlinePlus

    ... a tiny video camera and special surgical tools (laparoscopic splenectomy). With this type of surgery, you may ... begins the surgery using either a minimally invasive (laparoscopic) or open (traditional) procedure. The method used often ...

  2. Surgery for pancreatic cancer

    MedlinePlus

    ... laparoscopically (using a tiny video camera) or using robotic surgery depends on: The extent of the surgery ... by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is ...

  3. Tiny videos: a large data set for nonparametric video retrieval and frame classification.

    PubMed

    Karpenko, Alexandre; Aarabi, Parham

    2011-03-01

    In this paper, we present a large database of over 50,000 user-labeled videos collected from YouTube. We develop a compact representation called "tiny videos" that achieves high video compression rates while retaining the overall visual appearance of the video as it varies over time. We show that frame sampling using affinity propagation-an exemplar-based clustering algorithm-achieves the best trade-off between compression and video recall. We use this large collection of user-labeled videos in conjunction with simple data mining techniques to perform related video retrieval, as well as classification of images and video frames. The classification results achieved by tiny videos are compared with the tiny images framework [24] for a variety of recognition tasks. The tiny images data set consists of 80 million images collected from the Internet. These are the largest labeled research data sets of videos and images available to date. We show that tiny videos are better suited for classifying scenery and sports activities, while tiny images perform better at recognizing objects. Furthermore, we demonstrate that combining the tiny images and tiny videos data sets improves classification precision in a wider range of categories.

  4. A Third Arm for the Surgeon

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In laparoscopic surgery, tiny incisions are made in the patient's body and a laparoscope (an optical tube with a camera at the end) is inserted. The camera's image is projected onto two video screens, whose views guide the surgeon through the procedure. AESOP, a medical robot developed by Computer Motion, Inc. with NASA assistance, eliminates the need for a human assistant to operate the camera. The surgeon uses a foot pedal control to move the device, allowing him to use both hands during the surgery. Miscommunication is avoided; AESOP's movement is smooth and steady, and the memory vision is invaluable. Operations can be completed more quickly, and the patient spends less time under anesthesia. AESOP has been approved by the FDA.

  5. Can we see photosynthesis? Magnifying the tiny color changes of plant green leaves using Eulerian video magnification

    NASA Astrophysics Data System (ADS)

    Taj-Eddin, Islam A. T. F.; Afifi, Mahmoud; Korashy, Mostafa; Ahmed, Ali H.; Cheng, Ng Yoke; Hernandez, Evelyng; Abdel-Latif, Salma M.

    2017-11-01

    Plant aliveness is proven through laboratory experiments and special scientific instruments. We aim to detect the degree of animation of plants based on the magnification of the small color changes in the plant's green leaves using the Eulerian video magnification. Capturing the video under a controlled environment, e.g., using a tripod and direct current light sources, reduces camera movements and minimizes light fluctuations; we aim to reduce the external factors as much as possible. The acquired video is then stabilized and a proposed algorithm is used to reduce the illumination variations. Finally, the Euler magnification is utilized to magnify the color changes on the light invariant video. The proposed system does not require any special purpose instruments as it uses a digital camera with a regular frame rate. The results of magnified color changes on both natural and plastic leaves show that the live green leaves have color changes in contrast to the plastic leaves. Hence, we can argue that the color changes of the leaves are due to biological operations, such as photosynthesis. To date, this is possibly the first work that focuses on interpreting visually, some biological operations of plants without any special purpose instruments.

  6. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  7. HST PSF simulation using Tiny Tim

    NASA Technical Reports Server (NTRS)

    Krist, J. E.

    1992-01-01

    Tiny Tim is a program which simulates Hubble Space Telescope imaging camera PSF's. It is portable (written and distributed in C) and is reasonably fast. It can model the WFPC, WFPC 2, FOC, and COSTAR corrected FOC cameras. In addition to aberrations such as defocus and spherical, it also includes WFPC obscuration shifting, mirror zonal error maps, and jitter. The program has been used at a number of sites for deconvolving HST images. Tiny Tim is available via anonymous ftp on stsci.edu in the directory software/tinytim.

  8. Beach Observations using Quadcopter Imagery

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Chung; Wang, Hsing-Yu; Fang, Hui-Ming; Hsiao, Sung-Shan; Tsai, Cheng-Han

    2017-04-01

    Beaches are the places where the interaction of the land and sea takes place, and it is under the influence of many environmental factors, including meteorological and oceanic ones. To understand the evolution or changes of beaches, it may require constant monitoring. One way to monitor the beach changes is to use optical cameras. With careful placements of ground control points, land-based optical cameras, which are inexpensive compared to other remote sensing apparatuses, can be used to survey a relatively large area in a short time. For example, we have used terrestrial optical cameras incorporated with ground control points to monitor beaches. The images from the cameras were calibrated by applying the direct linear transformation, projective transformation, and Sobel edge detector to locate the shoreline. The terrestrial optical cameras can record the beach images continuous, and the shorelines can be satisfactorily identified. However, the terrestrial cameras have some limitations. First, the camera system set a sufficiently high level so that the camera can cover the whole area that is of interest; such a location may not be available. The second limitation is that objects in the image have a different resolution, depending on the distance of objects from the cameras. To overcome these limitations, the present study tested a quadcopter equipped with a down-looking camera to record video and still images of a beach. The quadcopter can be controlled to hover at one location. However, the hovering of the quadcopter can be affected by the wind, since it is not positively anchored to a structure. Although the quadcopter has a gimbal mechanism to damp out tiny shakings of the copter, it will not completely counter movements due to the wind. In our preliminary tests, we have flown the quadcopter up to 500 m high to record 10-minnte video. We then took a 10-minute average of the video data. The averaged image of the coast was blurred because of the time duration of the video and the small movement caused by the quadcopter trying to return to its original position, which is caused by the wind. To solve this problem, the feature detection technique of Speeded Up Robust Features (SURF) method was used on the image of the video, and the resulting image was much sharper than that original image. Next, we extracted the maximum and minimum of RGB value of each pixel, respectively, of the 10-minutes videos. The beach breaker zone showed up in the maximum RGB image as white color areas. Moreover, we were also able to remove the breaker from the images and see the breaker zone bottom features using minimum RGB value of the images. From this test, we also identified the location of the coastline. It was found that the correlation coefficient between the coastline identified by the copter image and that by the ground survey was as high as 0.98. By repeating this copter flight at different times, we could measure the evolution of the coastline.

  9. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 3 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 6 and 7. The activities from other flight days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). Flight day 6 features a very complicated EVA (extravehicular activity) to service the HST (Hubble Space Telescope). Astronauts Grunsfeld and Linnehan replace the HST's power control unit, disconnecting and reconnecting 36 tiny connectors. The procedure includes the HST's first ever power down. The cleanup of spilled water from the coollant system in Grunsfeld's suit is shown. The pistol grip tool, and two other space tools are also shown. On flight day 7, Newman and Massimino conduct an EVA. They replace the HST's FOC (Faint Object Camera) with the ACS (Advanced Camera for Surveys). The video ends with crew members playing in the shuttle's cabin with a model of the HST.

  10. Collapse of an antibubble

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Ji, Chen; Yuan, BaoGang; Ruan, XiaoDong; Fu, Xin

    2013-06-01

    In contrast to a soap bubble, an antibubble is a liquid globule surrounded by a thin film of air. The collapse behavior of an antibubble is studied using a high-speed video camera. It is found that the retraction velocity of the thin air film of antibubbles depends on the thickness of the air film, e, the surface tension coefficient σ, etc., and varies linearly with (σ/ρe)1/2, according to theoretical analysis and experimental observations. During the collapse of the antibubble, many tiny bubbles can be formed at the rim of the air film due to the Rayleigh instability. In most cases, a larger bubble will emerge finally, which holds most of the volume of the air film.

  11. Informative-frame filtering in endoscopy videos

    NASA Astrophysics Data System (ADS)

    An, Yong Hwan; Hwang, Sae; Oh, JungHwan; Lee, JeongKyu; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny

    2005-04-01

    Advances in video technology are being incorporated into today"s healthcare practice. For example, colonoscopy is an important screening tool for colorectal cancer. Colonoscopy allows for the inspection of the entire colon and provides the ability to perform a number of therapeutic operations during a single procedure. During a colonoscopic procedure, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the colon. The video data are displayed on a monitor for real-time analysis by the endoscopist. Other endoscopic procedures include upper gastrointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy, and laparoscopy. However, a significant number of out-of-focus frames are included in this type of videos since current endoscopes are equipped with a single, wide-angle lens that cannot be focused. The out-of-focus frames do not hold any useful information. To reduce the burdens of the further processes such as computer-aided image processing or human expert"s examinations, these frames need to be removed. We call an out-of-focus frame as non-informative frame and an in-focus frame as informative frame. We propose a new technique to classify the video frames into two classes, informative and non-informative frames using a combination of Discrete Fourier Transform (DFT), Texture Analysis, and K-Means Clustering. The proposed technique can evaluate the frames without any reference image, and does not need any predefined threshold value. Our experimental studies indicate that it achieves over 96% of four different performance metrics (i.e. precision, sensitivity, specificity, and accuracy).

  12. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  13. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  14. Assessment of the DoD Embedded Media Program

    DTIC Science & Technology

    2004-09-01

    Classified and Sensitive Information ................... VII-22 3. Weapons Systems Video, Gun Camera Video, and Lipstick Cameras...Weapons Systems Video, Gun Camera Video, and Lipstick Cameras A SECDEF and CJCS message to commanders stated, “Put in place mechanisms and processes...of public communication activities.”126 The 10 February 2003 PAG stated, “Use of lipstick and helmet-mounted cameras on combat sorties is approved

  15. Camera Control and Geo-Registration for Video Sensor Networks

    NASA Astrophysics Data System (ADS)

    Davis, James W.

    With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.

  16. Tested Demonstrations. Brownian Motion: A Classroom Demonstration and Student Experiment.

    ERIC Educational Resources Information Center

    Kirksey, H. Graden; Jones, Richard F.

    1988-01-01

    Shows how video recordings of the Brownian motion of tiny particles may be made. Describes a classroom demonstration and cites a reported experiment designed to show the random nature of Brownian motion. Suggests a student experiment to discover the distance a tiny particle travels as a function of time. (MVL)

  17. Evaluation of Suppression of Hydroprocessed Renewable Jet (HRJ) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    DTIC Science & Technology

    2011-07-01

    cameras were installed around the test pan and an underwater GoPro ® video camera recorded the fire from below the layer of fuel. 3.2.2. Camera Images...Distribution A: Approved for public release; distribution unlimited. 3.2.3. Video Images A GoPro video camera with a wide angle lens recorded the tests...camera and the GoPro ® video camera were not used for fire suppression experiments. 3.3.2. Test Pans Two ¼-in thick stainless steel test pans were

  18. Development of high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  19. Pinhole Cameras: For Science, Art, and Fun!

    ERIC Educational Resources Information Center

    Button, Clare

    2007-01-01

    A pinhole camera is a camera without a lens. A tiny hole replaces the lens, and light is allowed to come in for short amount of time by means of a hand-operated shutter. The pinhole allows only a very narrow beam of light to enter, which reduces confusion due to scattered light on the film. This results in an image that is focused, reversed, and…

  20. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  1. Bacteria turn a tiny gear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronson, Igor

    2009-01-01

    Thousands of tiny Bacillus subtillis bacteria turn a single gear, just 380 microns across. (A human hair is about 100 microns across.) The method could be used to create micro-machines. Argonne National Laboratory scientist Igor Aronson pioneered this technique. Read more at the New York Times: http://ow.ly/ODfI or at Argonne: http://ow.ly/ODfa Video courtesy Igor Aronson.

  2. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2012-01-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  3. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2011-12-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  4. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  5. Social Justice through Literacy: Integrating Digital Video Cameras in Reading Summaries and Responses

    ERIC Educational Resources Information Center

    Liu, Rong; Unger, John A.; Scullion, Vicki A.

    2014-01-01

    Drawing data from an action-oriented research project for integrating digital video cameras into the reading process in pre-college courses, this study proposes using digital video cameras in reading summaries and responses to promote critical thinking and to teach social justice concepts. The digital video research project is founded on…

  6. Leveraging traffic and surveillance video cameras for urban traffic.

    DOT National Transportation Integrated Search

    2014-12-01

    The objective of this project was to investigate the use of existing video resources, such as traffic : cameras, police cameras, red light cameras, and security cameras for the long-term, real-time : collection of traffic statistics. An additional ob...

  7. Close-range photogrammetry with video cameras

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  8. Close-Range Photogrammetry with Video Cameras

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  9. Instant Video Revisiting: The Video Camera as a "Tool of the Mind" for Young Children.

    ERIC Educational Resources Information Center

    Forman, George

    1999-01-01

    Once used only to record special events in the classroom, video cameras are now small enough and affordable enough to be used to document everyday events. Video cameras, with foldout screens, allow children to watch their activities immediately after they happen and to discuss them with a teacher. This article coins the term instant video…

  10. Nonchronological video synopsis and indexing.

    PubMed

    Pritch, Yael; Rav-Acha, Alex; Peleg, Shmuel

    2008-11-01

    The amount of captured video is growing with the increased numbers of video cameras, especially the increase of millions of surveillance cameras that operate 24 hours a day. Since video browsing and retrieval is time consuming, most captured video is never watched or examined. Video synopsis is an effective tool for browsing and indexing of such a video. It provides a short video representation, while preserving the essential activities of the original video. The activity in the video is condensed into a shorter period by simultaneously showing multiple activities, even when they originally occurred at different times. The synopsis video is also an index into the original video by pointing to the original time of each activity. Video Synopsis can be applied to create a synopsis of an endless video streams, as generated by webcams and by surveillance cameras. It can address queries like "Show in one minute the synopsis of this camera broadcast during the past day''. This process includes two major phases: (i) An online conversion of the endless video stream into a database of objects and activities (rather than frames). (ii) A response phase, generating the video synopsis as a response to the user's query.

  11. Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path

    PubMed Central

    Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki

    2017-01-01

    Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622

  12. The Surgeon's View: Comparison of Two Digital Video Recording Systems in Veterinary Surgery.

    PubMed

    Giusto, Gessica; Caramello, Vittorio; Comino, Francesco; Gandini, Marco

    2015-01-01

    Video recording and photography during surgical procedures are useful in veterinary medicine for several reasons, including legal, educational, and archival purposes. Many systems are available, such as hand cameras, light-mounted cameras, and head cameras. We chose a reasonably priced head camera that is among the smallest video cameras available. To best describe its possible uses and advantages, we recorded video and images of eight different surgical cases and procedures, both in hospital and field settings. All procedures were recorded both with a head-mounted camera and a commercial hand-held photo camera. Then sixteen volunteers (eight senior clinicians and eight final-year students) completed an evaluation questionnaire. Both cameras produced high-quality photographs and videos, but observers rated the head camera significantly better regarding point of view and their understanding of the surgical operation. The head camera was considered significantly more useful in teaching surgical procedures. Interestingly, senior clinicians tended to assign generally lower scores compared to students. The head camera we tested is an effective, easy-to-use tool for recording surgeries and various veterinary procedures in all situations, with no need for assistance from a dedicated operator. It can be a valuable aid for veterinarians working in all fields of the profession and a useful tool for veterinary surgical education.

  13. Feasibility Study of Utilization of Action Camera, GoPro Hero 4, Google Glass, and Panasonic HX-A100 in Spine Surgery.

    PubMed

    Lee, Chang Kyu; Kim, Youngjun; Lee, Nam; Kim, Byeongwoo; Kim, Doyoung; Yi, Seong

    2017-02-15

    Study for feasibility of commercially available action cameras in recording video of spine. Recent innovation of the wearable action camera with high-definition video recording enables surgeons to use camera in the operation at ease without high costs. The purpose of this study is to compare the feasibility, safety, and efficacy of commercially available action cameras in recording video of spine surgery. There are early reports of medical professionals using Google Glass throughout the hospital, Panasonic HX-A100 action camera, and GoPro. This study is the first report for spine surgery. Three commercially available cameras were tested: GoPro Hero 4 Silver, Google Glass, and Panasonic HX-A100 action camera. Typical spine surgery was selected for video recording; posterior lumbar laminectomy and fusion. Three cameras were used by one surgeon and video was recorded throughout the operation. The comparison was made on the perspective of human factor, specification, and video quality. The most convenient and lightweight device for wearing and holding throughout the long operation time was Google Glass. The image quality; all devices except Google Glass supported HD format and GoPro has unique 2.7K or 4K resolution. Quality of video resolution was best in GoPro. Field of view, GoPro can adjust point of interest, field of view according to the surgery. Narrow FOV option was the best for recording in GoPro to share the video clip. Google Glass has potentials by using application programs. Connectivity such as Wi-Fi and Bluetooth enables video streaming for audience, but only Google Glass has two-way communication feature in device. Action cameras have the potential to improve patient safety, operator comfort, and procedure efficiency in the field of spinal surgery and broadcasting a surgery with development of the device and applied program in the future. N/A.

  14. Millikan Movies

    NASA Astrophysics Data System (ADS)

    Zou, Xueli; Dietz, Eric; McGuire, Trevor; Fox, Louise; Norris, Tiara; Diamond, Brendan; Chavez, Ricardo; Cheng, Stephen

    2008-09-01

    Since Robert Millikan discovered the quantization of electric charge and measured its fundamental value over 90 years ago, his oil-drop experiment has become essential in physics laboratory classes at both the high school and college level. As physics instructors, however, many of us have used the traditional setup and experienced the tedium of collecting data and the frustration of students who obtain disappointing results for the charges on individual oil drops after two or three hours of hard work. Some novel approaches have been developed to make the data collection easier and more accurate. One method is to attach a CCD (charge coupled device) camera to the microscope of the traditional setup.1,2 Through the CCD camera, the motion of an oil drop can be displayed on a TV monitor and/or on a computer.2 This allows several students to view the image of a droplet simultaneously instead of taking turns squinting through the tiny microscope eyepiece on the traditional setup. Furthermore, the motion of an oil drop can be captured and analyzed using software such as VideoPoint,3 which enhances the accuracy of the measurement of the charge on each oil drop.2 While these innovative methods improve the convenience and efficiency with which data can be collected, an instructor has to invest a considerable amount of money and time so as to adapt the new techniques to his or her own classroom. In this paper, we will report on the QuickTime movies we made, which can be used to analyze the motions of 16 selected oil drops. These digital videos are available on the web4 for teachers to download and use with their own students. We will also share the procedure for analyzing the videos using Logger Pro,5 as well as our results for the charges on the oil drops and some pedagogical aspects of using the movies with students.

  15. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  16. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  17. Advanced High-Definition Video Cameras

    NASA Technical Reports Server (NTRS)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  18. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  19. Representing videos in tangible products

    NASA Astrophysics Data System (ADS)

    Fageth, Reiner; Weiting, Ralf

    2014-03-01

    Videos can be taken with nearly every camera, digital point and shoot cameras, DSLRs as well as smartphones and more and more with so-called action cameras mounted on sports devices. The implementation of videos while generating QR codes and relevant pictures out of the video stream via a software implementation was contents in last years' paper. This year we present first data about what contents is displayed and how the users represent their videos in printed products, e.g. CEWE PHOTOBOOKS and greeting cards. We report the share of the different video formats used, the number of images extracted out of the video in order to represent the video, the positions in the book and different design strategies compared to regular books.

  20. High-frame-rate infrared and visible cameras for test range instrumentation

    NASA Astrophysics Data System (ADS)

    Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1995-09-01

    Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.

  1. Clinical applications of commercially available video recording and monitoring systems: inexpensive, high-quality video recording and monitoring systems for endoscopy and microsurgery.

    PubMed

    Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko

    2006-01-01

    The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.

  2. Voss with video camera in Service Module

    NASA Image and Video Library

    2001-04-08

    ISS002-E-5329 (08 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, sets up a video camera on a mounting bracket in the Zvezda / Service Module of the International Space Station (ISS). A 35mm camera and a digital still camera are also visible nearby. This image was recorded with a digital still camera.

  3. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    DTIC Science & Technology

    2017-10-01

    ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT

  4. Reading Visual Braille with a Retinal Prosthesis

    PubMed Central

    Lauritzen, Thomas Z.; Harris, Jordan; Mohand-Said, Saddek; Sahel, Jose A.; Dorn, Jessy D.; McClure, Kelly; Greenberg, Robert J.

    2012-01-01

    Retinal prostheses, which restore partial vision to patients blinded by outer retinal degeneration, are currently in clinical trial. The Argus II retinal prosthesis system was recently awarded CE approval for commercial use in Europe. While retinal prosthesis users have achieved remarkable visual improvement to the point of reading letters and short sentences, the reading process is still fairly cumbersome. This study investigates the possibility of using an epiretinal prosthesis to stimulate visual braille as a sensory substitution for reading written letters and words. The Argus II retinal prosthesis system, used in this study, includes a 10 × 6 electrode array implanted epiretinally, a tiny video camera mounted on a pair of glasses, and a wearable computer that processes the video and determines the stimulation current of each electrode in real time. In the braille reading system, individual letters are created by a subset of dots from a 3 by 2 array of six dots. For the visual braille experiment, a grid of six electrodes was chosen out of the 10 × 6 Argus II array. Groups of these electrodes were then directly stimulated (bypassing the camera) to create visual percepts of individual braille letters. Experiments were performed in a single subject. Single letters were stimulated in an alternative forced choice (AFC) paradigm, and short 2–4-letter words were stimulated (one letter at a time) in an open-choice reading paradigm. The subject correctly identified 89% of single letters, 80% of 2-letter, 60% of 3-letter, and 70% of 4-letter words. This work suggests that text can successfully be stimulated and read as visual braille in retinal prosthesis patients. PMID:23189036

  5. Reading visual braille with a retinal prosthesis.

    PubMed

    Lauritzen, Thomas Z; Harris, Jordan; Mohand-Said, Saddek; Sahel, Jose A; Dorn, Jessy D; McClure, Kelly; Greenberg, Robert J

    2012-01-01

    Retinal prostheses, which restore partial vision to patients blinded by outer retinal degeneration, are currently in clinical trial. The Argus II retinal prosthesis system was recently awarded CE approval for commercial use in Europe. While retinal prosthesis users have achieved remarkable visual improvement to the point of reading letters and short sentences, the reading process is still fairly cumbersome. This study investigates the possibility of using an epiretinal prosthesis to stimulate visual braille as a sensory substitution for reading written letters and words. The Argus II retinal prosthesis system, used in this study, includes a 10 × 6 electrode array implanted epiretinally, a tiny video camera mounted on a pair of glasses, and a wearable computer that processes the video and determines the stimulation current of each electrode in real time. In the braille reading system, individual letters are created by a subset of dots from a 3 by 2 array of six dots. For the visual braille experiment, a grid of six electrodes was chosen out of the 10 × 6 Argus II array. Groups of these electrodes were then directly stimulated (bypassing the camera) to create visual percepts of individual braille letters. Experiments were performed in a single subject. Single letters were stimulated in an alternative forced choice (AFC) paradigm, and short 2-4-letter words were stimulated (one letter at a time) in an open-choice reading paradigm. The subject correctly identified 89% of single letters, 80% of 2-letter, 60% of 3-letter, and 70% of 4-letter words. This work suggests that text can successfully be stimulated and read as visual braille in retinal prosthesis patients.

  6. Blood detection in wireless capsule endoscopy using expectation maximization clustering

    NASA Astrophysics Data System (ADS)

    Hwang, Sae; Oh, JungHwan; Cox, Jay; Tang, Shou Jiang; Tibbals, Harry F.

    2006-03-01

    Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. Other endoscopies such as colonoscopy, upper gastrointestinal endoscopy, push enteroscopy, and intraoperative enteroscopy could be used to visualize up to the stomach, duodenum, colon, and terminal ileum, but there existed no method to view most of the small intestine without surgery. With the miniaturization of wireless and camera technologies came the ability to view the entire gestational track with little effort. A tiny disposable video capsule is swallowed, transmitting two images per second to a small data receiver worn by the patient on a belt. During an approximately 8-hour course, over 55,000 images are recorded to a worn device and then downloaded to a computer for later examination. Typically, a medical clinician spends more than two hours to analyze a WCE video. Research has been attempted to automatically find abnormal regions (especially bleeding) to reduce the time needed to analyze the videos. The manufacturers also provide the software tool to detect the bleeding called Suspected Blood Indicator (SBI), but its accuracy is not high enough to replace human examination. It was reported that the sensitivity and the specificity of SBI were about 72% and 85%, respectively. To address this problem, we propose a technique to detect the bleeding regions automatically utilizing the Expectation Maximization (EM) clustering algorithm. Our experimental results indicate that the proposed bleeding detection method achieves 92% and 98% of sensitivity and specificity, respectively.

  7. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.

    PubMed

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H

    2015-02-01

    Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.

  8. Design of a MATLAB(registered trademark) Image Comparison and Analysis Tool for Augmentation of the Results of the Ann Arbor Distortion Test

    DTIC Science & Technology

    2016-06-25

    The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was

  9. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    NASA Astrophysics Data System (ADS)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  10. Video sensor with range measurement capability

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Briscoe, Jeri M. (Inventor); Corder, Eric L. (Inventor); Broderick, David J. (Inventor)

    2008-01-01

    A video sensor device is provided which incorporates a rangefinder function. The device includes a single video camera and a fixed laser spaced a predetermined distance from the camera for, when activated, producing a laser beam. A diffractive optic element divides the beam so that multiple light spots are produced on a target object. A processor calculates the range to the object based on the known spacing and angles determined from the light spots on the video images produced by the camera.

  11. Video monitoring system for car seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A video monitoring system for use with a child car seat has video camera(s) mounted in the car seat. The video images are wirelessly transmitted to a remote receiver/display encased in a portable housing that can be removably mounted in the vehicle in which the car seat is installed.

  12. Burbank uses video camera during installation and routing of HRCS Video Cables

    NASA Image and Video Library

    2012-02-01

    ISS030-E-060104 (1 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses a video camera in the Destiny laboratory of the International Space Station during installation and routing of video cable for the High Rate Communication System (HRCS). HRCS will allow for two additional space-to-ground audio channels and two additional downlink video channels.

  13. Distributing digital video to multiple computers

    PubMed Central

    Murray, James A.

    2004-01-01

    Video is an effective teaching tool, and live video microscopy is especially helpful in teaching dissection techniques and the anatomy of small neural structures. Digital video equipment is more affordable now and allows easy conversion from older analog video devices. I here describe a simple technique for bringing digital video from one camera to all of the computers in a single room. This technique allows students to view and record the video from a single camera on a microscope. PMID:23493464

  14. Video segmentation and camera motion characterization using compressed data

    NASA Astrophysics Data System (ADS)

    Milanese, Ruggero; Deguillaume, Frederic; Jacot-Descombes, Alain

    1997-10-01

    We address the problem of automatically extracting visual indexes from videos, in order to provide sophisticated access methods to the contents of a video server. We focus on tow tasks, namely the decomposition of a video clip into uniform segments, and the characterization of each shot by camera motion parameters. For the first task we use a Bayesian classification approach to detecting scene cuts by analyzing motion vectors. For the second task a least- squares fitting procedure determines the pan/tilt/zoom camera parameters. In order to guarantee the highest processing speed, all techniques process and analyze directly MPEG-1 motion vectors, without need for video decompression. Experimental results are reported for a database of news video clips.

  15. Linear array of photodiodes to track a human speaker for video recording

    NASA Astrophysics Data System (ADS)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  16. An evaluation of video cameras for collecting observational data on sanctuary-housed chimpanzees (Pan troglodytes).

    PubMed

    Hansen, Bethany K; Fultz, Amy L; Hopper, Lydia M; Ross, Stephen R

    2018-05-01

    Video cameras are increasingly being used to monitor captive animals in zoo, laboratory, and agricultural settings. This technology may also be useful in sanctuaries with large and/or complex enclosures. However, the cost of camera equipment and a lack of formal evaluations regarding the use of cameras in sanctuary settings make it challenging for facilities to decide whether and how to implement this technology. To address this, we evaluated the feasibility of using a video camera system to monitor chimpanzees at Chimp Haven. We viewed a group of resident chimpanzees in a large forested enclosure and compared observations collected in person and with remote video cameras. We found that via camera, the observer viewed fewer chimpanzees in some outdoor locations (GLMM post hoc test: est. = 1.4503, SE = 0.1457, Z = 9.951, p < 0.001) and identified a lower proportion of chimpanzees (GLMM post hoc test: est. = -2.17914, SE = 0.08490, Z = -25.666, p < 0.001) compared to in-person observations. However, the observer could view the 2 ha enclosure 15 times faster by camera compared to in person. In addition to these results, we provide recommendations to animal facilities considering the installation of a video camera system. Despite some limitations of remote monitoring, we posit that there are substantial benefits of using camera systems in sanctuaries to facilitate animal care and observational research. © 2018 Wiley Periodicals, Inc.

  17. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  18. Camera network video summarization

    NASA Astrophysics Data System (ADS)

    Panda, Rameswar; Roy-Chowdhury, Amit K.

    2017-05-01

    Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.

  19. Bugs Don't Bug Us! A Live Action Video for Preschoolers [Videotape].

    ERIC Educational Resources Information Center

    Bo Peep Productions, Eureka, MT.

    This action video for children 2-7 years old introduces many of the most common invertebrates that share our world with us. Students can explore the tiny world of insects, spiders, and other invertebrates by seeing close up how these organisms move, eat, and carry on other daily functions. Also included are tips on how to stimulate conversation…

  20. A compact high-definition low-cost digital stereoscopic video camera for rapid robotic surgery development.

    PubMed

    Carlson, Jay; Kowalczuk, Jędrzej; Psota, Eric; Pérez, Lance C

    2012-01-01

    Robotic surgical platforms require vision feedback systems, which often consist of low-resolution, expensive, single-imager analog cameras. These systems are retooled for 3D display by simply doubling the cameras and outboard control units. Here, a fully-integrated digital stereoscopic video camera employing high-definition sensors and a class-compliant USB video interface is presented. This system can be used with low-cost PC hardware and consumer-level 3D displays for tele-medical surgical applications including military medical support, disaster relief, and space exploration.

  1. On-line content creation for photo products: understanding what the user wants

    NASA Astrophysics Data System (ADS)

    Fageth, Reiner

    2015-03-01

    This paper describes how videos can be implemented into printed photo books and greeting cards. We will show that - surprisingly or not- pictures from videos are similarly used such as classical images to tell compelling stories. Videos can be taken with nearly every camera, digital point and shoot cameras, DSLRs as well as smartphones and more and more with so-called action cameras mounted on sports devices. The implementation of videos while generating QR codes and relevant pictures out of the video stream via a software implementation was contents in last years' paper. This year we present first data about what contents is displayed and how the users represent their videos in printed products, e.g. CEWE PHOTOBOOKS and greeting cards. We report the share of the different video formats used.

  2. Feasibility study of transmission of OTV camera control information in the video vertical blanking interval

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1994-01-01

    The Operational Television system at Kennedy Space Center operates hundreds of video cameras, many remotely controllable, in support of the operations at the center. This study was undertaken to determine if commercial NABTS (North American Basic Teletext System) teletext transmission in the vertical blanking interval of the genlock signals distributed to the cameras could be used to send remote control commands to the cameras and the associated pan and tilt platforms. Wavelength division multiplexed fiberoptic links are being installed in the OTV system to obtain RS-250 short-haul quality. It was demonstrated that the NABTS transmission could be sent over the fiberoptic cable plant without excessive video quality degradation and that video cameras could be controlled using NABTS transmissions over multimode fiberoptic paths as long as 1.2 km.

  3. Rugged Video System For Inspecting Animal Burrows

    NASA Technical Reports Server (NTRS)

    Triandafils, Dick; Maples, Art; Breininger, Dave

    1992-01-01

    Video system designed for examining interiors of burrows of gopher tortoises, 5 in. (13 cm) in diameter or greater, to depth of 18 ft. (about 5.5 m), includes video camera, video cassette recorder (VCR), television monitor, control unit, and power supply, all carried in backpack. Polyvinyl chloride (PVC) poles used to maneuver camera into (and out of) burrows, stiff enough to push camera into burrow, but flexible enough to bend around curves. Adult tortoises and other burrow inhabitants observable, young tortoises and such small animals as mice obscured by sand or debris.

  4. Using a Video Camera to Measure the Radius of the Earth

    ERIC Educational Resources Information Center

    Carroll, Joshua; Hughes, Stephen

    2013-01-01

    A simple but accurate method for measuring the Earth's radius using a video camera is described. A video camera was used to capture a shadow rising up the wall of a tall building at sunset. A free program called ImageJ was used to measure the time it took the shadow to rise a known distance up the building. The time, distance and length of…

  5. Instrumentation for Infrared Airglow Clutter.

    DTIC Science & Technology

    1987-03-10

    gain, and filter position to the Camera Head, and monitors these parameters as well as preamp video. GAZER is equipped with a Lenzar wide angle, low...Specifications/Parameters VIDEO SENSOR: Camera ...... . LENZAR Intensicon-8 LLLTV using 2nd gen * micro-channel intensifier and proprietary camera tube

  6. Your Teeth

    MedlinePlus

    ... Safe Videos for Educators Search English Español Your Teeth KidsHealth / For Kids / Your Teeth What's in this ... help you talk. So let's talk teeth! Tiny Teeth Unlike your heart or brain, your teeth weren' ...

  7. Ranging Apparatus and Method Implementing Stereo Vision System

    NASA Technical Reports Server (NTRS)

    Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.

  8. Electronic cameras for low-light microscopy.

    PubMed

    Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith

    2013-01-01

    This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.

  9. Ground-based remote sensing with long lens video camera for upper-stem diameter and other tree crown measurements

    Treesearch

    Neil A. Clark; Sang-Mook Lee

    2004-01-01

    This paper demonstrates how a digital video camera with a long lens can be used with pulse laser ranging in order to collect very large-scale tree crown measurements. The long focal length of the camera lens provides the magnification required for precise viewing of distant points with the trade-off of spatial coverage. Multiple video frames are mosaicked into a single...

  10. The Camera Is Not a Methodology: Towards a Framework for Understanding Young Children's Use of Video Cameras

    ERIC Educational Resources Information Center

    Bird, Jo; Colliver, Yeshe; Edwards, Susan

    2014-01-01

    Participatory research methods argue that young children should be enabled to contribute their perspectives on research seeking to understand their worldviews. Visual research methods, including the use of still and video cameras with young children have been viewed as particularly suited to this aim because cameras have been considered easy and…

  11. Patterned Video Sensors For Low Vision

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1996-01-01

    Miniature video cameras containing photoreceptors arranged in prescribed non-Cartesian patterns to compensate partly for some visual defects proposed. Cameras, accompanied by (and possibly integrated with) miniature head-mounted video display units restore some visual function in humans whose visual fields reduced by defects like retinitis pigmentosa.

  12. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  13. Free-viewpoint video of human actors using multiple handheld Kinects.

    PubMed

    Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian

    2013-10-01

    We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.

  14. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+

    PubMed Central

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.

    2015-01-01

    Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851

  15. Data Mining and Information Technology: Its Impact on Intelligence Collection and Privacy Rights

    DTIC Science & Technology

    2007-11-26

    sources include: Cameras - Digital cameras (still and video ) have been improving in capability while simultaneously dropping in cost at a rate...citizen is caught on camera 300 times each day.5 The power of extensive video coverage is magnified greatly by the nascent capability for voice and...software on security videos and tracking cell phone usage in the local area. However, it would only return the names and data of those who

  16. Camera Operator and Videographer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  17. Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.

  18. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  19. Breast Cancer (For Kids)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Breast Cancer KidsHealth / For Kids / Breast Cancer What's in this ... for it when they are older. What Is Breast Cancer? The human body is made of tiny building ...

  20. 50 CFR 216.155 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... place 3 autonomous digital video cameras overlooking chosen haul-out sites located varying distances from the missile launch site. Each video camera will be set to record a focal subgroup within the... presence and activity will be conducted and recorded in a field logbook or recorded on digital video for...

  1. The calibration of video cameras for quantitative measurements

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Shortis, Mark R.

    1993-01-01

    Several different recent applications of velocimetry at Langley Research Center are described in order to show the need for video camera calibration for quantitative measurements. Problems peculiar to video sensing are discussed, including synchronization and timing, targeting, and lighting. The extension of the measurements to include radiometric estimates is addressed.

  2. Advancement of thyroid surgery video recording: A comparison between two full HD head mounted video cameras.

    PubMed

    Ortensi, Andrea; Panunzi, Andrea; Trombetta, Silvia; Cattaneo, Alberto; Sorrenti, Salvatore; D'Orazi, Valerio

    2017-05-01

    The aim of this study was to test two different video cameras and recording systems used in thyroid surgery in our Department. This is meant to be an attempt to record the real point of view of the magnified vision of surgeon, so as to make the viewer aware of the difference with the naked eye vision. In this retrospective study, we recorded and compared twenty thyroidectomies performed using loupes magnification and microsurgical technique: ten were recorded with GoPro ® 4 Session action cam (commercially available) and ten with our new prototype of head mounted video camera. Settings were selected before surgery for both cameras. The recording time is about from 1 to 2 h for GoPro ® and from 3 to 5 h for our prototype. The average time of preparation to fit the camera on the surgeon's head and set the functionality is about 5 min for GoPro ® and 7-8 min for the prototype, mostly due to HDMI wiring cable. Videos recorded with the prototype require no further editing, which is mandatory for videos recorded with GoPro ® to highlight the surgical details. the present study showed that our prototype of video camera, compared with GoPro ® 4 Session, guarantees best results in terms of surgical video recording quality, provides to the viewer the exact perspective of the microsurgeon and shows accurately his magnified view through the loupes in thyroid surgery. These recordings are surgical aids for teaching and education and might be a method of self-analysis of surgical technique. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. On the Complexity of Digital Video Cameras in/as Research: Perspectives and Agencements

    ERIC Educational Resources Information Center

    Bangou, Francis

    2014-01-01

    The goal of this article is to consider the potential for digital video cameras to produce as part of a research agencement. Our reflection will be guided by the current literature on the use of video recordings in research, as well as by the rhizoanalysis of two vignettes. The first of these vignettes is associated with a short video clip shot by…

  4. Virtual viewpoint synthesis in multi-view video system

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yang, Shiqiang

    2005-07-01

    In this paper, we present a virtual viewpoint video synthesis algorithm to satisfy the following three aims: low computing consuming; real time interpolation and acceptable video quality. In contrast with previous technologies, this method obtain incompletely 3D structure using neighbor video sources instead of getting total 3D information with all video sources, so that the computation is reduced greatly. So we demonstrate our interactive multi-view video synthesis algorithm in a personal computer. Furthermore, adopting the method of choosing feature points to build the correspondence between the frames captured by neighbor cameras, we need not require camera calibration. Finally, our method can be used when the angle between neighbor cameras is 25-30 degrees that it is much larger than common computer vision experiments. In this way, our method can be applied into many applications such as sports live, video conference, etc.

  5. Earth on the Horizon

    NASA Image and Video Library

    2004-03-13

    This is the first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit one hour before sunrise on the 63rd martian day, or sol, of its mission. Earth is the tiny white dot in the center. The image is a mosaic of images taken by the rover's navigation camera showing a broad view of the sky, and an image taken by the rover's panoramic camera of Earth. The contrast in the panoramic camera image was increased two times to make Earth easier to see. http://photojournal.jpl.nasa.gov/catalog/PIA05560

  6. Movable Cameras And Monitors For Viewing Telemanipulator

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Venema, Steven C.

    1993-01-01

    Three methods proposed to assist operator viewing telemanipulator on video monitor in control station when video image generated by movable video camera in remote workspace of telemanipulator. Monitors rotated or shifted and/or images in them transformed to adjust coordinate systems of scenes visible to operator according to motions of cameras and/or operator's preferences. Reduces operator's workload and probability of error by obviating need for mental transformations of coordinates during operation. Methods applied in outer space, undersea, in nuclear industry, in surgery, in entertainment, and in manufacturing.

  7. The High Definition Earth Viewing (HDEV) Payload

    NASA Technical Reports Server (NTRS)

    Muri, Paul; Runco, Susan; Fontanot, Carlos; Getteau, Chris

    2017-01-01

    The High Definition Earth Viewing (HDEV) payload enables long-term experimentation of four, commercial-of-the-shelf (COTS) high definition video, cameras mounted on the exterior of the International Space Station. The payload enables testing of cameras in the space environment. The HDEV cameras transmit imagery continuously to an encoder that then sends the video signal via Ethernet through the space station for downlink. The encoder, cameras, and other electronics are enclosed in a box pressurized to approximately one atmosphere, containing dry nitrogen, to provide a level of protection to the electronics from the space environment. The encoded video format supports streaming live video of Earth for viewing online. Camera sensor types include charge-coupled device and complementary metal-oxide semiconductor. Received imagery data is analyzed on the ground to evaluate camera sensor performance. Since payload deployment, minimal degradation to imagery quality has been observed. The HDEV payload continues to operate by live streaming and analyzing imagery. Results from the experiment reduce risk in the selection of cameras that could be considered for future use on the International Space Station and other spacecraft. This paper discusses the payload development, end-to- end architecture, experiment operation, resulting image analysis, and future work.

  8. An Automatic Portable Telecine Camera.

    DTIC Science & Technology

    1978-08-01

    five television frames to achieve synchronous operation, that is about 0.2 second. 6.3 Video recorder noise imnunity The synchronisation pulse separator...display is filmed by a modified 16 am cine camera driven by a control unit in which the camera supply voltage is derived from the field synchronisation ...pulses of the video signal. Automatic synchronisation of the camera mechanism is achieved over a wide range of television field frequencies and the

  9. Demonstrations of Optical Spectra with a Video Camera

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The use of a video camera may markedly improve demonstrations of optical spectra. First, the output electrical signal from the camera, which provides full information about a picture to be transmitted, can be used for observing the radiant power spectrum on the screen of a common oscilloscope. Second, increasing the magnification by the camera…

  10. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  11. Caught on Camera: Special Education Classrooms and Video Surveillance

    ERIC Educational Resources Information Center

    Heintzelman, Sara C.; Bathon, Justin M.

    2017-01-01

    In Texas, state policy anticipates that installing video cameras in special education classrooms will decrease student abuse inflicted by teachers. Lawmakers assume that collecting video footage will prevent teachers from engaging in malicious actions and prosecute those who choose to harm children. At the request of a parent, Section 29.022 of…

  12. University of Michigan lecture archiving and related activities of the U-M ATLAS Collaboratory Project

    NASA Astrophysics Data System (ADS)

    Herr, J.; Bhatnagar, T.; Goldfarb, S.; Irrer, J.; McKee, S.; Neal, H. A.

    2008-07-01

    Large scientific collaborations as well as universities have a growing need for multimedia archiving of meetings and courses. Collaborations need to disseminate training and news to their wide-ranging members, and universities seek to provide their students with more useful studying tools. The University of Michigan ATLAS Collaboratory Project has been involved in the recording and archiving of multimedia lectures since 1999. Our software and hardware architecture has been used to record events for CERN, ATLAS, many units inside the University of Michigan, Fermilab, the American Physical Society and the International Conference on Systems Biology at Harvard. Until 2006 our group functioned primarily as a tiny research/development team with special commitments to the archiving of certain ATLAS events. In 2006 we formed the MScribe project, using a larger scale, and highly automated recording system to record and archive eight University courses in a wide array of subjects. Several robotic carts are wheeled around campus by unskilled student helpers to automatically capture and post to the Web audio, video, slides and chalkboard images. The advances the MScribe project has made in automation of these processes, including a robotic camera operator and automated video processing, are now being used to record ATLAS Collaboration events, making them available more quickly than before and enabling the recording of more events.

  13. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2016-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.

  14. Robotic Vehicle Communications Interoperability

    DTIC Science & Technology

    1988-08-01

    starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor

  15. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  16. ACL reconstruction

    MedlinePlus

    ... Your hamstring are the muscles behind your knee. Tissue taken from a donor is called an allograft. The procedure is usually performed with the help of knee arthroscopy . With arthroscopy, a tiny camera is inserted into ... ligaments and other tissues of your knee. Your surgeon will make other ...

  17. GoPro Hero Cameras for Creation of a Three-Dimensional, Educational, Neurointerventional Video.

    PubMed

    Park, Min S; Brock, Andrea; Mortimer, Vance; Taussky, Philipp; Couldwell, William T; Quigley, Edward

    2017-10-01

    Neurointerventional education relies on an apprenticeship model, with the trainee observing and participating in procedures with the guidance of a mentor. While educational videos are becoming prevalent in surgical cases, there is a dearth of comparable educational material for trainees in neurointerventional programs. We sought to create a high-quality, three-dimensional video of a routine diagnostic cerebral angiogram for use as an educational tool. A diagnostic cerebral angiogram was recorded using two GoPro HERO 3+ cameras with the Dual HERO System to capture the proceduralist's hands during the case. This video was edited with recordings from the video monitors to create a real-time three-dimensional video of both the actions of the neurointerventionalist and the resulting wire/catheter movements. The final edited video, in either two or three dimensions, can serve as another instructional tool for the training of residents and/or fellows. Additional videos can be created in a similar fashion of more complicated neurointerventional cases. The GoPro HERO 3+ camera and Dual HERO System can be used to create educational videos of neurointerventional procedures.

  18. Still-Video Photography: Tomorrow's Electronic Cameras in the Hands of Today's Photojournalists.

    ERIC Educational Resources Information Center

    Foss, Kurt; Kahan, Robert S.

    This paper examines the still-video camera and its potential impact by looking at recent experiments and by gathering information from some of the few people knowledgeable about the new technology. The paper briefly traces the evolution of the tools and processes of still-video photography, examining how photographers and their work have been…

  19. A Portable Shoulder-Mounted Camera System for Surgical Education in Spine Surgery.

    PubMed

    Pham, Martin H; Ohiorhenuan, Ifije E; Patel, Neil N; Jakoi, Andre M; Hsieh, Patrick C; Acosta, Frank L; Wang, Jeffrey C; Liu, John C

    2017-02-07

    The past several years have demonstrated an increased recognition of operative videos as an important adjunct for resident education. Currently lacking, however, are effective methods to record video for the purposes of illustrating the techniques of minimally invasive (MIS) and complex spine surgery. We describe here our experiences developing and using a shoulder-mounted camera system for recording surgical video. Our requirements for an effective camera system included wireless portability to allow for movement around the operating room, camera mount location for comfort and loupes/headlight usage, battery life for long operative days, and sterile control of on/off recording. With this in mind, we created a shoulder-mounted camera system utilizing a GoPro™ HERO3+, its Smart Remote (GoPro, Inc., San Mateo, California), a high-capacity external battery pack, and a commercially available shoulder-mount harness. This shoulder-mounted system was more comfortable to wear for long periods of time in comparison to existing head-mounted and loupe-mounted systems. Without requiring any wired connections, the surgeon was free to move around the room as needed. Over the past several years, we have recorded numerous MIS and complex spine surgeries for the purposes of surgical video creation for resident education. Surgical videos serve as a platform to distribute important operative nuances in rich multimedia. Effective and practical camera system setups are needed to encourage the continued creation of videos to illustrate the surgical maneuvers in minimally invasive and complex spinal surgery. We describe here a novel portable shoulder-mounted camera system setup specifically designed to be worn and used for long periods of time in the operating room.

  20. Review of intelligent video surveillance with single camera

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Fan, Jiu-lun; Wang, DianWei

    2012-01-01

    Intelligent video surveillance has found a wide range of applications in public security. This paper describes the state-of- the-art techniques in video surveillance system with single camera. This can serve as a starting point for building practical video surveillance systems in developing regions, leveraging existing ubiquitous infrastructure. In addition, this paper discusses the gap between existing technologies and the requirements in real-world scenario, and proposes potential solutions to reduce this gap.

  1. Body worn camera

    NASA Astrophysics Data System (ADS)

    Aishwariya, A.; Pallavi Sudhir, Gulavani; Garg, Nemesa; Karthikeyan, B.

    2017-11-01

    A body worn camera is small video camera worn on the body, typically used by police officers to record arrests, evidence from crime scenes. It helps preventing and resolving complaints brought by members of the public; and strengthening police transparency, performance, and accountability. The main constants of this type of the system are video format, resolution, frames rate, and audio quality. This system records the video in .mp4 format with 1080p resolution and 30 frames per second. One more important aspect to while designing this system is amount of power the system requires as battery management becomes very critical. The main design challenges are Size of the Video, Audio for the video. Combining both audio and video and saving it in .mp4 format, Battery, size that is required for 8 hours of continuous recording, Security. For prototyping this system is implemented using Raspberry Pi model B.

  2. Evaluating video digitizer errors

    NASA Astrophysics Data System (ADS)

    Peterson, C.

    2016-01-01

    Analog output video cameras remain popular for recording meteor data. Although these cameras uniformly employ electronic detectors with fixed pixel arrays, the digitization process requires resampling the horizontal lines as they are output in order to reconstruct the pixel data, usually resulting in a new data array of different horizontal dimensions than the native sensor. Pixel timing is not provided by the camera, and must be reconstructed based on line sync information embedded in the analog video signal. Using a technique based on hot pixels, I present evidence that jitter, sync detection, and other timing errors introduce both position and intensity errors which are not present in cameras which internally digitize their sensors and output the digital data directly.

  3. State of the art in video system performance

    NASA Technical Reports Server (NTRS)

    Lewis, Michael J.

    1990-01-01

    The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.

  4. Beats: Video Monitors and Cameras.

    ERIC Educational Resources Information Center

    Worth, Frazier

    1996-01-01

    Presents a method to teach the concept of beats as a generalized phenomenon rather than teaching it only in the context of sound. Involves using a video camera to film a computer terminal, 16-mm projector, or TV monitor. (JRH)

  5. Modeling and Correcting the Time-Dependent ACS PSF

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie

    2006-01-01

    The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.

  6. Improving Photometric Calibration of Meteor Video Camera Systems.

    PubMed

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-09-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  7. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  8. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    PubMed Central

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753

  9. Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices.

    PubMed

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  10. Calibration of Action Cameras for Photogrammetric Purposes

    PubMed Central

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  11. Calibration of action cameras for photogrammetric purposes.

    PubMed

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-09-18

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  12. Audiovisual quality estimation of mobile phone video cameras with interpretation-based quality approach

    NASA Astrophysics Data System (ADS)

    Radun, Jenni E.; Virtanen, Toni; Olives, Jean-Luc; Vaahteranoksa, Mikko; Vuori, Tero; Nyman, Göte

    2007-01-01

    We present an effective method for comparing subjective audiovisual quality and the features related to the quality changes of different video cameras. Both quantitative estimation of overall quality and qualitative description of critical quality features are achieved by the method. The aim was to combine two image quality evaluation methods, the quantitative Absolute Category Rating (ACR) method with hidden reference removal and the qualitative Interpretation- Based Quality (IBQ) method in order to see how they complement each other in audiovisual quality estimation tasks. 26 observers estimated the audiovisual quality of six different cameras, mainly mobile phone video cameras. In order to achieve an efficient subjective estimation of audiovisual quality, only two contents with different quality requirements were recorded with each camera. The results show that the subjectively important quality features were more related to the overall estimations of cameras' visual video quality than to the features related to sound. The data demonstrated two significant quality dimensions related to visual quality: darkness and sharpness. We conclude that the qualitative methodology can complement quantitative quality estimations also with audiovisual material. The IBQ approach is valuable especially, when the induced quality changes are multidimensional.

  13. CVD2014-A Database for Evaluating No-Reference Video Quality Assessment Algorithms.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Vaahteranoksa, Mikko; Vuori, Tero; Oittinen, Pirkko; Hakkinen, Jukka

    2016-07-01

    In this paper, we present a new video database: CVD2014-Camera Video Database. In contrast to previous video databases, this database uses real cameras rather than introducing distortions via post-processing, which results in a complex distortion space in regard to the video acquisition process. CVD2014 contains a total of 234 videos that are recorded using 78 different cameras. Moreover, this database contains the observer-specific quality evaluation scores rather than only providing mean opinion scores. We have also collected open-ended quality descriptions that are provided by the observers. These descriptions were used to define the quality dimensions for the videos in CVD2014. The dimensions included sharpness, graininess, color balance, darkness, and jerkiness. At the end of this paper, a performance study of image and video quality algorithms for predicting the subjective video quality is reported. For this performance study, we proposed a new performance measure that accounts for observer variance. The performance study revealed that there is room for improvement regarding the video quality assessment algorithms. The CVD2014 video database has been made publicly available for the research community. All video sequences and corresponding subjective ratings can be obtained from the CVD2014 project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  14. Joint Video Stitching and Stabilization from Moving Cameras.

    PubMed

    Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef

    2016-09-08

    In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.

  15. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  16. Results of the IMO Video Meteor Network - June 2017, and effective collection area study

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Crivello, Stefano; Goncalves, Rui; Saraiva, Carlos; Stomeo, Enrico; Kac, Javor

    2017-12-01

    Over 18000 meteors were recorded by the IMO Video Meteor Network cameras during more than 7100 hours of observing time during 2017 June. The June Bootids were not detectable this year. Nearly 50 Daytime Arietids were recorded in 2017, and a first flux density profile for this shower in the optical domain is calculated, using video data from the period 2011-2017. Effective collection area of video cameras is discussed in more detail.

  17. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  18. NV-CMOS HD camera for day/night imaging

    NASA Astrophysics Data System (ADS)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  19. Fluorescence endoscopic video system

    NASA Astrophysics Data System (ADS)

    Papayan, G. V.; Kang, Uk

    2006-10-01

    This paper describes a fluorescence endoscopic video system intended for the diagnosis of diseases of the internal organs. The system operates on the basis of two-channel recording of the video fluxes from a fluorescence channel and a reflected-light channel by means of a high-sensitivity monochrome television camera and a color camera, respectively. Examples are given of the application of the device in gastroenterology.

  20. A multiple camera tongue switch for a child with severe spastic quadriplegic cerebral palsy.

    PubMed

    Leung, Brian; Chau, Tom

    2010-01-01

    The present study proposed a video-based access technology that facilitated a non-contact tongue protrusion access modality for a 7-year-old boy with severe spastic quadriplegic cerebral palsy (GMFCS level 5). The proposed system featured a centre camera and two peripheral cameras to extend coverage of the frontal face view of this user for longer durations. The child participated in a descriptive case study. The participant underwent 3 months of tongue protrusion training while the multiple camera tongue switch prototype was being prepared. Later, the participant was brought back for five experiment sessions where he worked on a single-switch picture matching activity, using the multiple camera tongue switch prototype in a controlled environment. The multiple camera tongue switch achieved an average sensitivity of 82% and specificity of 80%. In three of the experiment sessions, the peripheral cameras were associated with most of the true positive switch activations. These activations would have been missed by a centre-camera-only setup. The study demonstrated proof-of-concept of a non-contact tongue access modality implemented by a video-based system involving three cameras and colour video processing.

  1. DETAIL VIEW OF A VIDEO CAMERA POSITIONED ALONG THE PERIMETER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF A VIDEO CAMERA POSITIONED ALONG THE PERIMETER OF THE MLP - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. Opportunistic traffic sensing using existing video sources (phase II).

    DOT National Transportation Integrated Search

    2017-02-01

    The purpose of the project reported on here was to investigate methods for automatic traffic sensing using traffic surveillance : cameras, red light cameras, and other permanent and pre-existing video sources. Success in this direction would potentia...

  3. Surgical video recording with a modified GoPro Hero 4 camera

    PubMed Central

    Lin, Lily Koo

    2016-01-01

    Background Surgical videography can provide analytical self-examination for the surgeon, teaching opportunities for trainees, and allow for surgical case presentations. This study examined if a modified GoPro Hero 4 camera with a 25 mm lens could prove to be a cost-effective method of surgical videography with enough detail for oculoplastic and strabismus surgery. Method The stock lens mount and lens were removed from a GoPro Hero 4 camera, and was refitted with a Peau Productions SuperMount and 25 mm lens. The modified GoPro Hero 4 camera was then fixed to an overhead surgical light. Results Camera settings were set to 1080p video resolution. The 25 mm lens allowed for nine times the magnification as the GoPro stock lens. There was no noticeable video distortion. The entire cost was less than 600 USD. Conclusion The adapted GoPro Hero 4 with a 25 mm lens allows for high-definition, cost-effective, portable video capture of oculoplastic and strabismus surgery. The 25 mm lens allows for detailed videography that can enhance surgical teaching and self-examination. PMID:26834455

  4. Surgical video recording with a modified GoPro Hero 4 camera.

    PubMed

    Lin, Lily Koo

    2016-01-01

    Surgical videography can provide analytical self-examination for the surgeon, teaching opportunities for trainees, and allow for surgical case presentations. This study examined if a modified GoPro Hero 4 camera with a 25 mm lens could prove to be a cost-effective method of surgical videography with enough detail for oculoplastic and strabismus surgery. The stock lens mount and lens were removed from a GoPro Hero 4 camera, and was refitted with a Peau Productions SuperMount and 25 mm lens. The modified GoPro Hero 4 camera was then fixed to an overhead surgical light. Camera settings were set to 1080p video resolution. The 25 mm lens allowed for nine times the magnification as the GoPro stock lens. There was no noticeable video distortion. The entire cost was less than 600 USD. The adapted GoPro Hero 4 with a 25 mm lens allows for high-definition, cost-effective, portable video capture of oculoplastic and strabismus surgery. The 25 mm lens allows for detailed videography that can enhance surgical teaching and self-examination.

  5. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  6. Video quality of 3G videophones for telephone cardiopulmonary resuscitation.

    PubMed

    Tränkler, Uwe; Hagen, Oddvar; Horsch, Alexander

    2008-01-01

    We simulated a cardiopulmonary resuscitation (CPR) scene with a manikin and used two 3G videophones on the caller's side to transmit video to a laptop PC. Five observers (two doctors with experience in emergency medicine and three paramedics) evaluated the video. They judged whether the manikin was breathing and whether they would give advice for CPR; they also graded the confidence of their decision-making. Breathing was only visible from certain orientations of the videophones, at distances below 150 cm with good illumination and a still background. Since the phones produced a degradation in colours and shadows, detection of breathing mainly depended on moving contours. Low camera positioning produced better results than having the camera high up. Darkness, shaking of the camera and a moving background made detection of breathing almost impossible. The video from the two 3G videophones that were tested was of sufficient quality for telephone CPR provided that camera orientation, distance, illumination and background were carefully chosen. Thus it seems possible to use 3G videophones for emergency calls involving CPR. However, further studies on the required video quality in different scenarios are necessary.

  7. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    NASA Astrophysics Data System (ADS)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  8. A teledentistry system for the second opinion.

    PubMed

    Gambino, Orazio; Lima, Fausto; Pirrone, Roberto; Ardizzone, Edoardo; Campisi, Giuseppina; di Fede, Olga

    2014-01-01

    In this paper we present a Teledentistry system aimed to the Second Opinion task. It make use of a particular camera called intra-oral camera, also called dental camera, in order to perform the photo shooting and real-time video of the inner part of the mouth. The pictures acquired by the Operator with such a device are sent to the Oral Medicine Expert (OME) by means of a current File Transfer Protocol (FTP) service and the real-time video is channeled into a video streaming thanks to the VideoLan client/server (VLC) application. It is composed by a HTML5 web-pages generated by PHP and allows to perform the Second Opinion both when Operator and OME are logged and when one of them is offline.

  9. DETAIL VIEW OF VIDEO CAMERA, MAIN FLOOR LEVEL, PLATFORM ESOUTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF VIDEO CAMERA, MAIN FLOOR LEVEL, PLATFORM E-SOUTH, HB-3, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. Optical stereo video signal processor

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    An otpical video signal processor is described which produces a two-dimensional cross-correlation in real time of images received by a stereo camera system. The optical image of each camera is projected on respective liquid crystal light valves. The images on the liquid crystal valves modulate light produced by an extended light source. This modulated light output becomes the two-dimensional cross-correlation when focused onto a video detector and is a function of the range of a target with respect to the stereo camera. Alternate embodiments utilize the two-dimensional cross-correlation to determine target movement and target identification.

  11. The Effects of Radiation on Imagery Sensors in Space

    NASA Technical Reports Server (NTRS)

    Mathis, Dylan

    2007-01-01

    Recent experience using high definition video on the International Space Station reveals camera pixel degradation due to particle radiation to be a much more significant problem with high definition cameras than with standard definition video. Although it may at first appear that increased pixel density on the imager is the logical explanation for this, the ISS implementations of high definition suggest a more complex causal and mediating factor mix. The degree of damage seems to vary from one type of camera to another, and this variation prompts a reconsideration of the possible factors in pixel loss, such as imager size, number of pixels, pixel aperture ratio, imager type (CCD or CMOS), method of error correction/concealment, and the method of compression used for recording or transmission. The problem of imager pixel loss due to particle radiation is not limited to out-of-atmosphere applications. Since particle radiation increases with altitude, it is not surprising to find anecdotal evidence that video cameras subject to many hours of airline travel show an increased incidence of pixel loss. This is even evident in some standard definition video applications, and pixel loss due to particle radiation only stands to become a more salient issue considering the continued diffusion of high definition video cameras in the marketplace.

  12. Head Lice (For Parents)

    MedlinePlus

    ... Videos for Educators Search English Español First Aid: Head Lice KidsHealth / For Parents / First Aid: Head Lice Print A head louse is a tiny, wingless ... Prevention! You can help protect your kids from head lice by teaching them to: avoid head-to-head ...

  13. The Automatically Triggered Video or Imaging Station (ATVIS): An Inexpensive Way to Catch Geomorphic Events on Camera

    NASA Astrophysics Data System (ADS)

    Wickert, A. D.

    2010-12-01

    To understand how single events can affect landscape change, we must catch the landscape in the act. Direct observations are rare and often dangerous. While video is a good alternative, commercially-available video systems for field installation cost 11,000, weigh ~100 pounds (45 kg), and shoot 640x480 pixel video at 4 frames per second. This is the same resolution as a cheap point-and-shoot camera, with a frame rate that is nearly an order of magnitude worse. To overcome these limitations of resolution, cost, and portability, I designed and built a new observation station. This system, called ATVIS (Automatically Triggered Video or Imaging Station), costs 450--500 and weighs about 15 pounds. It can take roughly 3 hours of 1280x720 pixel video, 6.5 hours of 640x480 video, or 98,000 1600x1200 pixel photos (one photo every 7 seconds for 8 days). The design calls for a simple Canon point-and-shoot camera fitted with custom firmware that allows 5V pulses through its USB cable to trigger it to take a picture or to initiate or stop video recording. These pulses are provided by a programmable microcontroller that can take input from either sensors or a data logger. The design is easily modifiable to a variety of camera and sensor types, and can also be used for continuous time-lapse imagery. We currently have prototypes set up at a gully near West Bijou Creek on the Colorado high plains and at tributaries to Marble Canyon in northern Arizona. Hopefully, a relatively inexpensive and portable system such as this will allow geomorphologists to supplement sensor networks with photo or video monitoring and allow them to see—and better quantify—the fantastic array of processes that modify landscapes as they unfold. Camera station set up at Badger Canyon, Arizona.Inset: view into box. Clockwise from bottom right: camera, microcontroller (blue), DC converter (red), solar charge controller, 12V battery. Materials and installation assistance courtesy of Ron Griffiths and the USGS Grand Canyon Monitoring and Research Center.

  14. A preliminary study to estimate contact rates between free-roaming domestic dogs using novel miniature cameras.

    PubMed

    Bombara, Courtenay B; Dürr, Salome; Machovsky-Capuska, Gabriel E; Jones, Peter W; Ward, Michael P

    2017-01-01

    Information on contacts between individuals within a population is crucial to inform disease control strategies, via parameterisation of disease spread models. In this study we investigated the use of dog-borne video cameras-in conjunction with global positioning systems (GPS) loggers-to both characterise dog-to-dog contacts and to estimate contact rates. We customized miniaturised video cameras, enclosed within 3D-printed plastic cases, and attached these to nylon dog collars. Using two 3400 mAh NCR lithium Li-ion batteries, cameras could record a maximum of 22 hr of continuous video footage. Together with a GPS logger, collars were attached to six free roaming domestic dogs (FRDDs) in two remote Indigenous communities in northern Australia. We recorded a total of 97 hr of video footage, ranging from 4.5 to 22 hr (mean 19.1) per dog, and observed a wide range of social behaviours. The majority (69%) of all observed interactions between community dogs involved direct physical contact. Direct contact behaviours included sniffing, licking, mouthing and play fighting. No contacts appeared to be aggressive, however multiple teeth baring incidents were observed during play fights. We identified a total of 153 contacts-equating to 8 to 147 contacts per dog per 24 hr-from the videos of the five dogs with camera data that could be analysed. These contacts were attributed to 42 unique dogs (range 1 to 19 per video) which could be identified (based on colour patterns and markings). Most dog activity was observed in urban (houses and roads) environments, but contacts were more common in bushland and beach environments. A variety of foraging behaviours were observed, included scavenging through rubbish and rolling on dead animal carcasses. Identified food consumed included chicken, raw bones, animal carcasses, rubbish, grass and cheese. For characterising contacts between FRDD, several benefits of analysing videos compared to GPS fixes alone were identified in this study, including visualisation of the nature of the contact between two dogs; and inclusion of a greater number of dogs in the study (which do not need to be wearing video or GPS collars). Some limitations identified included visualisation of contacts only during daylight hours; the camera lens being obscured on occasion by the dog's mandible or the dog resting on the camera; an insufficiently wide viewing angle (36°); battery life and robustness of the deployments; high costs of the deployment; and analysis of large volumes of often unsteady video footage. This study demonstrates that dog-borne video cameras, are a feasible technology for estimating and characterising contacts between FRDDs. Modifying camera specifications and developing new analytical methods will improve applicability of this technology for monitoring FRDD populations, providing insights into dog-to-dog contacts and therefore how disease might spread within these populations.

  15. Feasibility of Using Video Cameras for Automated Enforcement on Red-Light Running and Managed Lanes.

    DOT National Transportation Integrated Search

    2009-12-01

    The overall objective of this study is to evaluate the feasibility, effectiveness, legality, and public acceptance aspects of automated enforcement on red light running and high occupancy vehicle (HOV) occupancy requirement using video cameras in Nev...

  16. Brownian Movement and Avogadro's Number: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1988-01-01

    Reports an experimental procedure for studying Einstein's theory of Brownian movement using commercially available latex microspheres and a video camera. Describes how students can monitor sphere motions and determine Avogadro's number. Uses a black and white video camera, microscope, and TV. (ML)

  17. 67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST OF ASSISTANT LAUNCH CONDUCTOR PANEL SHOWN IN CA-133-1-A-66 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. The Use of Video-Tacheometric Technology for Documenting and Analysing Geometric Features of Objects

    NASA Astrophysics Data System (ADS)

    Woźniak, Marek; Świerczyńska, Ewa; Jastrzębski, Sławomir

    2015-12-01

    This paper analyzes selected aspects of the use of video-tacheometric technology for inventorying and documenting geometric features of objects. Data was collected with the use of the video-tacheometer Topcon Image Station IS-3 and the professional camera Canon EOS 5D Mark II. During the field work and the development of data the following experiments have been performed: multiple determination of the camera interior orientation parameters and distortion parameters of five lenses with different focal lengths, reflectorless measurements of profiles for the elevation and inventory of decorative surface wall of the building of Warsaw Ballet School. During the research the process of acquiring and integrating video-tacheometric data was analysed as well as the process of combining "point cloud" acquired by using video-tacheometer in the scanning process with independent photographs taken by a digital camera. On the basis of tests performed, utility of the use of video-tacheometric technology in geodetic surveys of geometrical features of buildings has been established.

  19. Application of PLZT electro-optical shutter to diaphragm of visible and mid-infrared cameras

    NASA Astrophysics Data System (ADS)

    Fukuyama, Yoshiyuki; Nishioka, Shunji; Chonan, Takao; Sugii, Masakatsu; Shirahata, Hiromichi

    1997-04-01

    Pb0.9La0.09(Zr0.65,Ti0.35)0.9775O3 9/65/35) commonly used as an electro-optical shutter exhibits large phase retardation with low applied voltage. This shutter features as follows; (1) high shutter speed, (2) wide optical transmittance, and (3) high optical density in 'OFF'-state. If the shutter is applied to a diaphragm of video-camera, it could protect its sensor from intense lights. We have tested the basic characteristics of the PLZT electro-optical shutter and resolved power of imaging. The ratio of optical transmittance at 'ON' and 'OFF'-states was 1.1 X 103. The response time of the PLZT shutter from 'ON'-state to 'OFF'-state was 10 micro second. MTF reduction when putting the PLZT shutter in from of the visible video- camera lens has been observed only with 12 percent at a spatial frequency of 38 cycles/mm which are sensor resolution of the video-camera. Moreover, we took the visible image of the Si-CCD video-camera. The He-Ne laser ghost image was observed at 'ON'-state. On the contrary, the ghost image was totally shut out at 'OFF'-state. From these teste, it has been found that the PLZT shutter is useful for the diaphragm of the visible video-camera. The measured optical transmittance of PLZT wafer with no antireflection coating was 78 percent over the range from 2 to 6 microns.

  20. Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2004-01-01

    We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

  1. User interface using a 3D model for video surveillance

    NASA Astrophysics Data System (ADS)

    Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru

    1998-02-01

    These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.

  2. Human silhouette matching based on moment invariants

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Chao; Qiu, Xian-Jie; Xia, Shi-Hong; Wang, Zhao-Qi

    2005-07-01

    This paper aims to apply the method of silhouette matching based on moment invariants to infer the human motion parameters from video sequences of single monocular uncalibrated camera. Currently, there are two ways of tracking human motion: Marker and Markerless. While a hybrid framework is introduced in this paper to recover the input video contents. A standard 3D motion database is built up by marker technique in advance. Given a video sequences, human silhouettes are extracted as well as the viewpoint information of the camera which would be utilized to project the standard 3D motion database onto the 2D one. Therefore, the video recovery problem is formulated as a matching issue of finding the most similar body pose in standard 2D library with the one in video image. The framework is applied to the special trampoline sport where we can obtain the complicated human motion parameters in the single camera video sequences, and a lot of experiments are demonstrated that this approach is feasible in the field of monocular video-based 3D motion reconstruction.

  3. Solid State Television Camera (CID)

    NASA Technical Reports Server (NTRS)

    Steele, D. W.; Green, W. T.

    1976-01-01

    The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.

  4. In-camera video-stream processing for bandwidth reduction in web inspection

    NASA Astrophysics Data System (ADS)

    Jullien, Graham A.; Li, QiuPing; Hajimowlana, S. Hossain; Morvay, J.; Conflitti, D.; Roberts, James W.; Doody, Brian C.

    1996-02-01

    Automated machine vision systems are now widely used for industrial inspection tasks where video-stream data information is taken in by the camera and then sent out to the inspection system for future processing. In this paper we describe a prototype system for on-line programming of arbitrary real-time video data stream bandwidth reduction algorithms; the output of the camera only contains information that has to be further processed by a host computer. The processing system is built into a DALSA CCD camera and uses a microcontroller interface to download bit-stream data to a XILINXTM FPGA. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The camera communicates to a host computer via an RS-232 link to the microcontroller. Static memory is used to both generate a FIFO interface for buffering defect burst data, and for off-line examination of defect detection data. In addition to providing arbitrary FPGA architectures, the internal program of the microcontroller can also be changed via the host computer and a ROM monitor. This paper describes a prototype system board, mounted inside a DALSA camera, and discusses some of the algorithms currently being implemented for web inspection applications.

  5. Feasibility of Using Video Camera for Automated Enforcement on Red-Light Running and Managed Lanes.

    DOT National Transportation Integrated Search

    2009-12-25

    The overall objective of this study is to evaluate the feasibility, effectiveness, legality, and public acceptance aspects of automated enforcement on red light running and HOV occupancy requirement using video cameras in Nevada. This objective was a...

  6. Preplanning and Evaluating Video Documentaries and Features.

    ERIC Educational Resources Information Center

    Maynard, Riley

    1997-01-01

    This article presents a ten-part pre-production outline and post-production evaluation that helps communications students more effectively improve video skills. Examines camera movement and motion, camera angle and perspective, lighting, audio, graphics, backgrounds and color, special effects, editing, transitions, and music. Provides a glossary…

  7. On the development of new SPMN diurnal video systems for daylight fireball monitoring

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.

    2008-09-01

    Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y Convenciones Ecológicas y Medioambientales (CIECEM, University of Huelva), in the environment of Doñana Natural Park (Huelva province). In this way, both stations, which are separated by a distance of 75 km, will work as a double video station system in order to provide trajectory and orbit information of mayor bolides and, thus, increase the chance of meteorite recovery in the Iberian Peninsula. The new diurnal SPMN video stations are endowed with different models of Mintron cameras (Mintron Enterprise Co., LTD). These are high-sensitivity devices that employ a colour 1/2" Sony interline transfer CCD image sensor. Aspherical lenses are attached to the video cameras in order to maximize image quality. However, the use of fast lenses is not a priority here: while most of our nocturnal cameras use f0.8 or f1.0 lenses in order to detect meteors as faint as magnitude +3, diurnal systems employ in most cases f1.4 to f2.0 lenses. Their focal length ranges from 3.8 to 12 mm to cover different atmospheric volumes. The cameras are arranged in such a way that the whole sky is monitored from every observing station. Figure 1. A daylight event recorded from Sevilla on May 26, 2008 at 4h30m05.4 +-0.1s UT. The way our diurnal video cameras work is similar to the operation of our nocturnal systems [1]. Thus, diurnal stations are automatically switched on and off at sunrise and sunset, respectively. The images taken at 25 fps and with a resolution of 720x576 pixels are continuously sent to PC computers through a video capture device. The computers run a software (UFOCapture, by SonotaCo, Japan) that automatically registers meteor trails and stores the corresponding video frames on hard disk. Besides, before the signal from the cameras reaches the computers, a video time inserter that employs a GPS device (KIWI-OSD, by PFD Systems) inserts time information on every video frame. This allows us to measure time in a precise way (about 0.01 sec.) along the whole fireball path. EPSC Abstracts, Vol. 3, EPSC2008-A-00319, 2008 European Planetary Science Congress, Author(s) 2008 However, one of the issues with respect to nocturnal observing stations is the high number of false detections as a consequence of several factors: higher activity of birds and insects, reflection of sunlight on planes and helicopters, etc. Sometimes some of these false events follow a pattern which is very similar to fireball trails, which makes absolutely necessary the use of a second station in order to discriminate between them. Other key issue is related to the passage of the Sun before the field of view of some of the cameras. In fact, special care is necessary with this to avoid any damage to the CCD sensor. Besides, depending on atmospheric conditions (dust or moisture, for instance), the Sun may saturate most of the video frame. To solve this, our automated system determines which camera is pointing towards the Sun at a given moment and disconnects it. As the cameras are endowed with autoiris lenses, its disconnection means that the optics is fully closed and, so, the CCD sensor is protected. This, of course, means that when this happens the atmospheric volume covered by the corresponding camera is not monitored. It must be also taken into account that, in general, operation temperatures are higher for diurnal cameras. This results in higher thermal noise and, so, poses some difficulties to the detection software. To minimize this effect, it is necessary to employ CCD video cameras with proper signal to noise ratio. Refrigeration of the CCD sensor with, for instance, a Peltier system, can also be considered. The astrometric reduction procedure is also somewhat different for daytime events: it requires that reference objects are located within the field of view of every camera in order to calibrate the corresponding images. This is done by allowing every camera to capture distant buildings that, by means of said calibration, would allow us to obtain the equatorial coordinates of the fireball along its path by measuring its corresponding X and Y positions on every video frame. Such calibration can be performed from stars positions measured from nocturnal images taken with the same cameras. Once made, if the cameras are not moved it is possible to estimate the equatorial coordinates of any future fireball event. We don't use any software for automatic astrometry of the images. This crucial step is made via direct measurements of the pixel position as in all our previous work. Then, from these astrometric measurements, our software estimates the atmospheric trajectory and radiant for each fireball ([10] to [13]). During 2007 and 2008 the SPMN has also setup other diurnal stations based on 1/3' progressive-scan CMOS sensors attached to modified wide-field lenses covering a 120x80 degrees FOV. They are placed in Andalusia: El Arenosillo (Huelva), La Mayora (Málaga) and Murtas (Granada). They have also night sensitivity thanks to a infrared cut filter (ICR) which enables the camera to perform well in both high and low light condition in colour as well as provide IR sensitive Black/White video at night. Conclusions First detections of daylight fireballs by CCD video camera are being achieved in the SPMN framework. Future expansion and set up of new observing stations is currently being planned. The future establishment of additional diurnal SPMN stations will allow an increase in the number of daytime fireballs detected. This will also increase our chance of meteorite recovery.

  8. Using remote underwater video to estimate freshwater fish species richness.

    PubMed

    Ebner, B C; Morgan, D L

    2013-05-01

    Species richness records from replicated deployments of baited remote underwater video stations (BRUVS) and unbaited remote underwater video stations (UBRUVS) in shallow (<1 m) and deep (>1 m) water were compared with those obtained from using fyke nets, gillnets and beach seines. Maximum species richness (14 species) was achieved through a combination of conventional netting and camera-based techniques. Chanos chanos was the only species not recorded on camera, whereas Lutjanus argentimaculatus, Selenotoca multifasciata and Gerres filamentosus were recorded on camera in all three waterholes but were not detected by netting. BRUVSs and UBRUVSs provided versatile techniques that were effective at a range of depths and microhabitats. It is concluded that cameras warrant application in aquatic areas of high conservation value with high visibility. Non-extractive video methods are particularly desirable where threatened species are a focus of monitoring or might be encountered as by-catch in net meshes. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  9. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.

    PubMed

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-06-24

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  10. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  11. An integrated port camera and display system for laparoscopy.

    PubMed

    Terry, Benjamin S; Ruppert, Austin D; Steinhaus, Kristen R; Schoen, Jonathan A; Rentschler, Mark E

    2010-05-01

    In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by integrating an inexpensive CMOS sensor and LED light source; and 3) enhances laparoscopic surgical procedures by mechanically coupling the camera, tool port, and liquid crystal display (LCD) screen to provide an on-patient visual display. The port camera video system was compared to two laparoscopic video systems: a standard resolution unit from Karl Storz (model 22220130) and a high definition unit from Stryker (model 1188HD). Brightness, contrast, hue, colorfulness, and sharpness were compared. The port camera video is superior to the Storz scope and approximately equivalent to the Stryker scope. An ex vivo study was conducted to measure the operative performance of the port camera. The results suggest that simulated tissue identification and biopsy acquisition with the port camera is as efficient as with a traditional laparoscopic system. The port camera was successfully used by a laparoscopic surgeon for exploratory surgery and liver biopsy during a porcine surgery, demonstrating initial surgical feasibility.

  12. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and Comparison with ISS-LIS and GLM

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Lang, Timothy J.; Leake, Skye; Runco, Mario, Jr.; Blakeslee, Richard J.

    2017-01-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how geo referenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration.

  13. Video cameras on wild birds.

    PubMed

    Rutz, Christian; Bluff, Lucas A; Weir, Alex A S; Kacelnik, Alex

    2007-11-02

    New Caledonian crows (Corvus moneduloides) are renowned for using tools for extractive foraging, but the ecological context of this unusual behavior is largely unknown. We developed miniaturized, animal-borne video cameras to record the undisturbed behavior and foraging ecology of wild, free-ranging crows. Our video recordings enabled an estimate of the species' natural foraging efficiency and revealed that tool use, and choice of tool materials, are more diverse than previously thought. Video tracking has potential for studying the behavior and ecology of many other bird species that are shy or live in inaccessible habitats.

  14. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition

    PubMed Central

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133

  15. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition.

    PubMed

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.

  16. Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views

    DTIC Science & Technology

    2014-11-10

    collected these datasets using different aircrafts. Erista 8 HL OctaCopter is a heavy-lift aerial platform capable of using high-resolution cinema ...is another high-resolution camera that is cinema grade and high quality, with the capability of capturing videos with 4K resolution at 30 frames per...292.58 Imaging Systems and Accessories Blackmagic Production Camera 4 Crowd Counting using 4K Cameras High resolution cinema grade digital video

  17. Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.

    1998-07-01

    This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).

  18. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2 and altitudes up to 50,000 ft (15.24 km). The digital video was used to determine the structural survivability of the debris in a real flight environment and quantify the aerodynamic trajectories of the debris.

  19. Evaluation of smart video for transit event detection : final report.

    DOT National Transportation Integrated Search

    2009-06-01

    Transit agencies are increasingly using video cameras to fight crime and terrorism. As the volume of video data increases, the existing digital video surveillance systems provide the infrastructure only to capture, store and distribute video, while l...

  20. Digital Video Cameras for Brainstorming and Outlining: The Process and Potential

    ERIC Educational Resources Information Center

    Unger, John A.; Scullion, Vicki A.

    2013-01-01

    This "Voices from the Field" paper presents methods and participant-exemplar data for integrating digital video cameras into the writing process across postsecondary literacy contexts. The methods and participant data are part of an ongoing action-based research project systematically designed to bring research and theory into practice…

  1. Studying medical communication with video vignettes: a randomized study on how variations in video-vignette introduction format and camera focus influence analogue patients' engagement.

    PubMed

    Visser, Leonie N C; Bol, Nadine; Hillen, Marij A; Verdam, Mathilde G E; de Haes, Hanneke C J M; van Weert, Julia C M; Smets, Ellen M A

    2018-01-19

    Video vignettes are used to test the effects of physicians' communication on patient outcomes. Methodological choices in video-vignette development may have far-stretching consequences for participants' engagement with the video, and thus the ecological validity of this design. To supplement the scant evidence in this field, this study tested how variations in video-vignette introduction format and camera focus influence participants' engagement with a video vignette showing a bad news consultation. Introduction format (A = audiovisual vs. B = written) and camera focus (1 = the physician only, 2 = the physician and the patient at neutral moments alternately, 3 = the physician and the patient at emotional moments alternately) were varied in a randomized 2 × 3 between-subjects design. One hundred eighty-one students were randomly assigned to watch one of the six resulting video-vignette conditions as so-called analogue patients, i.e., they were instructed to imagine themselves being in the video patient's situation. Four dimensions of self-reported engagement were assessed retrospectively. Emotional engagement was additionally measured by recording participants' electrodermal and cardiovascular activity continuously while watching. Analyses of variance were used to test the effects of introduction format, camera focus and their interaction. The audiovisual introduction induced a stronger blood pressure response during watching the introduction (p = 0.048, [Formula: see text]= 0.05) and the consultation part of the vignette (p = 0.051, [Formula: see text]= 0.05), when compared to the written introduction. With respect to camera focus, results revealed that the variant focusing on the patient at emotional moments evoked a higher level of electrodermal activity (p = 0.003, [Formula: see text]= 0.06), when compared to the other two variants. Furthermore, an interaction effect was shown on self-reported emotional engagement (p = 0.045, [Formula: see text]= 0.04): the physician-only variant resulted in lower emotional engagement if the vignette was preceded by the audiovisual introduction. No effects were shown on the other dimensions of self-reported engagement. Our findings imply that using an audiovisual introduction combined with alternating camera focus depicting patient's emotions results in the highest levels of emotional engagement in analogue patients. This evidence can inform methodological decisions during the development of video vignettes, and thereby enhance the ecological validity of future video-vignettes studies.

  2. Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects

    DOEpatents

    Lu, Shin-Yee

    1998-01-01

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.

  3. Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects

    DOEpatents

    Lu, S.Y.

    1998-12-22

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.

  4. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  5. An integrated multispectral video and environmental monitoring system for the study of coastal processes and the support of beach management operations

    NASA Astrophysics Data System (ADS)

    Ghionis, George; Trygonis, Vassilis; Karydis, Antonis; Vousdoukas, Michalis; Alexandrakis, George; Drakopoulos, Panos; Amdreadis, Olympos; Psarros, Fotis; Velegrakis, Antonis; Poulos, Serafim

    2016-04-01

    Effective beach management requires environmental assessments that are based on sound science, are cost-effective and are available to beach users and managers in an accessible, timely and transparent manner. The most common problems are: 1) The available field data are scarce and of sub-optimal spatio-temporal resolution and coverage, 2) our understanding of local beach processes needs to be improved in order to accurately model/forecast beach dynamics under a changing climate, and 3) the information provided by coastal scientists/engineers in the form of data, models and scientific interpretation is often too complicated to be of direct use by coastal managers/decision makers. A multispectral video system has been developed, consisting of one or more video cameras operating in the visible part of the spectrum, a passive near-infrared (NIR) camera, an active NIR camera system, a thermal infrared camera and a spherical video camera, coupled with innovative image processing algorithms and a telemetric system for the monitoring of coastal environmental parameters. The complete system has the capability to record, process and communicate (in quasi-real time) high frequency information on shoreline position, wave breaking zones, wave run-up, erosion hot spots along the shoreline, nearshore wave height, turbidity, underwater visibility, wind speed and direction, air and sea temperature, solar radiation, UV radiation, relative humidity, barometric pressure and rainfall. An innovative, remotely-controlled interactive visual monitoring system, based on the spherical video camera (with 360°field of view), combines the video streams from all cameras and can be used by beach managers to monitor (in real time) beach user numbers, flow activities and safety at beaches of high touristic value. The high resolution near infrared cameras permit 24-hour monitoring of beach processes, while the thermal camera provides information on beach sediment temperature and moisture, can detect upwelling in the nearshore zone, and enhances the safety of beach users. All data can be presented in real- or quasi-real time and are stored for future analysis and training/validation of coastal processes models. Acknowledgements: This work was supported by the project BEACHTOUR (11SYN-8-1466) of the Operational Program "Cooperation 2011, Competitiveness and Entrepreneurship", co-funded by the European Regional Development Fund and the Greek Ministry of Education and Religious Affairs.

  6. First results of the multi-purpose real-time processing video camera system on the Wendelstein 7-X stellarator and implications for future devices

    NASA Astrophysics Data System (ADS)

    Zoletnik, S.; Biedermann, C.; Cseh, G.; Kocsis, G.; König, R.; Szabolics, T.; Szepesi, T.; Wendelstein 7-X Team

    2018-01-01

    A special video camera has been developed for the 10-camera overview video system of the Wendelstein 7-X (W7-X) stellarator considering multiple application needs and limitations resulting from this complex long-pulse superconducting stellarator experiment. The event detection intelligent camera (EDICAM) uses a special 1.3 Mpixel CMOS sensor with non-destructive read capability which enables fast monitoring of smaller Regions of Interest (ROIs) even during long exposures. The camera can perform simple data evaluation algorithms (minimum/maximum, mean comparison to levels) on the ROI data which can dynamically change the readout process and generate output signals. Multiple EDICAM cameras were operated in the first campaign of W7-X and capabilities were explored in the real environment. Data prove that the camera can be used for taking long exposure (10-100 ms) overview images of the plasma while sub-ms monitoring and even multi-camera correlated edge plasma turbulence measurements of smaller areas can be done in parallel. These latter revealed that filamentary turbulence structures extend between neighboring modules of the stellarator. Considerations emerging for future upgrades of this system and similar setups on future long-pulse fusion experiments such as ITER are discussed.

  7. Coordinating High-Resolution Traffic Cameras : Developing Intelligent, Collaborating Cameras for Transportation Security and Communications

    DOT National Transportation Integrated Search

    2015-08-01

    Cameras are used prolifically to monitor transportation incidents, infrastructure, and congestion. Traditional camera systems often require human monitoring and only offer low-resolution video. Researchers for the Exploratory Advanced Research (EAR) ...

  8. Thermoelastic Analysis of Hyper-X Camera Windows Suddenly Exposed to Mach 7 Stagnation Aerothermal Shock

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie

    2000-01-01

    To visually record the initial free flight event of the Hyper-X research flight vehicle immediately after separation from the Pegasus(registered) booster rocket, a video camera was mounted on the bulkhead of the adapter through which Hyper-X rides on Pegasus. The video camera was shielded by a protecting camera window made of heat-resistant quartz material. When Hyper-X separates from Pegasus, this camera window will be suddenly exposed to Mach 7 stagnation thermal shock and dynamic pressure loading (aerothermal loading). To examine the structural integrity, thermoelastic analysis was performed, and the stress distributions in the camera windows were calculated. The critical stress point where the tensile stress reaches a maximum value for each camera window was identified, and the maximum tensile stress level at that critical point was found to be considerably lower than the tensile failure stress of the camera window material.

  9. "Ipsilateral, high, single-hand, sideways"-Ruijin rule for camera assistant in uniportal video-assisted thoracoscopic surgery.

    PubMed

    Gao, Taotao; Xiang, Jie; Jin, Runsen; Zhang, Yajie; Wu, Han; Li, Hecheng

    2016-10-01

    Camera assistant plays a very important role in uniportal video-assisted thoracoscopic surgery (VATS), who acts as the eye of the surgeon, providing the VATS team with a stable and clear operating view. Thus, a good assistant should cooperate with surgeon and manipulate the camera expertly, to ensure eye-hand coordination. We have performed more than 100 uniportal VATS in the Department Of Thoracic Surgery in Ruijin Hospital. Based on our experiences, we summarized the method of holding camera, known as "ipsilateral, high, single-hand, sideways", which largely improves the comfort and fluency of surgery.

  10. Video Altimeter and Obstruction Detector for an Aircraft

    NASA Technical Reports Server (NTRS)

    Delgado, Frank J.; Abernathy, Michael F.; White, Janis; Dolson, William R.

    2013-01-01

    Video-based altimetric and obstruction detection systems for aircraft have been partially developed. The hardware of a system of this type includes a downward-looking video camera, a video digitizer, a Global Positioning System receiver or other means of measuring the aircraft velocity relative to the ground, a gyroscope based or other attitude-determination subsystem, and a computer running altimetric and/or obstruction-detection software. From the digitized video data, the altimetric software computes the pixel velocity in an appropriate part of the video image and the corresponding angular relative motion of the ground within the field of view of the camera. Then by use of trigonometric relationships among the aircraft velocity, the attitude of the camera, the angular relative motion, and the altitude, the software computes the altitude. The obstruction-detection software performs somewhat similar calculations as part of a larger task in which it uses the pixel velocity data from the entire video image to compute a depth map, which can be correlated with a terrain map, showing locations of potential obstructions. The depth map can be used as real-time hazard display and/or to update an obstruction database.

  11. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  12. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  13. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    PubMed

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  14. Using a Digital Video Camera to Study Motion

    ERIC Educational Resources Information Center

    Abisdris, Gil; Phaneuf, Alain

    2007-01-01

    To illustrate how a digital video camera can be used to analyze various types of motion, this simple activity analyzes the motion and measures the acceleration due to gravity of a basketball in free fall. Although many excellent commercially available data loggers and software can accomplish this task, this activity requires almost no financial…

  15. Using a digital video camera to examine coupled oscillations

    NASA Astrophysics Data System (ADS)

    Greczylo, T.; Debowska, E.

    2002-07-01

    In our previous paper (Debowska E, Jakubowicz S and Mazur Z 1999 Eur. J. Phys. 20 89-95), thanks to the use of an ultrasound distance sensor, experimental verification of the solution of Lagrange equations for longitudinal oscillations of the Wilberforce pendulum was shown. In this paper the sensor and a digital video camera were used to monitor and measure the changes of both the pendulum's coordinates (vertical displacement and angle of rotation) simultaneously. The experiments were performed with the aid of the integrated software package COACH 5. Fourier analysis in Microsoft^{\\circledR} Excel 97 was used to find normal modes in each case of the measured oscillations. Comparison of the results with those presented in our previous paper (as given above) leads to the conclusion that a digital video camera is a powerful tool for measuring coupled oscillations of a Wilberforce pendulum. The most important conclusion is that a video camera is able to do something more than merely register interesting physical phenomena - it can be used to perform measurements of physical quantities at an advanced level.

  16. ONR Workshop on Magnetohydrodynamic Submarine Propulsion (2nd), Held in San Diego, California on November 16-17, 1989

    DTIC Science & Technology

    1990-07-01

    electrohtic dissociation of the electrode mate- pedo applications seem to be still somewhat rial, and to provide a good gas evolution wlhich out of the...rod cathode. A unique feature of this preliminary experiment was the use of a prototype gated, intensified video camera. This camera is based on a...microprocessor controlled microchannel plate intensifier tube. The intensifier tube image is focused on a standard CCD video camera so that the object

  17. Encrypting Digital Camera with Automatic Encryption Key Deletion

    NASA Technical Reports Server (NTRS)

    Oakley, Ernest C. (Inventor)

    2007-01-01

    A digital video camera includes an image sensor capable of producing a frame of video data representing an image viewed by the sensor, an image memory for storing video data such as previously recorded frame data in a video frame location of the image memory, a read circuit for fetching the previously recorded frame data, an encryption circuit having an encryption key input connected to receive the previously recorded frame data from the read circuit as an encryption key, an un-encrypted data input connected to receive the frame of video data from the image sensor and an encrypted data output port, and a write circuit for writing a frame of encrypted video data received from the encrypted data output port of the encryption circuit to the memory and overwriting the video frame location storing the previously recorded frame data.

  18. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  19. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-08-24

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  20. A highly sensitive underwater video system for use in turbid aquaculture ponds

    NASA Astrophysics Data System (ADS)

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-08-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  1. Help for the Visually Impaired

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Low Vision Enhancement System (LVES) is a video headset that offers people with low vision a view of their surroundings equivalent to the image on a five-foot television screen four feet from the viewer. It will not make the blind see but for many people with low vision, it eases everyday activities such as reading, watching TV and shopping. LVES was developed over almost a decade of cooperation between Stennis Space Center, the Wilmer Eye Institute of the Johns Hopkins Medical Institutions, the Department of Veteran Affairs, and Visionics Corporation. With the aid of Stennis scientists, Wilmer researchers used NASA technology for computer processing of satellite images and head-mounted vision enhancement systems originally intended for the space station. The unit consists of a head-mounted video display, three video cameras, and a control unit for the cameras. The cameras feed images to the video display in the headset.

  2. A highly sensitive underwater video system for use in turbid aquaculture ponds

    PubMed Central

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  3. Thermal imagers: from ancient analog video output to state-of-the-art video streaming

    NASA Astrophysics Data System (ADS)

    Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry

    2013-06-01

    The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.

  4. Composite video and graphics display for multiple camera viewing system in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1991-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  5. Composite video and graphics display for camera viewing systems in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1993-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  6. Surgeon point-of-view recording: Using a high-definition head-mounted video camera in the operating room.

    PubMed

    Nair, Akshay Gopinathan; Kamal, Saurabh; Dave, Tarjani Vivek; Mishra, Kapil; Reddy, Harsha S; Della Rocca, David; Della Rocca, Robert C; Andron, Aleza; Jain, Vandana

    2015-10-01

    To study the utility of a commercially available small, portable ultra-high definition (HD) camera (GoPro Hero 4) for intraoperative recording. A head mount was used to fix the camera on the operating surgeon's head. Due care was taken to protect the patient's identity. The recorded video was subsequently edited and used as a teaching tool. This retrospective, noncomparative study was conducted at three tertiary eye care centers. The surgeries recorded were ptosis correction, ectropion correction, dacryocystorhinostomy, angular dermoid excision, enucleation, blepharoplasty and lid tear repair surgery (one each). The recorded videos were reviewed, edited, and checked for clarity, resolution, and reproducibility. The recorded videos were found to be high quality, which allowed for zooming and visualization of the surgical anatomy clearly. Minimal distortion is a drawback that can be effectively addressed during postproduction. The camera, owing to its lightweight and small size, can be mounted on the surgeon's head, thus offering a unique surgeon point-of-view. In our experience, the results were of good quality and reproducible. A head-mounted ultra-HD video recording system is a cheap, high quality, and unobtrusive technique to record surgery and can be a useful teaching tool in external facial and ophthalmic plastic surgery.

  7. Surgeon point-of-view recording: Using a high-definition head-mounted video camera in the operating room

    PubMed Central

    Nair, Akshay Gopinathan; Kamal, Saurabh; Dave, Tarjani Vivek; Mishra, Kapil; Reddy, Harsha S; Rocca, David Della; Rocca, Robert C Della; Andron, Aleza; Jain, Vandana

    2015-01-01

    Objective: To study the utility of a commercially available small, portable ultra-high definition (HD) camera (GoPro Hero 4) for intraoperative recording. Methods: A head mount was used to fix the camera on the operating surgeon's head. Due care was taken to protect the patient's identity. The recorded video was subsequently edited and used as a teaching tool. This retrospective, noncomparative study was conducted at three tertiary eye care centers. The surgeries recorded were ptosis correction, ectropion correction, dacryocystorhinostomy, angular dermoid excision, enucleation, blepharoplasty and lid tear repair surgery (one each). The recorded videos were reviewed, edited, and checked for clarity, resolution, and reproducibility. Results: The recorded videos were found to be high quality, which allowed for zooming and visualization of the surgical anatomy clearly. Minimal distortion is a drawback that can be effectively addressed during postproduction. The camera, owing to its lightweight and small size, can be mounted on the surgeon's head, thus offering a unique surgeon point-of-view. In our experience, the results were of good quality and reproducible. Conclusions: A head-mounted ultra-HD video recording system is a cheap, high quality, and unobtrusive technique to record surgery and can be a useful teaching tool in external facial and ophthalmic plastic surgery. PMID:26655001

  8. Economical Video Monitoring of Traffic

    NASA Technical Reports Server (NTRS)

    Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.

    1986-01-01

    Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.

  9. Real-Time Acquisition and Display of Data and Video

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Chakinarapu, Ramya; Garcia, Mario; Kar, Dulal; Nguyen, Tien

    2007-01-01

    This paper describes the development of a prototype that takes in an analog National Television System Committee (NTSC) video signal generated by a video camera and data acquired by a microcontroller and display them in real-time on a digital panel. An 8051 microcontroller is used to acquire power dissipation by the display panel, room temperature, and camera zoom level. The paper describes the major hardware components and shows how they are interfaced into a functional prototype. Test data results are presented and discussed.

  10. Explosive Transient Camera (ETC) Program

    DTIC Science & Technology

    1991-10-01

    VOLTAGES 4.- VIDEO OUT CCD CLOCKING UNIT UUPSTAIRS" ELECTRONICS AND ANALOG TO DIGITAL IPR OCECSSER I COMMANDS TO DATA AND STATUS INSTRUMENT INFORMATION I...and transmits digital video and status information to the "downstairs" system. The clocking unit and regulator/driver board are the only CCD dependent...A. 1001, " Video Cam-era’CC’" tandari Piells" (1(P’ll m-norartlum, unpublished). Condon,, J.J., Puckpan, M.A., and Vachalski, J. 1970, A. J., 9U, 1149

  11. In-Home Exposure Therapy for Veterans with PTSD

    DTIC Science & Technology

    2017-10-01

    telehealth (HBT; Veterans stay at home and meet with the therapist using the computer and video cameras), and (3) PE delivered in home, in person (IHIP... video cameras), and (3) PE delivered in home, in person (IHIP; the therapist comes to the Veterans’ homes for treatment). We will be checking to see...when providing treatment in homes and through home based video technology. BODY: Our focus in the past year (30 Sept 2016 – 10 Oct 2017) has been to

  12. Blinded evaluation of the effects of high definition and magnification on perceived image quality in laryngeal imaging.

    PubMed

    Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M

    2006-02-01

    Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.

  13. “Ipsilateral, high, single-hand, sideways”—Ruijin rule for camera assistant in uniportal video-assisted thoracoscopic surgery

    PubMed Central

    Gao, Taotao; Xiang, Jie; Jin, Runsen; Zhang, Yajie; Wu, Han

    2016-01-01

    Camera assistant plays a very important role in uniportal video-assisted thoracoscopic surgery (VATS), who acts as the eye of the surgeon, providing the VATS team with a stable and clear operating view. Thus, a good assistant should cooperate with surgeon and manipulate the camera expertly, to ensure eye-hand coordination. We have performed more than 100 uniportal VATS in the Department Of Thoracic Surgery in Ruijin Hospital. Based on our experiences, we summarized the method of holding camera, known as “ipsilateral, high, single-hand, sideways”, which largely improves the comfort and fluency of surgery. PMID:27867573

  14. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles

    PubMed Central

    Yoon, Hyungchul; Hoskere, Vedhus; Park, Jong-Woong; Spencer, Billie F.

    2017-01-01

    Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach. PMID:28891985

  15. Using Video Self-Analysis to Improve the "Withitness" of Student Teachers

    ERIC Educational Resources Information Center

    Snoeyink, Rick

    2010-01-01

    Although video self-analysis has been used for years in teacher education, the camera has almost always focused on the preservice teacher. In this study, the researcher videotaped eight preservice teachers four times each during their student-teaching internships. One camera was focused on them while another was focused on their students. Their…

  16. Lights, Camera, Action! Using Video Recordings to Evaluate Teachers

    ERIC Educational Resources Information Center

    Petrilli, Michael J.

    2011-01-01

    Teachers and their unions do not want test scores to count for everything; classroom observations are key, too. But planning a couple of visits from the principal is hardly sufficient. These visits may "change the teacher's behavior"; furthermore, principals may not be the best judges of effective teaching. So why not put video cameras in…

  17. Jack & the Video Camera

    ERIC Educational Resources Information Center

    Charlan, Nathan

    2010-01-01

    This article narrates how the use of video camera has transformed the life of Jack Williams, a 10-year-old boy from Colorado Springs, Colorado, who has autism. The way autism affected Jack was unique. For the first nine years of his life, Jack remained in his world, alone. Functionally non-verbal and with motor skill problems that affected his…

  18. 78 FR 17939 - Announcement of Funding Awards; Capital Fund Safety and Security Grants; Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... publishing the names, addresses, and amounts of the 18 awards made under the set aside in Appendix A to this... Security Camera Harrison Street, Oakland, CA Surveillance System 94612. including digital video recorders... Cameras, 50 Lincoln Plaza, Wilkes-Barre, Network Video PA 18702. Recorders, and Lighting. Ft. Worth...

  19. The California All-sky Meteor Surveillance (CAMS) System

    NASA Astrophysics Data System (ADS)

    Gural, P. S.

    2011-01-01

    A unique next generation multi-camera, multi-site video meteor system is being developed and deployed in California to provide high accuracy orbits of simultaneously captured meteors. Included herein is a description of the goals, concept of operations, hardware, and software development progress. An appendix contains a meteor camera performance trade study made for video systems circa 2010.

  20. Photometric Calibration of Consumer Video Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.

  1. A passive terahertz video camera based on lumped element kinetic inductance detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Sam, E-mail: sam.rowe@astro.cf.ac.uk; Pascale, Enzo; Doyle, Simon

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequencymore » domain multiplexing electronics.« less

  2. Standardized access, display, and retrieval of medical video

    NASA Astrophysics Data System (ADS)

    Bellaire, Gunter; Steines, Daniel; Graschew, Georgi; Thiel, Andreas; Bernarding, Johannes; Tolxdorff, Thomas; Schlag, Peter M.

    1999-05-01

    The system presented here enhances documentation and data- secured, second-opinion facilities by integrating video sequences into DICOM 3.0. We present an implementation for a medical video server extended by a DICOM interface. Security mechanisms conforming with DICOM are integrated to enable secure internet access. Digital video documents of diagnostic and therapeutic procedures should be examined regarding the clip length and size necessary for second opinion and manageable with today's hardware. Image sources relevant for this paper include 3D laparoscope, 3D surgical microscope, 3D open surgery camera, synthetic video, and monoscopic endoscopes, etc. The global DICOM video concept and three special workplaces of distinct applications are described. Additionally, an approach is presented to analyze the motion of the endoscopic camera for future automatic video-cutting. Digital stereoscopic video sequences are especially in demand for surgery . Therefore DSVS are also integrated into the DICOM video concept. Results are presented describing the suitability of stereoscopic display techniques for the operating room.

  3. Synchronization of video recording and laser pulses including background light suppression

    NASA Technical Reports Server (NTRS)

    Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)

    2004-01-01

    An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.

  4. Toward Dietary Assessment via Mobile Phone Video Cameras.

    PubMed

    Chen, Nicholas; Lee, Yun Young; Rabb, Maurice; Schatz, Bruce

    2010-11-13

    Reliable dietary assessment is a challenging yet essential task for determining general health. Existing efforts are manual, require considerable effort, and are prone to underestimation and misrepresentation of food intake. We propose leveraging mobile phones to make this process faster, easier and automatic. Using mobile phones with built-in video cameras, individuals capture short videos of their meals; our software then automatically analyzes the videos to recognize dishes and estimate calories. Preliminary experiments on 20 typical dishes from a local cafeteria show promising results. Our approach complements existing dietary assessment methods to help individuals better manage their diet to prevent obesity and other diet-related diseases.

  5. Astrometric and Photometric Analysis of the September 2008 ATV-1 Re-Entry Event

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Barker, Edwin S.; Maley, Paul D.; Beaulieu, Kevin R.; Stokely, Christopher L.

    2008-01-01

    NASA utilized Image Intensified Video Cameras for ATV data acquisition from a jet flying at 12.8 km. Afterwards the video was digitized and then analyzed with a modified commercial software package, Image Systems Trackeye. Astrometric results were limited by saturation, plate scale, and imposed linear plate solution based on field reference stars. Time-dependent fragment angular trajectories, velocities, accelerations, and luminosities were derived in each video segment. It was evident that individual fragments behave differently. Photometric accuracy was insufficient to confidently assess correlations between luminosity and fragment spatial behavior (velocity, deceleration). Use of high resolution digital video cameras in future should remedy this shortcoming.

  6. Secure Video Surveillance System Acquisition Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-12-04

    The SVSS Acquisition Software collects and displays video images from two cameras through a VPN, and store the images onto a collection controller. The software is configured to allow a user to enter a time window to display up to 2 1/2, hours of video review. The software collects images from the cameras at a rate of 1 image per second and automatically deletes images older than 3 hours. The software code operates in a linux environment and can be run in a virtual machine on Windows XP. The Sandia software integrates the different COTS software together to build themore » video review system.« less

  7. Scorebox extraction from mobile sports videos using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Kim, Wonjun; Park, Jimin; Kim, Changick

    2008-08-01

    Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.

  8. Intermediate view synthesis algorithm using mesh clustering for rectangular multiview camera system

    NASA Astrophysics Data System (ADS)

    Choi, Byeongho; Kim, Taewan; Oh, Kwan-Jung; Ho, Yo-Sung; Choi, Jong-Soo

    2010-02-01

    A multiview video-based three-dimensional (3-D) video system offers a realistic impression and a free view navigation to the user. The efficient compression and intermediate view synthesis are key technologies since 3-D video systems deal multiple views. We propose an intermediate view synthesis using a rectangular multiview camera system that is suitable to realize 3-D video systems. The rectangular multiview camera system not only can offer free view navigation both horizontally and vertically but also can employ three reference views such as left, right, and bottom for intermediate view synthesis. The proposed view synthesis method first represents the each reference view to meshes and then finds the best disparity for each mesh element by using the stereo matching between reference views. Before stereo matching, we separate the virtual image to be synthesized into several regions to enhance the accuracy of disparities. The mesh is classified into foreground and background groups by disparity values and then affine transformed. By experiments, we confirm that the proposed method synthesizes a high-quality image and is suitable for 3-D video systems.

  9. Visualizing the history of living spaces.

    PubMed

    Ivanov, Yuri; Wren, Christopher; Sorokin, Alexander; Kaur, Ishwinder

    2007-01-01

    The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular video cameras, while improving security, also violates privacy. On the other hand, motion sensors, while being privacy-conscious, typically do not provide enough information for a human operator to maintain the same degree of awareness about the space that can be achieved by using video cameras. We propose a novel approach in which we use a large number of simple motion sensors and a small set of video cameras to monitor a large office space. In our system we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office space occupied by 80 people for a period of about one year. The main problem in operating such systems is finding a way to present this highly multidimensional data, which includes both spatial and temporal components, to a human operator to allow browsing and searching recorded data in an efficient and intuitive way. In this paper we present our experiences and the solutions that we have developed in the course of our work on the system. We consider this work to be the first step in helping designers and managers of building systems gain access to information about occupants' behavior in the context of an entire building in a way that is only minimally intrusive to the occupants' privacy.

  10. Nyquist Sampling Theorem: Understanding the Illusion of a Spinning Wheel Captured with a Video Camera

    ERIC Educational Resources Information Center

    Levesque, Luc

    2014-01-01

    Inaccurate measurements occur regularly in data acquisition as a result of improper sampling times. An understanding of proper sampling times when collecting data with an analogue-to-digital converter or video camera is crucial in order to avoid anomalies. A proper choice of sampling times should be based on the Nyquist sampling theorem. If the…

  11. Very low cost real time histogram-based contrast enhancer utilizing fixed-point DSP processing

    NASA Astrophysics Data System (ADS)

    McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1998-03-01

    A real time contrast enhancement system utilizing histogram- based algorithms has been developed to operate on standard composite video signals. This low-cost DSP based system is designed with fixed-point algorithms and an off-chip look up table (LUT) to reduce the cost considerably over other contemporary approaches. This paper describes several real- time contrast enhancing systems advanced at the Sarnoff Corporation for high-speed visible and infrared cameras. The fixed-point enhancer was derived from these high performance cameras. The enhancer digitizes analog video and spatially subsamples the stream to qualify the scene's luminance. Simultaneously, the video is streamed through a LUT that has been programmed with the previous calculation. Reducing division operations by subsampling reduces calculation- cycles and also allows the processor to be used with cameras of nominal resolutions. All values are written to the LUT during blanking so no frames are lost. The enhancer measures 13 cm X 6.4 cm X 3.2 cm, operates off 9 VAC and consumes 12 W. This processor is small and inexpensive enough to be mounted with field deployed security cameras and can be used for surveillance, video forensics and real- time medical imaging.

  12. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    NASA Astrophysics Data System (ADS)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  13. Structural analysis of color video camera installation on tank 241AW101 (2 Volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strehlow, J.P.

    1994-08-24

    A video camera is planned to be installed on the radioactive storage tank 241AW101 at the DOE` s Hanford Site in Richland, Washington. The camera will occupy the 20 inch port of the Multiport Flange riser which is to be installed on riser 5B of the 241AW101 (3,5,10). The objective of the project reported herein was to perform a seismic analysis and evaluation of the structural components of the camera for a postulated Design Basis Earthquake (DBE) per the reference Structural Design Specification (SDS) document (6). The detail of supporting engineering calculations is documented in URS/Blume Calculation No. 66481-01-CA-03 (1).

  14. Streaming Audio and Video: New Challenges and Opportunities for Museums.

    ERIC Educational Resources Information Center

    Spadaccini, Jim

    Streaming audio and video present new challenges and opportunities for museums. Streaming media is easier to author and deliver to Internet audiences than ever before; digital video editing is commonplace now that the tools--computers, digital video cameras, and hard drives--are so affordable; the cost of serving video files across the Internet…

  15. PANSAT satellite deployment from STS-95 Discovery's payload bay

    NASA Image and Video Library

    1998-10-30

    STS095-E-5040 (30 Oct. 1998) --- PANSAT, a nonrecoverable satellite developed by the Naval Postgraduate School (NPS) in Monterey, California, is deployed from the cargo bay of the Earth-orbiting Space Shuttle Discovery. The small ball-shaped payload is basically a tiny telecommunications satellite. The photo was recorded with an electronic still camera (ESC) at 1:49:13 GMT, Oct. 30.

  16. An attentive multi-camera system

    NASA Astrophysics Data System (ADS)

    Napoletano, Paolo; Tisato, Francesco

    2014-03-01

    Intelligent multi-camera systems that integrate computer vision algorithms are not error free, and thus both false positive and negative detections need to be revised by a specialized human operator. Traditional multi-camera systems usually include a control center with a wall of monitors displaying videos from each camera of the network. Nevertheless, as the number of cameras increases, switching from a camera to another becomes hard for a human operator. In this work we propose a new method that dynamically selects and displays the content of a video camera from all the available contents in the multi-camera system. The proposed method is based on a computational model of human visual attention that integrates top-down and bottom-up cues. We believe that this is the first work that tries to use a model of human visual attention for the dynamic selection of the camera view of a multi-camera system. The proposed method has been experimented in a given scenario and has demonstrated its effectiveness with respect to the other methods and manually generated ground-truth. The effectiveness has been evaluated in terms of number of correct best-views generated by the method with respect to the camera views manually generated by a human operator.

  17. Study of atmospheric discharges caracteristics using with a standard video camera

    NASA Astrophysics Data System (ADS)

    Ferraz, E. C.; Saba, M. M. F.

    In this study is showed some preliminary statistics on lightning characteristics such as: flash multiplicity, number of ground contact points, formation of new and altered channels and presence of continuous current in the strokes that form the flash. The analysis is based on the images of a standard video camera (30 frames.s-1). The results obtained for some flashes will be compared to the images of a high-speed CCD camera (1000 frames.s-1). The camera observing site is located in São José dos Campos (23°S,46° W) at an altitude of 630m. This observational site has nearly 360° field of view at a height of 25m. It is possible to visualize distant thunderstorms occurring within a radius of 25km from the site. The room, situated over a metal structure, has water and power supplies, a telephone line and a small crane on the roof. KEY WORDS: Video images, Lightning, Multiplicity, Stroke.

  18. High definition in minimally invasive surgery: a review of methods for recording, editing, and distributing video.

    PubMed

    Kelly, Christopher R; Hogle, Nancy J; Landman, Jaime; Fowler, Dennis L

    2008-09-01

    The use of high-definition cameras and monitors during minimally invasive procedures can provide the surgeon and operating team with more than twice the resolution of standard definition systems. Although this dramatic improvement in visualization offers numerous advantages, the adoption of high definition cameras in the operating room can be challenging because new recording equipment must be purchased, and several new technologies are required to edit and distribute video. The purpose of this review article is to provide an overview of the popular methods for recording, editing, and distributing high-definition video. This article discusses the essential technical concepts of high-definition video, reviews the different kinds of equipment and methods most often used for recording, and describes several options for video distribution.

  19. HDR video synthesis for vision systems in dynamic scenes

    NASA Astrophysics Data System (ADS)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  20. The Lancashire telemedicine ambulance.

    PubMed

    Curry, G R; Harrop, N

    1998-01-01

    An emergency ambulance was equipped with three video-cameras and a system for transmitting slow-scan video-pictures through a cellular telephone link to a hospital accident and emergency department. Video-pictures were trasmitted at a resolution of 320 x 240 pixels and a frame rate of 15 pictures/min. In addition, a helmet-mounted camera was used with a wireless transmission link to the ambulance and thence the hospital. Speech was transmitted by a second hand-held cellular telephone. The equipment was installed in 1996-7 and video-recordings of actual ambulance journeys were made in July 1997. The technical feasibility of the telemedicine ambulance has been demonstrated and further clinical assessment is now in progress.

  1. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  2. Research on inosculation between master of ceremonies or players and virtual scene in virtual studio

    NASA Astrophysics Data System (ADS)

    Li, Zili; Zhu, Guangxi; Zhu, Yaoting

    2003-04-01

    A technical principle about construction of virtual studio has been proposed where orientation tracker and telemeter has been used for improving conventional BETACAM pickup camera and connecting with the software module of the host. A model of virtual camera named Camera & Post-camera Coupling Pair has been put forward, which is different from the common model in computer graphics and has been bound to real BETACAM pickup camera for shooting. The formula has been educed to compute the foreground frame buffer image and the background frame buffer image of the virtual scene whose boundary is based on the depth information of target point of the real BETACAM pickup camera's projective ray. The effect of real-time consistency has been achieved between the video image sequences of the master of ceremonies or players and the CG video image sequences for the virtual scene in spatial position, perspective relationship and image object masking. The experimental result has shown that the technological scheme of construction of virtual studio submitted in this paper is feasible and more applicative and more effective than the existing technology to establish a virtual studio based on color-key and image synthesis with background using non-linear video editing technique.

  3. Analysis of the color rendition of flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Murphy, Edward M.; Hegarty, Francis J.; McMahon, Barry P.; Boyle, Gerard

    2003-03-01

    Endoscopes are imaging devices routinely used for the diagnosis of disease within the human digestive tract. Light is transmitted into the body cavity via incoherent fibreoptic bundles and is controlled by a light feedback system. Fibreoptic endoscopes use coherent fibreoptic bundles to provide the clinician with an image. It is also possible to couple fibreoptic endoscopes to a clip-on video camera. Video endoscopes consist of a small CCD camera, which is inserted into gastrointestinal tract, and associated image processor to convert the signal to analogue RGB video signals. Images from both types of endoscope are displayed on standard video monitors. Diagnosis is dependent upon being able to determine changes in the structure and colour of tissues and biological fluids, and therefore is dependent upon the ability of the endoscope to reproduce the colour of these tissues and fluids with fidelity. This study investigates the colour reproduction of flexible optical and video endoscopes. Fibreoptic and video endoscopes alter image colour characteristics in different ways. The colour rendition of fibreoptic endoscopes was assessed by coupling them to a video camera and applying video colorimetric techniques. These techniques were then used on video endoscopes to assess how the colour rendition of video endoscopes compared with that of optical endoscopes. In both cases results were obtained at fixed illumination settings. Video endoscopes were then assessed with varying levels of illumination. Initial results show that at constant luminance endoscopy systems introduce non-linear shifts in colour. Techniques for examining how this colour shift varies with illumination intensity were developed and both methodology and results will be presented. We conclude that more rigorous quality assurance is required to reduce colour error and are developing calibration procedures applicable to medical endoscopes.

  4. A Taxonomy of Asynchronous Instructional Video Styles

    ERIC Educational Resources Information Center

    Chorianopoulos, Konstantinos

    2018-01-01

    Many educational organizations are employing instructional videos in their pedagogy, but there is a limited understanding of the possible video formats. In practice, the presentation format of instructional videos ranges from direct recording of classroom teaching with a stationary camera, or screencasts with voiceover, to highly elaborate video…

  5. Choreographing the Frame: A Critical Investigation into How Dance for the Camera Extends the Conceptual and Artistic Boundaries of Dance

    ERIC Educational Resources Information Center

    Preston, Hilary

    2006-01-01

    This essay investigates the collaboration between dance and choreographic practice and film/video medium in a contemporary context. By looking specifically at dance made for the camera and the proliferation of dance-film/video, critical issues will be explored that have surfaced in response to this burgeoning form. Presenting a view of avant-garde…

  6. Evaluation of commercial video-based intersection signal actuation systems.

    DOT National Transportation Integrated Search

    2008-12-01

    Video cameras and computer image processors have come into widespread use for the detection of : vehicles for signal actuation at controlled intersections. Video is considered both a cost-saving and : convenient alternative to conventional stop-line ...

  7. An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji

    2008-11-01

    We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.

  8. High-Speed Video Analysis in a Conceptual Physics Class

    NASA Astrophysics Data System (ADS)

    Desbien, Dwain M.

    2011-09-01

    The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software.2,3 Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting and also allows real-world situations to be analyzed. Many motions are too fast to easily be captured at the standard video frame rate of 30 frames per second (fps) employed by most video cameras. This paper will discuss using a consumer camera that can record high-frame-rate video in a college-level conceptual physics class. In particular this will involve the use of model rockets to determine the acceleration during the boost period right at launch and compare it to a simple model of the expected acceleration.

  9. Low cost thermal camera for use in preclinical detection of diabetic peripheral neuropathy in primary care setting

    NASA Astrophysics Data System (ADS)

    Joshi, V.; Manivannan, N.; Jarry, Z.; Carmichael, J.; Vahtel, M.; Zamora, G.; Calder, C.; Simon, J.; Burge, M.; Soliz, P.

    2018-02-01

    Diabetic peripheral neuropathy (DPN) accounts for around 73,000 lower-limb amputations annually in the US on patients with diabetes. Early detection of DPN is critical. Current clinical methods for diagnosing DPN are subjective and effective only at later stages. Until recently, thermal cameras used for medical imaging have been expensive and hence prohibitive to be installed in primary care setting. The objective of this study is to compare results from a low-cost thermal camera with a high-end thermal camera used in screening for DPN. Thermal imaging has demonstrated changes in microvascular function that correlates with nerve function affected by DPN. The limitations for using low-cost cameras for DPN imaging are: less resolution (active pixels), frame rate, thermal sensitivity etc. We integrated two FLIR Lepton (80x60 active pixels, 50° HFOV, thermal sensitivity < 50mK) as one unit. Right and left cameras record the videos of right and left foot respectively. A compactible embedded system (raspberry pi3 model Bv1.2) is used to configure the sensors, capture and stream the video via ethernet. The resulting video has 160x120 active pixels (8 frames/second). We compared the temperature measurement of feet obtained using low-cost camera against the gold standard highend FLIR SC305. Twelve subjects (aged 35-76) were recruited. Difference in the temperature measurements between cameras was calculated for each subject and the results show that the difference between the temperature measurements of two cameras (mean difference=0.4, p-value=0.2) is not statistically significant. We conclude that the low-cost thermal camera system shows potential for use in detecting early-signs of DPN in under-served and rural clinics.

  10. Development of the SEASIS instrument for SEDSAT

    NASA Technical Reports Server (NTRS)

    Maier, Mark W.

    1996-01-01

    Two SEASIS experiment objectives are key: take images that allow three axis attitude determination and take multi-spectral images of the earth. During the tether mission it is also desirable to capture images for the recoiling tether from the endmass perspective (which has never been observed). SEASIS must store all its imagery taken during the tether mission until the earth downlink can be established. SEASIS determines attitude with a panoramic camera and performs earth observation with a telephoto lens camera. Camera video is digitized, compressed, and stored in solid state memory. These objectives are addressed through the following architectural choices: (1) A camera system using a Panoramic Annular Lens (PAL). This lens has a 360 deg. azimuthal field of view by a +45 degree vertical field measured from a plan normal to the lens boresight axis. It has been shown in Mr. Mark Steadham's UAH M.S. thesis that his camera can determine three axis attitude anytime the earth and one other recognizable celestial object (for example, the sun) is in the field of view. This will be essentially all the time during tether deployment. (2) A second camera system using telephoto lens and filter wheel. The camera is a black and white standard video camera. The filters are chosen to cover the visible spectral bands of remote sensing interest. (3) A processor and mass memory arrangement linked to the cameras. Video signals from the cameras are digitized, compressed in the processor, and stored in a large static RAM bank. The processor is a multi-chip module consisting of a T800 Transputer and three Zoran floating point Digital Signal Processors. This processor module was supplied under ARPA contract by the Space Computer Corporation to demonstrate its use in space.

  11. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  12. System of launchable mesoscale robots for distributed sensing

    NASA Astrophysics Data System (ADS)

    Yesin, Kemal B.; Nelson, Bradley J.; Papanikolopoulos, Nikolaos P.; Voyles, Richard M.; Krantz, Donald G.

    1999-08-01

    A system of launchable miniature mobile robots with various sensors as payload is used for distributed sensing. The robots are projected to areas of interest either by a robot launcher or by a human operator using standard equipment. A wireless communication network is used to exchange information with the robots. Payloads such as a MEMS sensor for vibration detection, a microphone and an active video module are used mainly to detect humans. The video camera provides live images through a wireless video transmitter and a pan-tilt mechanism expands the effective field of view. There are strict restrictions on total volume and power consumption of the payloads due to the small size of the robot. Emerging technologies are used to address these restrictions. In this paper, we describe the use of microrobotic technologies to develop active vision modules for the mesoscale robot. A single chip CMOS video sensor is used along with a miniature lens that is approximately the size of a sugar cube. The device consumes 100 mW; about 5 times less than the power consumption of a comparable CCD camera. Miniature gearmotors 3 mm in diameter are used to drive the pan-tilt mechanism. A miniature video transmitter is used to transmit analog video signals from the camera.

  13. Application of robust face recognition in video surveillance systems

    NASA Astrophysics Data System (ADS)

    Zhang, De-xin; An, Peng; Zhang, Hao-xiang

    2018-03-01

    In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis (FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.

  14. Guerrilla Video: A New Protocol for Producing Classroom Video

    ERIC Educational Resources Information Center

    Fadde, Peter; Rich, Peter

    2010-01-01

    Contemporary changes in pedagogy point to the need for a higher level of video production value in most classroom video, replacing the default video protocol of an unattended camera in the back of the classroom. The rich and complex environment of today's classroom can be captured more fully using the higher level, but still easily manageable,…

  15. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  16. Versatile microsecond movie camera

    NASA Astrophysics Data System (ADS)

    Dreyfus, R. W.

    1980-03-01

    A laboratory-type movie camera is described which satisfies many requirements in the range 1 microsec to 1 sec. The camera consists of a He-Ne laser and compatible state-of-the-art components; the primary components are an acoustooptic modulator, an electromechanical beam deflector, and a video tape system. The present camera is distinct in its operation in that submicrosecond laser flashes freeze the image motion while still allowing the simplicity of electromechanical image deflection in the millisecond range. The gating and pulse delay circuits of an oscilloscope synchronize the modulator and scanner relative to the subject being photographed. The optical table construction and electronic control enhance the camera's versatility and adaptability. The instant replay video tape recording allows for easy synchronization and immediate viewing of the results. Economy is achieved by using off-the-shelf components, optical table construction, and short assembly time.

  17. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  18. The design of red-blue 3D video fusion system based on DM642

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  19. What are we missing? Advantages of more than one viewpoint to estimate fish assemblages using baited video

    PubMed Central

    Huveneers, Charlie; Fairweather, Peter G.

    2018-01-01

    Counting errors can bias assessments of species abundance and richness, which can affect assessments of stock structure, population structure and monitoring programmes. Many methods for studying ecology use fixed viewpoints (e.g. camera traps, underwater video), but there is little known about how this biases the data obtained. In the marine realm, most studies using baited underwater video, a common method for monitoring fish and nekton, have previously only assessed fishes using a single bait-facing viewpoint. To investigate the biases stemming from using fixed viewpoints, we added cameras to cover 360° views around the units. We found similar species richness for all observed viewpoints but the bait-facing viewpoint recorded the highest fish abundance. Sightings of infrequently seen and shy species increased with the additional cameras and the extra viewpoints allowed the abundance estimates of highly abundant schooling species to be up to 60% higher. We specifically recommend the use of additional cameras for studies focusing on shyer species or those particularly interested in increasing the sensitivity of the method by avoiding saturation in highly abundant species. Studies may also benefit from using additional cameras to focus observation on the downstream viewpoint. PMID:29892386

  20. 4K Video of Colorful Liquid in Space

    NASA Image and Video Library

    2015-10-09

    Once again, astronauts on the International Space Station dissolved an effervescent tablet in a floating ball of water, and captured images using a camera capable of recording four times the resolution of normal high-definition cameras. The higher resolution images and higher frame rate videos can reveal more information when used on science investigations, giving researchers a valuable new tool aboard the space station. This footage is one of the first of its kind. The cameras are being evaluated for capturing science data and vehicle operations by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama.

  1. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  2. Evaluation of a video image detection system : final report.

    DOT National Transportation Integrated Search

    1994-05-01

    A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...

  3. Spherical visual system for real-time virtual reality and surveillance

    NASA Astrophysics Data System (ADS)

    Chen, Su-Shing

    1998-12-01

    A spherical visual system has been developed for full field, web-based surveillance, virtual reality, and roundtable video conference. The hardware is a CycloVision parabolic lens mounted on a video camera. The software was developed at the University of Missouri-Columbia. The mathematical model is developed by Su-Shing Chen and Michael Penna in the 1980s. The parabolic image, capturing the full (360 degrees) hemispherical field (except the north pole) of view is transformed into the spherical model of Chen and Penna. In the spherical model, images are invariant under the rotation group and are easily mapped to the image plane tangent to any point on the sphere. The projected image is exactly what the usual camera produces at that angle. Thus a real-time full spherical field video camera is developed by using two pieces of parabolic lenses.

  4. Performance evaluation of a two detector camera for real-time video.

    PubMed

    Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo

    2016-12-20

    Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.

  5. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  6. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  7. Identifying sports videos using replay, text, and camera motion features

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; DeMenthon, Daniel; Doermann, David S.

    1999-12-01

    Automated classification of digital video is emerging as an important piece of the puzzle in the design of content management systems for digital libraries. The ability to classify videos into various classes such as sports, news, movies, or documentaries, increases the efficiency of indexing, browsing, and retrieval of video in large databases. In this paper, we discuss the extraction of features that enable identification of sports videos directly from the compressed domain of MPEG video. These features include detecting the presence of action replays, determining the amount of scene text in vide, and calculating various statistics on camera and/or object motion. The features are derived from the macroblock, motion,and bit-rate information that is readily accessible from MPEG video with very minimal decoding, leading to substantial gains in processing speeds. Full-decoding of selective frames is required only for text analysis. A decision tree classifier built using these features is able to identify sports clips with an accuracy of about 93 percent.

  8. Design and evaluation of controls for drift, video gain, and color balance in spaceborne facsimile cameras

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.; Kelly, W. L., IV; Rowland, C. W.; Burcher, E. E.

    1973-01-01

    The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system.

  9. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  10. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  11. Scene-aware joint global and local homographic video coding

    NASA Astrophysics Data System (ADS)

    Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.

    2016-09-01

    Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.

  12. Evaluation of lens distortion errors using an underwater camera system for video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Fletcher, Lauren; Klute, Glenn K.

    1994-01-01

    Video-based motion analysis systems are widely employed to study human movement, using computers to capture, store, process, and analyze video data. This data can be collected in any environment where cameras can be located. One of the NASA facilities where human performance research is conducted is the Weightless Environment Training Facility (WETF), a pool of water which simulates zero-gravity with neutral buoyance. Underwater video collection in the WETF poses some unique problems. This project evaluates the error caused by the lens distortion of the WETF cameras. A grid of points of known dimensions was constructed and videotaped using a video vault underwater system. Recorded images were played back on a VCR and a personal computer grabbed and stored the images on disk. These images were then digitized to give calculated coordinates for the grid points. Errors were calculated as the distance from the known coordinates of the points to the calculated coordinates. It was demonstrated that errors from lens distortion could be as high as 8 percent. By avoiding the outermost regions of a wide-angle lens, the error can be kept smaller.

  13. The effects of video compression on acceptability of images for monitoring life sciences' experiments

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Chuang, Sherry L.

    1993-01-01

    Current plans indicate that there will be a large number of life science experiments carried out during the thirty year-long mission of the Biological Flight Research Laboratory (BFRL) on board Space Station Freedom (SSF). Non-human life science experiments will be performed in the BFRL. Two distinct types of activities have already been identified for this facility: (1) collect, store, distribute, analyze and manage engineering and science data from the Habitats, Glovebox and Centrifuge, (2) perform a broad range of remote science activities in the Glovebox and Habitat chambers in conjunction with the remotely located principal investigator (PI). These activities require extensive video coverage, viewing and/or recording and distribution to video displays on board SSF and to the ground. This paper concentrates mainly on the second type of activity. Each of the two BFRL habitat racks are designed to be configurable for either six rodent habitats per rack, four plant habitats per rack, or a combination of the above. Two video cameras will be installed in each habitat with a spare attachment for a third camera when needed. Therefore, a video system that can accommodate up to 12-18 camera inputs per habitat rack must be considered.

  14. Development of a camera casing suited for cryogenic and vacuum applications

    NASA Astrophysics Data System (ADS)

    Delaquis, S. C.; Gornea, R.; Janos, S.; Lüthi, M.; von Rohr, Ch Rudolf; Schenk, M.; Vuilleumier, J.-L.

    2013-12-01

    We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Pictures taken by this cryo-camera while immersed in argon vapour and liquid nitrogen are presented. The cryo-camera can provide a live view inside cryogenic set-ups and allows to record video.

  15. Synchronizing A Stroboscope With A Video Camera

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Dismond, Harriet R.

    1993-01-01

    Circuit synchronizes flash of light from stroboscope with frame and field periods of video camera. Sync stripper sends vertical-synchronization signal to delay generator, which generates trigger signal. Flashlamp power supply accepts delayed trigger signal and sends pulse of power to flash lamp. Designed for use in making short-exposure images that "freeze" flow in wind tunnel. Also used for making longer-exposure images obtained by use of continuous intense illumination.

  16. Single-Fiber Optical Link For Video And Control

    NASA Technical Reports Server (NTRS)

    Galloway, F. Houston

    1993-01-01

    Single optical fiber carries control signals to remote television cameras and video signals from cameras. Fiber replaces multiconductor copper cable, with consequent reduction in size. Repeaters not needed. System works with either multimode- or single-mode fiber types. Nonmetallic fiber provides immunity to electromagnetic interference at suboptical frequencies and much less vulnerable to electronic eavesdropping and lightning strikes. Multigigahertz bandwidth more than adequate for high-resolution television signals.

  17. Video stroke assessment (VSA) project: design and production of a prototype system for the remote diagnosis of stroke

    NASA Astrophysics Data System (ADS)

    Urias, Adrian R.; Draghic, Nicole; Lui, Janet; Cho, Angie; Curtis, Calvin; Espinosa, Joseluis; Wottawa, Christopher; Wiesmann, William P.; Schwamm, Lee H.

    2005-04-01

    Stroke remains the third most frequent cause of death in the United States and the leading cause of disability in adults. Long-term effects of ischemic stroke can be mitigated by the opportune administration of Tissue Plasminogen Activator (t-PA); however, the decision regarding the appropriate use of this therapy is dependant on timely, effective neurological assessment by a trained specialist. The lack of available stroke expertise is a key barrier preventing frequent use of t-PA. We report here on the development of a prototype research system capable of performing a semi-automated neurological examination from an offsite location via the Internet and a Computed Tomography (CT) scanner to facilitate the diagnosis and treatment of acute stroke. The Video Stroke Assessment (VSA) System consists of a video camera, a camera mounting frame, and a computer with software and algorithms to collect, interpret, and store patient neurological responses to stimuli. The video camera is mounted on a mobility track in front of the patient; camera direction and zoom are remotely controlled on a graphical user interface (GUI) by the specialist. The VSA System also performs a partially-autonomous examination based on the NIH Stroke Scale (NIHSS). Various response data indicative of stroke are recorded, analyzed and transmitted in real time to the specialist. The VSA provides unbiased, quantitative results for most categories of the NIHSS along with video and audio playback to assist in accurate diagnosis. The system archives the complete exam and results.

  18. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and comparison with ISS-LIS and GLM

    NASA Astrophysics Data System (ADS)

    Schultz, C. J.; Lang, T. J.; Leake, S.; Runco, M.; Blakeslee, R. J.

    2017-12-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how georeferenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration. Camera images from the crew cameras and high definition video from the Chiba University Meteor Camera were combined with lightning data from the National Lightning Detection Network (NLDN), ISS-Lightning Imaging Sensor (ISS-LIS), the Geostationary Lightning Mapper (GLM) and lightning mapping arrays. These cameras provide significant spatial resolution advantages ( 10 times or better) over ISS-LIS and GLM, but with lower temporal resolution. Therefore, they can serve as a complementarity analysis tool for studying lightning and thunderstorm processes from space. Lightning sensor data, Visible Infrared Imaging Radiometer Suite (VIIRS) derived city light maps, and other geographic databases were combined with the ISS attitude and position data to reverse geolocate each image or frame. An open-source Python toolkit has been developed to assist with this effort. Next, the locations and sizes of all flashes in each frame or image were computed and compared with flash characteristics from all available lightning datasets. This allowed for characterization of cloud features that are below the 4-km and 8-km resolution of ISS-LIS and GLM which may reduce the light that reaches the ISS-LIS or GLM sensor. In the case of video, consecutive frames were overlaid to determine the rate of change of the light escaping cloud top. Characterization of the rate of change in geometry, more generally the radius, of light escaping cloud top was integrated with the NLDN, ISS-LIS and GLM to understand how the peak rate of change and the peak area of each flash aligned with each lightning system in time. Flash features like leaders could be inferred from the video frames as well. Testing is being done to see if leader speeds may be accurately calculated under certain circumstances.

  19. Installing Snowplow Cameras and Integrating Images into MnDOT's Traveler Information System

    DOT National Transportation Integrated Search

    2017-10-01

    In 2015 and 2016, the Minnesota Department of Transportation (MnDOT) installed network video dash- and ceiling-mounted cameras on 226 snowplows, approximately one-quarter of MnDOT's total snowplow fleet. The cameras were integrated with the onboard m...

  20. Helms in FGB/Zarya with cameras

    NASA Image and Video Library

    2001-06-08

    ISS002-E-6526 (8 June 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). The image was recorded with a digital still camera.

  1. In-flight Video Captured by External Tank Camera System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.

  2. What Counts as Educational Video?: Working toward Best Practice Alignment between Video Production Approaches and Outcomes

    ERIC Educational Resources Information Center

    Winslett, Greg

    2014-01-01

    The twenty years since the first digital video camera was made commercially available has seen significant increases in the use of low-cost, amateur video productions for teaching and learning. In the same period, production and consumption of professionally produced video has also increased, as has the distribution platforms to access it.…

  3. Schematic diagram of light path in Wide Field Planetary Camera 2

    NASA Image and Video Library

    1993-03-15

    S93-33258 (15 Mar 1993) --- An optical schematic diagram of one of the four channels of the Wide Field\\Planetary Camera-2 (WF\\PC-2) shows the path taken by beams from the Hubble Space Telescope (HST) before an image is formed at the camera's charge-coupled devices. A team of NASA astronauts will pay a visit to the HST later this year, carrying with them the new WF/PC-2 to replace the one currently on the HST. The Jet Propulsion Laboratory in Pasadena, California has been working on the replacement system for several months. See NASA photo S93-33257 for a close-up view of tiny articulating mirrors designed to realign incoming light in order to make certain the beams fall precisely in the middle of the secondary mirrors.

  4. Ready for Their Close-Ups

    ERIC Educational Resources Information Center

    Foster, Andrea L.

    2006-01-01

    American college students are increasingly posting videos of their lives online, due to Web sites like Vimeo and Google Video that host video material free and the ubiquity of camera phones and other devices that can take video-clips. However, the growing popularity of online socializing has many safety experts worried that students could be…

  5. Mobile Panoramic Video Applications for Learning

    ERIC Educational Resources Information Center

    Multisilta, Jari

    2014-01-01

    The use of videos on the internet has grown significantly in the last few years. For example, Khan Academy has a large collection of educational videos, especially on STEM subjects, available for free on the internet. Professional panoramic video cameras are expensive and usually not easy to carry because of the large size of the equipment.…

  6. Teacher Self-Captured Video: Learning to See

    ERIC Educational Resources Information Center

    Sherin, Miriam Gamoran; Dyer, Elizabeth B.

    2017-01-01

    Videos are often used for demonstration and evaluation, but a more productive approach would be using video to support teachers' ability to notice and interpret classroom interactions. That requires thinking carefully about the physical aspects of shooting video--where the camera is placed and how easily student interactions can be heard--as well…

  7. Mobile Video in Everyday Social Interactions

    NASA Astrophysics Data System (ADS)

    Reponen, Erika; Lehikoinen, Jaakko; Impiö, Jussi

    Video recording has become a spontaneous everyday activity for many people, thanks to the video capabilities of modern mobile phones. Internet connectivity of mobile phones enables fluent sharing of captured material even real-time, which makes video an up-and-coming everyday interaction medium. In this article we discuss the effect of the video camera in the social environment, everyday life situations, mainly based on a study where four groups of people used digital video cameras in their normal settings. We also reflect on another study of ours, relating to real-time mobile video communication and discuss future views. The aim of our research is to understand the possibilities in the domain of mobile video. Live and delayed sharing seem to have their special characteristics, live video being used as a virtual window between places whereas delayed video usage has more scope for good-quality content. While this novel way of interacting via mobile video enables new social patterns, it also raises new concerns for privacy and trust between participating persons in all roles, largely due to the widely spreading possibilities of videos. Video in a social situation affects cameramen (who record), targets (who are recorded), passers-by (who are unintentionally in the situation), and the audience (who follow the videos or recording situations) but also the other way around, the participants affect the video by their varying and evolving personal and communicational motivations for recording.

  8. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  9. Processing Ocean Images to Detect Large Drift Nets

    NASA Technical Reports Server (NTRS)

    Veenstra, Tim

    2009-01-01

    A computer program processes the digitized outputs of a set of downward-looking video cameras aboard an aircraft flying over the ocean. The purpose served by this software is to facilitate the detection of large drift nets that have been lost, abandoned, or jettisoned. The development of this software and of the associated imaging hardware is part of a larger effort to develop means of detecting and removing large drift nets before they cause further environmental damage to the ocean and to shores on which they sometimes impinge. The software is capable of near-realtime processing of as many as three video feeds at a rate of 30 frames per second. After a user sets the parameters of an adjustable algorithm, the software analyzes each video stream, detects any anomaly, issues a command to point a high-resolution camera toward the location of the anomaly, and, once the camera has been so aimed, issues a command to trigger the camera shutter. The resulting high-resolution image is digitized, and the resulting data are automatically uploaded to the operator s computer for analysis.

  10. Progress in passive submillimeter-wave video imaging

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2014-06-01

    Since 2007 we are developing passive submillimeter-wave video cameras for personal security screening. In contradiction to established portal-based millimeter-wave scanning techniques, these are suitable for stand-off or stealth operation. The cameras operate in the 350GHz band and use arrays of superconducting transition-edge sensors (TES), reflector optics, and opto-mechanical scanners. Whereas the basic principle of these devices remains unchanged, there has been a continuous development of the technical details, as the detector array, the scanning scheme, and the readout, as well as system integration and performance. The latest prototype of this camera development features a linear array of 128 detectors and a linear scanner capable of 25Hz frame rate. Using different types of reflector optics, a field of view of 1×2m2 and a spatial resolution of 1-2 cm is provided at object distances of about 5-25m. We present the concept of this camera and give details on system design and performance. Demonstration videos show its capability for hidden threat detection and illustrate possible application scenarios.

  11. Automatic treatment of flight test images using modern tools: SAAB and Aeritalia joint approach

    NASA Astrophysics Data System (ADS)

    Kaelldahl, A.; Duranti, P.

    The use of onboard cine cameras, as well as that of on ground cinetheodolites, is very popular in flight tests. The high resolution of film and the high frame rate of cinecameras are still not exceeded by video technology. Video technology can successfully enter the flight test scenario once the availability of solid-state optical sensors dramatically reduces the dimensions, and weight of TV cameras, thus allowing to locate them in positions compatible with space or operational limitations (e.g., HUD cameras). A proper combination of cine and video cameras is the typical solution for a complex flight test program. The output of such devices is very helpful in many flight areas. Several sucessful applications of this technology are summarized. Analysis of the large amount of data produced (frames of images) requires a very long time. The analysis is normally carried out manually. In order to improve the situation, in the last few years, several flight test centers have devoted their attention to possible techniques which allow for quicker and more effective image treatment.

  12. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    NASA Astrophysics Data System (ADS)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  13. Scoliosis surgery - child

    MedlinePlus

    Spinal curvature surgery - child; Kyphoscoliosis surgery - child; Video-assisted thoracoscopic surgery - child; VATS - child ... may also do the procedure using a special video camera. A surgical cut in the back is ...

  14. Motionless active depth from defocus system using smart optics for camera autofocus applications

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2016-04-01

    This paper describes a motionless active Depth from Defocus (DFD) system design suited for long working range camera autofocus applications. The design consists of an active illumination module that projects a scene illuminating coherent conditioned optical radiation pattern which maintains its sharpness over multiple axial distances allowing an increased DFD working distance range. The imager module of the system responsible for the actual DFD operation deploys an electronically controlled variable focus lens (ECVFL) as a smart optic to enable a motionless imager design capable of effective DFD operation. An experimental demonstration is conducted in the laboratory which compares the effectiveness of the coherent conditioned radiation module versus a conventional incoherent active light source, and demonstrates the applicability of the presented motionless DFD imager design. The fast response and no-moving-parts features of the DFD imager design are especially suited for camera scenarios where mechanical motion of lenses to achieve autofocus action is challenging, for example, in the tiny camera housings in smartphones and tablets. Applications for the proposed system include autofocus in modern day digital cameras.

  15. A digital underwater video camera system for aquatic research in regulated rivers

    USGS Publications Warehouse

    Martin, Benjamin M.; Irwin, Elise R.

    2010-01-01

    We designed a digital underwater video camera system to monitor nesting centrarchid behavior in the Tallapoosa River, Alabama, 20 km below a peaking hydropower dam with a highly variable flow regime. Major components of the system included a digital video recorder, multiple underwater cameras, and specially fabricated substrate stakes. The innovative design of the substrate stakes allowed us to effectively observe nesting redbreast sunfish Lepomis auritus in a highly regulated river. Substrate stakes, which were constructed for the specific substratum complex (i.e., sand, gravel, and cobble) identified at our study site, were able to withstand a discharge level of approximately 300 m3/s and allowed us to simultaneously record 10 active nests before and during water releases from the dam. We believe our technique will be valuable for other researchers that work in regulated rivers to quantify behavior of aquatic fauna in response to a discharge disturbance.

  16. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable differences: Because the wide-angle lens introduces considerable distortion, the image data must be processed to effectively unwarp the images (see Figure 2). The computer executes special software that includes an unwarping algorithm that takes explicit account of the cylindrical pipe geometry. To reduce the processing time needed for unwarping, parameters of the geometric mapping between the circular view of a fisheye lens and pipe wall are determined in advance from calibration images and compiled into an electronic lookup table. The software incorporates the assumption that the optical axis of the camera is parallel (rather than perpendicular) to the direction of motion of the camera. The software also compensates for the decrease in illumination with distance from the ring of LEDs.

  17. Servo-controlled intravital microscope system

    NASA Technical Reports Server (NTRS)

    Mansour, M. N.; Wayland, H. J.; Chapman, C. P. (Inventor)

    1975-01-01

    A microscope system is described for viewing an area of a living body tissue that is rapidly moving, by maintaining the same area in the field-of-view and in focus. A focus sensing portion of the system includes two video cameras at which the viewed image is projected, one camera being slightly in front of the image plane and the other slightly behind it. A focus sensing circuit for each camera differentiates certain high frequency components of the video signal and then detects them and passes them through a low pass filter, to provide dc focus signal whose magnitudes represent the degree of focus. An error signal equal to the difference between the focus signals, drives a servo that moves the microscope objective so that an in-focus view is delivered to an image viewing/recording camera.

  18. HDEV Flight Assembly

    NASA Image and Video Library

    2014-05-07

    View of the High Definition Earth Viewing (HDEV) flight assembly installed on the exterior of the Columbus European Laboratory module. Image was released by astronaut on Twitter. The High Definition Earth Viewing (HDEV) experiment places four commercially available HD cameras on the exterior of the space station and uses them to stream live video of Earth for viewing online. The cameras are enclosed in a temperature specific housing and are exposed to the harsh radiation of space. Analysis of the effect of space on the video quality, over the time HDEV is operational, may help engineers decide which cameras are the best types to use on future missions. High school students helped design some of the cameras' components, through the High Schools United with NASA to Create Hardware (HUNCH) program, and student teams operate the experiment.

  19. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  20. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  1. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  2. Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis

    DOE PAGES

    Thomaz, Lucas A.; Jardim, Eric; da Silva, Allan F.; ...

    2017-10-16

    This study presents a family of algorithms based on sparse decompositions that detect anomalies in video sequences obtained from slow moving cameras. These algorithms start by computing the union of subspaces that best represents all the frames from a reference (anomaly free) video as a low-rank projection plus a sparse residue. Then, they perform a low-rank representation of a target (possibly anomalous) video by taking advantage of both the union of subspaces and the sparse residue computed from the reference video. Such algorithms provide good detection results while at the same time obviating the need for previous video synchronization. However,more » this is obtained at the cost of a large computational complexity, which hinders their applicability. Another contribution of this paper approaches this problem by using intrinsic properties of the obtained data representation in order to restrict the search space to the most relevant subspaces, providing computational complexity gains of up to two orders of magnitude. The developed algorithms are shown to cope well with videos acquired in challenging scenarios, as verified by the analysis of 59 videos from the VDAO database that comprises videos with abandoned objects in a cluttered industrial scenario.« less

  3. Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomaz, Lucas A.; Jardim, Eric; da Silva, Allan F.

    This study presents a family of algorithms based on sparse decompositions that detect anomalies in video sequences obtained from slow moving cameras. These algorithms start by computing the union of subspaces that best represents all the frames from a reference (anomaly free) video as a low-rank projection plus a sparse residue. Then, they perform a low-rank representation of a target (possibly anomalous) video by taking advantage of both the union of subspaces and the sparse residue computed from the reference video. Such algorithms provide good detection results while at the same time obviating the need for previous video synchronization. However,more » this is obtained at the cost of a large computational complexity, which hinders their applicability. Another contribution of this paper approaches this problem by using intrinsic properties of the obtained data representation in order to restrict the search space to the most relevant subspaces, providing computational complexity gains of up to two orders of magnitude. The developed algorithms are shown to cope well with videos acquired in challenging scenarios, as verified by the analysis of 59 videos from the VDAO database that comprises videos with abandoned objects in a cluttered industrial scenario.« less

  4. Unmanned Vehicle Guidance Using Video Camera/Vehicle Model

    NASA Technical Reports Server (NTRS)

    Sutherland, T.

    1999-01-01

    A video guidance sensor (VGS) system has flown on both STS-87 and STS-95 to validate a single camera/target concept for vehicle navigation. The main part of the image algorithm was the subtraction of two consecutive images using software. For a nominal size image of 256 x 256 pixels this subtraction can take a large portion of the time between successive frames in standard rate video leaving very little time for other computations. The purpose of this project was to integrate the software subtraction into hardware to speed up the subtraction process and allow for more complex algorithms to be performed, both in hardware and software.

  5. Making Sure What You See Is What You Get: Digital Video Technology and the Preparation of Teachers of Elementary Science

    ERIC Educational Resources Information Center

    Bueno de Mesquita, Paul; Dean, Ross F.; Young, Betty J.

    2010-01-01

    Advances in digital video technology create opportunities for more detailed qualitative analyses of actual teaching practice in science and other subject areas. User-friendly digital cameras and highly developed, flexible video-analysis software programs have made the tasks of video capture, editing, transcription, and subsequent data analysis…

  6. Aerial views of the STS-2 launch from Pad 39A at Kennedy Space Center

    NASA Image and Video Library

    1981-11-12

    S81-39440 (12 Nov. 1981) --- The tiny image of the space shuttle Columbia, its two solid rocket boosters and an external fuel tank feeding Columbia?s engines was captured on camera by one who can truly relate to the thoughts of the astronauts aboard ? John W. Young who was aboard the same spacecraft for its successful debut in April of this year. Young was flying NASA?s shuttle training aircraft (STA) when he used a hand-held camera to record this scene on 70mm film. Astronauts Joe H. Engle, STS-2 commander, and Richard H. Truly, pilot, were aboard Columbia. Photo credit: NASA

  7. Contributions of Head-Mounted Cameras to Studying the Visual Environments of Infants and Young Children

    ERIC Educational Resources Information Center

    Smith, Linda B.; Yu, Chen; Yoshida, Hanako; Fausey, Caitlin M.

    2015-01-01

    Head-mounted video cameras (with and without an eye camera to track gaze direction) are being increasingly used to study infants' and young children's visual environments and provide new and often unexpected insights about the visual world from a child's point of view. The challenge in using head cameras is principally conceptual and concerns the…

  8. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  9. Camera-related behaviours of female dental nurses and nursery school children during fluoride varnish application interactions in nursery school settings.

    PubMed

    Zhou, Yuefang; Forbes, Gillian M; Humphris, Gerry

    2010-09-01

    To investigate camera awareness of female dental nurses and nursery school children as the frequency of camera-related behaviours observed during fluoride varnish applications in a community based health programme. Fifty-one nurse-child interactions (three nurse pairs and 51 children) were video recorded when Childsmile nurses were applying fluoride varnish onto the teeth of children in nursery school settings. Using a pre-developed coding scheme, nurse and child verbal and nonverbal behaviours were coded for camera-related behaviours. On 15 of 51 interactions (29.4%), a total of 31 camera-related behaviours were observed for dental nurses (14 instances over nine interactions) and children (17 instances over six interactions). Camera-related behaviours occurred infrequently, occupied 0.3% of the total interaction time and displayed at all stages of the dental procedure, though tended to peak at initial stages. Certain camera-related behaviours of female dental nurses and nursery school children were observed in their interactions when introducing a dental health preventive intervention. Since the frequency of camera-related behaviours are so few they are of little consequence when video-recording adults and children undertaking dental procedures.

  10. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  11. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  12. Concerning the Video Drift Method to Measure Double Stars

    NASA Astrophysics Data System (ADS)

    Nugent, Richard L.; Iverson, Ernest W.

    2015-05-01

    Classical methods to measure position angles and separations of double stars rely on just a few measurements either from visual observations or photographic means. Visual and photographic CCD observations are subject to errors from the following sources: misalignments from eyepiece/camera/barlow lens/micrometer/focal reducers, systematic errors from uncorrected optical distortions, aberrations from the telescope system, camera tilt, magnitude and color effects. Conventional video methods rely on calibration doubles and graphically calculating the east-west direction plus careful choice of select video frames stacked for measurement. Atmospheric motion is one of the larger sources of error in any exposure/measurement method which is on the order of 0.5-1.5. Ideally, if a data set from a short video can be used to derive position angle and separation, with each data set self-calibrating independent of any calibration doubles or star catalogues, this would provide measurements of high systematic accuracy. These aims are achieved by the video drift method first proposed by the authors in 2011. This self calibrating video method automatically analyzes 1,000's of measurements from a short video clip.

  13. VAP/VAT: video analytics platform and test bed for testing and deploying video analytics

    NASA Astrophysics Data System (ADS)

    Gorodnichy, Dmitry O.; Dubrofsky, Elan

    2010-04-01

    Deploying Video Analytics in operational environments is extremely challenging. This paper presents a methodological approach developed by the Video Surveillance and Biometrics Section (VSB) of the Science and Engineering Directorate (S&E) of the Canada Border Services Agency (CBSA) to resolve these problems. A three-phase approach to enable VA deployment within an operational agency is presented and the Video Analytics Platform and Testbed (VAP/VAT) developed by the VSB section is introduced. In addition to allowing the integration of third party and in-house built VA codes into an existing video surveillance infrastructure, VAP/VAT also allows the agency to conduct an unbiased performance evaluation of the cameras and VA software available on the market. VAP/VAT consists of two components: EventCapture, which serves to Automatically detect a "Visual Event", and EventBrowser, which serves to Display & Peruse of "Visual Details" captured at the "Visual Event". To deal with Open architecture as well as with Closed architecture cameras, two video-feed capture mechanisms have been developed within the EventCapture component: IPCamCapture and ScreenCapture.

  14. Integrating TV/digital data spectrograph system

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.

    1975-01-01

    A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.

  15. Robust camera calibration for sport videos using court models

    NASA Astrophysics Data System (ADS)

    Farin, Dirk; Krabbe, Susanne; de With, Peter H. N.; Effelsberg, Wolfgang

    2003-12-01

    We propose an automatic camera calibration algorithm for court sports. The obtained camera calibration parameters are required for applications that need to convert positions in the video frame to real-world coordinates or vice versa. Our algorithm uses a model of the arrangement of court lines for calibration. Since the court model can be specified by the user, the algorithm can be applied to a variety of different sports. The algorithm starts with a model initialization step which locates the court in the image without any user assistance or a-priori knowledge about the most probable position. Image pixels are classified as court line pixels if they pass several tests including color and local texture constraints. A Hough transform is applied to extract line elements, forming a set of court line candidates. The subsequent combinatorial search establishes correspondences between lines in the input image and lines from the court model. For the succeeding input frames, an abbreviated calibration algorithm is used, which predicts the camera parameters for the new image and optimizes the parameters using a gradient-descent algorithm. We have conducted experiments on a variety of sport videos (tennis, volleyball, and goal area sequences of soccer games). Video scenes with considerable difficulties were selected to test the robustness of the algorithm. Results show that the algorithm is very robust to occlusions, partial court views, bad lighting conditions, or shadows.

  16. Potential Utility of a 4K Consumer Camera for Surgical Education in Ophthalmology.

    PubMed

    Ichihashi, Tsunetomo; Hirabayashi, Yutaka; Nagahara, Miyuki

    2017-01-01

    Purpose. We evaluated the potential utility of a cost-effective 4K consumer video system for surgical education in ophthalmology. Setting. Tokai University Hachioji Hospital, Tokyo, Japan. Design. Experimental study. Methods. The eyes that underwent cataract surgery, glaucoma surgery, vitreoretinal surgery, or oculoplastic surgery between February 2016 and April 2016 were recorded with 17.2 million pixels using a high-definition digital video camera (LUMIX DMC-GH4, Panasonic, Japan) and with 0.41 million pixels using a conventional analog video camera (MKC-501, Ikegami, Japan). Motion pictures of two cases for each surgery type were evaluated and classified as having poor, normal, or excellent visibility. Results. The 4K video system was easily installed by reading the instructions without technical expertise. The details of the surgical picture in the 4K system were highly improved over those of the conventional pictures, and the visual effects for surgical education were significantly improved. Motion pictures were stored for approximately 11 h with 512 GB SD memory. The total price of this system was USD 8000, which is a very low price compared with a commercial system. Conclusion. This 4K consumer camera was able to record and play back with high-definition surgical field visibility on the 4K monitor and is a low-cost, high-performing alternative for surgical facilities.

  17. Satellite markers: a simple method for ground truth car pose on stereo video

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-04-01

    Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.

  18. A multiscale video system for studying an optical phenomena during active experiments in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Nikolashkin, S. V.; Reshetnikov, A. A.

    2017-11-01

    The system of video surveillance during active rocket experiments in the Polar geophysical observatory "Tixie" and studies of the effects of "Soyuz" vehicle launches from the "Vostochny" cosmodrome over the territory of the Republic of Sakha (Yakutia) is presented. The created system consists of three AHD video cameras with different angles of view mounted on a common platform mounted on a tripod with the possibility of manual guiding. The main camera with high-sensitivity black and white CCD matrix SONY EXview HADII is equipped depending on the task with lenses "MTO-1000" (F = 1000 mm) or "Jupiter-21M " (F = 300 mm) and is designed for more detailed shooting of luminous formations. The second camera of the same type, but with a 30 degree angle of view. It is intended for shooting of the general plan and large objects, and also for a binding of coordinates of object on stars. The third color wide-angle camera (120 degrees) is designed to be connected to landmarks in the daytime, the optical axis of this channel is directed at 60 degrees down. The data is recorded on the hard disk of a four-channel digital video recorder. Tests of the original version of the system with two channels were conducted during the launch of the geophysical rocket in Tixie in September 2015 and showed its effectiveness.

  19. Method for separating video camera motion from scene motion for constrained 3D displacement measurements

    NASA Astrophysics Data System (ADS)

    Gauthier, L. R.; Jansen, M. E.; Meyer, J. R.

    2014-09-01

    Camera motion is a potential problem when a video camera is used to perform dynamic displacement measurements. If the scene camera moves at the wrong time, the apparent motion of the object under study can easily be confused with the real motion of the object. In some cases, it is practically impossible to prevent camera motion, as for instance, when a camera is used outdoors in windy conditions. A method to address this challenge is described that provides an objective means to measure the displacement of an object of interest in the scene, even when the camera itself is moving in an unpredictable fashion at the same time. The main idea is to synchronously measure the motion of the camera and to use those data ex post facto to subtract out the apparent motion in the scene that is caused by the camera motion. The motion of the scene camera is measured by using a reference camera that is rigidly attached to the scene camera and oriented towards a stationary reference object. For instance, this reference object may be on the ground, which is known to be stationary. It is necessary to calibrate the reference camera by simultaneously measuring the scene images and the reference images at times when it is known that the scene object is stationary and the camera is moving. These data are used to map camera movement data to apparent scene movement data in pixel space and subsequently used to remove the camera movement from the scene measurements.

  20. The Uses of Media in Early Childhood Education

    ERIC Educational Resources Information Center

    Grossman, Bruce

    1976-01-01

    This article discusses the educational benefits of involving young children in the media arts and presents suggestions for using still cameras, movie cameras, audio tape recorders, and video tape recorders. (SB)

  1. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  2. Video coding for next-generation surveillance systems

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    Video is used as recording media in surveillance system and also more frequently by the Swedish Police Force. Methods for analyzing video using an image processing system have recently been introduced at the Swedish National Laboratory of Forensic Science, and new methods are in focus in a research project at Linkoping University, Image Coding Group. The accuracy of the result of those forensic investigations often depends on the quality of the video recordings, and one of the major problems when analyzing videos from crime scenes is the poor quality of the recordings. Enhancing poor image quality might add manipulative or subjective effects and does not seem to be the right way of getting reliable analysis results. The surveillance system in use today is mainly based on video techniques, VHS or S-VHS, and the weakest link is the video cassette recorder, (VCR). Multiplexers for selecting one of many camera outputs for recording is another problem as it often filters the video signal, and recording is limited to only one of the available cameras connected to the VCR. A way to get around the problem of poor recording is to simultaneously record all camera outputs digitally. It is also very important to build such a system bearing in mind that image processing analysis methods becomes more important as a complement to the human eye. Using one or more cameras gives a large amount of data, and the need for data compression is more than obvious. Crime scenes often involve persons or moving objects, and the available coding techniques are more or less useful. Our goal is to propose a possible system, being the best compromise with respect to what needs to be recorded, movements in the recorded scene, loss of information and resolution etc., to secure the efficient recording of the crime and enable forensic analysis. The preventative effective of having a well functioning surveillance system and well established image analysis methods is not to be neglected. Aspects of this next generation of digital surveillance systems are discussed in this paper.

  3. Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    NASA Astrophysics Data System (ADS)

    Ajiboye, Sola O.; Birch, Philip; Chatwin, Christopher; Young, Rupert

    2015-03-01

    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems `expose' relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT).

  4. A practical implementation of free viewpoint video system for soccer games

    NASA Astrophysics Data System (ADS)

    Suenaga, Ryo; Suzuki, Kazuyoshi; Tezuka, Tomoyuki; Panahpour Tehrani, Mehrdad; Takahashi, Keita; Fujii, Toshiaki

    2015-03-01

    In this paper, we present a free viewpoint video generation system with billboard representation for soccer games. Free viewpoint video generation is a technology that enables users to watch 3-D objects from their desired viewpoints. Practical implementation of free viewpoint video for sports events is highly demanded. However, a commercially acceptable system has not yet been developed. The main obstacles are insufficient user-end quality of the synthesized images and highly complex procedures that sometimes require manual operations. In this work, we aim to develop a commercially acceptable free viewpoint video system with a billboard representation. A supposed scenario is that soccer games during the day can be broadcasted in 3-D, even in the evening of the same day. Our work is still ongoing. However, we have already developed several techniques to support our goal. First, we captured an actual soccer game at an official stadium where we used 20 full-HD professional cameras. Second, we have implemented several tools for free viewpoint video generation as follow. In order to facilitate free viewpoint video generation, all cameras should be calibrated. We calibrated all cameras using checker board images and feature points on the field (cross points of the soccer field lines). We extract each player region from captured images manually. The background region is estimated by observing chrominance changes of each pixel in temporal domain (automatically). Additionally, we have developed a user interface for visualizing free viewpoint video generation using a graphic library (OpenGL), which is suitable for not only commercialized TV sets but also devices such as smartphones. However, practical system has not yet been completed and our study is still ongoing.

  5. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  6. Using the OOI Cabled Array HD Camera to Explore Geophysical and Oceanographic Problems at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Knuth, F.; Marburg, A.

    2016-12-01

    A broad array of Earth science problems can be investigated using high-definition video imagery from the seafloor, ranging from those that are geological and geophysical in nature, to those that are biological and water-column related. A high-definition video camera was installed as part of the Ocean Observatory Initiative's core instrument suite on the Cabled Array, a real-time fiber optic data and power system that stretches from the Oregon Coast to Axial Seamount on the Juan de Fuca Ridge. This camera runs a 14-minute pan-tilt-zoom routine 8 times per day, focusing on locations of scientific interest on and near the Mushroom vent in the ASHES hydrothermal field inside the Axial caldera. The system produces 13 GB of lossless HD video every 3 hours, and at the time of this writing it has generated 2100 recordings totaling 28.5 TB since it began streaming data into the OOI archive in August of 2015. Because of the large size of this dataset, downloading the entirety of the video for long timescale investigations is not practical. We are developing a set of user-side tools for downloading single frames and frame ranges from the OOI HD camera raw data archive to aid users interested in using these data for their research. We use these tools to download about one year's worth of partial frame sets to investigate several questions regarding the hydrothermal system at ASHES, including the variability of bacterial "floc" in the water-column, and changes in high temperature fluid fluxes using optical flow techniques. We show that while these user-side tools can facilitate rudimentary scientific investigations using the HD camera data, a server-side computing environment that allows users to explore this dataset without downloading any raw video will be required for more advanced investigations to flourish.

  7. STS-107 Debris Characterization Using Re-entry Imaging

    NASA Technical Reports Server (NTRS)

    Raiche, George A.

    2009-01-01

    Analysis of amateur video of the early reentry phases of the Columbia accident is discussed. With poor video quality and little theoretical guidance, the analysis team estimated mass and acceleration ranges for the debris shedding events observed in the video. Camera calibration and optical performance issues are also described.

  8. Lights, Cameras, Pencils! Using Descriptive Video to Enhance Writing

    ERIC Educational Resources Information Center

    Hoffner, Helen; Baker, Eileen; Quinn, Kathleen Benson

    2008-01-01

    Students of various ages and abilities can increase their comprehension and build vocabulary with the help of a new technology, Descriptive Video. Descriptive Video (also known as described programming) was developed to give individuals with visual impairments access to visual media such as television programs and films. Described programs,…

  9. Script Design for Information Film and Video.

    ERIC Educational Resources Information Center

    Shelton, S. M. (Marty); And Others

    1993-01-01

    Shows how the empathy created in the audience by each of the five genres of film/video is a function of the five elements of film design: camera angle, close up, composition, continuity, and cutting. Discusses film/video script designing. Illustrates these concepts with a sample script and story board. (SR)

  10. Written, Produced and Directed....by You.

    ERIC Educational Resources Information Center

    Underwood, Rachel A.

    Home economics teachers comprise the newest group of professionals to become movie producers and directors. They are using video equipment--the video camera, monitor, and recorder. Advantages of video equipment for classroom use are affordable prices, tapes that can be reused, and student enjoyment of teacher-made tapes. Home economics content is…

  11. Video Analysis of Muscle Motion

    ERIC Educational Resources Information Center

    Foster, Boyd

    2004-01-01

    In this article, the author discusses how video cameras can help students in physical education and sport science classes successfully learn and present anatomy and kinesiology content at levels. Video analysis of physical activity is an excellent way to expand student knowledge of muscle location and function, planes and axes of motion, and…

  12. Distracted Driving Raises Crash Risk

    MedlinePlus

    ... Send us your comments Video technology and in-vehicle sensors showed that distracted driving, especially among new ... habits of both novice teen and experienced drivers. Vehicles were equipped with 4 cameras that recorded video ...

  13. Intelligent keyframe extraction for video printing

    NASA Astrophysics Data System (ADS)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  14. Methods and new approaches to the calculation of physiological parameters by videodensitometry

    NASA Technical Reports Server (NTRS)

    Kedem, D.; Londstrom, D. P.; Rhea, T. C., Jr.; Nelson, J. H.; Price, R. R.; Smith, C. W.; Graham, T. P., Jr.; Brill, A. B.; Kedem, D.

    1976-01-01

    A complex system featuring a video-camera connected to a video disk, cine (medical motion picture) camera and PDP-9 computer with various input/output facilities has been developed. This system enables the performance of quantitative analysis of various functions recorded in clinical studies. Several studies are described, such as heart chamber volume calculations, left ventricle ejection fraction, blood flow through the lungs and also the possibility of obtaining information about blood flow and constrictions in small cross-section vessels

  15. Distributed video data fusion and mining

    NASA Astrophysics Data System (ADS)

    Chang, Edward Y.; Wang, Yuan-Fang; Rodoplu, Volkan

    2004-09-01

    This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera, video surveillance system. In particilar, we present statistical methods that we have developed to support three aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis, 2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous operation of the camera networks. We outline our preliminary results, and discuss future directions that research might take.

  16. Energy-efficient lighting system for television

    DOEpatents

    Cawthorne, Duane C.

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  17. Development of camera technology for monitoring nests. Chapter 15

    Treesearch

    W. Andrew Cox; M. Shane Pruett; Thomas J. Benson; Scott J. Chiavacci; Frank R., III Thompson

    2012-01-01

    Photo and video technology has become increasingly useful in the study of avian nesting ecology. However, researchers interested in using camera systems are often faced with insufficient information on the types and relative advantages of available technologies. We reviewed the literature for studies of nests that used cameras and summarized them based on study...

  18. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  19. Video-based Mobile Mapping System Using Smartphones

    NASA Astrophysics Data System (ADS)

    Al-Hamad, A.; Moussa, A.; El-Sheimy, N.

    2014-11-01

    The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.

  20. Architectural Considerations for Highly Scalable Computing to Support On-demand Video Analytics

    DTIC Science & Technology

    2017-04-19

    enforcement . The system was tested in the wild using video files as well as a commercial Video Management System supporting more than 100 surveillance...research were used to implement a distributed on-demand video analytics system that was prototyped for the use of forensics investigators in law...cameras as video sources. The architectural considerations of this system are presented. Issues to be reckoned with in implementing a scalable

  1. Optical correlator method and apparatus for particle image velocimetry processing

    NASA Technical Reports Server (NTRS)

    Farrell, Patrick V. (Inventor)

    1991-01-01

    Young's fringes are produced from a double exposure image of particles in a flowing fluid by passing laser light through the film and projecting the light onto a screen. A video camera receives the image from the screen and controls a spatial light modulator. The spatial modulator has a two dimensional array of cells the transmissiveness of which are controlled in relation to the brightness of the corresponding pixel of the video camera image of the screen. A collimated beam of laser light is passed through the spatial light modulator to produce a diffraction pattern which is focused onto another video camera, with the output of the camera being digitized and provided to a microcomputer. The diffraction pattern formed when the laser light is passed through the spatial light modulator and is focused to a point corresponds to the two dimensional Fourier transform of the Young's fringe pattern projected onto the screen. The data obtained fro This invention was made with U.S. Government support awarded by the Department of the Army (DOD) and NASA grand number(s): DOD #DAAL03-86-K0174 and NASA #NAG3-718. The U.S. Government has certain rights in this invention.

  2. Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system.

    PubMed

    Shieh, Wann-Yun; Huang, Ju-Chin

    2012-09-01

    For most elderly, unpredictable falling incidents may occur at the corner of stairs or a long corridor due to body frailty. If we delay to rescue a falling elder who is likely fainting, more serious consequent injury may occur. Traditional secure or video surveillance systems need caregivers to monitor a centralized screen continuously, or need an elder to wear sensors to detect falling incidents, which explicitly waste much human power or cause inconvenience for elders. In this paper, we propose an automatic falling-detection algorithm and implement this algorithm in a multi-camera video surveillance system. The algorithm uses each camera to fetch the images from the regions required to be monitored. It then uses a falling-pattern recognition algorithm to determine if a falling incident has occurred. If yes, system will send short messages to someone needs to be noticed. The algorithm has been implemented in a DSP-based hardware acceleration board for functionality proof. Simulation results show that the accuracy of falling detection can achieve at least 90% and the throughput of a four-camera surveillance system can be improved by about 2.1 times. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. PANSAT satellite deployment from STS-95 Discovery's payload bay

    NASA Image and Video Library

    1998-10-30

    STS095-E-5041 (30 Oct. 1998) --- PANSAT, a nonrecoverable satellite developed by the Naval Postgraduate School (NPS) in Monterey, California, is silhouetted against a sunglint effect on ocean waters below, following its deployment from the cargo bay of the Earth-orbiting Space Shuttle Discovery. The small ball-shaped payload is basically a tiny telecommunications satellite. The photo was recorded with an electronic still camera (ESC) at 1:49:33 GMT, Oct. 30.

  4. A feasibility study of damage detection in beams using high-speed camera (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Yuan, Fuh-Gwo

    2017-04-01

    In this paper a method for damage detection in beam structures using high-speed camera is presented. Traditional methods of damage detection in structures typically involve contact (i.e., piezoelectric sensor or accelerometer) or non-contact sensors (i.e., laser vibrometer) which can be costly and time consuming to inspect an entire structure. With the popularity of the digital camera and the development of computer vision technology, video cameras offer a viable capability of measurement including higher spatial resolution, remote sensing and low-cost. In the study, a damage detection method based on the high-speed camera was proposed. The system setup comprises a high-speed camera and a line-laser which can capture the out-of-plane displacement of a cantilever beam. The cantilever beam with an artificial crack was excited and the vibration process was recorded by the camera. A methodology called motion magnification, which can amplify subtle motions in a video is used for modal identification of the beam. A finite element model was used for validation of the proposed method. Suggestions for applications of this methodology and challenges in future work will be discussed.

  5. Enhanced Video-Oculography System

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; MacDougall, Hamish G.

    2009-01-01

    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.

  6. The Use of Smart Glasses for Surgical Video Streaming.

    PubMed

    Hiranaka, Takafumi; Nakanishi, Yuta; Fujishiro, Takaaki; Hida, Yuichi; Tsubosaka, Masanori; Shibata, Yosaku; Okimura, Kenjiro; Uemoto, Harunobu

    2017-04-01

    Observation of surgical procedures performed by experts is extremely important for acquisition and improvement of surgical skills. Smart glasses are small computers, which comprise a head-mounted monitor and video camera, and can be connected to the internet. They can be used for remote observation of surgeries by video streaming. Although Google Glass is the most commonly used smart glasses for medical purposes, it is still unavailable commercially and has some limitations. This article reports the use of a different type of smart glasses, InfoLinker, for surgical video streaming. InfoLinker has been commercially available in Japan for industrial purposes for more than 2 years. It is connected to a video server via wireless internet directly, and streaming video can be seen anywhere an internet connection is available. We have attempted live video streaming of knee arthroplasty operations that were viewed at several different locations, including foreign countries, on a common web browser. Although the quality of video images depended on the resolution and dynamic range of the video camera, speed of internet connection, and the wearer's attention to minimize image shaking, video streaming could be easily performed throughout the procedure. The wearer could confirm the quality of the video as the video was being shot by the head-mounted display. The time and cost for observation of surgical procedures can be reduced by InfoLinker, and further improvement of hardware as well as the wearer's video shooting technique is expected. We believe that this can be used in other medical settings.

  7. 4DCAPTURE: a general purpose software package for capturing and analyzing two- and three-dimensional motion data acquired from video sequences

    NASA Astrophysics Data System (ADS)

    Walton, James S.; Hodgson, Peter; Hallamasek, Karen; Palmer, Jake

    2003-07-01

    4DVideo is creating a general purpose capability for capturing and analyzing kinematic data from video sequences in near real-time. The core element of this capability is a software package designed for the PC platform. The software ("4DCapture") is designed to capture and manipulate customized AVI files that can contain a variety of synchronized data streams -- including audio, video, centroid locations -- and signals acquired from more traditional sources (such as accelerometers and strain gauges.) The code includes simultaneous capture or playback of multiple video streams, and linear editing of the images (together with the ancilliary data embedded in the files). Corresponding landmarks seen from two or more views are matched automatically, and photogrammetric algorithms permit multiple landmarks to be tracked in two- and three-dimensions -- with or without lens calibrations. Trajectory data can be processed within the main application or they can be exported to a spreadsheet where they can be processed or passed along to a more sophisticated, stand-alone, data analysis application. Previous attempts to develop such applications for high-speed imaging have been limited in their scope, or by the complexity of the application itself. 4DVideo has devised a friendly ("FlowStack") user interface that assists the end-user to capture and treat image sequences in a natural progression. 4DCapture employs the AVI 2.0 standard and DirectX technology which effectively eliminates the file size limitations found in older applications. In early tests, 4DVideo has streamed three RS-170 video sources to disk for more than an hour without loss of data. At this time, the software can acquire video sequences in three ways: (1) directly, from up to three hard-wired cameras supplying RS-170 (monochrome) signals; (2) directly, from a single camera or video recorder supplying an NTSC (color) signal; and (3) by importing existing video streams in the AVI 1.0 or AVI 2.0 formats. The latter is particularly useful for high-speed applications where the raw images are often captured and stored by the camera before being downloaded. Provision has been made to synchronize data acquired from any combination of these video sources using audio and visual "tags." Additional "front-ends," designed for digital cameras, are anticipated.

  8. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  9. Video Feedback in the Classroom: Development of an Easy-to-Use Learning Environment

    ERIC Educational Resources Information Center

    De Poorter, John; De Jaegher, Lut; De Cock, Mieke; Neuttiens, Tom

    2007-01-01

    Video feedback offers great potential for use in teaching but the relative complexity of the normal set-up of a video camera, a special tripod and a monitor has limited its use in teaching. The authors have developed a computer-webcam set-up which simplifies this. Anyone with an ordinary computer and webcam can learn to control the video feedback…

  10. Runway Detection From Map, Video and Aircraft Navigational Data

    DTIC Science & Technology

    2016-03-01

    FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA by Jose R. Espinosa Gloria March 2016 Thesis Advisor: Roberto Cristi Co-Advisor: Oleg...COVERED Master’s thesis 4. TITLE AND SUBTITLE RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA 5. FUNDING NUMBERS 6. AUTHOR...Mexican Navy, unmanned aerial vehicles (UAV) have been equipped with daylight and infrared cameras. Processing the video information obtained from these

  11. Application of video-cameras for quality control and sampling optimisation of hydrological and erosion measurements in a catchment

    NASA Astrophysics Data System (ADS)

    Lora-Millán, Julio S.; Taguas, Encarnacion V.; Gomez, Jose A.; Perez, Rafael

    2014-05-01

    Long term soil erosion studies imply substantial efforts, particularly when there is the need to maintain continuous measurements. There are high costs associated to maintenance of field equipment keeping and quality control of data collection. Energy supply and/or electronic failures, vandalism and burglary are common causes of gaps in datasets, reducing their reach in many cases. In this work, a system of three video-cameras, a recorder and a transmission modem (3G technology) has been set up in a gauging station where rainfall, runoff flow and sediment concentration are monitored. The gauging station is located in the outlet of an olive orchard catchment of 6.4 ha. Rainfall is measured with one automatic raingauge that records intensity at one minute intervals. The discharge is measured by a flume of critical flow depth, where the water is recorded by an ultrasonic sensor. When the water level rises to a predetermined level, the automatic sampler turns on and fills a bottle at different intervals according to a program depending on the antecedent precipitation. A data logger controls the instruments' functions and records the data. The purpose of the video-camera system is to improve the quality of the dataset by i) the visual analysis of the measurement conditions of flow into the flume; ii) the optimisation of the sampling programs. The cameras are positioned to record the flow at the approximation and the gorge of the flume. In order to contrast the values of ultrasonic sensor, there is a third camera recording the flow level close to a measure tape. This system is activated when the ultrasonic sensor detects a height threshold, equivalent to an electric intensity level. Thus, only when there is enough flow, video-cameras record the event. This simplifies post-processing and reduces the cost of download of recordings. The preliminary contrast analysis will be presented as well as the main improvements in the sample program.

  12. Automatically assessing properties of dynamic cameras for camera selection and rapid deployment of video content analysis tasks in large-scale ad-hoc networks

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; van Rest, Jeroen H. C.; ten Hove, Johan-Martijn; ter Haar, Frank B.; Burghouts, Gertjan J.

    2017-10-01

    Video analytics is essential for managing large quantities of raw data that are produced by video surveillance systems (VSS) for the prevention, repression and investigation of crime and terrorism. Analytics is highly sensitive to changes in the scene, and for changes in the optical chain so a VSS with analytics needs careful configuration and prompt maintenance to avoid false alarms. However, there is a trend from static VSS consisting of fixed CCTV cameras towards more dynamic VSS deployments over public/private multi-organization networks, consisting of a wider variety of visual sensors, including pan-tilt-zoom (PTZ) cameras, body-worn cameras and cameras on moving platforms. This trend will lead to more dynamic scenes and more frequent changes in the optical chain, creating structural problems for analytics. If these problems are not adequately addressed, analytics will not be able to continue to meet end users' developing needs. In this paper, we present a three-part solution for managing the performance of complex analytics deployments. The first part is a register containing meta data describing relevant properties of the optical chain, such as intrinsic and extrinsic calibration, and parameters of the scene such as lighting conditions or measures for scene complexity (e.g. number of people). A second part frequently assesses these parameters in the deployed VSS, stores changes in the register, and signals relevant changes in the setup to the VSS administrator. A third part uses the information in the register to dynamically configure analytics tasks based on VSS operator input. In order to support the feasibility of this solution, we give an overview of related state-of-the-art technologies for autocalibration (self-calibration), scene recognition and lighting estimation in relation to person detection. The presented solution allows for rapid and robust deployment of Video Content Analysis (VCA) tasks in large scale ad-hoc networks.

  13. Precise X-ray and video overlay for augmented reality fluoroscopy.

    PubMed

    Chen, Xin; Wang, Lejing; Fallavollita, Pascal; Navab, Nassir

    2013-01-01

    The camera-augmented mobile C-arm (CamC) augments any mobile C-arm by a video camera and mirror construction and provides a co-registration of X-ray with video images. The accurate overlay between these images is crucial to high-quality surgical outcomes. In this work, we propose a practical solution that improves the overlay accuracy for any C-arm orientation by: (i) improving the existing CamC calibration, (ii) removing distortion effects, and (iii) accounting for the mechanical sagging of the C-arm gantry due to gravity. A planar phantom is constructed and placed at different distances to the image intensifier in order to obtain the optimal homography that co-registers X-ray and video with a minimum error. To alleviate distortion, both X-ray calibration based on equidistant grid model and Zhang's camera calibration method are implemented for distortion correction. Lastly, the virtual detector plane (VDP) method is adapted and integrated to reduce errors due to the mechanical sagging of the C-arm gantry. The overlay errors are 0.38±0.06 mm when not correcting for distortion, 0.27±0.06 mm when applying Zhang's camera calibration, and 0.27±0.05 mm when applying X-ray calibration. Lastly, when taking into account all angular and orbital rotations of the C-arm, as well as correcting for distortion, the overlay errors are 0.53±0.24 mm using VDP and 1.67±1.25 mm excluding VDP. The augmented reality fluoroscope achieves an accurate video and X-ray overlay when applying the optimal homography calculated from distortion correction using X-ray calibration together with the VDP.

  14. Video camera system for locating bullet holes in targets at a ballistics tunnel

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Rummler, D. R.; Goad, W. K.

    1990-01-01

    A system consisting of a single charge coupled device (CCD) video camera, computer controlled video digitizer, and software to automate the measurement was developed to measure the location of bullet holes in targets at the International Shooters Development Fund (ISDF)/NASA Ballistics Tunnel. The camera/digitizer system is a crucial component of a highly instrumented indoor 50 meter rifle range which is being constructed to support development of wind resistant, ultra match ammunition. The system was designed to take data rapidly (10 sec between shoots) and automatically with little operator intervention. The system description, measurement concept, and procedure are presented along with laboratory tests of repeatability and bias error. The long term (1 hour) repeatability of the system was found to be 4 microns (one standard deviation) at the target and the bias error was found to be less than 50 microns. An analysis of potential errors and a technique for calibration of the system are presented.

  15. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  16. Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002, The camera provided views as the the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.

  17. Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002. The camera provided views as the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.

  18. Temporal Coding of Volumetric Imagery

    NASA Astrophysics Data System (ADS)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions. Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z ) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke. Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.

  19. 21 CFR 886.5820 - Closed-circuit television reading system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of a lens, video camera, and video monitor that is intended for use by a patient who has subnormal vision to magnify reading material. (b) Classification. Class I (general controls). The device is exempt...

  20. Typical Dark

    Atmospheric Science Data Center

    2013-04-22

    ... contrast greatly enhanced. Random fluctuations in the camera video signal produce the "salt and pepper" appearance, and the faint horizontal banding is due to random fluctuations in the video background level. The brightness of all these fluctuations is less than ...

  1. Nondestructive defect detection in laser optical coatings

    NASA Astrophysics Data System (ADS)

    Marrs, C. D.; Porteus, J. O.; Palmer, J. R.

    1985-03-01

    Defects responsible for laser damage in visible-wavelength mirrors are observed at nondamaging intensities using a new video microscope system. Studies suggest that a defect scattering phenomenon combined with lag characteristics of video cameras makes this possible. Properties of the video-imaged light are described for multilayer dielectric coatings and diamond-turned metals.

  2. Lights, Camera, Action! Learning about Management with Student-Produced Video Assignments

    ERIC Educational Resources Information Center

    Schultz, Patrick L.; Quinn, Andrew S.

    2014-01-01

    In this article, we present a proposal for fostering learning in the management classroom through the use of student-produced video assignments. We describe the potential for video technology to create active learning environments focused on problem solving, authentic and direct experiences, and interaction and collaboration to promote student…

  3. Content Area Vocabulary Videos in Multiple Contexts: A Pedagogical Tool

    ERIC Educational Resources Information Center

    Webb, C. Lorraine; Kapavik, Robin Robinson

    2015-01-01

    The authors challenged pre-service teachers to digitally define a social studies or mathematical vocabulary term in multiple contexts using a digital video camera. The researchers sought to answer the following questions: 1. How will creating a video for instruction affect pre-service teachers' attitudes about teaching with technology, if at all?…

  4. The Use Of Videography For Three-Dimensional Motion Analysis

    NASA Astrophysics Data System (ADS)

    Hawkins, D. A.; Hawthorne, D. L.; DeLozier, G. S.; Campbell, K. R.; Grabiner, M. D.

    1988-02-01

    Special video path editing capabilities with custom hardware and software, have been developed for use in conjunction with existing video acquisition hardware and firmware. This system has simplified the task of quantifying the kinematics of human movement. A set of retro-reflective markers are secured to a subject performing a given task (i.e. walking, throwing, swinging a golf club, etc.). Multiple cameras, a video processor, and a computer work station collect video data while the task is performed. Software has been developed to edit video files, create centroid data, and identify marker paths. Multi-camera path files are combined to form a 3D path file using the DLT method of cinematography. A separate program converts the 3D path file into kinematic data by creating a set of local coordinate axes and performing a series of coordinate transformations from one local system to the next. The kinematic data is then displayed for appropriate review and/or comparison.

  5. Real-time detection and data acquisition system for the left ventricular outline. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C.

    1976-01-01

    To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.

  6. Low Cost Wireless Network Camera Sensors for Traffic Monitoring

    DOT National Transportation Integrated Search

    2012-07-01

    Many freeways and arterials in major cities in Texas are presently equipped with video detection cameras to : collect data and help in traffic/incident management. In this study, carefully controlled experiments determined : the throughput and output...

  7. Industrial inspection of specular surfaces using a new calibration procedure

    NASA Astrophysics Data System (ADS)

    Aswendt, Petra; Hofling, Roland; Gartner, Soren

    2005-06-01

    The methodology of phase encoded reflection measurements has become a valuable tool for the industrial inspection of components with glossy surfaces. The measuring principle provides outstanding sensitivity for tiny variations of surface curvature so that sub-micron waviness and flaws are reliably detected. Quantitative curvature measurements can be obtained from a simple approach if the object is almost flat. 3D-objects with a high aspect ratio require more effort to determine both coordinates and normal direction of a surface point unambiguously. Stereoscopic solutions have been reported using more than one camera for a certain surface area. This paper will describe the combined double camera steady surface approach (DCSS) that is well suited for the implementation in industrial testing stations

  8. The Effect of Camera Angle and Image Size on Source Credibility and Interpersonal Attraction.

    ERIC Educational Resources Information Center

    McCain, Thomas A.; Wakshlag, Jacob J.

    The purpose of this study was to examine the effects of two nonverbal visual variables (camera angle and image size) on variables developed in a nonmediated context (source credibility and interpersonal attraction). Camera angle and image size were manipulated in eight video taped television newscasts which were subsequently presented to eight…

  9. Lights, Camera, AG-Tion: Promoting Agricultural and Environmental Education on Camera

    ERIC Educational Resources Information Center

    Fuhrman, Nicholas E.

    2016-01-01

    Viewing of online videos and television segments has become a popular and efficient way for Extension audiences to acquire information. This article describes a unique approach to teaching on camera that may help Extension educators communicate their messages with comfort and personality. The S.A.L.A.D. approach emphasizes using relevant teaching…

  10. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  11. Video Capture of Perforator Flap Harvesting Procedure with a Full High-definition Wearable Camera

    PubMed Central

    2016-01-01

    Summary: Recent advances in wearable recording technology have enabled high-quality video recording of several surgical procedures from the surgeon’s perspective. However, the available wearable cameras are not optimal for recording the harvesting of perforator flaps because they are too heavy and cannot be attached to the surgical loupe. The Ecous is a small high-resolution camera that was specially developed for recording loupe magnification surgery. This study investigated the use of the Ecous for recording perforator flap harvesting procedures. The Ecous SC MiCron is a high-resolution camera that can be mounted directly on the surgical loupe. The camera is light (30 g) and measures only 28 × 32 × 60 mm. We recorded 23 perforator flap harvesting procedures with the Ecous connected to a laptop through a USB cable. The elevated flaps included 9 deep inferior epigastric artery perforator flaps, 7 thoracodorsal artery perforator flaps, 4 anterolateral thigh flaps, and 3 superficial inferior epigastric artery flaps. All procedures were recorded with no equipment failure. The Ecous recorded the technical details of the perforator dissection at a high-resolution level. The surgeon did not feel any extra stress or interference when wearing the Ecous. The Ecous is an ideal camera for recording perforator flap harvesting procedures. It fits onto the surgical loupe perfectly without creating additional stress on the surgeon. High-quality video from the surgeon’s perspective makes accurate documentation of the procedures possible, thereby enhancing surgical education and allowing critical self-reflection. PMID:27482504

  12. AMS fireball program, community website, mobile app, and all-sky camera

    NASA Astrophysics Data System (ADS)

    Hankey, Mike; Perlerin, Vincent

    2014-01-01

    This short paper describes the content of a video produced by Mike Hankey for the American Meteor Society (AMS) about the technology platform of the organization. This video can be watched on the web.

  13. An Automatic Video Meteor Observation Using UFO Capture at the Showa Station

    NASA Astrophysics Data System (ADS)

    Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.

    2012-05-01

    The goal of our study is to clarify meteor activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic meteor detection and recording at Syowa station, Antarctica.

  14. Anchor Node Localization for Wireless Sensor Networks Using Video and Compass Information Fusion

    PubMed Central

    Pescaru, Dan; Curiac, Daniel-Ioan

    2014-01-01

    Distributed sensing, computing and communication capabilities of wireless sensor networks require, in most situations, an efficient node localization procedure. In the case of random deployments in harsh or hostile environments, a general localization process within global coordinates is based on a set of anchor nodes able to determine their own position using GPS receivers. In this paper we propose another anchor node localization technique that can be used when GPS devices cannot accomplish their mission or are considered to be too expensive. This novel technique is based on the fusion of video and compass data acquired by the anchor nodes and is especially suitable for video- or multimedia-based wireless sensor networks. For these types of wireless networks the presence of video cameras is intrinsic, while the presence of digital compasses is also required for identifying the cameras' orientations. PMID:24594614

  15. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  16. The reactions of patients to a video camera in the consulting room

    PubMed Central

    Martin, Edwin; Martin, P. M. L.

    1984-01-01

    In a general practice survey of reactions to the presence of a video camera in the consulting room 13 per cent of patients refused to be filmed, and 11 per cent of those who did consent disapproved of recording. Patients were more willing to express their reservations about video recording if asked to fill in a questionnaire later at home rather than immediately at the surgery. Patients with anxiety, depression, or problems relating to the breasts or reproductive system were more likely to withhold consent. Patients were less likely to refuse video recording of their consultation if they were asked by the doctor for their verbal permission as they entered the consulting room rather then if they were asked to sign a consent form. Only a small minority of the patients who refused to be filmed felt that this refusal had affected their consultation with the doctor. PMID:6502570

  17. Non-Cooperative Facial Recognition Video Dataset Collection Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Marcia L.; Erikson, Rebecca L.; Lombardo, Nicholas J.

    The Pacific Northwest National Laboratory (PNNL) will produce a non-cooperative (i.e. not posing for the camera) facial recognition video data set for research purposes to evaluate and enhance facial recognition systems technology. The aggregate data set consists of 1) videos capturing PNNL role players and public volunteers in three key operational settings, 2) photographs of the role players for enrolling in an evaluation database, and 3) ground truth data that documents when the role player is within various camera fields of view. PNNL will deliver the aggregate data set to DHS who may then choose to make it available tomore » other government agencies interested in evaluating and enhancing facial recognition systems. The three operational settings that will be the focus of the video collection effort include: 1) unidirectional crowd flow 2) bi-directional crowd flow, and 3) linear and/or serpentine queues.« less

  18. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  19. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Jim G.

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  20. Virtual displays for 360-degree video

    NASA Astrophysics Data System (ADS)

    Gilbert, Stephen; Boonsuk, Wutthigrai; Kelly, Jonathan W.

    2012-03-01

    In this paper we describe a novel approach for comparing users' spatial cognition when using different depictions of 360- degree video on a traditional 2D display. By using virtual cameras within a game engine and texture mapping of these camera feeds to an arbitrary shape, we were able to offer users a 360-degree interface composed of four 90-degree views, two 180-degree views, or one 360-degree view of the same interactive environment. An example experiment is described using these interfaces. This technique for creating alternative displays of wide-angle video facilitates the exploration of how compressed or fish-eye distortions affect spatial perception of the environment and can benefit the creation of interfaces for surveillance and remote system teleoperation.

  1. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  2. Evaluation of Digital Technology and Software Use among Business Education Teachers

    ERIC Educational Resources Information Center

    Ellis, Richard S.; Okpala, Comfort O.

    2004-01-01

    Digital video cameras are part of the evolution of multimedia digital products that have positive applications for educators, students, and industry. Multimedia digital video can be utilized by any personal computer and it allows the user to control, combine, and manipulate different types of media, such as text, sound, video, computer graphics,…

  3. The Role of Theory and Technology in Learning Video Production: The Challenge of Change

    ERIC Educational Resources Information Center

    Shewbridge, William; Berge, Zane L.

    2004-01-01

    The video production field has evolved beyond being exclusively relevant to broadcast television. The convergence of low-cost consumer cameras and desktop computer editing has led to new applications of video in a wide range of areas, including the classroom. This presents educators with an opportunity to rethink how students learn video…

  4. Cellphones in Classrooms Land Teachers on Online Video Sites

    ERIC Educational Resources Information Center

    Honawar, Vaishali

    2007-01-01

    Videos of teachers that students taped in secrecy are all over online sites like YouTube and MySpace. Angry teachers, enthusiastic teachers, teachers clowning around, singing, and even dancing are captured, usually with camera phones, for the whole world to see. Some students go so far as to create elaborately edited videos, shot over several…

  5. Researching Literacy in Context: Using Video Analysis to Explore School Literacies

    ERIC Educational Resources Information Center

    Blikstad-Balas, Marte; Sørvik, Gard Ove

    2015-01-01

    This article addresses how methodological approaches relying on video can be included in literacy research to capture changing literacies. In addition to arguing why literacy is best studied in context, we provide empirical examples of how small, head-mounted video cameras have been used in two different research projects that share a common aim:…

  6. A Near-Reality Approach to Improve the e-Learning Open Courseware

    ERIC Educational Resources Information Center

    Yu, Pao-Ta; Liao, Yuan-Hsun; Su, Ming-Hsiang

    2013-01-01

    The open courseware proposed by MIT with single streaming video has been widely accepted by most of the universities as their supplementary learning contents. In this streaming video, a digital video camera is used to capture the speaker's gesture and his/her PowerPoint presentation at the same time. However, the blurry content of PowerPoint…

  7. Development and Evaluation of Video Systems for Performance Testing and Student Monitoring. Final Report.

    ERIC Educational Resources Information Center

    Hayes, John; Pulliam, Robert

    A video performance monitoring system was developed by the URS/Matrix Company, under contract to the USAF Human Resources Laboratory and was evaluated experimentally in three technical training settings. Using input from 1 to 8 video cameras, the system provided a flexible combination of signal processing, direct monitor, recording and replay…

  8. A novel method to reduce time investment when processing videos from camera trap studies.

    PubMed

    Swinnen, Kristijn R R; Reijniers, Jonas; Breno, Matteo; Leirs, Herwig

    2014-01-01

    Camera traps have proven very useful in ecological, conservation and behavioral research. Camera traps non-invasively record presence and behavior of animals in their natural environment. Since the introduction of digital cameras, large amounts of data can be stored. Unfortunately, processing protocols did not evolve as fast as the technical capabilities of the cameras. We used camera traps to record videos of Eurasian beavers (Castor fiber). However, a large number of recordings did not contain the target species, but instead empty recordings or other species (together non-target recordings), making the removal of these recordings unacceptably time consuming. In this paper we propose a method to partially eliminate non-target recordings without having to watch the recordings, in order to reduce workload. Discrimination between recordings of target species and non-target recordings was based on detecting variation (changes in pixel values from frame to frame) in the recordings. Because of the size of the target species, we supposed that recordings with the target species contain on average much more movements than non-target recordings. Two different filter methods were tested and compared. We show that a partial discrimination can be made between target and non-target recordings based on variation in pixel values and that environmental conditions and filter methods influence the amount of non-target recordings that can be identified and discarded. By allowing a loss of 5% to 20% of recordings containing the target species, in ideal circumstances, 53% to 76% of non-target recordings can be identified and discarded. We conclude that adding an extra processing step in the camera trap protocol can result in large time savings. Since we are convinced that the use of camera traps will become increasingly important in the future, this filter method can benefit many researchers, using it in different contexts across the globe, on both videos and photographs.

  9. Cameras Monitor Spacecraft Integrity to Prevent Failures

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  10. Development of Automated Tracking System with Active Cameras for Figure Skating

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.

  11. A view of the ET camera on STS-112

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  12. A view of the ET camera on STS-112

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  13. Depth Perception In Remote Stereoscopic Viewing Systems

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  14. The Video Collaborative Localization of a Miner's Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines.

    PubMed

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-09-29

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner's lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner's lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner's lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner's lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  15. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  16. Light-reflection random-target method for measurement of the modulation transfer function of a digital video-camera

    NASA Astrophysics Data System (ADS)

    Pospisil, J.; Jakubik, P.; Machala, L.

    2005-11-01

    This article reports the suggestion, realization and verification of the newly developed measuring means of the noiseless and locally shift-invariant modulation transfer function (MTF) of a digital video camera in a usual incoherent visible region of optical intensity, especially of its combined imaging, detection, sampling and digitizing steps which are influenced by the additive and spatially discrete photodetector, aliasing and quantization noises. Such means relates to the still camera automatic working regime and static two-dimensional spatially continuous light-reflection random target of white-noise property. The introduced theoretical reason for such a random-target method is also performed under exploitation of the proposed simulation model of the linear optical intensity response and possibility to express the resultant MTF by a normalized and smoothed rate of the ascertainable output and input power spectral densities. The random-target and resultant image-data were obtained and processed by means of a processing and evaluational PC with computation programs developed on the basis of MATLAB 6.5E The present examples of results and other obtained results of the performed measurements demonstrate the sufficient repeatability and acceptability of the described method for comparative evaluations of the performance of digital video cameras under various conditions.

  17. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    PubMed Central

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  18. Feature Quantization and Pooling for Videos

    DTIC Science & Technology

    2014-05-01

    does not score high on this metric. The exceptions are videos where objects move - for exam- ple, the ice skaters (“ice”) and the tennis player , tracked...convincing me that my future path should include a PhD. Martial and Fernando, your energy is exceptional! Its influence can be seen in the burning...3.17 BMW enables Interpretation of similar regions across videos ( tennis ). . . . . . . 50 3.18 Common Motion Words across videos with large camera

  19. Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using Calibration Lights

    DTIC Science & Technology

    2016-04-04

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using...ABSTRACT This Test Operations Procedure (TOP) describes typical equipment and procedures to setup and operate a Video Target Scoring System (VTSS) to...lights. 15. SUBJECT TERMS Video Target Scoring System, VTSS, witness screens, camera, target screen, light pole 16. SECURITY

  20. Quantifying Northern Goshawk diets using remote cameras and observations from blinds

    USGS Publications Warehouse

    Rogers, A.S.; DeStefano, S.; Ingraldi, M.F.

    2005-01-01

    Raptor diet is most commonly measured indirectly, by analyzing castings and prey remains, or directly, by observing prey deliveries from blinds. Indirect methods are not only time consuming, but there is evidence to suggest these methods may overestimate certain prey taxa within raptor diet. Remote video surveillance systems have been developed to aid in monitoring and data collection, but their use in field situations can be challenging and is often untested. To investigate diet and prey delivery rates of Northern Goshawks (Accipiter gentilis), we operated 10 remote camera systems at occupied nests during the breeding seasons of 1999 and 2000 in east-central Arizona. We collected 2458 hr of useable video and successfully identified 627 (93%) prey items at least to Class (Aves, Mammalia, or Reptilia). Of prey items identified to genus, we identified 344 (81%) mammals, 62 (15%) birds, and 16 (4%) reptiles. During camera operation, we also conducted observations from blinds at a subset of five nests to compare the relative efficiency and precision of both methods. Limited observations from blinds yielded fewer prey deliveries, and therefore, lower delivery rates (0.16 items/hr) than simultaneous video footage (0.28 items/hr). Observations from blinds resulted in fewer prey identified to the genus and species levels, when compared to data collected by remote cameras. Cameras provided a detailed and close view of nests, allowed for simultaneous recording at multiple nests, decreased observer bias and fatigue, and provided a permanent archive of data. ?? 2005 The Raptor Research Foundation, Inc.

  1. Precise color images a high-speed color video camera system with three intensified sensors

    NASA Astrophysics Data System (ADS)

    Oki, Sachio; Yamakawa, Masafumi; Gohda, Susumu; Etoh, Takeharu G.

    1999-06-01

    High speed imaging systems have been used in a large field of science and engineering. Although the high speed camera systems have been improved to high performance, most of their applications are only to get high speed motion pictures. However, in some fields of science and technology, it is useful to get some other information, such as temperature of combustion flame, thermal plasma and molten materials. Recent digital high speed video imaging technology should be able to get such information from those objects. For this purpose, we have already developed a high speed video camera system with three-intensified-sensors and cubic prism image splitter. The maximum frame rate is 40,500 pps (picture per second) at 64 X 64 pixels and 4,500 pps at 256 X 256 pixels with 256 (8 bit) intensity resolution for each pixel. The camera system can store more than 1,000 pictures continuously in solid state memory. In order to get the precise color images from this camera system, we need to develop a digital technique, which consists of a computer program and ancillary instruments, to adjust displacement of images taken from two or three image sensors and to calibrate relationship between incident light intensity and corresponding digital output signals. In this paper, the digital technique for pixel-based displacement adjustment are proposed. Although the displacement of the corresponding circle was more than 8 pixels in original image, the displacement was adjusted within 0.2 pixels at most by this method.

  2. Intelligent viewing control for robotic and automation systems

    NASA Astrophysics Data System (ADS)

    Schenker, Paul S.; Peters, Stephen F.; Paljug, Eric D.; Kim, Won S.

    1994-10-01

    We present a new system for supervisory automated control of multiple remote cameras. Our primary purpose in developing this system has been to provide capability for knowledge- based, `hands-off' viewing during execution of teleoperation/telerobotic tasks. The reported technology has broader applicability to remote surveillance, telescience observation, automated manufacturing workcells, etc. We refer to this new capability as `Intelligent Viewing Control (IVC),' distinguishing it from a simple programmed camera motion control. In the IVC system, camera viewing assignment, sequencing, positioning, panning, and parameter adjustment (zoom, focus, aperture, etc.) are invoked and interactively executed by real-time by a knowledge-based controller, drawing on a priori known task models and constraints, including operator preferences. This multi-camera control is integrated with a real-time, high-fidelity 3D graphics simulation, which is correctly calibrated in perspective to the actual cameras and their platform kinematics (translation/pan-tilt). Such merged graphics- with-video design allows the system user to preview and modify the planned (`choreographed') viewing sequences. Further, during actual task execution, the system operator has available both the resulting optimized video sequence, as well as supplementary graphics views from arbitrary perspectives. IVC, including operator-interactive designation of robot task actions, is presented to the user as a well-integrated video-graphic single screen user interface allowing easy access to all relevant telerobot communication/command/control resources. We describe and show pictorial results of a preliminary IVC system implementation for telerobotic servicing of a satellite.

  3. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    NASA Astrophysics Data System (ADS)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  4. Real-time rendering for multiview autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Berretty, R.-P. M.; Peters, F. J.; Volleberg, G. T. G.

    2006-02-01

    In video systems, the introduction of 3D video might be the next revolution after the introduction of color. Nowadays multiview autostereoscopic displays are in development. Such displays offer various views at the same time and the image content observed by the viewer depends upon his position with respect to the screen. His left eye receives a signal that is different from what his right eye gets; this gives, provided the signals have been properly processed, the impression of depth. The various views produced on the display differ with respect to their associated camera positions. A possible video format that is suited for rendering from different camera positions is the usual 2D format enriched with a depth related channel, e.g. for each pixel in the video not only its color is given, but also e.g. its distance to a camera. In this paper we provide a theoretical framework for the parallactic transformations which relates captured and observed depths to screen and image disparities. Moreover we present an efficient real time rendering algorithm that uses forward mapping to reduce aliasing artefacts and that deals properly with occlusions. For improved perceived resolution, we take the relative position of the color subpixels and the optics of the lenticular screen into account. Sophisticated filtering techniques results in high quality images.

  5. Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging.

    PubMed

    Liu, Dengyu; Gu, Jinwei; Hitomi, Yasunobu; Gupta, Mohit; Mitsunaga, Tomoo; Nayar, Shree K

    2014-02-01

    Cameras face a fundamental trade-off between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this trade-off without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing, and reconstructing the space-time volume to overcome this trade-off. Our approach has two important distinctions compared to previous works: 1) We achieve sparse representation of videos by learning an overcomplete dictionary on video patches, and 2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach, sampling function and sparse representation, by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a liquid crystal on silicon device. System characteristics such as field of view and modulation transfer function are evaluated for our imaging system. Both simulations and experiments on a wide range of scenes show that our method can effectively reconstruct a video from a single coded image while maintaining high spatial resolution.

  6. Endoscopic techniques in aesthetic plastic surgery.

    PubMed

    McCain, L A; Jones, G

    1995-01-01

    There has been an explosive interest in endoscopic techniques by plastic surgeons over the past two years. Procedures such as facial rejuvenation, breast augmentation and abdominoplasty are being performed with endoscopic assistance. Endoscopic operations require a complex setup with components such as video camera, light sources, cables and hard instruments. The Hopkins Rod Lens system consists of optical fibers for illumination, an objective lens, an image retrieval system, a series of rods and lenses, and an eyepiece for image collection. Good illumination of the body cavity is essential for endoscopic procedures. Placement of the video camera on the eyepiece of the endoscope gives a clear, brightly illuminated large image on the monitor. The video monitor provides the surgical team with the endoscopic image. It is important to become familiar with the equipment before actually doing cases. Several options exist for staff education. In the operating room the endoscopic cart needs to be positioned to allow a clear unrestricted view of the video monitor by the surgeon and the operating team. Fogging of the endoscope may be prevented during induction by using FREDD (a fog reduction/elimination device) or a warm bath. The camera needs to be white balanced. During the procedure, the nurse monitors the level of dissection and assesses for clogging of the suction.

  7. Scalable software architecture for on-line multi-camera video processing

    NASA Astrophysics Data System (ADS)

    Camplani, Massimo; Salgado, Luis

    2011-03-01

    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead.

  8. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    NASA Astrophysics Data System (ADS)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  9. Value Added: the Case for Point-of-View Camera use in Orthopedic Surgical Education.

    PubMed

    Karam, Matthew D; Thomas, Geb W; Taylor, Leah; Liu, Xiaoxing; Anthony, Chris A; Anderson, Donald D

    2016-01-01

    Orthopedic surgical education is evolving as educators search for new ways to enhance surgical skills training. Orthopedic educators should seek new methods and technologies to augment and add value to real-time orthopedic surgical experience. This paper describes a protocol whereby we have started to capture and evaluate specific orthopedic milestone procedures with a GoPro® point-of-view video camera and a dedicated video reviewing website as a way of supplementing the current paradigm in surgical skills training. We report our experience regarding the details and feasibility of this protocol. Upon identification of a patient undergoing surgical fixation of a hip or ankle fracture, an orthopedic resident places a GoPro® point-of-view camera on his or her forehead. All fluoroscopic images acquired during the case are saved and later incorporated into a video on the reviewing website. Surgical videos are uploaded to a secure server and are accessible for later review and assessment via a custom-built website. An electronic survey of resident participants was performed utilizing Qualtrics software. Results are reported using descriptive statistics. A total of 51 surgical videos involving 23 different residents have been captured to date. This includes 20 intertrochanteric hip fracture cases and 31 ankle fracture cases. The average duration of each surgical video was 1 hour and 16 minutes (range 40 minutes to 2 hours and 19 minutes). Of 24 orthopedic resident surgeons surveyed, 88% thought capturing a video portfolio of orthopedic milestones would benefit their education. There is a growing demand in orthopedic surgical education to extract more value from each surgical experience. While further work in development and refinement of such assessments is necessary, we feel that intraoperative video, particularly when captured and presented in a non-threatening, user friendly manner, can add significant value to the present and future paradigm of orthopedic surgical skill training.

  10. Value Added: the Case for Point-of-View Camera use in Orthopedic Surgical Education

    PubMed Central

    Thomas, Geb W.; Taylor, Leah; Liu, Xiaoxing; Anthony, Chris A.; Anderson, Donald D.

    2016-01-01

    Abstract Background Orthopedic surgical education is evolving as educators search for new ways to enhance surgical skills training. Orthopedic educators should seek new methods and technologies to augment and add value to real-time orthopedic surgical experience. This paper describes a protocol whereby we have started to capture and evaluate specific orthopedic milestone procedures with a GoPro® point-of-view video camera and a dedicated video reviewing website as a way of supplementing the current paradigm in surgical skills training. We report our experience regarding the details and feasibility of this protocol. Methods Upon identification of a patient undergoing surgical fixation of a hip or ankle fracture, an orthopedic resident places a GoPro® point-of-view camera on his or her forehead. All fluoroscopic images acquired during the case are saved and later incorporated into a video on the reviewing website. Surgical videos are uploaded to a secure server and are accessible for later review and assessment via a custom-built website. An electronic survey of resident participants was performed utilizing Qualtrics software. Results are reported using descriptive statistics. Results A total of 51 surgical videos involving 23 different residents have been captured to date. This includes 20 intertrochanteric hip fracture cases and 31 ankle fracture cases. The average duration of each surgical video was 1 hour and 16 minutes (range 40 minutes to 2 hours and 19 minutes). Of 24 orthopedic resident surgeons surveyed, 88% thought capturing a video portfolio of orthopedic milestones would benefit their education Conclusions There is a growing demand in orthopedic surgical education to extract more value from each surgical experience. While further work in development and refinement of such assessments is necessary, we feel that intraoperative video, particularly when captured and presented in a non-threatening, user friendly manner, can add significant value to the present and future paradigm of orthopedic surgical skill training. PMID:27528828

  11. Traffic counting using existing video detection cameras : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    The purpose of this study is to evaluate the video detection technologies currently adopted by the city of Baton Rouge and the Louisiana Department of Transportation and Development. The main objective is to review the performance of Econolite Autosc...

  12. Monitoring system for phreatic eruptions and thermal behavior on Poás volcano hyperacidic lake, with permanent IR and HD cameras

    NASA Astrophysics Data System (ADS)

    Ramirez, C. J.; Mora-Amador, R. A., Sr.; Alpizar Segura, Y.; González, G.

    2015-12-01

    Monitoring volcanoes have been on the past decades an expanding matter, one of the rising techniques that involve new technology is the digital video surveillance, and the automated software that come within, now is possible if you have the budget and some facilities on site, to set up a real-time network of high definition video cameras, some of them even with special features like infrared, thermal, ultraviolet, etc. That can make easier or harder the analysis of volcanic phenomena like lava eruptions, phreatic eruption, plume speed, lava flows, close/open vents, just to mention some of the many application of these cameras. We present the methodology of the installation at Poás volcano of a real-time system for processing and storing HD and thermal images and video, also the process to install and acquired the HD and IR cameras, towers, solar panels and radios to transmit the data on a volcano located at the tropics, plus what volcanic areas are our goal and why. On the other hand we show the hardware and software we consider necessary to carry on our project. Finally we show some early data examples of upwelling areas on the Poás volcano hyperacidic lake and the relation with lake phreatic eruptions, also some data of increasing temperature on an old dome wall and the suddenly wall explosions, and the use of IR video for measuring plume speed and contour for use on combination with DOAS or FTIR measurements.

  13. The Camera-Based Assessment Survey System (C-BASS): A towed camera platform for reef fish abundance surveys and benthic habitat characterization in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lembke, Chad; Grasty, Sarah; Silverman, Alex; Broadbent, Heather; Butcher, Steven; Murawski, Steven

    2017-12-01

    An ongoing challenge for fisheries management is to provide cost-effective and timely estimates of habitat stratified fish densities. Traditional approaches use modified commercial fishing gear (such as trawls and baited hooks) that have biases in species selectivity and may also be inappropriate for deployment in some habitat types. Underwater visual and optical approaches offer the promise of more precise and less biased assessments of relative fish abundance, as well as direct estimates of absolute fish abundance. A number of video-based approaches have been developed and the technology for data acquisition, calibration, and synthesis has been developing rapidly. Beginning in 2012, our group of engineers and researchers at the University of South Florida has been working towards the goal of completing large scale, video-based surveys in the eastern Gulf of Mexico. This paper discusses design considerations and development of a towed camera system for collection of video-based data on commercially and recreationally important reef fishes and benthic habitat on the West Florida Shelf. Factors considered during development included potential habitat types to be assessed, sea-floor bathymetry, vessel support requirements, personnel requirements, and cost-effectiveness of system components. This regional-specific effort has resulted in a towed platform called the Camera-Based Assessment Survey System, or C-BASS, which has proven capable of surveying tens of kilometers of video transects per day and has the ability to cost-effective population estimates of reef fishes and coincident benthic habitat classification.

  14. The Limited Duty/Chief Warrant Officer Professional Guidebook

    DTIC Science & Technology

    1985-01-01

    subsurface imaging . They plan and manage the operation of imaging commands and activities, combat camera groups and aerial reconnaissance imaging...picture and video systems used in aerial, surface and subsurface imaging . They supervise the operation of imaging commands and activities, combat camera

  15. Foale in Base Block with camera

    NASA Image and Video Library

    1997-11-03

    STS086-405-008 (25 Sept-6 Oct 1997) --- Astronaut C. Michael Foale, sporting attire representing the STS-86 crew after four months aboard Russia?s Mir Space Station in Russian wear, operates a video camera in Mir?s Base Block Module. Photo credit: NASA

  16. Instant Video Revisiting for Reflection: Extending the Learning of Children and Teachers.

    ERIC Educational Resources Information Center

    Hong, Seong B.; Broderick, Jane T.

    This article discusses how instant video revisiting (IVR) promotes reflective thinking for both teachers and children. IVR was used as a daily classroom experience with both the children and the teachers throughout one semester in two preschool classrooms with children 2.5 to 5 years old. The teachers used a digital video camera to generate data…

  17. Lights, Camera, Action: Advancing Learning, Research, and Program Evaluation through Video Production in Educational Leadership Preparation

    ERIC Educational Resources Information Center

    Friend, Jennifer; Militello, Matthew

    2015-01-01

    This article analyzes specific uses of digital video production in the field of educational leadership preparation, advancing a three-part framework that includes the use of video in (a) teaching and learning, (b) research methods, and (c) program evaluation and service to the profession. The first category within the framework examines videos…

  18. Efficient subtle motion detection from high-speed video for sound recovery and vibration analysis using singular value decomposition-based approach

    NASA Astrophysics Data System (ADS)

    Zhang, Dashan; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2017-09-01

    High-speed cameras provide full field measurement of structure motions and have been applied in nondestructive testing and noncontact structure monitoring. Recently, a phase-based method has been proposed to extract sound-induced vibrations from phase variations in videos, and this method provides insights into the study of remote sound surveillance and material analysis. An efficient singular value decomposition (SVD)-based approach is introduced to detect sound-induced subtle motions from pixel intensities in silent high-speed videos. A high-speed camera is initially applied to capture a video of the vibrating objects stimulated by sound fluctuations. Then, subimages collected from a small region on the captured video are reshaped into vectors and reconstructed to form a matrix. Orthonormal image bases (OIBs) are obtained from the SVD of the matrix; available vibration signal can then be obtained by projecting subsequent subimages onto specific OIBs. A simulation test is initiated to validate the effectiveness and efficiency of the proposed method. Two experiments are conducted to demonstrate the potential applications in sound recovery and material analysis. Results show that the proposed method efficiently detects subtle motions from the video.

  19. Modification of the Miyake-Apple technique for simultaneous anterior and posterior video imaging of wet laboratory-based corneal surgery.

    PubMed

    Tan, Johnson C H; Meadows, Howard; Gupta, Aanchal; Yeung, Sonia N; Moloney, Gregory

    2014-03-01

    The aim of this study was to describe a modification of the Miyake-Apple posterior video analysis for the simultaneous visualization of the anterior and posterior corneal surfaces during wet laboratory-based deep anterior lamellar keratoplasty (DALK). A human donor corneoscleral button was affixed to a microscope slide and placed onto a custom-made mounting box. A big bubble DALK was performed on the cornea in the wet laboratory. An 11-diopter intraocular lens was positioned over the aperture of the back camera of an iPhone. This served to video record the posterior view of the corneoscleral button during the big bubble formation. An overhead operating microscope with an attached video camcorder recorded the anterior view during the surgery. The anterior and posterior views of the wet laboratory-based DALK surgery were simultaneously captured and edited using video editing software. The formation of the big bubble can be studied. This video recording camera system has the potential to act as a valuable research and teaching tool in corneal lamellar surgery, especially in the behavior of the big bubble formation in DALK.

  20. GoPro HERO 4 Black recording of scleral buckle placement during retinal detachment repair.

    PubMed

    Ho, Vincent Y; Shah, Vaishali G; Yates, David M; Shah, Gaurav K

    2017-08-01

    GoPro and Google Glass technology have previously been used to record procedures in ophthalmology and other medical fields. In this manuscript, GoPro's latest HERO 4 Black edition camera (GoPro Inc, San Mateo, Calif.) will be used to record the placement of a scleral buckle during retinal detachment surgery. GoPro HERO 4 Black edition camera, which records 4K-quality video with a resolution of 3840 (pixels) x 2160 (lines), was mounted on a head strap to record placement of a scleral buckle for a retinal detachment. Excellent video quality was achieved with the 4K SuperView setting. Bluetooth connection with an Apple iPad (Apple Inc, Cupertino, Calif.) provided live streaming and use of the GoPro App. Zoom, horizontal/vertical alignment, exposure, and contrast adjustments were made with postproduction editing on GoPro Studio software. Video recording with the GoPro HERO 4 Black edition camera is an excellent way to document extraocular procedures to improve medical education, self-training, or medicolegal documentation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  1. RealityFlythrough: Enhancing Situational Awareness for Medical Response to Disasters Using Ubiquitous Video

    PubMed Central

    McCurdy, Neil J.; Griswold, William G; Lenert, Leslie A.

    2005-01-01

    The first moments at a disater scene are chaotic. The command center initially operates with little knowledge of hazards, geography and casualties, building up knowledge of the event slowly as information trickles in by voice radio channels. RealityFlythrough is a tele-presence system that stitches together live video feeds in real-time, using the principle of visual closure, to give command center personnel the illusion of being able to explore the scene interactively by moving smoothly between the video feeds. Using RealityFlythrough, medical, fire, law enforcement, hazardous materials, and engineering experts may be able to achieve situational awareness earlier, and better manage scarce resources. The RealityFlythrough system is composed of camera units with off-the-shelf GPS and orientation systems and a server/viewing station that offers access to images collected by the camera units in real time by position/orientation. In initial field testing using an experimental mesh 802.11 wireless network, two camera unit operators were able to create an interactive image of a simulated disaster scene in about five minutes. PMID:16779092

  2. 3-D Velocimetry of Strombolian Explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Gaudin, D.; Orr, T. R.; Scarlato, P.; Houghton, B. F.; Del Bello, E.

    2014-12-01

    Using two synchronized high-speed cameras we were able to reconstruct the three-dimensional displacement and velocity field of bomb-sized pyroclasts in Strombolian explosions at Stromboli Volcano. Relatively low-intensity Strombolian-style activity offers a rare opportunity to observe volcanic processes that remain hidden from view during more violent explosive activity. Such processes include the ejection and emplacement of bomb-sized clasts along pure or drag-modified ballistic trajectories, in-flight bomb collision, and gas liberation dynamics. High-speed imaging of Strombolian activity has already opened new windows for the study of the abovementioned processes, but to date has only utilized two-dimensional analysis with limited motion detection and ability to record motion towards or away from the observer. To overcome this limitation, we deployed two synchronized high-speed video cameras at Stromboli. The two cameras, located sixty meters apart, filmed Strombolian explosions at 500 and 1000 frames per second and with different resolutions. Frames from the two cameras were pre-processed and combined into a single video showing frames alternating from one to the other camera. Bomb-sized pyroclasts were then manually identified and tracked in the combined video, together with fixed reference points located as close as possible to the vent. The results from manual tracking were fed to a custom software routine that, knowing the relative position of the vent and cameras, and the field of view of the latter, provided the position of each bomb relative to the reference points. By tracking tens of bombs over five to ten frames at different intervals during one explosion, we were able to reconstruct the three-dimensional evolution of the displacement and velocity fields of bomb-sized pyroclasts during individual Strombolian explosions. Shifting jet directivity and dispersal angle clearly appear from the three-dimensional analysis.

  3. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  4. MPCM: a hardware coder for super slow motion video sequences

    NASA Astrophysics Data System (ADS)

    Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.

    2013-12-01

    In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.

  5. Heterogeneous CPU-GPU moving targets detection for UAV video

    NASA Astrophysics Data System (ADS)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  6. Applied learning-based color tone mapping for face recognition in video surveillance system

    NASA Astrophysics Data System (ADS)

    Yew, Chuu Tian; Suandi, Shahrel Azmin

    2012-04-01

    In this paper, we present an applied learning-based color tone mapping technique for video surveillance system. This technique can be applied onto both color and grayscale surveillance images. The basic idea is to learn the color or intensity statistics from a training dataset of photorealistic images of the candidates appeared in the surveillance images, and remap the color or intensity of the input image so that the color or intensity statistics match those in the training dataset. It is well known that the difference in commercial surveillance cameras models, and signal processing chipsets used by different manufacturers will cause the color and intensity of the images to differ from one another, thus creating additional challenges for face recognition in video surveillance system. Using Multi-Class Support Vector Machines as the classifier on a publicly available video surveillance camera database, namely SCface database, this approach is validated and compared to the results of using holistic approach on grayscale images. The results show that this technique is suitable to improve the color or intensity quality of video surveillance system for face recognition.

  7. COPPER Students - ELaNa IV

    NASA Image and Video Library

    2013-07-11

    The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.

  8. Mono Lake, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-154-160 (9-20 April 1994) --- Orient with Mono Lake, California at the lower right; then the view is westward across the Sierra Nevada into the San Joaquin River drainage. A tiny network of ski trails can be seen on the Mono Lake side of the Sierras, on a line between Mono Lake and the snow-free San Joaquin headwaters. The ski trails mark Mammoth Mountain, where SRL investigators are studying microwave measurements of the water content of snowpacks. Linhof camera.

  9. Magnetic Particles Are Found In The Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The dark bullseye pattern seen at the top of Viking l's camera calibration chart indicates the presence of magnetic particles in the fine dust in the Martian atmosphere. A tiny magnet is mounted at that spot to catch wind-borne magnetic particles. The particles may have been tossed into the atmosphere surrounding the spacecraft at the time of landing and during the digging and delivery of the Mars soil sample by the surface sampler scoop. This picture was taken August 4.

  10. Exploding Balloons, Deformed Balls, Strange Reflections and Breaking Rods: Slow Motion Analysis of Selected Hands-On Experiments

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    A selection of hands-on experiments from different fields of physics, which happen too fast for the eye or video cameras to properly observe and analyse the phenomena, is presented. They are recorded and analysed using modern high speed cameras. Two types of cameras were used: the first were rather inexpensive consumer products such as Casio…

  11. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-data-transmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-datatransmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At thime of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-datatransmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the adjacent water and ice.

  12. Classroom Writing Activities to Support the Curriculum.

    ERIC Educational Resources Information Center

    Piper, Judy

    1990-01-01

    Offers writing activities related to the reading of E. B. White's "Charlotte's Web," including showing the movie, using HyperCard, showing a video about a webspinning spider as a prewriting activity, and using computer graphics and video cameras to create related visual projects. (SR)

  13. Utilizing ego-centric video to conduct naturalistic bicycling studies.

    DOT National Transportation Integrated Search

    2016-10-01

    Existing data collection methods are mostly designed for videos captured by stationary cameras and are not designed to follow cyclists along a : route or to integrate other sensor data. The goals of this research are: a) to develop a platform to coll...

  14. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  15. Center for Coastline Security Technology, Year 3

    DTIC Science & Technology

    2008-05-01

    Polarization control for 3D Imaging with the Sony SRX-R105 Digital Cinema Projectors 3.4 HDMAX Camera and Sony SRX-R105 Projector Configuration for 3D...HDMAX Camera Pair Figure 3.2 Sony SRX-R105 Digital Cinema Projector Figure 3.3 Effect of camera rotation on projected overlay image. Figure 3.4...system that combines a pair of FAU’s HD-MAX video cameras with a pair of Sony SRX-R105 digital cinema projectors for stereo imaging and projection

  16. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  17. A new method for digital video documentation in surgical procedures and minimally invasive surgery.

    PubMed

    Wurnig, P N; Hollaus, P H; Wurnig, C H; Wolf, R K; Ohtsuka, T; Pridun, N S

    2003-02-01

    Documentation of surgical procedures is limited to the accuracy of description, which depends on the vocabulary and the descriptive prowess of the surgeon. Even analog video recording could not solve the problem of documentation satisfactorily due to the abundance of recorded material. By capturing the video digitally, most problems are solved in the circumstances described in this article. We developed a cheap and useful digital video capturing system that consists of conventional computer components. Video images and clips can be captured intraoperatively and are immediately available. The system is a commercial personal computer specially configured for digital video capturing and is connected by wire to the video tower. Filming was done with a conventional endoscopic video camera. A total of 65 open and endoscopic procedures were documented in an orthopedic and a thoracic surgery unit. The median number of clips per surgical procedure was 6 (range, 1-17), and the median storage volume was 49 MB (range, 3-360 MB) in compressed form. The median duration of a video clip was 4 min 25 s (range, 45 s to 21 min). Median time for editing a video clip was 12 min for an advanced user (including cutting, title for the movie, and compression). The quality of the clips renders them suitable for presentations. This digital video documentation system allows easy capturing of intraoperative video sequences in high quality. All possibilities of documentation can be performed. With the use of an endoscopic video camera, no compromises with respect to sterility and surgical elbowroom are necessary. The cost is much lower than commercially available systems, and setting changes can be performed easily without trained specialists.

  18. Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills.

    PubMed

    Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara

    2004-01-01

    Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.

  19. A Structured Light Sensor System for Tree Inventory

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Zemek, Michael C.

    2000-01-01

    Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters.

  20. Physics and Video Analysis

    NASA Astrophysics Data System (ADS)

    Allain, Rhett

    2016-05-01

    We currently live in a world filled with videos. There are videos on YouTube, feature movies and even videos recorded with our own cameras and smartphones. These videos present an excellent opportunity to not only explore physical concepts, but also inspire others to investigate physics ideas. With video analysis, we can explore the fantasy world in science-fiction films. We can also look at online videos to determine if they are genuine or fake. Video analysis can be used in the introductory physics lab and it can even be used to explore the make-believe physics embedded in video games. This book covers the basic ideas behind video analysis along with the fundamental physics principles used in video analysis. The book also includes several examples of the unique situations in which video analysis can be used.

  1. Towards real-time remote processing of laparoscopic video

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  2. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  3. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  4. Superstrings

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The quest to find the ultimate building blocks of nature is one of the oldest in all of physics. While we are far from knowing the answer to that question, one intriguing proposed answer is that all matter is composed of tiny “strings.” The known particles are simply different vibrational patterns of these strings. In this video, Fermilab’s Dr. Don Lincoln explains this idea, using interesting and accessible examples of real-world vibrations.

  5. Is Pluto a planet? Student powered video rap ';battle' over tiny Pluto's embattled planetary standing

    NASA Astrophysics Data System (ADS)

    Beisser, K.; Cruikshank, D. P.; McFadden, T.

    2013-12-01

    Is Pluto a planet? Some creative low income Bay-area middle-schoolers put a musical spin on this hot science debate with a video rap ';battle' over tiny Pluto's embattled planetary standing. The students' timing was perfect, with NASA's New Horizons mission set to conduct the first reconnaissance of Pluto and its moons in July 2015. Pluto - the last of the nine original planets to be explored by spacecraft - has been the subject of scientific study and speculation since Clyde Tombaugh discovered it in 1930, orbiting the Sun far beyond Neptune. Produced by the students and a very creative educator, the video features students 'battling' back and forth over the idea of Pluto being a planet. The group collaborated with actual space scientists to gather information and shot their video before a 'green screen' that was eventually filled with animations and visuals supplied by the New Horizons mission team. The video debuted at the Pluto Science Conference in Maryland in July 2013 - to a rousing response from researchers in attendance. The video marks a nontraditional approach to the ongoing 'great planet debate' while educating viewers on a recently discovered region of the solar system. By the 1990s, researchers had learned that Pluto possessed multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, and a large moon (Charon) that likely resulted from a giant impact on Pluto itself. It also became clear that Pluto was no misfit among the planets - as had long been thought - but the largest and brightest body in a newly discovered 'third zone' of our planetary system called the Kuiper Belt. More recent observations have revealed that Pluto has a rich system of satellites - five known moons - and a surface that changes over time. Scientists even speculate that Pluto may possess an internal ocean. For these and other reasons, the 2003 Planetary Decadal Survey ranked a Pluto/Kuiper Belt mission as the highest priority mission for NASA's newly created New Frontiers program - and that mission is New Horizons. This effort was funded by a Hewlett Packard Sustainability and Social Innovation grant, the Silicon Valley Education Foundation and a Kickstarter campaign to expand this effort to multiple schools. This process and product are great examples of teamwork between scientists and science educators - and show how we can use the appeal of video to communicate science to diverse audiences.

  6. Lights, Camera, Learning!

    ERIC Educational Resources Information Center

    Bull, Glen; Bell, Lynn

    2009-01-01

    The shift from analog to digital video transformed the system from a unidirectional analog broadcast to a two-way conversation, resulting in the birth of participatory media. Digital video offers new opportunities for teaching science, social studies, mathematics, and English language arts. The professional education associations for each content…

  7. Video image position determination

    DOEpatents

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  8. Formulating an image matching strategy for terrestrial stem data collection using a multisensor video system

    Treesearch

    Neil A. Clark

    2001-01-01

    A multisensor video system has been developed incorporating a CCD video camera, a 3-axis magnetometer, and a laser-rangefinding device, for the purpose of measuring individual tree stems. While preliminary results show promise, some changes are needed to improve the accuracy and efficiency of the system. Image matching is needed to improve the accuracy of length...

  9. 78 FR 76861 - Body-Worn Cameras for Criminal Justice Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ..., Various). 3. Maximum Video Resolution of the BWC (e.g., 640x480, 1080p). 4. Recording Speed of the BWC (e... Photos. 7. Whether the BWC embeds a Time/Date Stamp in the recorded video. 8. The Field of View of the...-person video viewing. 12. The Audio Format of the BWC (e.g., MP2, AAC). 13. Whether the BWC contains...

  10. Practical use of video imagery in nearshore oceanographic field studies

    USGS Publications Warehouse

    Holland, K.T.; Holman, R.A.; Lippmann, T.C.; Stanley, J.; Plant, N.

    1997-01-01

    An approach was developed for using video imagery to quantify, in terms of both spatial and temporal dimensions, a number of naturally occurring (nearshore) physical processes. The complete method is presented, including the derivation of the geometrical relationships relating image and ground coordinates, principles to be considered when working with video imagery and the two-step strategy for calibration of the camera model. The techniques are founded on the principles of photogrammetry, account for difficulties inherent in the use of video signals, and have been adapted to allow for flexibility of use in field studies. Examples from field experiments indicate that this approach is both accurate and applicable under the conditions typically experienced when sampling in coastal regions. Several applications of the camera model are discussed, including the measurement of nearshore fluid processes, sand bar length scales, foreshore topography, and drifter motions. Although we have applied this method to the measurement of nearshore processes and morphologic features, these same techniques are transferable to studies in other geophysical settings.

  11. Online tracking of outdoor lighting variations for augmented reality with moving cameras.

    PubMed

    Liu, Yanli; Granier, Xavier

    2012-04-01

    In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.

  12. STS-111 Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 2 of STS-111, the crew of Endeavour (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist) and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer), having successfully entered orbit around the Earth, begin to maneuver towards the International Space Station (ISS), where the Expedition 5 crew will replace the Expedition 4 crew. Live video is shown of the Earth from several vantage points aboard the Shuttle. The center-line camera, which will allow Shuttle pilots to align the docking apparatus with that on the ISS, provides footage of the Earth. Chang-Diaz participates in an interview, in Spanish, conducted from the ground via radio communications, with Cockrell also appearing. Footage of the Earth includes: Daytime video of the Eastern United States with some cloud cover as Endeavour passes over the Florida panhandle, Georgia, and the Carolinas; Daytime video of Lake Michigan unobscured by cloud cover; Nighttime low-light camera video of Madrid, Spain.

  13. Computing camera heading: A study

    NASA Astrophysics Data System (ADS)

    Zhang, John Jiaxiang

    2000-08-01

    An accurate estimate of the motion of a camera is a crucial first step for the 3D reconstruction of sites, objects, and buildings from video. Solutions to the camera heading problem can be readily applied to many areas, such as robotic navigation, surgical operation, video special effects, multimedia, and lately even in internet commerce. From image sequences of a real world scene, the problem is to calculate the directions of the camera translations. The presence of rotations makes this problem very hard. This is because rotations and translations can have similar effects on the images, and are thus hard to tell apart. However, the visual angles between the projection rays of point pairs are unaffected by rotations, and their changes over time contain sufficient information to determine the direction of camera translation. We developed a new formulation of the visual angle disparity approach, first introduced by Tomasi, to the camera heading problem. Our new derivation makes theoretical analysis possible. Most notably, a theorem is obtained that locates all possible singularities of the residual function for the underlying optimization problem. This allows identifying all computation trouble spots beforehand, and to design reliable and accurate computational optimization methods. A bootstrap-jackknife resampling method simultaneously reduces complexity and tolerates outliers well. Experiments with image sequences show accurate results when compared with the true camera motion as measured with mechanical devices.

  14. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  15. Evaluation of stereoscopic video cameras synchronized with the movement of an operator's head on the teleoperation of the actual backhoe shovel

    NASA Astrophysics Data System (ADS)

    Minamoto, Masahiko; Matsunaga, Katsuya

    1999-05-01

    Operator performance while using a remote controlled backhoe shovel is described for three different stereoscopic viewing conditions: direct view, fixed stereoscopic cameras connected to a helmet mounted display (HMD), and rotating stereo camera connected and slaved to the head orientation of a free moving stereo HMD. Results showed that the head- slaved system provided the best performance.

  16. KSC-02pd1374

    NASA Image and Video Library

    2002-09-26

    KENNEDY SPACE CENTER, FLA. - A view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  17. KSC-02pd1376

    NASA Image and Video Library

    2002-09-26

    KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  18. KSC-02pd1375

    NASA Image and Video Library

    2002-09-26

    KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  19. 3D Surface Reconstruction of Rills in a Spanish Olive Grove

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Seeger, Manuel; Wirtz, Stefan; Taguas, Encarnación; Ries, Johannes B.

    2016-04-01

    The low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique is used for 3D surface reconstruction and difference calculation of an 18 meter long rill in South Spain (Andalusia, Puente Genil). The images were taken with a Canon HD video camera before and after a rill experiment in an olive grove. Recording with a video camera has compared to a photo camera a huge time advantage and the method also guarantees more than adequately overlapping sharp images. For each model, approximately 20 minutes of video were taken. As SfM needs single images, the sharpest image was automatically selected from 8 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs and recovers the camera and feature positions. Finally, by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post model a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The results show that rills in olive groves have a high dynamic due to the lack of vegetation cover under the trees, so that the rill can incise until the bedrock. Another reason for the high activity is the intensive employment of machinery.

  20. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    PubMed Central

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  1. Algorithm design for automated transportation photo enforcement camera image and video quality diagnostic check modules

    NASA Astrophysics Data System (ADS)

    Raghavan, Ajay; Saha, Bhaskar

    2013-03-01

    Photo enforcement devices for traffic rules such as red lights, toll, stops, and speed limits are increasingly being deployed in cities and counties around the world to ensure smooth traffic flow and public safety. These are typically unattended fielded systems, and so it is important to periodically check them for potential image/video quality problems that might interfere with their intended functionality. There is interest in automating such checks to reduce the operational overhead and human error involved in manually checking large camera device fleets. Examples of problems affecting such camera devices include exposure issues, focus drifts, obstructions, misalignment, download errors, and motion blur. Furthermore, in some cases, in addition to the sub-algorithms for individual problems, one also has to carefully design the overall algorithm and logic to check for and accurately classifying these individual problems. Some of these issues can occur in tandem or have the potential to be confused for each other by automated algorithms. Examples include camera misalignment that can cause some scene elements to go out of focus for wide-area scenes or download errors that can be misinterpreted as an obstruction. Therefore, the sequence in which the sub-algorithms are utilized is also important. This paper presents an overview of these problems along with no-reference and reduced reference image and video quality solutions to detect and classify such faults.

  2. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  3. Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1989-01-01

    A thermal imaging system provides quantitative temperature information and is particularly useful in hypersonic wind tunnel applications. An object to be measured is prepared by coating with a two-color, ultraviolet-activated, thermographic phosphor. The colors emitted by the phosphor are detected by a conventional color video camera. A phosphor emitting blue and green light with a ratio that varies depending on temperature is used so that the intensity of light in the blue and green wavelengths detected by the blue and green tubes in the video camera can be compared. Signals representing the intensity of blue and green light at points on the surface of a model in a hypersonic wind tunnel are used to calculate a ratio of blue to green light intensity which provides quantitative temperature information for the surface of the model.

  4. VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication

    NASA Astrophysics Data System (ADS)

    Denina, Giovanni; Bhanu, Bir; Nguyen, Hoang Thanh; Ding, Chong; Kamal, Ahmed; Ravishankar, Chinya; Roy-Chowdhury, Amit; Ivers, Allen; Varda, Brenda

    Human-activity recognition is one of the most challenging problems in computer vision. Researchers from around the world have tried to solve this problem and have come a long way in recognizing simple motions and atomic activities. As the computer vision community heads toward fully recognizing human activities, a challenging and labeled dataset is needed. To respond to that need, we collected a dataset of realistic scenarios in a multi-camera network environment (VideoWeb) involving multiple persons performing dozens of different repetitive and non-repetitive activities. This chapter describes the details of the dataset. We believe that this VideoWeb Activities dataset is unique and it is one of the most challenging datasets available today. The dataset is publicly available online at http://vwdata.ee.ucr.edu/ along with the data annotation.

  5. Two Tiny Moons

    NASA Image and Video Library

    2016-10-03

    Two tiny moons of Saturn, almost lost amid the planet's enormous rings, are seen orbiting in this image. Pan, visible within the Encke Gap near lower-right, is in the process of overtaking the slower Atlas, visible at upper-left. All orbiting bodies, large and small, follow the same basic rules. In this case, Pan (17 miles or 28 kilometers across) orbits closer to Saturn than Atlas (19 miles or 30 kilometers across). According to the rules of planetary motion deduced by Johannes Kepler over 400 years ago, Pan orbits the planet faster than Atlas does. This view looks toward the sunlit side of the rings from about 39 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 9, 2016. The view was acquired at a distance of approximately 3.4 million miles (5.5 million kilometers) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 71 degrees. Image scale is 21 miles (33 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20501

  6. Views of Caregivers on the Ethics of Assistive Technology Used for Home Surveillance of People Living with Dementia.

    PubMed

    Mulvenna, Maurice; Hutton, Anton; Coates, Vivien; Martin, Suzanne; Todd, Stephen; Bond, Raymond; Moorhead, Anne

    2017-01-01

    This paper examines the ethics of using assistive technology such as video surveillance in the homes of people living with dementia. Ideation and concept elaboration around the introduction of a camera-based surveillance service in the homes of people with dementia, typically living alone, is explored. The paper reviews relevant literature on surveillance of people living with dementia, and summarises the findings from ideation and concept elaboration workshops, designed to capture the views of those involved in the care of people living with dementia at home. The research question relates to the ethical considerations of using assistive technologies that include video surveillance in the homes of people living with dementia, and the implications for a person living with dementia whenever video surveillance is used in their home and access to the camera is given to the person's family. The review of related work indicated that such video surveillance may result in loss of autonomy or freedom for the person with dementia. The workshops reflected the findings from the related work, and revealed useful information to inform the service design, in particular in fine-tuning the service to find the best relationship between privacy and usefulness. Those who took part in the workshops supported the concept of the use of camera in the homes of people living with dementia, with some significant caveats around privacy. The research carried out in this work is small in scale but points towards an acceptance by many caregivers of people living with dementia of surveillance technologies. This paper indicates that those who care for people living with dementia at home are willing to make use of camera technology and therefore the value of this work is to help shed light on the direction for future research.

  7. Multi-view video segmentation and tracking for video surveillance

    NASA Astrophysics Data System (ADS)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  8. Sensor and Video Monitoring of Water Quality at Bristol Floating Harbour

    NASA Astrophysics Data System (ADS)

    Chen, Yiheng; Han, Dawei

    2017-04-01

    Water system is an essential component in a smart city for its sustainability and resilience. The harbourside is a focal area of​ ​Bristol with new buildings and features redeveloped in the last ten years, attracting numerous visitors by the diversity of attractions and beautiful views. There is a strong​ ​relationship between the satisfactory of the visitors and local people with the water quality in the Harbour. The freshness and beauty of the water body would please people as well as benefit the aquatic ecosystems. As we are entering a data-rich era, this pilot project aims to explore the concept of using​ ​ video cameras and smart sensors to collect and monitor water quality condition at the Bristol harbourside. The video cameras and smart sensors are connected to the Bristol Is Open network, an open programmable city platform. This will be the​ first​ attempt to collect water quality data in real time in the​ ​Bristol urban area with the wireless network. The videos and images of the water body collected by the cameras will be correlated with the in-situ water quality parameters for research​ ​purposes. The successful implementation of the sensors can attract more academic researchers and industrial partners to expand the sensor network to multiple locations​ ​around the city covering the other parts of the Harbour and River Avon, leading to a new generation of urban system infrastructure model.

  9. SarcOptiM for ImageJ: high-frequency online sarcomere length computing on stimulated cardiomyocytes.

    PubMed

    Pasqualin, Côme; Gannier, François; Yu, Angèle; Malécot, Claire O; Bredeloux, Pierre; Maupoil, Véronique

    2016-08-01

    Accurate measurement of cardiomyocyte contraction is a critical issue for scientists working on cardiac physiology and physiopathology of diseases implying contraction impairment. Cardiomyocytes contraction can be quantified by measuring sarcomere length, but few tools are available for this, and none is freely distributed. We developed a plug-in (SarcOptiM) for the ImageJ/Fiji image analysis platform developed by the National Institutes of Health. SarcOptiM computes sarcomere length via fast Fourier transform analysis of video frames captured or displayed in ImageJ and thus is not tied to a dedicated video camera. It can work in real time or offline, the latter overcoming rotating motion or displacement-related artifacts. SarcOptiM includes a simulator and video generator of cardiomyocyte contraction. Acquisition parameters, such as pixel size and camera frame rate, were tested with both experimental recordings of rat ventricular cardiomyocytes and synthetic videos. It is freely distributed, and its source code is available. It works under Windows, Mac, or Linux operating systems. The camera speed is the limiting factor, since the algorithm can compute online sarcomere shortening at frame rates >10 kHz. In conclusion, SarcOptiM is a free and validated user-friendly tool for studying cardiomyocyte contraction in all species, including human. Copyright © 2016 the American Physiological Society.

  10. DOTD support for UTC project : traffic counting using existing video detection cameras, [research project capsule].

    DOT National Transportation Integrated Search

    2013-10-01

    This study will evaluate the video detection technologies currently adopted by the city : of Baton Rouge, LA, and DOTD with the purpose of establishing design guidelines based : on the detection needs, functionality, and cost. The study will also dev...

  11. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. Small Unmanned Aerial Vehicles; DHS’s Answer to Border Surveillance Requirements

    DTIC Science & Technology

    2013-03-01

    5 of more than 4000 illegal aliens, including the seizure of more than 15,000 pounds of marijuana .13 In addition to the Predator UAVs being...payload includes two color video cameras, an infrared camera that offers night vision capability and synthetic aperture radar that provides high

  13. Ultraviolet Viewing with a Television Camera.

    ERIC Educational Resources Information Center

    Eisner, Thomas; And Others

    1988-01-01

    Reports on a portable video color camera that is fully suited for seeing ultraviolet images and offers some expanded viewing possibilities. Discusses the basic technique, specialized viewing, and the instructional value of this system of viewing reflectance patterns of flowers and insects that are invisible to the unaided eye. (CW)

  14. Camera! Action! Collaborate with Digital Moviemaking

    ERIC Educational Resources Information Center

    Swan, Kathleen Owings; Hofer, Mark; Levstik, Linda S.

    2007-01-01

    Broadly defined, digital moviemaking integrates a variety of media (images, sound, text, video, narration) to communicate with an audience. There is near-ubiquitous access to the necessary software (MovieMaker and iMovie are bundled free with their respective operating systems) and hardware (computers with Internet access, digital cameras, etc.).…

  15. The Art of Astrophotography

    NASA Astrophysics Data System (ADS)

    Morison, Ian

    2017-02-01

    1. Imaging star trails; 2. Imaging a constellation with a DSLR and tripod; 3. Imaging the Milky Way with a DSLR and tracking mount; 4. Imaging the Moon with a compact camera or smartphone; 5. Imaging the Moon with a DSLR; 6. Imaging the Pleiades Cluster with a DSLR and small refractor; 7. Imaging the Orion Nebula, M42, with a modified Canon DSLR; 8. Telescopes and their accessories for use in astroimaging; 9. Towards stellar excellence; 10. Cooling a DSLR camera to reduce sensor noise; 11. Imaging the North American and Pelican Nebulae; 12. Combating light pollution - the bane of astrophotographers; 13. Imaging planets with an astronomical video camera or Canon DSLR; 14. Video imaging the Moon with a webcam or DSLR; 15. Imaging the Sun in white light; 16. Imaging the Sun in the light of its H-alpha emission; 17. Imaging meteors; 18. Imaging comets; 19. Using a cooled 'one shot colour' camera; 20. Using a cooled monochrome CCD camera; 21. LRGB colour imaging; 22. Narrow band colour imaging; Appendix A. Telescopes for imaging; Appendix B. Telescope mounts; Appendix C. The effects of the atmosphere; Appendix D. Auto guiding; Appendix E. Image calibration; Appendix F. Practical aspects of astroimaging.

  16. Enhanced technologies for unattended ground sensor systems

    NASA Astrophysics Data System (ADS)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  17. Hydrogen peroxide plasma sterilization of a waterproof, high-definition video camera case for intraoperative imaging in veterinary surgery.

    PubMed

    Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan

    2018-06-13

    To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.

  18. Keyhole imaging method for dynamic objects behind the occlusion area

    NASA Astrophysics Data System (ADS)

    Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong

    2018-01-01

    A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .

  19. SAFER Under Vehicle Inspection Through Video Mosaic Building

    DTIC Science & Technology

    2004-01-01

    this work were taken using a Polaris Wp-300c Lipstick video camera mounted on a mobile platform. Infrared video was taken using a Raytheon PalmIR PRO...Tank- Automotive Research, Development and Engineering Center, US Army RDECOM, Warren, Michigan, USA. Keywords Inspection, Road vehicles, State...security, Robotics Abstract The current threats to US security, both military and civilian, have led to an increased interest in the development of

  20. Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design

    DTIC Science & Technology

    2016-10-01

    study of the resulting videos led to a new prosthetics-use taxonomy that is generalizable to various levels of amputation and terminal devices. The...taxonomy was applied to classification of the recorded videos via custom tagging software with midi controller interface. The software creates...a motion capture studio and video cameras to record accurate and detailed upper body motion during a series of standardized tasks. These tasks are

  1. Reliable Video Analysis Helps Security Company Grow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurer, Dave; Furgal, Dave; Hobson, Rick

    Armed Response Team (ART) has grown to become the largest locally owned security company in New Mexico. With technical assistance from Sandia National Laboratories through the New Mexico Small Business Assistance (NMSBA) Program, ART got help so they could quickly bring workable video security solutions to market. By offering a reliable video analytic camera system, they’ve been able to reduce theft, add hundreds of clients, and increase their number of employees.

  2. A video-angiometer for simultaneous and continuous measurement of inner and outer vessel diameters. Technical report.

    PubMed

    Assmann, R; Henrich, H

    1978-09-29

    A system is described for continuously measuring vessel diameters. It bases on the evaluation of video signal differences of a video camera which are induced by light intensity differences (grey levels) caused by the vascular wall structures. The system is electronically linear, automatically measuring and in addition eyeball controlled by the human sensor: the inaccuracy does not exceed the 5% level.

  3. Reflectance-based skin detection in the short wave infrared band and its application to video

    NASA Astrophysics Data System (ADS)

    Langston, Tye

    2016-10-01

    Robust reflectance-based skin detection is a potentially powerful tool for security and search and rescue applications, especially when applied to video. However, to be useful it must be able to account for the variations of human skin, as well as other items in the environment that could cause false detections. This effort focused on identifying a robust skin detection scheme that is appropriate for video application. Skin reflectance was modeled to identify unique skin features and compare them to potential false positive materials. Based on these comparisons, specific wavelength bands were selected and different combinations of two and three optical filters were used for actively identifying skin, as well as identifying and removing potential false positive materials. One wavelength combination (1072/1250 nm) was applied to video using both single- and dual-camera configurations based on its still image performance, as well as its appropriateness for video application. There are several important factors regarding the extension of still image skin detection to video, including light available for detection (solar irradiance and reflectance intensity), overall intensity differences between different optical filters, optical component light loss, frame rate, time lag when switching between filters, image coregistration, and camera auto gain behavior.

  4. An improved multi-paths optimization method for video stabilization

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Zhong, Sheng

    2018-03-01

    For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.

  5. Tele-Education: Teaching over the Telephone with Slow-Scan Video.

    ERIC Educational Resources Information Center

    Kelleher, Kathleen

    1983-01-01

    This report describes educational applications of slow-scan television (SSTV) teleconferencing, which uses a video signal generated from a standard, low-cost, industrial television camera and compressed to a bandwidth suitable for transmission over telephone lines. Following a brief explanation of the capabilities of SSTV and the required…

  6. On Basic Needs and Modest Media.

    ERIC Educational Resources Information Center

    Gunter, Jock

    1978-01-01

    The need for grass-roots participation and local control in whatever technology is used to meet basic educational needs is stressed. Successful uses of the audio cassette recorder and the portable half-inch video recorder are described; the 8-mm sound camera and video player are also suggested as viable "modest" technologies. (JEG)

  7. USE OF VIDEO TO ACCESS JUVENILE WINTER FLOUNDER DENSITIES AND HABITATS

    EPA Science Inventory

    We used a digital video camera mounted to a 1-m beam trawl together with an attached continuous recording YSI sonde and a GPS unit to quantify juvenile winter flounder (Pseudopleuronectes americanus) densities and fish habitat in Narragansett Bay, RI. The YSI sonde measured te...

  8. The Green Screen Effect

    ERIC Educational Resources Information Center

    Becker, Rick

    2012-01-01

    The opening sentence in an article posted on edutechteacher.org titled "Video in the Classroom" states "In addition to being fun and motivating, video projects teach students to plan, organize, write, communicate, collaborate, and analyze (2012)." The author goes on to say "With the proliferation of webcams, phone cameras, flip cams, digital…

  9. What They Learned: Using Multimedia to Engage Undergraduates in Research

    ERIC Educational Resources Information Center

    Artello, Kristine

    2014-01-01

    Today's employers seek high levels of creativity, communication, and critical thinking, which are considered essential skills in the workplace. Engaging undergraduate students in critical thinking is especially challenging in introductory courses. The advent of YouTube, inexpensive video cameras, and easy-to-use video editors provides…

  10. Kids behind the Camera: Education for the Video Age.

    ERIC Educational Resources Information Center

    Berwick, Beverly

    1994-01-01

    Some San Diego teachers created the Montgomery Media Institute to tap the varied talents of young people attending area high schools and junior high schools. Featuring courses in video programming and production, photography, and journalism, this program engages students' interest while introducing them to fields with current employment…

  11. Microgravity

    NASA Image and Video Library

    1996-01-01

    Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.

  12. Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Cabrera, Michelle T; Wallace, David K; Freedman, Sharon F; Farsiu, Sina

    2011-10-01

    Indirect ophthalmoscopy (IO) is the standard of care for evaluation of the neonatal retina. When recorded on video from a head-mounted camera, IO images have low quality and narrow Field of View (FOV). We present an image fusion methodology for converting a video IO recording into a single, high quality, wide-FOV mosaic that seamlessly blends the best frames in the video. To this end, we have developed fast and robust algorithms for automatic evaluation of video quality, artifact detection and removal, vessel mapping, registration, and multi-frame image fusion. Our experiments show the effectiveness of the proposed methods.

  13. 2011 Tohoku tsunami video and TLS based measurements: hydrographs, currents, inundation flow velocities, and ship tracks

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.

    2012-12-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s per second were measured in Kesennuma Bay making navigation impossible. Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to -10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities.;

  14. People counting and re-identification using fusion of video camera and laser scanner

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Olivera, Santiago; Wagley, Raj

    2016-05-01

    We present a system for people counting and re-identification. It can be used by transit and homeland security agencies. Under FTA SBIR program, we have developed a preliminary system for transit passenger counting and re-identification using a laser scanner and video camera. The laser scanner is used to identify the locations of passenger's head and shoulder in an image, a challenging task in crowed environment. It can also estimate the passenger height without prior calibration. Various color models have been applied to form color signatures. Finally, using a statistical fusion and classification scheme, passengers are counted and re-identified.

  15. Evaluation of Moving Object Detection Based on Various Input Noise Using Fixed Camera

    NASA Astrophysics Data System (ADS)

    Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N.

    2017-09-01

    Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.

  16. Group tele-immersion:enabling natural interactions between groups at distant sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Christine L.; Stewart, Corbin; Nashel, Andrew

    2005-08-01

    We present techniques and a system for synthesizing views for video teleconferencing between small groups. In place of replicating one-to-one systems for each pair of users, we create a single unified display of the remote group. Instead of performing dense 3D scene computation, we use more cameras and trade-off storage and hardware for computation. While it is expensive to directly capture a scene from all possible viewpoints, we have observed that the participants viewpoints usually remain at a constant height (eye level) during video teleconferencing. Therefore, we can restrict the possible viewpoint to be within a virtual plane without sacrificingmore » much of the realism, and in cloning so we significantly reduce the number of required cameras. Based on this observation, we have developed a technique that uses light-field style rendering to guarantee the quality of the synthesized views, using a linear array of cameras with a life-sized, projected display. Our full-duplex prototype system between Sandia National Laboratories, California and the University of North Carolina at Chapel Hill has been able to synthesize photo-realistic views at interactive rates, and has been used to video conference during regular meetings between the sites.« less

  17. Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility

    PubMed Central

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam

    2013-01-01

    Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832

  18. Oversampling in virtual visual sensors as a means to recover higher modes of vibration

    NASA Astrophysics Data System (ADS)

    Shariati, Ali; Schumacher, Thomas

    2015-03-01

    Vibration-based structural health monitoring (SHM) techniques require modal information from the monitored structure in order to estimate the location and severity of damage. Natural frequencies also provide useful information to calibrate finite element models. There are several types of physical sensors that can measure the response over a range of frequencies. For most of those sensors however, accessibility, limitation of measurement points, wiring, and high system cost represent major challenges. Recent optical sensing approaches offer advantages such as easy access to visible areas, distributed sensing capabilities, and comparatively inexpensive data recording while having no wiring issues. In this research we propose a novel methodology to measure natural frequencies of structures using digital video cameras based on virtual visual sensors (VVS). In our initial study where we worked with commercially available inexpensive digital video cameras we found that for multiple degrees of freedom systems it is difficult to detect all of the natural frequencies simultaneously due to low quantization resolution. In this study we show how oversampling enabled by the use of high-end high-frame-rate video cameras enable recovering all of the three natural frequencies from a three story lab-scale structure.

  19. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  20. Augmented reality-based navigation system for wrist arthroscopy: feasibility.

    PubMed

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A

    2013-11-01

    In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.

  1. A combined stereo-photogrammetry and underwater-video system to study group composition of dolphins

    NASA Astrophysics Data System (ADS)

    Bräger, S.; Chong, A.; Dawson, S.; Slooten, E.; Würsig, B.

    1999-11-01

    One reason for the paucity of knowledge of dolphin social structure is the difficulty of measuring individual dolphins. In Hector's dolphins, Cephalorhynchus hectori, total body length is a function of age, and sex can be determined by individual colouration pattern. We developed a novel system combining stereo-photogrammetry and underwater-video to record dolphin group composition. The system consists of two downward-looking single-lens-reflex (SLR) cameras and a Hi8 video camera in an underwater housing mounted on a small boat. Bow-riding Hector's dolphins were photographed and video-taped at close range in coastal waters around the South Island of New Zealand. Three-dimensional, stereoscopic measurements of the distance between the blowhole and the anterior margin of the dorsal fin (BH-DF) were calibrated by a suspended frame with reference points. Growth functions derived from measurements of 53 dead Hector's dolphins (29 female : 24 male) provided the necessary reference data. For the analysis, the measurements were synchronised with corresponding underwater-video of the genital area. A total of 27 successful measurements (8 with corresponding sex) were obtained, showing how this new system promises to be potentially useful for cetacean studies.

  2. Non-mydriatic, wide field, fundus video camera

    NASA Astrophysics Data System (ADS)

    Hoeher, Bernhard; Voigtmann, Peter; Michelson, Georg; Schmauss, Bernhard

    2014-02-01

    We describe a method we call "stripe field imaging" that is capable of capturing wide field color fundus videos and images of the human eye at pupil sizes of 2mm. This means that it can be used with a non-dilated pupil even with bright ambient light. We realized a mobile demonstrator to prove the method and we could acquire color fundus videos of subjects successfully. We designed the demonstrator as a low-cost device consisting of mass market components to show that there is no major additional technical outlay to realize the improvements we propose. The technical core idea of our method is breaking the rotational symmetry in the optical design that is given in many conventional fundus cameras. By this measure we could extend the possible field of view (FOV) at a pupil size of 2mm from a circular field with 20° in diameter to a square field with 68° by 18° in size. We acquired a fundus video while the subject was slightly touching and releasing the lid. The resulting video showed changes at vessels in the region of the papilla and a change of the paleness of the papilla.

  3. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  4. Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.

    2017-02-01

    Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.

  5. Genesis Reentry Observations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Suggs, R. M.; Swift, W. R.

    2005-01-01

    The Genesis spacecraft reentry represented a unique opportunity to observe a "calibrated meteor" from northern Nevada. Knowing its speed, mass, composition, and precise trajectory made it a good subject to test some of the algorithms used to determine meteoroid mass from observed brightness. It was also a good test of an inexpensive set of cameras that could be deployed to observe future shuttle reentries. The utility of consumer-grade video cameras was evident during the STS-107 accident investigation, and the Genesis reentry gave us the opportunity to specify and test commercially available cameras that could be used during future reentries. This Technical Memorandum describes the video observations and their analysis, compares the results with a simple photometric model, describes the forward scatter radar experiment, and lists lessons learned from the expedition and implications for the Stardust reentry in January 2006 as well as future shuttle reentries.

  6. Acute gastroenteritis and video camera surveillance: a cruise ship case report.

    PubMed

    Diskin, Arthur L; Caro, Gina M; Dahl, Eilif

    2014-01-01

    A 'faecal accident' was discovered in front of a passenger cabin of a cruise ship. After proper cleaning of the area the passenger was approached, but denied having any gastrointestinal symptoms. However, when confronted with surveillance camera evidence, she admitted having the accident and even bringing the towel stained with diarrhoea back to the pool towels bin. She was isolated until the next port where she was disembarked. Acute gastroenteritis (AGE) caused by Norovirus is very contagious and easily transmitted from person to person on cruise ships. The main purpose of isolation is to avoid public vomiting and faecal accidents. To quickly identify and isolate contagious passengers and crew and ensure their compliance are key elements in outbreak prevention and control, but this is difficult if ill persons deny symptoms. All passenger ships visiting US ports now have surveillance video cameras, which under certain circumstances can assist in finding potential index cases for AGE outbreaks.

  7. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  8. The Eyes Have It

    ERIC Educational Resources Information Center

    Mulholland, Jessica

    2012-01-01

    In New York's Port Washington Union Free School District, security and privacy for students, faculty, and staff coexist--thanks to security cameras with eyelids. In 2010, video cameras donated by New York-based SituCon Systems were installed in the main lobby at two of the district's seven schools. "We really haven't had the kind of incidents…

  9. Field-Sequential Color Converter

    NASA Technical Reports Server (NTRS)

    Studer, Victor J.

    1989-01-01

    Electronic conversion circuit enables display of signals from field-sequential color-television camera on color video camera. Designed for incorporation into color-television monitor on Space Shuttle, circuit weighs less, takes up less space, and consumes less power than previous conversion equipment. Incorporates state-of-art memory devices, also used in terrestrial stationary or portable closed-circuit television systems.

  10. 25 CFR 543.2 - What are the definitions for this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., mechanical, or other technologic form, that function together to aid the play of one or more Class II games... a particular game, player interface, shift, or other period. Count room. A secured room where the... validated directly by a voucher system. Dedicated camera. A video camera that continuously records a...

  11. Cameras in Self-Contained Classrooms: Legal, Professional and Student Implications

    ERIC Educational Resources Information Center

    Ivie, Ashlee

    2016-01-01

    This paper examines the use of cameras in self-contained special education classrooms. It begins with an examination of the legal framework used when administrators are contemplating the implementation of video surveillance within the classroom. It gives a brief summary of the Family Educational Rights and Privacy Act, Individuals with…

  12. Camera/Video Phones in Schools: Law and Practice

    ERIC Educational Resources Information Center

    Parry, Gareth

    2005-01-01

    The emergence of mobile phones with built-in digital cameras is creating legal and ethical concerns for school systems throughout the world. Users of such phones can instantly email, print or post pictures to other MMS1 phones or websites. Local authorities and schools in Britain, Europe, USA, Canada, Australia and elsewhere have introduced…

  13. Surveillance Cameras in Schools: An Ethical Analysis

    ERIC Educational Resources Information Center

    Warnick, Bryan R.

    2007-01-01

    In this essay, Bryan R. Warnick responds to the increasing use of surveillance cameras in public schools by examining the ethical questions raised by their use. He explores the extent of a student's right to privacy in schools, stipulates how video surveillance is similar to and different from commonly accepted in-person surveillance practices,…

  14. A semantic autonomous video surveillance system for dense camera networks in Smart Cities.

    PubMed

    Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio

    2012-01-01

    This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.

  15. Energy minimization of mobile video devices with a hardware H.264/AVC encoder based on energy-rate-distortion optimization

    NASA Astrophysics Data System (ADS)

    Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min

    2014-09-01

    In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.

  16. Are traditional methods of determining nest predators and nest fates reliable? An experiment with Wood Thrushes (Hylocichla mustelina) using miniature video cameras

    USGS Publications Warehouse

    Williams, Gary E.; Wood, P.B.

    2002-01-01

    We used miniature infrared video cameras to monitor Wood Thrush (Hylocichla mustelina) nests during 1998–2000. We documented nest predators and examined whether evidence at nests can be used to predict predator identities and nest fates. Fifty-six nests were monitored; 26 failed, with 3 abandoned and 23 depredated. We predicted predator class (avian, mammalian, snake) prior to review of video footage and were incorrect 57% of the time. Birds and mammals were underrepresented whereas snakes were over-represented in our predictions. We documented ≥9 nest-predator species, with the southern flying squirrel (Glaucomys volans) taking the most nests (n = 8). During 2000, we predicted fate (fledge or fail) of 27 nests; 23 were classified correctly. Traditional methods of monitoring nests appear to be effective for classifying success or failure of nests, but ineffective at classifying nest predators.

  17. A Semantic Autonomous Video Surveillance System for Dense Camera Networks in Smart Cities

    PubMed Central

    Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio

    2012-01-01

    This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network. PMID:23112607

  18. Automated tracking of a figure skater by using PTZ cameras

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    2009-08-01

    In this paper, a system for automated real-time tracking of a figure skater moving on an ice rink by using PTZ cameras is presented. This system is intended for support in training of skating, for example, as a tool for recording and evaluation of his/her motion performances. In the processing procedure of the system, an ice rink region is extracted first from a video image by region growing method, then one of hole components in the obtained rink region is extracted as a skater region. If there exists no hole component, a skater region is estimated from horizontal and vertical intensity projections of the rink region. Each camera is automatically panned and/or tilted so as to keep the skater region on almost the center of the image, and also zoomed so as to keep the height of the skater region within an appropriate range. In the experiments using 5 practical video images of skating, it was shown that the extraction rate of the skater region was almost 90%, and tracking with camera control was successfully done for almost all of the cases used here.

  19. Visual fatigue modeling for stereoscopic video shot based on camera motion

    NASA Astrophysics Data System (ADS)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  20. NASA Imaging for Safety, Science, and History

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)

    2002-01-01

    Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.

Top