Calculation of tip clearance effects in a transonic compressor rotor
NASA Technical Reports Server (NTRS)
Chima, R. V.
1996-01-01
The flow through the tip clearance region of a transonic compressor rotor (NASA rotor 37) was computed and compared to aerodynamic probe and laser anemometer data. Tip clearance effects were modeled both by gridding the clearance gap and by using a simple periodicity model across the ungridded gap. The simple model was run with both the full gap height, and with half the gap height to simulate a vena-contracta effect. Comparisons between computed and measured performance maps and downstream profiles were used to validate the models and to assess the effects of gap height on the simple clearance model. Recommendations were made concerning the use of the simple clearance model. Detailed comparisons were made between the gridded clearance gap solution and the laser anemometer data near the tip at two operating points. The computer results agreed fairly well with the data but overpredicted the extent of the casing separation and underpredicted the wake decay rate. The computations were then used to describe the interaction of the tip vortex, the passage shock, and the casing boundary layer.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2012-05-01
The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Steinthorsson, E.; Rigby, David L.
1998-01-01
Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E 3 first stage turbine, which represents a modem gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.
Performance of a Splittered Transonic Rotor with Several Tip Clearances
2015-06-15
θ Ratio of inlet to reference pressure and γ [-] ρ Density [kg/m3] ω Humidity ratio [-] Subscripts 1 Inlet 3 Outlet a Air gas l Water liquid ...has a large influence on the performance and efficiency of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to...of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to blade height or span usually increases in the direction of
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2012-01-01
The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.
NASA Astrophysics Data System (ADS)
Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus
2017-08-01
We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1977-01-01
Two tip clearance configurations, one with a recess in the casing and the other with a reduced rotor blade height, were investigated at design equivalent speed over a range of tip clearance from about 2.0 to 5.0 percent of the stator blade height. The optimum configuration with a recess in the casing was the one where the rotor tip diameter was equal to the stator tip diameter (zero blade extension). For this configuration there was an approximate 1.5 percent decrease in total efficiency for an increase in tip clearance of 1 percent of stator blade height. For the reduced blade height configurations there was an approximate 2.0 percent decrease in total efficiency for an increase in tip clearance of 1 percent of stator blade height.
NASA Astrophysics Data System (ADS)
Tajaddodianfar, Farid; Moheimani, S. O. Reza; Owen, James; Randall, John N.
2018-01-01
A common cause of tip-sample crashes in a Scanning Tunneling Microscope (STM) operating in constant current mode is the poor performance of its feedback control system. We show that there is a direct link between the Local Barrier Height (LBH) and robustness of the feedback control loop. A method known as the "gap modulation method" was proposed in the early STM studies for estimating the LBH. We show that the obtained measurements are affected by controller parameters and propose an alternative method which we prove to produce LBH measurements independent of the controller dynamics. We use the obtained LBH estimation to continuously update the gains of a STM proportional-integral (PI) controller and show that while tuning the PI gains, the closed-loop system tolerates larger variations of LBH without experiencing instability. We report experimental results, conducted on two STM scanners, to establish the efficiency of the proposed PI tuning approach. Improved feedback stability is believed to help in avoiding the tip/sample crash in STMs.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1978-01-01
The rotor tip clearance was obtained by use of a recess in the casing above the rotor blades and also by use of a reduced blade height. For the recessed casing configuration, the optimum rotor blade height was found to be the one where the rotor tip diameter was equal to the stator tip diameter. The tip clearance loss associated with this optimum recessed casing configuration was less than that for the reduced blade height configuration.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David
2015-01-01
The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Size dependent tunnel diode effects in gold tipped CdSe nanodumbbells.
Saraf, Deepashri; Kumar, Ashok; Kanhere, Dilip; Kshirsagar, Anjali
2017-02-07
We report simulation results for scanning tunneling spectroscopy of gold-tipped CdSe nanodumbbells of lengths ∼27 Å and ∼78 Å. Present results are based on Bardeen, Tersoff, and Hamann formalism that takes inputs from ab initio calculations. For the shorter nanodumbbell, the current-voltage curves reveal negative differential conductance, the characteristic of a tunnel diode. This behaviour is attributed to highly localized metal induced gap states that rapidly decay towards the center of the nanodumbbell leading to suppression in tunneling. In the longer nanodumbbell, these gap states are absent in the central region, as a consequence of which zero tunneling current is observed in that region. The overall current-voltage characteristics for this nanodumbbell are observed to be largely linear near the metal-semiconductor interface and become rectifying at the central region, the nature being similar to its parent nanorod. The cross-sectional heights of these nanodumbbells also show bias-dependence where we begin to observe giant Stark effect features in the semiconducting central region of the longer nanodumbbell.
Transport Modeling for Metallic Electrode: Semiconducting Nanotube Systems
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryan (Technical Monitor)
2001-01-01
Recently, current-voltage (I-V) characteristics have been reported by Collins et al. for a system with a scanning tunneling microscope (STM) tip and a carbon nanotube. The STM tip was driven forward into a film of many entangled nanotubes on a substrate, and then was retracted, so that one of nanotubes bridged the STM and the film. I-V characteristics had two different patterns for different heights. One showed large dI/ dV with V greater than 0, small dI/dV with V less than 0, and I = 0 near V = 0 (type-I), while the other showed rectification, i.e., I does not equal 0 only with V less than 0 (type-II), with the tip grounded. We propose a physical mechanism to explain the observed I-V patterns. We consider that the observed characteristics strongly reflected the nature of the tip (metal) - nanotube (semiconductor) contact. The other end of the nanotube was entangled well in the film, and simply provided a good Ohmic contact. We will argue that there are two different contact modes: vacuum gap and touching modes, depending on the presence or absence of a tiny vacuum gap d approx. 0.1 - 0.2 nm at the junction. These modes may be related to physisorption and chemisorption, respectively. Once admitting their existence, it is naturally shown that I-V characteristics are type-I in the vacuum gap mode, and type-II in the touching mode. We argue that the nanotube had to be an n-type semiconductor judging from the I-V characteristics, contrary to often observed p-type in the transistor applications, where p-type is probably due to the oxidation in air or the trapped charges in the silicon dioxide. Additional information is contained in the original extended abstract.
Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow
NASA Technical Reports Server (NTRS)
Berdanier, Reid A.; Key, Nicole L.
2017-01-01
The focus of this work was to provide additional data to supplement the work reported in NASA/CR-2015-218868 (Berdanier and Key, 2015b). The aim of that project was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearances were studied with nominal tip clearance gaps of 1.5 percent, 3.0 percent, and 4.0 percent based on a constant annulus height. Overall compressor performance was previously investigated at four corrected speedlines (100 percent, 90 percent, 80 percent, and 68 percent) for each of the three tip clearance configurations. This study extends the previously published results to include detailed steady and time-resolved pressure data at two loading conditions, nominal loading (NL) and high loading (HL), on the 100 percent corrected speedline for the intermediate clearance level (3.0 percent). Steady detailed radial traverses of total pressure at the exit of each stator row are supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data were combined with existing three-component velocity measurements to identify a novel technique for calculating blockage in a multistage compressor. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100 percent corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements reveal new knowledge about the trajectory of the tip leakage flow through the rotor passage. Further, these data extend previous measurements identifying a modulation of the tip leakage flow due to upstream stator wake propagation. Finally, a novel instrumentation technique has been implemented to measure pressures in the shrouded stator cavities. These data provide boundary conditions relating to the flow across the shrouded stator knife seal teeth. Moreover, the utilization of fast-response pressure sensors provides a new look at the time-resolved pressure field, leading to instantaneous differential pressures across the seal teeth. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
Experimental investigation of turbine blade-tip excitation forces
NASA Technical Reports Server (NTRS)
Martinez-Sanchez, Manuel; Jaroux, Belgacem; Song, Seung Jin; Yoo, Soom-Yung; Palczynski, Taras
1994-01-01
Results of a program to investigate the magnitude and parametric variations of rotordynamic forces which arise in high power turbines due to blade-tip leakage effects are presented. Five different unshrouded turbine configurations and one configuration shrouded with a labyrinth seal were tested with static offsets of the turbine shaft. The forces along and perpendicular to the offset were measured directly with a rotating dynometer. Exploration of casing pressure and flow velocity distributions was used to investigate the force-generating mechanisms. For unshrouded turbines, the cross-forces originate mainly from the classical Alford mechanisms while the direct forces arise mainly from a slightly skewed pressure pattern. The Alford coefficient for cross-force was found to vary between 2.4 and 4.0, while the similar direct force coefficient varied from 1.5 to 3.5. The cross-forces are found to increase substantially when the gap is reduced from 3.0 to 1.9% of blade height, probably due to viscous blade-tip effects. The forces also increase when the hub gap between stator and rotor decreases. The force coefficient decreased with operating flow coefficient. In the case of the shrouded turbine, most of the forces arise from nonuniform seal pressures. This includes about 80% for the transverse forces. The rest appears to come from uneven work extraction. Their level is about 50% higher in the shrouded case.
Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy
NASA Astrophysics Data System (ADS)
Dill, Tyler J.
Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch-to-batch reproducibility of 80%. This body of work serves as an important demonstration that bottom-up engineering can be used for batch fabricatation of high-performance and high-reliability devices using inexpensive equipment and materials.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Hathaway, Michael; Katz, Joseph
2014-01-01
The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.
NASA Astrophysics Data System (ADS)
Shin, Sangmook
2001-07-01
A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. The code has been validated by comparisons with available computational and experimental results for several test cases: inviscid flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9°. The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of measurements collected at these part-speed and off-design conditions provides a unique data set for calibrating computational models and predictive algorithms. Further investigations with detailed steady total pressure traverses provide additional insight to tip leakage flow effects on stator performance. A series of data on the 100% corrected speedline further characterize the tip leakage flow using time-resolved measurements from a combination of instrumentation techniques. An array of high-frequency-response piezoresistive pressure transducers installed over the rotors allows quantification of tip leakage flow trajectories. These data, along with measurements from a fast-response total pressure probe downstream of the rotors, evaluate the development of tip leakage flows and assess the corresponding effects of upstream stator wakes. Finally, thermal anemometry measurements collected using the single slanted hot-wire technique evaluate three-dimensional velocity components throughout the compressor. These data facilitate calculations of several flow metrics, including a blockage parameter and phase-locked streamwise vorticity.
Impact of pine tip moth attack on loblolly pine
Roy Hedden
1999-01-01
Data on the impact of Nantucket pine tip moth, Rhyacionia frustrana, attack on the height of loblolly pine, Pinus taeda, in the first three growing seasons after planting from three locations in eastern North Carolina (U.S.A.) was used to develop multiple linear regression models relating tree height to tip moth infestation level in each growing season. These models...
NASA Astrophysics Data System (ADS)
Guan, Dongshi; Charlaix, Elisabeth; Qi, Robert Z.; Tong, Penger
2017-10-01
Imaging of surface topography and elasticity of living cells can provide insight into the roles played by the cells' volumetric and mechanical properties and their response to external forces in regulating the essential cellular events and functions. Here, we report a unique technique of noncontact viscoelastic imaging of live cells using atomic force microscopy (AFM) with a long-needle glass probe. Because only the probe tip is placed in a liquid medium near the cell surface, the AFM cantilever in air functions well under dual-frequency modulation, retaining its high-quality resonant modes. The probe tip interacts with the cell surface through a minute hydrodynamic flow in the nanometer-thin gap region between them without physical contact. Quantitative measurements of the cell height, volume, and Young's modulus are conducted simultaneously. The experiment demonstrates that the long-needle AFM has a wide range of applications in the study of cell mechanics.
Gu, Yong-Jia; Wu, Yan-Ping; Gao, Mei-Qin; Yao, Ning; Chen, Wen-Jing
2008-10-01
To analyze the mechanical characteristic changes of teeth and arch under different loading direction during retracting mandibular incisors through implant, simulating clinical loading system. Three- dimensional finite element model, including brackets, archwire, crampable hooks and implants, was reconstructed. The force direction was determined by connecting the points in crampable hook and the center point of implant, and the force point and force direction were changed with the adjustment of the height of crampable hook and the height of implant. Then three-dimensional movement trend of teeth, stress distribution in periodontal membrane and the largest displacement of archwire nodes in each group were calculated and analyzed. SPSS13.0 software package was used for statistical analysis. It was found that the height of implant and the height of crampable hook were correlated with the movement of teeth and stress distribution in periodontal membrane (P<0.01). The movement trend of teeth in the condition of different height of implant and different height of crampable hook was illustrated as follows:(1)with the height increase of crampable hook, the movement trend of the central and lateral incisors varied from mesial lingual tipping to mesial labial tipping. However, canines tipped distally and lingually; the second premolars tipped mesially and lingually, and the first molar roots tipped distally and buccally with decreasing tipping angle. (2) The largest stress distribution in the whole arch was located in the labial apical one-third area of the lateral incisors, while that of canines and the first molars was located in the alveolar ridges and root bifurcations. These findings indicate that the different movement trend during retracting anterior teeth can be achieved through the adjustment of the height of crampable hook, and implant, anchorage can effectively control anterior movement of the posterior teeth. Supported by Research Fund of Bureau of Science and Technology of Nantong City (Grant No. S40023).
Study of tip clearance flow in a turbomachinery cascade using large eddy simulation
NASA Astrophysics Data System (ADS)
You, Donghyun
In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.
Study of radiative heat transfer in Ångström- and nanometre-sized gaps
Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; ...
2017-02-15
Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here in this paper we report studies of radiative heat transfer in few Å to 5nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushingmore » the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.« less
NASA Technical Reports Server (NTRS)
Berdanier, Reid A.; Key, Nicole L.
2015-01-01
The focus of this work was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearance heights were studied with nominal tip clearance heights of 1.5%, 3.0%, and 4.0% based on a constant annulus height. Overall compressor performance was investigated at four corrected speedlines (100%, 90%, 80%, and 68%) for each of the three tip clearance configurations using total pressure and total temperature rakes distributed throughout the compressor. The results have confirmed results from previous authors showing a decrease of total pressure rise, isentropic efficiency, and stall margin which is approximately linear with increasing tip clearance height. The stall inception mechanisms have also been evaluated at the same corrected speeds for each of the tip clearance configurations. Detailed flow field measurements have been collected at two loading conditions, nominal loading (NL) and high loading (HL), on the 100% corrected speedline for the smallest and largest tip clearance heights (1.5% and 4.0%). Steady detailed radial traverses of total pressure at the exit of each stator row have been supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data have helped to quantify the size of the leakage flow at the exit of each rotor. Thermal anemometry has also been implemented to evaluate the time-resolved three-dimensional components of velocity throughout the compressor and calculate blockage due to the rotor tip leakage flow throughout the compressor. These measurements have also been used to calculate streamwise vorticity. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100% corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements, as well as the time-resolved total pressures and velocities have helped to reveal a profound influence of the upstream stator vane on the size and shape of the rotor tip leakage flow. Finally, a novel particle image velocimetry (PIV) technique has been developed as a proof-of- concept. In contrast to PIV methods that have been typically been utilized for turbomachinery applications in the past, the method used for this study introduced the laser light through the same access window that was also used to image the flow. This new method addresses potential concerns related to the intrusive laser-introducing techniques that have typically been utilized by other authors in the past. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.
Kalantar-Hormozi, Abdoljalil; Beiraghi-Toosi, Arash
2014-02-01
The depressor septi nasi muscle is responsible for smiling deformity. Its manipulation is beneficial in patients with muscle hypertrophy. In addition, it enhances the smile and tip-lip relationship. In this study, depressor septi nasi muscle excision through a transfixion incision is compared with its transposition through an upper labial sulcus incision. Two techniques of depressor septi nasi muscle treatment were performed randomly for rhinoplasty cases. Smile analysis in rhinoplasty, consisting of measurements of nasal length, nasal diagonal, tip projection, and upper lip height, and noting transverse upper labial crease in repose and full smile, was performed on preoperative and postoperative photographs. One hundred patients were studied in two equal groups. Preoperatively, tip projection and upper lip height were decreased significantly with smiling. Generally, the effect of smiling on all five parameters was decreased significantly following rhinoplasty. The two different techniques were not significantly different in decreasing the effects of smiling on nasal length, nasal diagonal, tip projection, upper lip height, or transverse crease. The two different techniques were the same in decreasing the effects of smiling. The authors recommend smile analysis in rhinoplasty, consisting of measurement of nasal length, nasal diagonal, tip projection, and upper lip height, and noting transverse upper labial crease in repose and during smiling, before rhinoplasty for preoperative evaluation and after the operation for outcome assessment. Depressor septi nasi muscle treatment should be considered if a decrease in tip projection or upper lip height with smiling or a transverse upper labial crease during smiling is extraordinary or unsightly. Therapeutic, II.
NASA Astrophysics Data System (ADS)
Dompierre, A.; Fréchette, L. G.
2016-11-01
This paper reports on improvement of the mechanical Q-factor of resonant energy harvesters at ambient pressure via the use of tungsten proof masses by evaluating the impact of the mass size and density on the squeeze film damping. To this end, a simplified model is first proposed to evaluate cantilever beams deflection and the resulting fluid pressure build up between the mass and a near surface. The model, which accounts for simultaneous transverse and rotational motion of very long tip masses as well as for 2D fluid flow in the gap, is used to extract a scaling law for the device fluidic Q-factor Qf. This law states that Qf can be improved by either increasing the linear mass density of the tip mass or by reducing the side lengths compared to the gap height. The first approach is validated experimentally by adding a tungsten proof mass on a silicon based device and observing an improvement of the Q-factor by 103%, going from 430 to 871, while the resonance frequency drops from 457 to 127 Hz. In terms of fluidic Q-factor, this represents an increase from 562 to 1673. These results successfully demonstrate the benefits of integrating a tungsten mass to reduce the fluid losses while potentially reducing the device footprint.
Veligdan, James T.
2004-01-06
A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.
Haefliger, D; Stemmer, A
2003-03-01
A simple, one-step process to fabricate high-quality apertures for scanning near-field optical microscope probes based on aluminium-coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass-water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front-most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self-terminating, yielding highly reproducible tip heights. Near-field optical resolution in a transmission mode of 85 nm was demonstrated.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Araugio, Rafael Marques de Sousa; Landre, Jánes; Silva, Diana de Lourdes Almeida; Pacheco, Wellington; Pithon, Matheus Melo; Oliveira, Dauro Douglas
2013-02-01
Our objective was to evaluate the influence of the expansion screw height of a hyrax expander on the degree of dental inclination during rapid maxillary expansion by using the finite element method. The hyrax expander and the maxillary arch were modeled by using Solidworks software (Dassault Systèmes, Paris, France). Three distinct finite element method models were created by simulating different screw heights relative to the plane that intersected the center of resistance of the maxillary first molars. These 3 relative positions were 10 mm below the maxillary first molars' center of resistance, at the same level as the maxillary first molars' center of resistance, and 10 mm above the maxillary first molars' center of resistance. The initial activation of the expanders was simulated, and tooth displacements for each finite element method model were registered in the buccolingual, corono-apical, and mesiodistal directions. The simulations tested showed that the 3 hyrax screw heights had different dental tipping tendencies. When the screw was simulated below the maxillary first molars' center of resistance, buccal tipping of the crowns and lingual tipping of the roots were registered. This tendency decreased when the screw was simulated at the same level as the maxillary first molars' center of resistance. However, when the screw was simulated above the maxillary first molars' center of resistance, the tipping tendency was inverted, with the crowns displaying lingual tipping and the roots displaying buccal tipping. These findings might explain the importance of carefully planning the height of the hyrax expander screw, since, depending on this position, different tooth movements can be achieved. From an orthopedic perspective, the ideal screw position might be slightly above the maxillary first molars' center of resistance; this would generate less dental tipping. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Cut-cell method based large-eddy simulation of tip-leakage flow
NASA Astrophysics Data System (ADS)
Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang
2015-07-01
The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.
Space charge limited current emission for a sharp tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg
In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2more » (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.« less
NASA Astrophysics Data System (ADS)
Date, Kumi; Ishigure, Takaaki
2017-02-01
Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.
Study on tip leakage vortex cavitating flows using a visualization method
NASA Astrophysics Data System (ADS)
Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu
2018-01-01
Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.
Electrospray ionization from a gap with adjustable width.
Ek, Patrik; Sjödahl, Johan; Roeraade, Johan
2006-01-01
In this paper, we present a new concept for electrospray ionization mass spectrometry, where the sample is applied in a gap which is formed between the edges of two triangular-shaped tips. The size of the spray orifice can be changed by varying the gap width. The tips were fabricated from polyethylene terephthalate film with a thickness of 36 microm. To improve the wetting of the gap and sample confinement, the edges of the tips forming the gap were hydrophilized by means of silicon dioxide deposition. Electrospray was performed with gap widths between 1 and 36 microm and flow rates down to 75 nL/min. The gap width could be adjusted in situ during the mass spectrometry experiments and nozzle clogging could be managed by simply widening the gap. Using angiotensin I as analyte, the signal-to-noise ratio increased as the gap width was decreased, and a shift towards higher charge states was observed. The detection limit for angiotensin I was in the low nM range. Copyright (c) 2006 John Wiley & Sons, Ltd.
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Arc-starting aid for GTA welding
NASA Technical Reports Server (NTRS)
Whiffen, E. L.
1977-01-01
Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.
Wettability of AFM tip influences the profile of interfacial nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi
2018-02-01
To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.
Self-organized pattern on the surface of a metal anode in low-pressure DC discharge
NASA Astrophysics Data System (ADS)
Yaqi, YANG; Weiguo, LI
2018-03-01
Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.
Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.
Georgescu, Dan; Payne, Marielle; Olson, Randall J
2007-03-01
To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.
NASA Astrophysics Data System (ADS)
Kadum, Hawwa; Ali, Naseem; Cal, Raúl
2016-11-01
Hot-wire anemometry measurements have been performed on a 3 x 3 wind turbine array to study the multifractality of the turbulent kinetic energy dissipations. A multifractal spectrum and Hurst exponents are determined at nine locations downstream of the hub height, and bottom and top tips. Higher multifractality is found at 0.5D and 1D downstream of the bottom tip and hub height. The second order of the Hurst exponent and combination factor show an ability to predict the flow state in terms of its development. Snapshot proper orthogonal decomposition is used to identify the coherent and incoherent structures and to reconstruct the stochastic velocity using a specific number of the POD eigenfunctions. The accumulation of the turbulent kinetic energy in top tip location exhibits fast convergence compared to the bottom tip and hub height locations. The dissipation of the large and small scales are determined using the reconstructed stochastic velocities. The higher multifractality is shown in the dissipation of the large scale compared to small-scale dissipation showing consistency with the behavior of the original signals.
Zhang, Yi; Zhang, Lei; Fan, Yu-bo; Song, Jin-lin; Deng, Feng
2009-10-01
To investigate the biomechanical effects of micro-implant anchorage technique with sliding mechanics on maxillary anterior teeth retraction under different implant insertion heights and different retraction hook heights. The three dimensional finite element model of maxillary anterior teeth retraction force system was constructed with CT scanning and MIMICS software and the relationships between brackets, teeth, wire and micro-implant were simulating the clinical factions. Then the initial tooth displacement was calculated when the insertion heights were 4 mm and 8 mm and the retraction hook heights were 1, 4, 7, 10 mm respectively. With retraction hook height added, the anterior teeth movement changed from lingual crown tipping to labial crown tipping and the intrusion movement was more apparent when the micro-implant was inserted in a higher location. The ideal teeth movement control could be achieved by different insertion heights of micro-implant and different retraction hook heights in straight wire retraction force system.
Kreisel, A.; Nelson, R.; Berlijn, T.; ...
2016-12-27
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreisel, A.; Nelson, R.; Berlijn, T.
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less
Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Alajlan, Abdulrahman M.; Voronine, Dmitri V.; Sinyukov, Alexander M.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.
2016-09-01
Surface enhancement of molecular spectroscopic signals has been widely used for sensing and nanoscale imaging. Because of the weak electromagnetic enhancement of Raman signals on semiconductors, it is motivating but challenging to study the electromagnetic effect separately from the chemical effects. We report tip-enhanced Raman scattering measurements on Au and bulk MoS2 substrates using a metallic tip functionalized with copper phthalocyanine molecules and demonstrate similar gap-mode enhancement on both substrates. We compare the experimental results with theoretical calculations to confirm the gap-mode enhancement on MoS2 using a well-established electrostatic model. The functionalized tip approach allows for suppressing the background and is ideal for separating electromagnetic and chemical enhancement mechanisms on various substrates. Our results may find a wide range of applications in MoS2-based devices, sensors, and metal-free nanoscale bio-imaging.
Frequency of Apical and Laminal /s/ in Normal and Postglossectomy Patients
Stone, Maureen; Rizk, Susan; Woo, Jonghye; Murano, Emi Z.; Chen, Hegang; Prince, Jerry L.
2015-01-01
American English can be produced with two types of /s/: apical or laminal. These productions differ in that the apical gesture requires independent tongue tip elevation, and the laminal does not. Postglossectomy speakers, who have lost a unilateral portion of the tongue body along the outer edge, lose innervation to the tongue tip. We hypothesize that postglossectomy patients, even those with a preserved tongue tip, will be more likely to use laminal tongue shapes because of reduced control of the tongue tip. This study examines /s/ type, palate height, and related parameters in 24 control participants and 13 patients with lateral resections using cine-MRI and dental casts. Results of this dataset show that palate height affects choice of /s/ in control participants, but not in patients. Patients tend to use laminal /s/. PMID:26157329
NASA Astrophysics Data System (ADS)
Suder, Kenneth L.; Celestina, Mark L.
1995-06-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Celestina, Mark L.
1995-01-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
Structural Dynamics of Tropical Moist Forest Gaps
Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana
2015-01-01
Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps. PMID:26168242
Structural Dynamics of Tropical Moist Forest Gaps.
Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana
2015-01-01
Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6%) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps.
Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel
2011-01-01
Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small openings in mixed coniferous deciduous boreal forests to maximize the growth response of both residual and regenerating trees.
Mind the gap - tip leakage vortex in axial turbines
NASA Astrophysics Data System (ADS)
Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.
2014-03-01
The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.
Thermal study of bare tips with various system parameters and incision sizes.
Osher, Robert H; Injev, Valentine P
2006-05-01
To identify major and minor surgeon-controlled parameters that affect incision temperature when performing microincision lens removal using the Alcon Infiniti Vision System. In vitro research and development laboratory, Alcon Research, Irvine, California, USA. Phacoemulsification was performed in eye-bank cadaver eyes and the following parameters evaluated: incision, duty cycle, ultrasound (US) power, aspiration flow rate (AFR), vacuum, pulse, bottle height and balanced salt solution temperature, and tip design/size. Each parameter was varied while the others remained constant. The resulting temperature of the incision and US tip was measured using a thermal camera. Major contributors to elevated incision temperature included incision size, US power, duty cycle, AFR, vacuum setting, tip design, and presence of an ophthalmic viscosurgical device (OVD). Minor contributors included pulse frequency, bottle height, and temperature of the infusate. Microincision lens removal can be performed at safe temperatures with the knowledgeable selection of surgeon-controlled parameters.
Investigation on tip enhanced Raman spectra of graphene
NASA Astrophysics Data System (ADS)
Li, Xinjuan; Liu, Yanqi; Zeng, Zhuo; Wang, Peijie; Fang, Yan; Zhang, Lisheng
2018-02-01
Tip-enhanced Raman scattering (TERS) is a promising analytical approach for some two-dimensional materials and offers the possibility to correlate imaging and chemical data. Tip-enhanced Raman spectra of graphene are discussed in some details, including substrate, gap between tip-apex and sample surface as well as Ag-nanowire. The TERS spectra give special emphasis to the possibility of TERS tip to induce a large number of defects only while got the tip attached to sample surface. Then the dependence of the TERS spectra of graphene and gap between the probe tip and sample surface was studied, and distribution features of electromagnetic (EM) field around tip were also simulated by finite-difference time-domain (FDTD). The Raman signal enhancement of graphene was further discussed with respect to experimental data. Furthermore, the Ag-nanowire as a nano-antenna could significantly enhance the weak Raman signal of D-band of monolayer graphene is shown, and the TERS spectra of graphene with regard to different regions of Ag-nanowires (endpoints, body) were obtained toward investigating into the distribution of electromagnetic field.
Force and light tuning vertical tunneling current in the atomic layered MoS2.
Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie
2018-07-06
In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.
Numerical Analysis of the Acoustic Field of Tip-Clearance Flow
NASA Astrophysics Data System (ADS)
Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team
2015-11-01
Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.
Front teeth-to-carina distance in children undergoing cardiac catheterization.
Hunyady, Agnes I; Pieters, Benjamin; Johnston, Troy A; Jonmarker, Christer
2008-06-01
Knowledge of normal front teeth-to-carina distance (FT-C) might prevent accidental bronchial intubation. The aim of the current study was to measure FT-C and to examine whether the Morgan formula for oral intubation depth, i.e., endotracheal tube (ETT) position at front teeth (cm) = 0.10 x height (cm) + 5, gives appropriate guidance when intubating children of different ages. FT-C was measured in 170 infants and children, aged 1 day to 19 yr, undergoing cardiac catheterization. FT-C was obtained as the sum of the ETT length at the upper front teeth/dental ridge and the distance from the ETT tip to the carina. The latter measure was taken from an anterior-posterior chest x-ray. There was close linear correlation between FT-C and height: FT-C (cm) = 0.12 x height (cm) + 5.2, R = 0.98. The linear correlation coefficients (R) for FT-C versus weight and age were 0.78 and 0.91, respectively. If the Morgan formula had been used for intubation, the ETT tip would have been at 90 +/- 4% of FT-C. No patient would have been bronchially intubated, but the ETT tip would have been less than 0.5 cm from the carina in 13 infants. FT-C can be well predicted from the height/length of the child. The Morgan formula provides good guidance for intubation in children but can result in a distal ETT tip position in small infants. Careful auscultation is necessary to ensure correct tube position.
Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing
Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...
2016-11-22
Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less
Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing
2016-01-01
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527
Developmental decline in height growth in Douglas-fir.
Barbara J. Bond; Nicole M. Czarnomski; Clifton Cooper; Michael E. Day; Michael S. Greenwood
2007-01-01
The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether...
Rotor with Flattened Exit Pressure Profile
NASA Technical Reports Server (NTRS)
Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)
2015-01-01
A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.
The Development and Practical Use of A New 24kV Dry Air Insulated Switchgear
NASA Astrophysics Data System (ADS)
Yoshida, Tadahiro; Yano, Tomotaka; Tohya, Nobumoto; Inoue, Naoaki; Arioka, Masahiro; Sato, Shinji; Takeuchi, Toshie
We have developed a new environmentally fitted 24kV cubicle-type gas insulated switchgear (C-GIS) applying our dry air insulation technology and the electromagnetic actuation technology. Firstly, we clarified the relationship between the breakdown field strength at the tip/edge of high-voltage electrode in dry air and the field utilization factor expressing non-uniformity of the insulation gap. Based on the relationship, we designed the most suitable configuration and arrangement of the parts such as high-voltage conductors, disconnecting blades and some mechanical parts in a gas vessel. We succeeded in reducing both the number of insulation barriers and their size, compared with the former product. To reduce them, we produced some sample gaps simulated a practical insulation gap in the C-GIS and investigated its breakdown voltage dependence on the barrier height. Secondly, to apply the electromagnetic actuators for the operation mechanisms of the vacuum circuit breaker, we developed a new coupled analysis method that estimates the movement of a plunger inside the electromagnetic actuator and the electric current flowing through a closing/opening coil. Based on the analysis method, we could reduce both the number of the parts and close/open energy 45% and 80%, respectively, compared with the former spring-charged mechanism.
NASA Astrophysics Data System (ADS)
Zapryagaev, Ivan I.; Timoshevskiy, Mikhail V.; Pervunin, Konstantin S.
2017-09-01
Tip-clearance cavitation is one of the most aggressive forms of cavitation as it can cause surface erosion of hydraulic machinery elements and, as a result, their fatigue damage and disturb designed operating conditions. At present, the literature lacks for detailed experimental data on the inception and development of this type of cavitation at various flow conditions. In the paper, a tip-leakage cavitation occurring in the clearance between an end face of a 2D hydrofoil (a scaled-down model of guide vanes (GV) of a Francis turbine) and a transparent wall of the test section was studied. The experiments were carried out for different cavitating regimes on the cavitation number and two attack angles of 3° and 9°, with the gap size (tip clearance width) varied in the range from 0.4 to 0.8 mm. In order to determine the cavitation inception conditions and investigate the dynamics of the tip-leakage cavitation, a high-speed visualization was applied. A modified PIV/PTV technique with a diverging laser beam instead of a laser light sheet was used to measure the mean velocity distributions within the gap. It was shown that the cavitation pattern on the suction side of the GV model impacts the dynamics of the leakage flow in the gap but does not affect the sheet cavity formed close to the foil leading edge in the clearance as well as its size and dynamics. When the gap size is increased, the tip-leakage cavitation initiates at higher cavitation numbers or, in other words, conditions for the cavitation occurrence become more favorable.
Slipping and Tipping: Measuring Static Friction with a Straightedge
NASA Astrophysics Data System (ADS)
Dietz, Eric; Aguilar, Isaac
2012-11-01
Following a discussion of forces, torques, and the conditions for static equilibrium, I tell my introductory mechanics class that I will show them how to measure the coefficient of static friction, μs, between the surfaces of a block and the front bench using nothing but a straightedge. After a few seconds of hushed anticipation, I nudge the block in Fig. 1 (a) gently with the straightedge, applying a horizontal force F that gradually increases from zero to a value that either causes the object to slip (Fs) or to tip (Ft). Which of these happens first depends on μs, the depth D of the block, and on h, the height above the bench surface at which F is applied. Starting at the bottom of the block, it tends to slip before tipping, but there is a critical height hc above which the block tips before slipping. The value of hc at which this transition occurs is then used to produce a value of μs for these surfaces.
Impact of tip-gap size and periodicity on turbulent transition
NASA Astrophysics Data System (ADS)
Pogorelov, Alexej; Meinke, Matthias; Schroeder, Wolfgang
2015-11-01
Large-Eddy Simulations of the flow field in an axial fan are performed at a Reynolds number of 936.000 based on the diameter and the rotational speed of the casing wall. A finite-volume flow solver based on a conservative Cartesian cut-cell method is used to solve the unsteady compressible Navier-Stokes equations. Computations are performed at a flow rate coefficient of 0.165 and a tip-gap size of s/D =0.01, for a 72 degrees fan section resolving only one out of five blades and a full fan resolving all five blades to investigate the impact of the periodic boundary condition. Furthermore, a grid convergence study is performed using four computational grids. Results of the flow field are analyzed for the computational grid with 1 billion cells. An interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, is observed, which leads to a cyclic transition with high pressure fluctuations on the suction side of the blade. Two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level such that their physical origin is explained. A variation of the tip-gap size alters the transition on the suction side, i.e., no cyclic transition is observed.
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex J.; Sakai, Yuki; Chelikowsky, James R.
2017-02-01
Atomic force microscopy (AFM) measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. We find that the inversion is tip height dependent and not observed when using less reactive CO-functionalized tips.
NASA Astrophysics Data System (ADS)
Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael
2017-11-01
The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.
Gap characteristics of southeastern Ohio second-growth forests
David M. Hix; Katherine K. Helfrich
2003-01-01
Transect sampling was used to assess the features of 30 gaps encountered in upland oak stands on the Wayne National Forest. Tip-ups caused the most canopy gaps (52 percent), two-thirds of which were small (
NASA Astrophysics Data System (ADS)
Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.
2012-07-01
Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.
The Effect of Unsteady Wakes on Turbine Tip Gap Leakage
2013-05-10
low speed wind tunnel. The turbine blade shape for the experiment was the GE E 3 high pressure turbine stage 1 blade (Halila et al. 1982). The E 3...DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The Effect of Unsteady Wakes on Turbine Tip Gap Leakage...Gas turbines are found in military and civilian aircraft, ships, and power plants. Because of this widespread use, relatively small improvements
Contact Geometry and Distribution of Plasma Generated in the Vicinity of Sliding Contact
NASA Astrophysics Data System (ADS)
Nakayama, Keiji
2007-09-01
The effect of the geometry of the smaller sliding partner on plasma (triboplasma) generation has been investigated as a function of the tip radius of a diamond pin, which slides against a single crystal sapphire disk under atmospheric dry air pressure. It was found that the diameter and the total intensity of the circular triboplasma increase parabolically with an increase in the tip radius of the pin under constant normal force and sliding velocity. The plasma is most intense at the crossing point of the plasma ring and the frictional track in the plasma circle. The gap distance at the crossing point is independent of the tip radius. The ring diameter increases with an increase in the tip radius, keeping the gap distance constant and obeying Paschen’s law of gas discharge.
Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.
Shih, Hua-Ju; Shih, Po-Jen
2015-07-28
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
NASA Technical Reports Server (NTRS)
Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.
1999-01-01
A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.
Scanning tip microwave near field microscope
Xiang, X.D.; Schultz, P.G.; Wei, T.
1998-10-13
A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.
Scanning tip microwave near field microscope
Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao
1998-01-01
A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.
1998 Anthropometric Survey of U.S. Army Personnel: Bivariate Frequency Tables
1990-05-01
trapezius landmark at the base of the neck and the acromion landmark at the tip of the shoulder. 94 SITTING HEIGHT (SITTHGHT) - vertical distance...wall against which the posterior trunk is in contact and the tip of the thumb when the arm is extended anteriorly. 110 VERTICAL TRUNK CIRCUMFERENCE
Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning
2016-10-01
In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.
Turbine blade tip gap reduction system
Diakunchak, Ihor S.
2012-09-11
A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.
A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex.
Hwang, Jae-Ung; Vernoud, Vanessa; Szumlanski, Amy; Nielsen, Erik; Yang, Zhenbiao
2008-12-23
Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.
Numerical investigation of tip clearance cavitation in Kaplan runners
NASA Astrophysics Data System (ADS)
Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.
2016-11-01
There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.
Influence of blade tip rounding on tip leakage vortex cavitation of axial flow pump
NASA Astrophysics Data System (ADS)
Wu, S. Q.; Shi, W. D.; Zhang, D. S.; Yao, J.; Cheng, C.
2013-12-01
Tip leakage flow in axial flow pumps is mainly caused by the tip clearance, which is the main cause of tip leakage vortex cavitation and blade tip cavitation erosion. In order to improve tip clearance flow and reduce TLV cavitation, four schemes were adopted to the round blade tip. These are: no tip rounding, one time tip clearance tip rounding, two times tip clearance tip rounding, four times tip clearance tip rounding. Using SST k-ω turbulence model and Zwart cavitation model in CFX software, this simulation obtained four kinds of inner flow field results. The numerical results indicated that with the increase of r*, NPSHc gradually increased and the cavitation performance reduced. However, corner vortex was eliminated so that cavitation in gap was restrained. But TLV vorticity increased and cavitation's range here had a little expansion. Combined with the research of this paper and the different analyses of four schemes, we recommend adopting the two times of the tip clearance rounding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...
Lobo, Elena; Dalling, James W
2014-03-07
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.
Zhang, Li; Luo, Ying; Wang, Ren-fei
2010-08-01
To evaluate the effect of cervical headgear and lower utility arch in growing skeletal Class II division 1 patients. The patients were divided into 3 groups, the first group was treated with cervical headgear alone (n=20), the second group was treated with cervical headgear and lower utility arch (n=20), and the third group was a control group without treatment (n=20). Cephalometric radiographs were taken and analyzed with SPSS15.0 software package. Student's t test was used to determine if there was significant difference among the 3 groups. Anterior facial height and ramus height displayed significantly increase in the treatment groups than those in the control group; the lower utility arch produced intrusion and lingual tipping of the mandibular incisors and distal tipping without extrusion of the mandibular molars; compared with the control group, maxillary molar total extrusion produced by cervical headgear treatment was not more than 1mm at average. The treatment groups show significant reduction in maxillary protrusion; significant increase in the anterior descent of the PP and ramus height, as a result, mandibular plane orientation is relatively unchanged. The treatment groups have maxillary molar extrusion less than 1mm, which can be considered clinically not significant. The lower utility arch produces mandibular incisor intrusion and lingual tipping, the mandibular molars tip distally without extrusion, the lower utility arch does not influence the mandibular rotation.
Sanati Nezhad, Amir; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama; Geitmann, Anja
2013-01-01
Tip-growing cells have the unique property of invading living tissues and abiotic growth matrices. To do so, they exert significant penetrative forces. In plant and fungal cells, these forces are generated by the hydrostatic turgor pressure. Using the TipChip, a microfluidic lab-on-a-chip device developed for tip-growing cells, we tested the ability to exert penetrative forces generated in pollen tubes, the fastest-growing plant cells. The tubes were guided to grow through microscopic gaps made of elastic polydimethylsiloxane material. Based on the deformation of the gaps, the force exerted by the elongating tubes to permit passage was determined using finite element methods. The data revealed that increasing mechanical impedance was met by the pollen tubes through modulation of the cell wall compliance and, thus, a change in the force acting on the obstacle. Tubes that successfully passed a narrow gap frequently burst, raising questions about the sperm discharge mechanism in the flowering plants. PMID:23630253
Efficiency arcjet thruster with controlled arc startup and steady state attachment
NASA Technical Reports Server (NTRS)
Smith, William W. (Inventor); Knowles, Steven C. (Inventor)
1989-01-01
An improved efficiency arcjet thruster has a constrictor and electrically-conductive nozzle anode defining an arc chamber, and an electrically-conductive rod having a tip spaced upstream from the constrictor and defining a cathode spaced from the anode by a gap generally coextensive with the arc chamber. An electrical potential is applied to the anode and cathode to generate an electrical arc in the arc chamber from the cathode to anode. Catalytically decomposed hydrazine is supplied to the arc chamber with generation of the arc so as to produce thermal heating and expansion thereof through the nozzle. The constrictor can have a electrically insulative portion disposed between the cathode tip and the nozzle anode, and an electrically-conductive anode extension disposed along the insulative portion so as to define an auxiliary gap with the cathode tip substantially smaller than the gap defined between the cathode and nozzle anode for facilitating startup of arc generation. The constrictor can also include an electrically-conductive electrode with a variable electrical potential to vary the shape of the arc generated in the arc chamber. Also, the cathode is mounted for axial movement such that the gap between its tip and the nozzle anode can be varied to facilitate a generally nonerosive generation of the electrical arc at startup and reliable steady state operation. Further, the arc chamber can have a nonparallel subsonic-to-supersonic transition configuration, or alternatively solely a nonparallel supersonic configuration, for improved arc attachment.
Tips to Prevent Mosquito Bites
... mosquitoes using insecticides. Use Structural Barriers Cover all gaps in walls, doors, and windows to prevent mosquitoes ... into pants and pants into socks to cover gaps in your clothing where mosquitoes can get to ...
RANS computations of tip vortex cavitation
NASA Astrophysics Data System (ADS)
Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile
2015-12-01
The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.
Tracing the evolution of the two energy gaps in magnesium diboride under pressure
NASA Astrophysics Data System (ADS)
Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.
2015-04-01
We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.
Wright, Dannen D; Wright, Alex J; Boulter, Tyler D; Bernhisel, Ashlie A; Stagg, Brian C; Zaugg, Brian; Pettey, Jeff H; Ha, Larry; Ta, Brian T; Olson, Randall J
2017-09-01
To determine the optimum bottle height, vacuum, aspiration rate, and power settings in the peristaltic mode of the Whitestar Signature Pro machine with Ellips FX tip action (transversal). John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Porcine lens nuclei were hardened with formalin and cut into 2.0 mm cubes. Lens cubes were emulsified using transversal and fragment removal time (efficiency), and fragment bounces off the tip (chatter) were measured to determine optimum aspiration rate, bottle height, vacuum, and power settings in the peristaltic mode. Efficiency increased in a linear fashion with increasing bottle height and vacuum. The most efficient aspiration rate was 50 mL/min, with 60 mL/min statistically similar. Increasing power increased efficiency up to 90% with increased chatter at 100%. The most efficient values for the settings tested were bottle height at 100 cm, vacuum at 600 mm Hg, aspiration rate of 50 or 60 mL/min, and power at 90%. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Lobo, Elena; Dalling, James W.
2014-01-01
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032
Tomassini, R; Rossi, G; Brouckaert, J-F
2016-10-01
A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.
Energy dissipation in the blade tip region of an axial fan
NASA Astrophysics Data System (ADS)
Bizjan, B.; Milavec, M.; Širok, B.; Trenc, F.; Hočevar, M.
2016-11-01
A study of velocity and pressure fluctuations in the tip clearance flow of an axial fan is presented in this paper. Two different rotor blade tip designs were investigated: the standard one with straight blade tips and the modified one with swept-back tip winglets. Comparison of integral sound parameters indicates a significant noise level reduction for the modified blade tip design. To study the underlying mechanisms of the energy conversion and noise generation, a novel experimental method based on simultaneous measurements of local flow velocity and pressure has also been developed and is presented here. The method is based on the phase space analysis by the use of attractors, which enable more accurate identification and determination of the local flow structures and turbulent flow properties. Specific gap flow energy derived from the pressure and velocity time series was introduced as an additional attractor parameter to assess the flow energy distribution and dissipation within the phase space, and thus determines characteristic sources of the fan acoustic emission. The attractors reveal a more efficient conversion of the pressure to kinetic flow energy in the case of the modified (tip winglet) fan blade design, and also a reduction in emitted noise levels. The findings of the attractor analysis are in a good agreement with integral fan characteristics (efficiency and noise level), while offering a much more accurate and detailed representation of gap flow phenomena.
NASA Astrophysics Data System (ADS)
Tomassini, R.; Rossi, G.; Brouckaert, J.-F.
2016-10-01
A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.
Rga6 is a fission yeast Rho GAP involved in Cdc42 regulation of polarized growth
Revilla-Guarinos, M. T.; Martín-García, Rebeca; Villar-Tajadura, M. Antonia; Estravís, Miguel; Coll, Pedro M.; Pérez, Pilar
2016-01-01
Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6, another fission yeast Cdc42 GAP, shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane, forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Of note, in the absence of Rga6, the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions. PMID:26960792
Control of Tip Moth by Carbofuran Reduces Fusiform Rust Infection on Loblolly Pine
H.R. Powers; D.M. Stone
1988-01-01
Carbofuran, a systemic insecticide, was applied to the soil under planted loblolly pines near Aiken. SC. at ages 2 through 5. The insecticide sharply reduced tip-moth damage and increased the height of 5-year-old saplings, compared with untreated controls. Treatment also reduced incidence of fusiforn rust, but carbofuran did not have a fungicidal effect.
NASA Astrophysics Data System (ADS)
Tomassini, R.; Rossi, G.; Brouckaert, J.-F.
2014-05-01
The accurate control of the gap between static and rotating components is vital to preserve the mechanical integrity and ensure a correct functioning of any rotating machinery. Moreover, tip leakage above the airfoil tip results in relevant aerodynamic losses. One way to measure and to monitor blade tip gaps is by the so-called Blade Tip Clearance (BTC) technique. Another fundamental phenomenon to control in the turbomachines is the vibration of the blades. For more than half a century, this has been performed by installing strain gauges on the blades and using telemetry to transmit the signals. The Blade Tip Timing (BTT) technique, (i.e. measuring the blade time of arrival from the casing at different angular locations with proximity sensors) is currently being adopted by all manufacturers as a replacement for the classical strain gauge technique because of its non-intrusive character. This paper presents a novel magnetoresistive sensor for blade tip timing and blade tip clearance systems, which offers high temporal and high spatial resolution simultaneously. The sensing element adopted is a Wheatstone bridge of Permalloy elements. The principle of the sensor is based on the variation of magnetic field at the passage of ferromagnetic objects. Two different configurations have been realized, a digital and an analogue sensor. Measurements of tip clearance have been performed in an high speed compressor and the calibration curve is reported. Measurements of blade vibration have been carried out in a dedicated calibration bench; results are presented and discussed. The magnetoresistive sensor is characterized by high repeatability, low manufacturing costs and measurement accuracy in line with the main probes used in turbomachinery testing. The novel sensor has great potential and is capable of fulfilling the requirements for a simultaneous BTC and BTT measurement system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, Marvin; Shirato, Nozomi; Kersell, Heath
Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less
Cummings, Marvin; Shirato, Nozomi; Kersell, Heath; ...
2017-01-05
Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less
NASA Astrophysics Data System (ADS)
Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.
2011-12-01
We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.
Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu
2014-08-04
We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, andmore » results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.« less
Electrical capacitance clearanceometer
NASA Technical Reports Server (NTRS)
Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)
1992-01-01
A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.
Rani, Renu; Kundu, Anirban; Balal, Mohammad; Sheet, Goutam; Hazra, Kiran Shankar
2018-08-24
Unlike graphene nanostructures, various physical properties of nanostructured MoS 2 have remained unexplored due to the lack of established fabrication routes. Herein, we have reported unique electrostatic properties of MoS 2 nanostructures, fabricated in a controlled manner of different geometries on 2D flake by using focused laser irradiation technique. Electrostatic force microscopy has been carried out on MoS 2 nanostructures by varying tip bias voltage and lift height. The analysis depicts no contrast flip in phase image of the patterned nanostructure due to the absence of free surface charges. However, prominent change in phase shift at the patterned area is observed. Such contrast changes signify the capacitive interaction between tip and nanostructures at varying tip bias voltage and lift height, irrespective of their shape and size. Such unperturbed capacitive behavior of the MoS 2 nanostructures offer modulation of capacitance in periodic array on 2D MoS 2 flake for potential application in capacitive devices.
Numerical investigation of tip clearance effects on the performance of ducted propeller
NASA Astrophysics Data System (ADS)
Ding, Yongle; Song, Baowei; Wang, Peng
2015-09-01
Tip clearance loss is a limitation of the improvement of turbomachine performance. Previous studies show the Tip clearance loss is generated by the leakage flow through the tip clearance, and is roughly linearly proportional to the gap size. This study investigates the tip clearance effects on the performance of ducted propeller. The investigation was carried out by solving the Navier-Stokes equations with the commercial Computational Fluid Dynamic (CFD) code CFX14.5. These simulations were carried out to determine the underlying mechanisms of the tip clearance effects. The calculations were performed at three different chosen advance ratios. Simulation results showed that the tip loss slope was not linearly at high advance due to the reversed pressure at the leading edge. Three type of vortical structures were observed in the tip clearance at different clearance size.
Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage blockage change without the need to define the region of blockage generation (which may incur a certain degree of arbitrariness). This method has been assessed for its applicability and utility.
Cubic-foot tree volume equations and tables for western juniper.
Judith M. Chittester; Colin D. MacLean
1984-01-01
This note presents cubic-foot volume equations and tables for western juniper (Juniperus occidentalis Hook. ). Total cubicfoot volume (ground to tip, excluding all branches (CVTS)) is expressed as a function of diameter at breast height (DBH) and total height. Utilizable cubic-foot volume (top of 12-inch stump to a 4-inch top, excluding all...
Simulating contrast inversion in atomic force microscopy imaging with real-space pseudopotentials
NASA Astrophysics Data System (ADS)
Lee, Alex; Sakai, Yuki; Chelikowsky, James
Atomic force microscopy measurements have reported contrast inversions for systems such as Cu2N and graphene that can hamper image interpretation and characterization. Here, we apply a simulation method based on ab initio real-space pseudopotentials to gain an understanding of the tip-sample interactions that influence the inversion. We find that chemically reactive tips induce an attractive binding force that results in the contrast inversion. The inversion is tip height dependent and not observed when using less reactive CO-functionalized tips. Work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.
Scanning Tunneling Optical Resonance Microscopy
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave
2003-01-01
Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the feedback circuit could respond, then the voltage applied to the piezoelectric tip-height actuator could be measured by use of a lock-in amplifier locked to the modulation (chopping) signal. However, at a high modulation frequency (typically in the kilohertz range or higher), the feedback circuit would be unable to respond. In this case, the photoenhanced portion of the tunneling current could be measured directly. For this purpose, the tunneling current would be passed through a precise resistor and the voltage drop would be measured by use of the lock-in amplifier.
Computational Analysis of a Wells Turbine with Flexible Trailing Edges
NASA Astrophysics Data System (ADS)
Kincaid, Kellis; Macphee, David
2017-11-01
The Wells turbine is often used to produce a net positive power from an oscillating air column excited by ocean waves. It has been parametrically studied quite thoroughly in the past, both experimentally and numerically. The effects of various characteristics such as blade count and profile, solidity, and tip gap are well known. Several three-dimensional computational studies have been carried out using commercial code to investigate many phenomena detected in experiments: hysteresis, tip-gap drag, and post-stall behavior for example. In this work, the open-source code Foam-Extend is used to examine the effect of flexible blades on the performance of the Wells turbine. A new solver is created to integrate fluid-structure interaction into the code, allowing an accurate solution for both the solid and fluid domains. Reynolds-averaged governing equations are employed in a fully transient solution model. The elastic modulus of the flexible portion of the blade and the tip-gap width are varied, and the resulting flow fields are investigated to determine the cause of any performance differences. NSF Grant EEC 1659710.
Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.
Cheng, Kuangyou B; Hubbard, Mont
2005-09-01
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin
2016-01-01
The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115
NASA Astrophysics Data System (ADS)
Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin
2016-07-01
The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.
Impact of Tip Moth Injury on Growth and Yield of 16-Year-Old Loblolly and Shortleaf Pine
H.L. Williston; S.J. Barras
1977-01-01
For the first six growing seasons, 47 loblolly and shortleaf pine plots throughout the South were treated to protect them against tip moth (at first with DDT and later with a granular phorate). Treatments provided good protection, and in the early years treated trees appeared to outgrow untreated trees. But by age 16 there were no substantial differences in height or...
Why are Mexican American boys so much taller now?
Delajara, Marcelo; Rodríguez-Segura, Melissa
2010-07-01
Using NHANES data we find that the difference in average height between non-Hispanic White and Mexican American boys of ages 2-14 years has decreased 1.7 cm on average during the last quarter of the twentieth century in the United States. Our hypothesis is that the narrowing of the height gap is related to a larger gain in maternal height among Mexican Americans in relation to Whites. We estimate a child's height equation and find that on average about 38% of the reduction in the gap for boys of ages 2-5 years is attributed to this factor. The evidence of a secular trend for height is weak for the case of girls. 2010 Elsevier B.V. All rights reserved.
Vertical axis wind turbine wake in boundary layer flow in a wind tunnel
NASA Astrophysics Data System (ADS)
Rolin, Vincent; Porté-Agel, Fernando
2016-04-01
A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.
Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy.
González, C; Biel, B; Dappe, Y J
2016-03-11
Different S and Mo vacancies as well as their corresponding antisite defects in a free-standing MoS2 monolayer are analysed by means of scanning tunnelling microscopy (STM) simulations. Our theoretical methodology, based on the Keldysh nonequilibrium Green function formalism within the density functional theory (DFT) approach, is applied to simulate STM images for different voltages and tip heights. Combining the geometrical and electronic effects, all features of the different STM images can be explained, providing a valuable guide for future experiments. Our results confirm previous reports on S atom imaging, but also reveal a strong dependence on the applied bias for vacancies and antisite defects that include extra S atoms. By contrast, when additional Mo atoms cover the S vacancies, the MoS2 gap vanishes and a bias-independent bright protrusion is obtained in the STM image. Finally, we show that the inclusion of these point defects promotes the emergence of reactive dangling bonds that may act as efficient adsorption sites for external adsorbates.
24 CFR 3285.304 - Pier configuration.
Code of Federal Regulations, 2012 CFR
2012-04-01
... driven in tightly so that they do not occupy more than one inch of vertical height; and (3) Hardwood... used to fill in any remaining vertical gaps. (d) Manufactured pier heights. Manufactured pier heights...
Orthodontics for the dog. Treatment methods.
Ross, D L
1986-09-01
This article considers the prevention of orthodontic problems, occlusal adjustments, simple tooth movements, rotational techniques, tipping problems, adjustment of crown height, descriptions of common orthodontic appliances, and problems associated with therapy.
Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds
2012-02-29
element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element
Compressor airfoil tip clearance optimization system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; Pu, Zhengxiang
2015-08-18
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary.more » During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.« less
Etching of Cr tips for scanning tunneling microscopy of cleavable oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija
Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La 1.4Sr 1.6Mn 2O 7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been usedmore » in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less
Etching of Cr tips for scanning tunneling microscopy of cleavable oxides
Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija; ...
2017-02-21
Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La 1.4Sr 1.6Mn 2O 7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been usedmore » in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less
NASA Astrophysics Data System (ADS)
Heilman, Alexander Lee
Optical microscopy and spectroscopy are invaluable tools for the physical and chemical characterization of materials and surfaces in a wide range of scientific disciplines. However, the application of conventional optical methods in the study of nanomaterials is inherently limited by diffraction. Tip-enhanced near-field optical microscopy (TENOM) is a hybrid technique that marries optical spectroscopy with scanning probe microscopy to overcome the spatial resolution limit imposed by diffraction. By coupling optical energy into the plasmonic modes of a sharp metal probe tip, a strong, localized optical field is generated near the tip's apex and is used to enhance spectroscopic emissions within a sub-diffraction-limited volume. In this thesis, we describe the design, construction, validation, and application of a custom TENOM instrument with a unique attenuated total reflectance (ATR)-geometry excitation/detection system. The specific goals of this work were: (i) to develop a versatile TENOM instrument capable of investigating a variety of optical phenomena at the nanoscale, (ii) to use the instrument to demonstrate chemical interrogation of surfaces with sub-diffraction-limited spatial resolution (i.e., at super resolution), (iii) to apply the instrument to study plasmonic phenomena that influence spectroscopic enhancement in TENOM measurements, and (iv) to leverage resulting insights to develop systematic improvements that expand the ultimate capabilities of near-field optical interrogation techniques. The TENOM instrument described herein is comprised of three main components: an atomic force microscope (AFM), a side-on confocal Raman microscope, and a novel ATR excitation/detection system. The design of each component is discussed along with the results of relevant validation experiments, which were performed to rigorously assess each component's performance. Finite-difference time-domain (FDTD) optical simulations were also developed and used extensively to evaluate the results of validation studies and to optimize experimental design and instrument performance. By combining and synchronizing the operation of the instrument's three components, we perform a variety of near-field optical experiments that demonstrate the instrument's functionality and versatility. ATR illumination is combined with a plasmonic AFM tip to show that: (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is quantitatively compared with side-on illumination. In both cases, spatial resolution was better than 40 nm and tip-on/tip-off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective'' pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap. We also investigate the sensitivity of the TENOM instrument to changes in the plasmonic properties of the tip-surface system in the strongly-coupled regime at small tip-surface separations. Specifically, we demonstrate detection of a resonant plasmonic tip-surface mode (a gap plasmon) that dramatically influences the optical response of the system, and we use experimental results and FDTD simulations to support a hypothesized mechanism. Moreover, we confirm that the gap plasmon resonance has a strong effect on the enhancement of both fluorescence and Raman scattering, and we propose that this phenomenon could ultimately be exploited to improve sensitivity in super-resolution chemical imaging measurements. Finally, we recommend a straightforward modification to the TENOM instrument that could enable future application of these gap-mode plasmon resonances to increase spectroscopic enhancements by an order of magnitude.
The effects of ion implantation on the beaks of orthodontic pliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizrahi, E.; Cleaton-Jones, P.E.; Luyckz, S.
1991-06-01
The surface of stainless steel may be hardened by bombarding the material with a stream of nitrogen ions generated by a nuclear accelerator. In the present study this technique was used to determine the hardening effect of ion implantation on the beaks of stainless steel orthodontic pliers. Ten orthodontic pliers (Dentarum 003 094) were divided into two equal groups, designated control and experimental. The beaks of the experimental pliers were subjected to ion implantation, after which the tips of the beaks of all the pliers were stressed in an apparatus attached to an Instron testing machine. A cyclical load ofmore » 500 N was applied to the handles of the pliers, while a 0.9 mm (0.036 inch) round, stainless steel wire was held between the tips of the beaks. The effect of the stress was assessed by measurement with a traveling microscope of the gap produced between the tips of the beaks. Measurements were taken before loading and after 20, 40, 60, and 80 cycles. Statistical analysis of variance and the two-sample t tests indicated that there was a significant increase in the size of the gap as the pliers were stressed from 0 to 80 cycles (p less than 0.001). Furthermore, the mean gap was significantly greater in the control group than in the experimental group (p less than 0.001). This study suggests that ion implantation increases the hardness of the tips of the beaks of orthodontic pliers.« less
NASA Astrophysics Data System (ADS)
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.
Kim, Se-Chan; Heinze, Ingo; Schmiedel, Alexandra; Baumgarten, Georg; Knuefermann, Pascal; Hoeft, Andreas; Weber, Stefan
2015-01-01
Visualisation of a central venous catheter (CVC) with ultrasound is restricted to the internal jugular vein (IJV). CVC tip position is confirmed by chest radiography, intracardiac ECG or transoesophageal/transthoracic echocardiography (TEE/TTE). We explored the feasibility, safety and accuracy of a right supraclavicular view for visualisation of the lower superior vena cava (SVC) and the right pulmonary artery (RPA) as an ultrasound landmark for real-time ultrasound-guided CVC tip positioning via the right IJV. Ultrasound was then compared with chest radiography. An observational pilot study. Bonn, University Hospital, Germany. From July to October 2012. Fifty-one patients scheduled for elective surgery. Reasons for exclusion were emergency procedure, thrombosis or small IJV lumen and mechanical obstacle to guidewire advancement. In 48 patients, CVC insertion via the right IJV and progress of the guidewire into the lower SVC were continuously guided by an ultrasound transducer in the right supraclavicular fossa. CVC tip position in lower SVC and tip-to-carina distance were assessed with chest radiography as a reference method and additionally with TEE in cardiothoracic patients. Insertion depth was compared with intracardiac ECG and body-height formula. The guidewire tip was seen in the SVC of all patients. In four patients, the tip was not visible in proximity of the RPA. Chest radiography and TEE confirmed CVC tip position in the lower SVC (zone A). Bland-Altman analysis revealed an average of difference of 1.6 cm for ultrasound versus ECG (95% limit of agreement -2 to 5 cm) and an average of difference of 1 cm for ultrasound versus body-height formula (95% limit of agreement -2 to 4 cm). Ultrasound via a right supraclavicular view is a feasible, well tolerated and accurate approach and should be further explored. Chest radiography confirmed CVC position in the lower SVC.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
Gas turbine blade film cooling and blade tip heat transfer
NASA Astrophysics Data System (ADS)
Teng, Shuye
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.
Chun, Kyung A; Kum, Kee-Yeon; Lee, Woo-Cheol; Baek, Seung-Ho; Choi, Hae-Won; Shon, Won-Jun
2017-07-11
Although many studies have compared the properties of ultrasonic scaling instruments, it remains controversial as to which is most suitable for implant scaling. This study evaluated the safety and efficiency of novel metallic ultrasonic scaler tips made by the powder injection molding (PIM) technique on titanium surfaces. Mechanical instrumentation was carried out using four types of metal scaler tips consisting of copper (CU), bronze (BR), 316 L stainless steel (316 L), and conventional stainless steel (SS) tips. The instrumented surface alteration image of samples was viewed with scanning electron microscope (SEM) and surface profile of the each sample was investigated with confocal laser scanning microscopy (CLSM). Arithmetic mean roughness (Ra) and maximum height roughness (Rmax) of titanium samples were measured and dissipated power of the scaler tip was estimated for scaling efficiency. The average Ra values caused by the 316 L and SS tip were about two times higher than those of the CU and BR tips (p < 0.05). The Rmax value showed similar results. The efficiency of the SS tip was about 3 times higher than that of CU tip, the 316 L tip is about 2.7 times higher than that of CU tip, and the BR tip is about 1.2 times higher than that of CU tip. Novel metallic bronze alloy ultrasonic scaler tip minimally damages titanium surfaces, similar to copper alloy tip. Therefore, this bronze alloy scaler tip may be promising instrument for implant maintenance therapy.
Social inequality in height. A comparison between 10-year-old Helsinki and Stockholm children.
Cernerud, L; Elfving, J
1995-03-01
The height of children may be used to indicate social inequality. The aim of this study was to analyze the difference in height of the socially more and less privileged 10-year-old Helsinki children in 1963 and 1991 and to compare the social gap to the corresponding gap in 1943, 1963 and 1991 in previous studies of Stockholm children. The difference in mean height of the Helsinki boys in 1963 was 4.5 cm (p < 0.001) and for girls 4.4 cm (p < 0.001). In Stockholm the corresponding differences in 1963 were negligible. Twenty years earlier (in 1943) it was 3.2 cm (p < 0.001) in Stockholm. In 1991 the difference was 1.4 cm (p < 0.05) for boys and 0.6 cm (n.s.) for girls in Helsinki, equivalent to the findings of the Stockholm children at the same time. The well-off Helsinki children already in 1963 were as tall as the Stockholm children. Thus, the decrease of the social gap in height from 1963 to 1991 in Helsinki seems to be mainly due to an increase in height of the socially less privileged children, exactly what was previously found for the Stockholm children between 1943 and 1963. Would the time for the equalization of height mirror the time for the development of the welfare states in Finland and Sweden respectively?
Height and calories in early childhood.
Griffen, Andrew S
2016-03-01
This paper estimates a height production function using data from a randomized nutrition intervention conducted in rural Guatemala from 1969 to 1977. Using the experimental intervention as an instrument, the IV estimates of the effect of calories on height are an order of magnitude larger than the OLS estimates. Information from a unique measurement error process in the calorie data, counterfactuals results from the estimated model and external evidence from migration studies suggest that IV is not identifying a policy relevant average marginal impact of calories on height. The preferred, attenuation bias corrected OLS estimates from the height production function suggest that, averaging over ages, a 100 calorie increase in average daily calorie intake over the course of a year would increase height by 0.06 cm. Counterfactuals from the model imply that calories gaps in early childhood can explain at most 16% of the height gap between Guatemalan children and the US born children of Guatemalan immigrants. Copyright © 2015 Elsevier B.V. All rights reserved.
Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission
Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.
2013-01-01
We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840
Meyer, Jay J; Kuo, Annie F; Olson, Randall J
2010-06-01
To determine capsular breakage risk from contact by phacoemulsification needles by machine and tip type. Experimental laboratory investigation. Infiniti (Alcon, Inc.) with Intrepid cartridges and Signature (Abbott Medical Optics, Inc.) phacoemulsification machines were tested using 19- and 20-gauge sharp and rounded tips. Actual and unoccluded flow vacuum were determined at 550 mm Hg, bottle height of 75 cm, and machine-indicated flow rate of 60 mL/minute. Breakage from brief tip contact with a capsular surrogate and human cadaveric lenses was calculated. Nineteen-gauge tips had more flow and less unoccluded flow vacuum than 20-gauge tips for both machines, with highest unoccluded flow vacuum in the Infiniti. The 19-gauge sharp tip was more likely than the 20-gauge sharp tip to cause surrogate breakage for Signature with micropulse and Ellips (Abbott Medical Optics, Inc.) ultrasound at 100% power. For Infiniti using OZil (Alcon, Inc.) ultrasound, 20-gauge sharp tips were more likely than 19-gauge sharp tips to break the membrane. For cadaveric lenses, using rounded 20-gauge tips at 100% power, breakage rates were micropulse (2.3%), Ellips (2.3%), OZil (5.3%). Breakage rates for sharp 20-gauge Ellips tips were higher than for rounded tips. Factors influencing capsular breakage may include active vacuum at the tip, flow rate, needle gauge, and sharpness. Nineteen-gauge sharp tips were more likely than 20-gauge tips to cause breakage in lower vacuum methods. For higher-vacuum methods, breakage is more likely with 20-gauge than with 19-gauge tips. Rounded-edge tips are less likely than sharp-edged tips to cause breakage. Copyright 2010 Elsevier Inc. All rights reserved.
The Effect of Adolescent Experience on Labor Market Outcomes: The Case of Height.
ERIC Educational Resources Information Center
Persico, Nicola; Postlewaite, Andrew; Silverman, Dan
2004-01-01
Taller workers receive a wage premium. Net of differences in family background, the disparity is similar in magnitude to the race and gender gaps. We exploit variation in an individual's height over time to explore how height affects wages. Controlling for teen height essentially eliminates the effect of adult height on wages for white men. The…
3D PIC-MCC simulations of positive streamers in air gaps
NASA Astrophysics Data System (ADS)
Jiang, M.; Li, Y.; Wang, H.; Liu, C.
2017-10-01
Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.
Muchitsch, Alfred Peter; Winsauer, Heinz; Wendl, Brigitte; Pichelmayer, Margit; Kuljuh, Elma; Navysany, Marie Therese; Muchitsch, Markus
2014-01-01
The goal of this study was to assess the extent to which median mandibular distraction via a cemented and screw-retained full-coverage splint appliance employing a hinged expansion screw causes inclination changes in the lower first molars and widens the dental arch. Our study included 17 patients (12 females and 5 males; average age 16 years and 3 months) who presented with transverse space deficits and pronounced dental crowding. Baseline and final mandibular casts reflecting the situations before and after 6 weeks of median distraction therapy were created, scanned, and matched via their coordinate systems. Perpendiculars were drawn at the geometric centers between the cusp tips of teeth 36 and 46 and projected against the frontal plane. The intersection angles yielded single-tooth and total inclination values for both molars, and the difference between the intermolar distances measured at the geometric centers of both teeth provided the amount of transverse expansion. An intraclass correlation coefficient (ICC) of >0.99 was obtained in a series of three measurements. After distraction treatment, the total inclination values between teeth 36 and 46 changed by +2.93 ± 9.14°. The corresponding single-tooth inclinations changed by +0.68 ± 6.32° and -2.25 ± 4.33°, respectively. Both molars underwent similar degrees of buccal or lingual tipping. Compared to a mean expansion of +6.9 ± 1.83 mm at the distraction screw, a distance increase of only +3.77 ± 1.27 mm along the transversal connecting teeth 36 and 46 was recorded. Pearson's correlation coefficient was 0.336 between total tipping and intermolar expansion (p=0.187) and -0.426 between total tipping and patient age (p=0.088). Expansion amounts were approximately twice as long at the expansion screw as between the first molars. This V-shaped expansion pattern was due to the hinged connections between each expansion screw and the full-coverage splints. The buccal and lingual tipping of molars measured may be due to varying heights of the posterior alveolar ridge during mixed dentition or to anatomy-related differences in the expansion-screw position. In all cases we observed a mainly parallel opening of the distraction gap on the vertical plane.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
NASA Astrophysics Data System (ADS)
Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre
2018-05-01
The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.
Trafficking and Health: A Systematic Review of Research Methods.
Cannon, Abby C; Arcara, Jennet; Graham, Laurie M; Macy, Rebecca J
2018-04-01
Trafficking in persons (TIP) is a human rights violation with serious public health consequences. Unfortunately, assessing TIP and its health sequelae rigorously and reliably is challenging due to TIP's clandestine nature, variation in definitions of TIP, and the need to use research methods that ensure studies are ethical and feasible. To help guide practice, policy, and research to assess TIP and health, we undertook a systematic literature review of 70 peer-reviewed, published articles to (a) identify TIP and health research methods being used, (b) determine what we can learn about TIP and health from these varied methodologies, and (c) determine the gaps that exist in health-focused TIP research. Results revealed that there are various quantitative and qualitative data collection and analysis methods being used to investigate TIP and health. Furthermore, findings show that the limitations of current methodologies affect what is known about TIP and health. In particular, varying definitions, participant recruitment strategies, ethical standards, and outcome measures all affect what is known about TIP and health. Moreover, findings demonstrate an urgent need for representative and nonpurposive recruitment strategies in future investigations of TIP and health as well as research on risk and protective factors related to TIP and health, intervention effectiveness, long-term health outcomes, and research on trafficked people beyond women trafficked for sex. We offer recommendations for research, policy, and practice based on review results.
Apertureless SNOM imaging of the surface phonon polariton waves: what do we measure?
NASA Astrophysics Data System (ADS)
Kazantsev, D. V.; Ryssel, H.
2013-10-01
The apertureless scanning near-field microscope (ASNOM) mapping of surface phonon polariton (SPP) waves being excited at the surface of the SiC polar crystal at a frequency corresponding to the lattice resonance was investigated. The wave with well-defined direction and source position, as well as a well-known propagation law, was used to calibrate the signal of an ASNOM. An experimental proof is presented showing that the signal collected by the ASNOM in such a case is proportional (as a complex number) to the local field amplitude above the surface, regardless of the tip response model. It is shown that the expression describing an ASNOM response, which is, in general case, rather complicated nonlinear function of a surface/tip dielectric constants, wavelength, tip vibration amplitude, tip shape etc., can be dramatically simplified in the case of the SPP waves mapping in a mid-IR range, due to a lucky combination of the tip and surface parameters for the case being considered. A tip vibration amplitude is much less than a running SPP wave field decay height in a normal direction. At the same time, the tip amplitude is larger than a characteristic distance at which a tip-surface electromagnetic near-field interaction plays a significant role.
Addressing FinFET metrology challenges in 1X node using tilt-beam CD-SEM
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxiao; Zhou, Hua; Ge, Zhenhua; Vaid, Alok; Konduparthi, Deepasree; Osorio, Carmen; Ventola, Stefano; Meir, Roi; Shoval, Ori; Kris, Roman; Adan, Ofer; Bar-Zvi, Maayan
2014-04-01
At 1X node, 3D FinFETS raise a number of new metrology challenges. Gate height and fin height are two of the most important parameters for process control. At present there is a metrology gap in inline in-die measurement of these parameters. In order to fill this metrology gap, in-column beam tilt has been developed and implemented on Applied Materials V4i+ top-down CD-SEM for height measurement. A low tilt (5°) beam and a high tilt (14°) beam have been calibrated to obtain two sets of images providing measurement of sidewall edge width to calculate height in the host. Evaluations are done with applications in both gate height and fin height. TEM correlation with R2 being 0.89 and precision of 0.81nm have been achieved on various in-die features in gate height application. Fin height measurement shows less accuracy (R2 being 0.77) and precision (1.49 nm) due to challenges brought by fin geometry, yet still promising as first attempt. Sensitivity to DOE offset, die-to-die and in-die variation is demonstrated in both gate height and fin height. Process defect is successfully captured from inline wafers with gate height measurement implemented in production. This is the first successful demonstration of inline in-die gate height measurement for 14nm FinFET process control.
Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.
Polak, Leo; Wijngaarden, Rinke J
2016-12-01
Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.
1984-04-24
An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.
Thorn, C.E.; Chasman, C.; Baltz, A.J.
1981-11-19
An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.
Huang, Jen-Ching; Chen, Chung-Ming
2012-01-01
This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study. © Wiley Periodicals, Inc.
Tsauo, Jiaywei; Li, Xiao
2015-03-07
A 65-year-old woman with Budd-Chiari syndrome (BCS) presented with right upper quadrant pain. A computed tomography (CT) scan showed a saccular aneurysm located at the extrahepatic portal vein main branch measuring 3.2 cm in height and 2.5 cm × 2.4 cm in diameter. The aneurysm was thought to be associated with BCS as there was no preceding history of trauma and it had not been present on Doppler ultrasound examination performed 3 years previously. Because of increasing pain and concern for complications due to aneurysm size, the decision was made to relieve the hepatic venous outflow obstruction. Transjugular intrahepatic portosystemic shunt (TIPS) was created without complications. She had complete resolution of her abdominal pain within 2 d and remained asymptomatic after 1 year of follow-up. CT scans obtained after TIPS showed that the aneurysm had decreased in size to 2.4 cm in height and 2.0 cm × 1.9 cm in diameter at 3 mo, and had further decreased to 1.9 cm in height and 1.6 cm × 1.5 cm in diameter at 1 year.
Eight electrode optical readout gap
Boettcher, G.E.; Crain, R.W.
1984-01-01
A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.
using mesonet visbility observations and CLARUS QC'd obs; Add ceiling height and sky cover analysis to precipitation coverage gaps near CONUS coastlines; Add significant wave height analysis to OCONUS domains
Analytical vacuum force, atmospheric pressure dispute
NASA Astrophysics Data System (ADS)
Yongquan, Han
Typically, the gap gas molecules is 10-9 m, since the center speed of the tornado is over 100 m / sec, it divided by the speed of a tornado, the gap of the gas molecules becomes 10-11m. Equivalent to the gap when there is no tornado that the gas molecules allow radiation to pass through, equivalent to the gap is reduced gas molecules 100 times by a tornado. There is no change in the Earth's radiate, the Earth's radiation is reduced to one percent of the original intensity by the radiation through the tornado periphery into the center of the tornado. According to the APS Division of Nuclear Physics in APS -2013 Fall Meeting - Event - Gravitational radiation theory http://meetings.aps.org/Meeting/DNP13/Session/FB.8, which I published, the gravity will br reduced to the original gravity percentage one. Waterspout by the Earth's gravity to become the original one percent. Cause the external of the tornadoes atmospheric pressure is constant, the height waterspout should support column height atmospheric pressure is 100 times,that height waterspout may reach nearly kilometers.
High-frequency ultrasonic wire bonding systems
Tsujino; Yoshihara; Sano; Ihara
2000-03-01
The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.
Selection of forest canopy gaps by male Cerulean Warblers in West Virginia
Perkins, Kelly A.; Wood, Petra Bohall
2014-01-01
Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.
NASA Astrophysics Data System (ADS)
Schwyzer, Olivier; Saenger, Nicole
2016-11-01
The Hydraulic Pressure Machine (HPM) is an energy converter to exploit head differences between 0.5 and 2.5 m in small streams and irrigation canals. Previous investigations show that efficiencies above 60% are possible. Several case studies indicate good continuity for aquatic life (e.g. fish) and bed load for the technology. The technology is described as an economically and ecologically viable option for small scale hydropower generation. Primary goal of this research is to improve the HPM blade design regarding its continuity properties by maintaining good efficiency rates. This is done by modifying the blade tip and testing within a large physical model under laboratory condition. Blade tips from steel (conventional - reference case) and a combination of EPDM rubber and steel as sandwich construction (rubber, steel, rubber - adhesive layered) are tested and compared. Both materials reach similar values for hydraulic efficiency (approx. 58%) and mechanical power output (approx. 220 W). The variation of different gap sizes pointed out the importance of small clearance gaps to reach high efficiencies. For assessing the two blade tip materials regarding continuity for aquatic life, fish dummies were led through the wheel. Analysis of slow motion video of dummies hit by the blade show significant advantages for the EPDM blade tip. The EPDM rubber allows to bend and thus reduces the shock and the probability for cuts on the fish dummy. It was shown that blade tips from EPDM have certain advantages regarding continuity compared to standard blade tips from steel. No compromise regarding energy production had to be made. These results from the HPM can be transferred to breast shot water wheel and may be applied for new and retrofitting projects.
Convergent structural responses of tropical forests to diverse disturbance regimes.
Kellner, James R; Asner, Gregory P
2009-09-01
Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.
Modeling of Electronic Transport in Scanning Tunneling Microscope Tip-Carbon Nanotube Systems
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Kwak, Dochan (Technical Monitor)
2000-01-01
A model is proposed for two observed current-voltage (I-V) patterns in a recent experiment with a scanning tunneling microscope tip and a carbon nanotube. We claim that there are two mechanical contact modes for a tip (metal) -nanotube (semiconductor) junction (1) with or (2) without a tiny vacuum gap (0.1 - 0.2 nm). With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube; the Schottky mechanism in (2) would result in I does not equal 0 only with V < 0 for an n-nanotube, and the bias polarities would be reversed for a p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type.
Design, analysis, optimization and control of rotor tip flows
NASA Astrophysics Data System (ADS)
Maesschalck, Cis Guy M. De
Developments in turbomachinery focus on efficiency and reliability enhancements, while reducing the production costs. In spite of the many noteworthy experimental and numerical investigations over the past decades, the turbine tip design presents numerous challenges to the engine manufacturers, and remains the primary factor defining the machine durability for the periodic removal of the turbine components during overhaul. Due to the hot gases coming from the upstream combustion chamber, the turbine blades are subjected to temperatures far above the metal creep temperature, combined with severe thermal stresses induced within the blade material. Inadequate designs cause early tip burnouts leading to considerable performance degradations, or even a catastrophic turbine failure. Moreover, the leakage spillage, nowadays often exceeding the transonic regime, generates large aerodynamic penalties which are responsible for about one third of the turbine losses. In this view, the current doctoral research exploits the potential through the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics and manage the heat load distribution over the blade profile to improve the turbine efficiency and durability. Three main design strategies for unshrouded turbine blade tips were analyzed and optimized: tight running clearances, blade tip contouring and the use of complex squealer-like geometries. The altered overtip flow physics and heat transfer characteristics were simulated for tight gap sizes as low as 0.5% down to 0.1% of the blade height, occurring during engine transients and soon to be expected due to recent developments in active clearance control strategies. The potential of fully 3D contoured blade top surfaces, allowing to adapt the profile locally to the changing flow conditions throughout the camberline, is quantified. First adopting a quasi-3D approach and subsequently using a full 3D optimization. For the industrial rub-safe squealer profiles featuring cavities separated by upstanding rims, a topology-like multi-objective 3D optimization strategy is used to identify so far undiscovered, optimal blade tip profiles. Furthermore, the additional potential of the widely adopted shroud coolant injection just upstream of the rotor blade is examined. Specifically, the possibility of combining the beneficial effect of the purge flow in the overtip region while minimizing the detrimental influence on the upper passage vortex is explored. Eventually, a high-speed rotating turbine facility at the von Karman Institute was redesigned, allowing simultaneous testing of multiple distinct blade (tip) profiles mounted in separate sectors around the rotor annulus. Important considerations related with the balancing and precise clearance design are highlighted, arising from the complexity of such rainbow-rotor configuration. Moreover, approaches are described to integrate Reynolds-Averaged Navier-Stokes simulations to a priori estimate the errors induced by the finite spatial sampling and inherent limited sensor bandwidth. This research effort provided new insights into the overtip flow topology and aerothermal characteristics, identified new design strategies to create future turbines with enhanced aerodynamic efficiencies and reduced thermal loads, and paved the way for an elaborate experimental validation in a rotating turbine facility, at engine-matched conditions.
47 CFR 22.529 - Application requirements for the Paging and Radiotelephone Service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... horizontal radiation pattern of the electric field of the antenna, the height (in meters) to the tip of the... in the maximum lobe and the electric field polarization of the wave emitted by the antenna when...
47 CFR 22.529 - Application requirements for the Paging and Radiotelephone Service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... horizontal radiation pattern of the electric field of the antenna, the height (in meters) to the tip of the... in the maximum lobe and the electric field polarization of the wave emitted by the antenna when...
Regulation of Cell Diameter, For3p Localization, and Cell Symmetry by Fission Yeast Rho-GAP Rga4p
Das, Maitreyi; Wiley, David J.; Medina, Saskia; Vincent, Helen A.; Larrea, Michelle; Oriolo, Andrea
2007-01-01
Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4Δ cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a “corset” pattern, and to the nongrowing cell tips. Additionally, rga4Δ cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth. PMID:17377067
Lightning protection using energized Franklin rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Salam, M.; Al-Abdul-Latif, U.
1995-12-31
In this paper, the onset criterion of the upward streamers from an energized Franklin rod is formulated as a function of the geometry of the rod and the height and current of the downward leader. The electric field in the vicinity of the lightning rod is calculated using the charge simulation technique. The dependency of the radius of protection on the amplitude of the pulse voltage applied to Franklin rod, the downward leader current and the tip radius and height of the rod is investigated.
Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.
Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T
2015-03-13
Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.
Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps
NASA Astrophysics Data System (ADS)
Wang, Yu; Qu, Lu; Si, Tianjun; Ni, Yang; Xu, Jianwei; Wen, Xishan
2017-06-01
When a wind turbine is struck by lightning, its blades are usually rotating. The effect of blade rotation on a turbine’s ability to trigger a lightning strike is unclear. Therefore, an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary. A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50% discharge voltage. Lightning discharge tests of a 1:30 scale wind turbine model with 2, 4, and 6 m air gaps were performed and the discharge process was observed. The experimental results demonstrated that when a 2 m air gap was used, the breakdown voltage increased as the blade speed was increased, but when the gap length was 4 m or longer, the trend was reversed and the breakdown voltage decreased. The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region, promotes upward leader development on the blade tip, and decreases the breakdown voltage. Thus, the blade rotation of a wind turbine increases its ability to trigger lightning strikes.
NASA Technical Reports Server (NTRS)
Tauber, M. E.; Owen, F. K.; Langhi, R. G.; Palmer, G. E.
1985-01-01
The ability of the ROT22 code to predict accurately the transonic flow field in the crucial region around and beyond the tip of a high speed rotor blade was assessed. The computations were compared with extensive laser velocimetry measurements made at zero advance ratio and tip Mach numbers of 0.85, 0.88, 0.90, and 0.95. The comparison between theory and experiment was made using 300 scans for the three orthogonal velocity components covering a volume having a height of over one blade chord, a width of nearly two chords, and a length ranging from about 1 to 1.6 chords, depending on the tip speeds. The good agreement between the calculated and measured velocities established the ability of the code to predict the off blade flow field at high tip speeds. This supplements previous comparisons where surface pressures were shown to be well predicted on two different tips at advance ratios to 0.45, especially at the critical 90 deg azimuth blade position. These results demonstrate that the ROT22 code can be used with confidence to predict the important tip region flow field including the occurrence, strength, and location of shock waves causing high drag and noise.
Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Wernet, Mark P.
2012-01-01
One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.
NASA Astrophysics Data System (ADS)
Xing, Pengju; Yoshioka, Keita; Adachi, Jose; El-Fayoumi, Amr; Bunger, Andrew P.
2017-07-01
The tip behavior of hydraulic fractures is characterized by a rich nesting of asymptotic solutions, comprising a formidable challenge for the development of efficient and accurate numerical simulators. We present experimental validation of several theoretically-predicted asymptotic behaviors, namely for hydraulic fracture growth under conditions of negligible fracture toughness, with growth progressing from early-time radial geometry to large-time blade-like (PKN) geometry. Our experimental results demonstrate: 1) existence of a asymptotic solution of the form w ∼ s3/2 (LEFM) in the near tip region, where w is the crack opening and s is the distance from the crack tip, 2) transition to an asymptotic solution of the form w ∼ s2/3 away from the near-tip region, with the transition length scale also consistent with theory, 3) transition to an asymptotic solution of the form w ∼ s1/3 after the fracture attains blade-like (PKN) geometry, and 4) existence of a region near the tip of a blade-like (PKN) hydraulic fracture in which plane strain conditions persist, with the thickness of this region of the same order as the crack height.
Stimulation of the inner hair cell stereocilia: A sensitivity and noise analysis
NASA Astrophysics Data System (ADS)
Sasmal, Aritra; Grosh, Karl
2018-05-01
The inner hair cell (IHC) hair bundles (HBs) of the mammalian cochlea are located in a 2-6 µm wide fluid filled gap of the sub-tectorial space (STS) between the tectorial membrane (TM) and the reticular lamina (RL) and are excited by the radial flow of the viscous endolymphatic fluid. According to the fluctuation dissipation theorem, the viscosity of the STS fluid that couples the HBs to the radial motion of the TM also gives rise to mechanical fluctuations which are transduced into current noise by the mechano-electric transduction (MET) channels at the tip of the HBs. Conversely, the inherent stochasticity of the MET channels leads to fluctuations in the resting tension of the tip links and induce dissipation. In this study, we quantified the viscous and channel noise in the gerbil cochlea through an analytic model. The channel noise was found to be the dominant noise at the characteristic frequency (CF) of the apex while viscous noise was the dominant noise source at the CF of the base. The net root mean square (RMS) fluctuation of the HB motion was predicted to be at least 1.18 nm at the base and 2.72 nm at the apex, while the narrowband threshold TM radial motion was estimated to be 5 pm at the base and 0.1 nm at the apex. We studied the trade-off between sensitivity and noise on the HBs by varying the height of the HBs and predicted that the taller HBs have a lower TM shear displacement threshold in spite of experiencing higher viscous noise force.
NASA Astrophysics Data System (ADS)
Heilman, A. L.; Gordon, M. J.
2016-06-01
A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective" pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilman, A. L.; Gordon, M. J.
A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used tomore » plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower “effective” pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.« less
Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips
Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro
2017-01-01
The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation. PMID:28246596
Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips.
Moro, Alessandro; Gasparini, Giulio; Foresta, Enrico; Saponaro, Gianmarco; Falchi, Marco; Cardarelli, Lorenzo; De Angelis, Paolo; Forcione, Mario; Garagiola, Umberto; D'Amato, Giuseppe; Pelo, Sandro
2017-01-01
The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.
2011-03-26
forest patches extracted from GAP landcover for Fort Bragg study area...7 7 Individual pine forest patches extracted from GAP landcover for Fort Bragg...University for their assis- tance in acquiring Gap Analysis Program (GAP) landcover maps for the study regions. Natalie Myers and James Westervelt of U.S
Flow fields behind a variable-area nozzle for radial turbines
NASA Astrophysics Data System (ADS)
Hayami, Hiroshi; Hyun, Yong-Ik; Senoo, Yasutoshi; Yamaguchi, Michiteru
The flow fields behind a variable-area nozzle for radial turbines were measured in detail using a three-hole cobra probe in 15 cases, which are a combination of three nozzle throat areas (0.8, 1.0, and 1.4 times the rated area) and five values of the tip-clearance to blade-height ratio (between 0.0 to 0.099). The flow fields at different tip clearances are presented in contour maps, and the pitch mean values are discussed as spanwise distributions of total pressure loss, flow angle, and radial and tangential velocity components. It is shown that the intensity of swirl behind the nozzle is decreased and the pressure loss is increased with the tip clearance, and the effect is magnified as the blade loading is higher.
NASA Technical Reports Server (NTRS)
Szanca, E. M.; Behning, F. P.; Schum, H. J.
1974-01-01
A 25.4-cm (10-in) tip diameter turbine was tested to determine the effect of rotor radial tip clearance on turbine overall performance. The test turbine was a half-scale model of a 50.8-cm-(20-in.-) diameter research turbine designed for high-temperature core engine application. The test turbine was fabricated with solid vanes and blades with no provision for cooling air and tested at much reduced inlet conditions. The tests were run at design speed over a range of pressure ratios for three different rotor clearances ranging from 2.3 to 6.7 percent of the annular blade passage height. The results obtained are compared to the results obtained with three other turbines of varying amounts of reaction.
Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S
2016-06-08
In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that exceed the frequencies imposed by the underlying substrates. These results should provide important insights in the design and understanding of electronic and optoelectronic devices based on quantum confined atomically thin 2D lateral heterostructures.
Zhang, H; Du, M; Zhuang, S
2010-08-01
Stimulant-associated growth deficits in children with attention deficit hyperactivity disorder (ADHD) have long been a concern. We chose 146 school age children diagnosed with ADHD being treated with methylphenidate (MPH) and 29 drug-free ADHD children, and followed them up for 2-4 years. We recorded the changes in height and weight after long-term methylphenidate treatment and analyzed the influence of confounding factors to growth in height, weight, and height velocity. The change of the gap between patients' height and mean height in the methylphenidate group was -1.86+/-0.82 cm ( P<0.001); in controls it was -0.26+/-0.51 cm ( P<0.05). The changes of height standard deviation score (SDS) in the methylphenidate group and controls were -0.14+/-0.23 SD ( P<0.001) and +0.05+/-0.10 SD ( P<0.05), respectively. The differences between the 2 groups were significant ( P<0.001). Both correlation and regression analyses indicated that the duration of treatment contributed significantly to the variance in change of height ( P<0.001). The height velocity was significantly attenuated in the first year. The change of the gap between the patients' weight and weight for height after methylphenidate was -0.14+/-1.25 kg ( P>0.05). From this study, a small but significant deceleration of height velocity has been identified as a long-term side effect of methylphenidate, the magnitude of the height deficit is related to the duration of treatment. Methylphenidate had no significant influence on weight and BMI values. Georg Thieme Verlag KG Stuttgart.New York.
Cold-air performance of a tip turbine designed to drive a lift fan
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.; Hotz, G. M.
1978-01-01
Performance was obtained over a range of speeds and pressure ratios for a 0.4 linear scale version of the LF460 lift fan turbine with the rotor radial tip clearance reduced to about 2.5 percent of the rotor blade height. These tests covered a range of speeds from 60 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratios from 2.6 to 4.2. Results are presented in terms of equivalent mass flow, equivalent torque, equivalent specific work, and efficiency.
Treatment planning considerations for molar uprighting.
Kaur, Harsimrat; Pavithra, U S; Shabeer, N N; Reji, Abraham
2014-01-01
Molar uprighting cases require individualized treatment planning depending upon condition of ridge, growth pattern of patient, periodontal condition, lower facial height, position of third molar and anchorage. Uprighting of molar was done in two cases--effectively using simple tip back spring in one case and implant in another.
A Reduced Model for Prediction of Thermal and Rotational Effects on Turbine Tip Clearance
NASA Technical Reports Server (NTRS)
Kypuros, Javier A.; Melcher, Kevin J.
2003-01-01
This paper describes a dynamic model that was developed to predict changes in turbine tip clearance the radial distance between the end of a turbine blade and the abradable tip seal. The clearance is estimated by using a first principles approach to model the thermal and mechanical effects of engine operating conditions on the turbine sub-components. These effects are summed to determine the resulting clearance. The model is demonstrated via a ground idle to maximum power transient and a lapse-rate takeoff transient. Results show the model demonstrates the expected pinch point behavior. The paper concludes by identifying knowledge gaps and suggesting additional research to improve the model.
Trials of Improved Practices (TIPs): A Strategy for Making Long-Lasting Nets Last Longer?
Harvey, Steven A.; Paredes Olórtegui, Maribel; Leontsini, Elli; Ramal Asayag, César; Scott, Kerry; Winch, Peter J.
2013-01-01
Long-lasting insecticidal net (LLIN) use is a proven malaria prevention method. Mass distribution has greatly expanded LLIN access in sub-Saharan Africa, but a gap remains between LLIN ownership and use. Furthermore, LLINs wear out more quickly than anticipated. This paper suggests a participatory research strategy—trials of improved practices (TIPs)—that could identify locally appropriate approaches to prolonging net life and increasing effective use. We used TIPs to overcome barriers to optimal net use in the Peruvian Amazon. Working with 15 families in three villages, we tested home treatment of cotton nets, use of an alternative netting fabric, and alternative washing and care instructions. TIPs helped confirm feasibility of these interventions. Although our findings are time- and context-specific, TIPs could help improve consistency and effectiveness of current LLIN use and prolong net lifespan in sub-Saharan Africa and elsewhere. This would help maximize the value of shrinking donor resources for malaria. PMID:23530074
Pattering of nanostructures with high aspect ratio in polymer materials
NASA Astrophysics Data System (ADS)
Lyuksyutov, Sergei; Paramonov, Pavel; Sancaktar, Erol; Vaia, Richard; Juhl, Shane
2004-04-01
The generation of features larger than the initial atomic force microscope (AFM) tip-surface distance (presumably less that 1nm for unbiased tip) had previously been reported for silicon and metal oxidation. Such nanostructure (1-50 nm high) formation exceeding AFM tip-sample separation has been observed by us during AFM-assisted nanolithography in polymers [1,2]. The technique produces nanostructures up to 100 nm high in thin (10-30 nm) polymer films through the one-step process. The specific spatial details of the tip-surface contact profile, as well as cantilever motion, with applied bias during writing is not well understood and we are not aware of any comprehensive explanation provided in literature for this effect. In this work we analyze tip-polymer interaction using real-time tip deflection. An abrupt lift-up of biased AFM tip has been recorded experimentally and found to be proportional to the height of polymer nanostructures. This fact was used to pattern robust nanostructures of 20-100 nm high using amplitude modulated AFM-assisted electrostatic nanolithography [2] as the arrays of dots in polystyrene and polybenzoxasole polymer films. References [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, Nature Materials 2(7) 468-472 (2003) [2] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, and S. Juhl, Appl. Phys. Lett. 83 (21), 4405-4407 (2003)
Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K
2010-10-15
Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.
Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters
NASA Astrophysics Data System (ADS)
Loh, Tamie A. J.; Tanemura, Masaki; Chua, Daniel H. C.
2016-09-01
2-dimensional (2D) inorganic analogues of graphene such as MoS2 and WS2 present interesting opportunities for field emission technology due to their high aspect ratio and good electrical conductivity. However, research on 2D MoS2 and WS2 as potential field emitters remains largely undeveloped compared to graphene. Herein, we present an approach to directly fabricate ultrathin MoS2 and WS2 onto Ag nano-tips using pulsed laser deposition at low temperatures of 450-500 °C. In addition to providing a layer of chemical and mechanical protection for the Ag nano-tips, the growth of ultrathin MoS2 and WS2 layers on Ag led to enhanced emission properties over that of pristine nano-tips due to a reduction of the effective barrier height arising from charge injection from Ag to the overlying MoS2 or WS2. For WS2 on Ag nano-tips, the phasic mixture was also an important factor influencing the field emission performance. The presence of 1T-WS2 at the metal-WS2 interface in a hybrid film of 2H/1T-WS2 leads to improvement in the field emission capabilities as compared to pure 2H-WS2 on Ag nano-tips.
RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.
Jacquemet, Guillaume; Green, David M; Bridgewater, Rebecca E; von Kriegsheim, Alexander; Humphries, Martin J; Norman, Jim C; Caswell, Patrick T
2013-09-16
Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.
RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex
Jacquemet, Guillaume; Green, David M.; Bridgewater, Rebecca E.; von Kriegsheim, Alexander; Humphries, Martin J.; Norman, Jim C.
2013-01-01
Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)–dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM. PMID:24019536
ERIC Educational Resources Information Center
Mooshammer, Christine; Hoole, Philip; Geumann, Anja
2007-01-01
It is well-accepted that the jaw plays an active role in influencing vowel height. The general aim of the current study is to further investigate the extent to which the jaw is active in producing consonantal distinctions, with specific focus on coronal consonants. Therefore, tongue tip and jaw positions are compared for the German coronal…
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... port locations and gas stream properties. For purposes of selecting vent sampling port locations and... sampling line into the stack and secure it with the tip slightly lower than the port height. Start the pump... ketone, and propionaldehyde mass flow rates (kg/Mg ODP) entering the biological treatment system...
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... port locations and gas stream properties. For purposes of selecting vent sampling port locations and... sampling line into the stack and secure it with the tip slightly lower than the port height. Start the pump... ketone, and propionaldehyde mass flow rates (kg/Mg ODP) entering the biological treatment system...
NASA Technical Reports Server (NTRS)
Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred
1950-01-01
A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.
Some effects on SPM based surface measurement
NASA Astrophysics Data System (ADS)
Wenhao, Huang; Yuhang, Chen
2005-01-01
The scanning probe microscope (SPM) has been used as a powerful tool for nanotechnology, especially in surface nanometrology. However, there are a lot of false images and modifications during the SPM measurement on the surfaces. This is because of the complex interaction between the SPM tip and the surface. The origin is not only due to the tip material or shape, but also to the structure of the sample. So people are paying much attention to draw true information from the SPM images. In this paper, we present some simulation methods and reconstruction examples for the microstructures and surface roughness based on SPM measurement. For example, in AFM measurement, we consider the effects of tip shape and dimension, also the surface topography distribution in both height and space. Some simulation results are compared with other measurement methods to verify the reliability.
NASA Astrophysics Data System (ADS)
Wang, H. S.; Honda, Hiroshi
A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.
Dynamic traversal of high bumps and large gaps by a small legged robot
NASA Astrophysics Data System (ADS)
Gart, Sean; Winey, Nastasia; de La Tijera Obert, Rafael; Li, Chen
Small animals encounter and negotiate diverse obstacles comparable in size or larger than themselves. In recent experiments, we found that cockroaches can dynamically traverse bumps up to 4 times hip height and gaps up to 1 body length. To better understand the physics that governs these locomotor transitions, we studied a small six-legged robot negotiating high bumps and large gaps and compared it to animal observations. We found that the robot was able to traverse bumps as large as 1 hip height and gaps as wide as 0.5 body length. For the bump, the robot often climbed over to traverse when initial body yaw was small, but was often deflected laterally and failed to traverse when initial body yaw was large. A simple locomotion energy landscape model explained these observations. For the gap, traversal probability decreased with gap width, which was well explained by a simple Lagrangian model of a forward-moving rigid body falling over the gap edge. For both the bump and the gap, animal performance far exceeded that of the robot, likely due to their relatively higher running speeds and larger rotational oscillations prior to and during obstacle traversal. Differences between animal and robot obstacle negotiation behaviors revealed that animals used active strategies to overcome potential energy barriers.
What is the Mass of a Gap-opening Planet?
NASA Astrophysics Data System (ADS)
Dong, Ruobing; Fung, Jeffrey
2017-02-01
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Flow Instability and Flow Control Scaling Laws
NASA Astrophysics Data System (ADS)
van Ness, Daniel; Corke, Thomas; Morris, Scott
2006-11-01
A flow instability that is receptive to perturbations is present in the tip clearance leakage flow over the tip of a turbine blade. This instability was investigated through the introduction of active flow control in the viscous flow field. Control was implemented in the form of a dielectric barrier discharge created by a weakly-ionized plasma actuation arrangement. The experimental setup consisted of a low-speed linear turbine cascade made up of an array of nine Pratt & Whitney ``PakB'' turbine blades. This idealized cascade configuration was used to examine the tip clearance leakage flow that exists within the low pressure turbine stage of a gas-turbine engine. The center blade of the cascade array had a variable tip clearance up to five percent chord. Reynolds numbers based on axial blade chord varied from 10^4 to 10^5. Multi-port pressure probe measurements, as well as Stereo Particle Image Velocimetry were used to document the dependence of the instability on the frequency and amplitude of flow control perturbations. Scaling laws based on the variation of blade tip clearance height and inflow conditions were investigated. These results permitted an improved understanding of the mechanism of flow instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu
A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accuratemore » predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.« less
Effect of Coronary Anatomy and Hydrostatic Pressure on Intracoronary Indices of Stenosis Severity.
Härle, Tobias; Luz, Mareike; Meyer, Sven; Kronberg, Kay; Nickau, Britta; Escaned, Javier; Davies, Justin; Elsässer, Albrecht
2017-04-24
The authors sought to analyze height differences within the coronary artery tree in patients in a supine position and to quantify the impact of hydrostatic pressure on intracoronary pressure measurements in vitro. Although pressure equalization of the pressure sensor and the systemic pressure at the catheter tip is mandatory in intracoronary pressure measurements, subsequent measurements may be influenced by hydrostatic pressure related to the coronary anatomy in the supine position. Outlining and quantifying this phenomenon is important to interpret routine and pullback pressure measurements within the coronary tree. Coronary anatomy was analyzed in computed tomography angiographies of 70 patients to calculate height differences between the catheter tip and different coronary segments in the supine position. Using a dynamic pressure simulator, the effect of the expected hydrostatic pressure resulting from such height differences on indices stenosis severity was assessed. In all patients, the left anterior and right posterior descending arteries are the highest points of the coronary tree with a mean height difference of -4.9 ± 1.6 cm and -3.8 ± 1.0 cm; whereas the circumflex artery and right posterolateral branches are the lowest points, with mean height differences of 3.9 ± 0.9 cm and 2.6 ± 1.6 cm compared with the according ostium. In vitro measurements demonstrated a correlation of the absolute pressure differences with height differences (r = 0.993; p < 0.0001) and the slope was 0.77 mm Hg/cm. The Pd/Pa ratio and instantaneous wave-free ratio correlated also with the height difference (fractional flow reserve r = 0.98; p < 0.0001; instantaneous wave-free ratio r = 0.97; p < 0.0001), but both were influenced by the systemic pressure level. Hydrostatic pressure variations resulting from normal coronary anatomy in a supine position influence intracoronary pressure measurements and may affect their interpretation during stenosis severity assessment. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Modulation of the electronic property of phosphorene by wrinkle and vertical electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhongming, E-mail: zmwei@semi.ac.cn; Li, Jingbo, E-mail: jbli@semi.ac.cn
2015-09-14
The electronic properties of wrinkled phosphorene and its response to charge injection and external vertical electric field have been studied using first-principles calculations. It is found that small-size wrinkle systems have lower energy than wrinkle-free monolayer, suggesting that free-standing phosphorene spontaneously forms small protrusion on its nanosheet. The ratio of wrinkle height to curvature radius increases with enlarging height, indicating a promotion of field enhancement factor. Furthermore, the injected charges mostly distribute at peak and valley. Direct-to-indirect band-gap transition has been found for zigzag wrinkle with height of 14.81 Å. The band gaps of wrinkled nanosheets decrease almost linearly with increasingmore » field, which is caused by charge separation of valence band maximum and conduction band minimum.« less
Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet
NASA Astrophysics Data System (ADS)
Putra Adnan, F.; Hartono, Firman
2018-04-01
In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.
Aerodynamic and heat transfer analysis of the low aspect ratio turbine using a 3D Navier-Stokes code
NASA Astrophysics Data System (ADS)
Choi, D.; Knight, C. J.
1991-06-01
The single-stage, high-pressure ratio Garrett Low Aspect Ratio Turbine (LART) test data obtained in a shock tunnel are employed as a basis for evaluating a new three-dimensional Navier Stokes code based on the O-H grid system. It uses Coakley's two-equation turbulence modeling with viscous sublayer resolution. For the nozzle guide vanes, calculations were made based on two grid zones: an O-grid zone wrapping around airfoil and an H-grid zone outside of the O-grid zone, including the regions upstream of the leadig edge and downstream of the trailing edge. For the rotor blade row, a third O-grid zone was added for the tip-gap region leakage flow. The computational results compare well with experiment. These comparisons include heat transfer distributions on the airfoils and end-walls. The leakage flow through the tip-gap clearance is well resolved.
Gas driven displacement in a Hele-Shaw cell with chemical reaction
NASA Astrophysics Data System (ADS)
White, Andrew; Ward, Thomas
2011-11-01
Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.
Development of Repulsive Barrier Discharge from Twin Needles
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Hata, Koji; Nakayama, Hiroshi
2007-03-01
Barrier discharge characteristics have been investigated for a twin needles-to-plane electrode configuration in dry air. The characteristics of barrier discharge under ac voltage application have been investigated for various distances between two needle tips (d=1.0--4.0 mm). We have found that corona discharge behavior strongly depends on needle-tip distance. In the case of a twin-needles configuration with a long needle-tip distance (d=4.0 mm), discharges from the two needle tips develop into a dielectric barrier with almost a straight path. On the contrary, the development of repulsive discharges from two needle tips in the gap between needles and a barrier was obtained for the shortest needle-tip distance investigated here (d=1.0 mm) and it was enhanced by increasing the peak voltage. From detailed time-resolved observations, development of repulsive discharge was observed only during positive polarity upon ac voltage application. Moreover, the degree of repulsion increased with increasing applied voltage of positive polarity. The observed unique discharge behavior can be interpreted as the effect of field relaxation induced not only by charge accumulation on the barrier surface, which is markedly enhanced at a short needle-tip distance, but also by space charge by coronas between two needles.
High-speed microprobe for roughness measurements in high-aspect-ratio microstructures
NASA Astrophysics Data System (ADS)
Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas
2017-03-01
Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s-1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s-1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.
NASA Astrophysics Data System (ADS)
Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.
2011-12-01
This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.
Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy
NASA Astrophysics Data System (ADS)
Arnold, F.; Nyéki, J.; Saunders, J.
2018-05-01
In this letter we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of micro-crystalline graphite. Magnetic field dependent point-contact spectroscopy was carried out at a temperature of 1.8K using an etched aluminium tip. At zero field a gap structure in the differential conductance is observed, showing a gap of Δ = 4.2 meV. On applying magnetic fields of up to 500mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.
On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot
NASA Astrophysics Data System (ADS)
Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.
2018-02-01
Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.
On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot
NASA Astrophysics Data System (ADS)
Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.
2018-06-01
Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
Wang, Qiaochun; Valkonen, Jari P T
2009-01-01
Raspberry bushy dwarf virus (RBDV) can be efficiently eradicated from raspberry plants (Rubus idaeus) by a procedure combining thermotherapy and cryotherapy. However, the bottleneck of this procedure is that, following thermotherapy, cryopreserved shoot tips become chlorotic during regrowth and eventually die after several subcultures. In addition, survival of heat-treated stock shoots and recovery of cryopreserved shoot tips following thermotherapy are low. The present study focused towards improving regrowth of cryopreserved raspberry shoot tips following thermotherapy. Results showed that preconditioning stock shoots with salicylic acid (SA; 0.01-0.1 mM) markedly increased survival of stock shoots after 4 weeks of thermotherapy. Regrowth of cryopreserved shoot tips following thermotherapy was also significantly enhanced when SA (0.05-0.1 mM) was used for preconditioning stock shoots. Addition of either Fe-ethylenediaminetetracetic acid (Fe-EDTA, 50 mg per L) or Fe-ethylenediaminedi(o)hydroxyphenylacetic acid (Fe-EDDHA, 50 mg per L) to post-culture medium strongly promoted regrowth and totally prevented chlorosis of shoots regenerated from cryopreserved shoot tips following thermotherapy. Using the parameters optimized in the present study, about 80 percent survival of heat-treated stock shoots and about 33 percent regrowth of cryopreserved shoot tips following thermotherapy were obtained. Morphology of plants regenerated from cryopreserved shoot tips following thermotherapy was identical to that of control plants, based on observations of leaf shape and size, internode length and plant height. Optimization of the thermotherapy procedure followed by cryotherapy will facilitate the wider application of this technique to eliminate viruses which can invade meristems.
Yip, C M; Brader, M L; Frank, B H; DeFelippis, M R; Ward, M D
2000-01-01
Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes. PMID:10620310
Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A S; Lee, R S; Tarver, C M
2006-06-07
The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased tomore » 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.« less
ERIC Educational Resources Information Center
Wampold, Charles H.
2014-01-01
Ubiquitous "sex tips" in popular media evidence an unquenchable public interest in learning how to experience "great sex," and studies confirm that a great sexual relationship correlates to general relationship satisfaction, which in turn correlates to overall happiness. However, sexologists have paid scant attention to…
50 CFR 14.106 - Primary enclosures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...
50 CFR 14.106 - Primary enclosures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...
50 CFR 14.106 - Primary enclosures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...
50 CFR 14.106 - Primary enclosures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...
50 CFR 14.106 - Primary enclosures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...
NASA Astrophysics Data System (ADS)
Gohari, S. M. Iman; Sarkar, Sutanu; Korobenko, Artem; Bazilevs, Yuri
2017-11-01
Numerical simulations of wind turbines operating under different regimes of stability are performed using LES. A reduced model, based on the generalized actuator disk model (ADM), is implemented to represent the wind turbines within the ABL. Data from the fluid-solid interaction (FSI) simulations of wind turbines have been used to calibrate and validate the reduced model. The computational cost of this method to include wind turbines is affordable and incurs an overhead as low as 1.45%. Using this reduced model, we study the coupling of unsteady turbulent flow with the wind turbine under different ABL conditions: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the incoming wind has the maximum mean shear between the heights of upper-tip and lower-tip; (2) A shallow ABL with surface cooling rate of -1 K/hr wherein the low level jet occurs at the wind turbine hub height. We will discuss how the differences in the unsteady flow between the two ABL regimes impact the wind turbine performance.
Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons
NASA Astrophysics Data System (ADS)
Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun
2017-12-01
This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ L<1 (2 b, grating constant; L, wave length) and the lower bound is h/ b≤1. The main reason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.
Three-dimensional scanning force/tunneling spectroscopy at room temperature.
Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo
2012-02-29
We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated.
Tool and Method for Testing the Resistance of the Snow Road Cover to Destruction
NASA Astrophysics Data System (ADS)
Zhelykevich, R.; Lysyannikov, A.; Kaiser, Yu; Serebrenikova, Yu; Lysyannikova, N.; Shram, V.; Kravtsova, Ye; Plakhotnikova, M.
2016-06-01
The paper presents the design of the tool for efficient determination of the hardness of the snow road coating. The tool increases vertical positioning of the rod with the tip through replacement of the rod slide friction of the ball element by roll friction of its outer bearing race in order to enhance the accuracy of determining the hardness of the snow-ice road covering. A special feature of the tool consists in possibility of creating different impact energy by the change of the lifting height of the rod with the tip (indenter) and the exchangeable load mass. This allows the study of the influence of the tip shape and the impact energy on the snow strength parameters in a wide range, extends the scope of application of the durometer and makes possible to determine the strength of snow-ice formations by indenters with various geometrical parameters depending on climatic conditions.
Application of focused ion beam for the fabrication of AFM probes
NASA Astrophysics Data System (ADS)
Kolomiytsev, A. S.; Lisitsyn, S. A.; Smirnov, V. A.; Fedotov, A. A.; Varzarev, Yu N.
2017-10-01
The results of an experimental study of the probe tips fabrication for critical-dimension atomic force microscopy (CD-AFM) using the focused ion beam (FIB) induced deposition are presented. Methods of the FIB-induced deposition of tungsten and carbon onto the tip of an AFM probe are studied. Based on the results obtained in the study, probes for the CD-AFM technique with a tip height about 1 μm and radius of 20 nm were created. The formation of CD-AFM probes by FIB-induced deposition allows creating a high efficiency tool for nanotechnology and nanodiagnostics. The use of modified cantilevers allows minimizing the artefacts of AFM images and increasing the accuracy of the relief measurement. The obtained results can be used for fabrication of AFM probes for express monitoring of the technological process in the manufacturing of the elements for micro- and nanoelectronics.
What is the Mass of a Gap-opening Planet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruobing; Fung, Jeffrey, E-mail: rdong@email.arizona.edu
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, wemore » obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h , and to constrain the quantity M {sub p}{sup 2}/ α , where M {sub p} is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10{sup −3}, the derived planet masses in all cases are roughly between 0.1 and 1 M {sub J}.« less
Gap Winds in a Fjord: Howe Sound, British Columbia.
NASA Astrophysics Data System (ADS)
Jackson, Peter L.
1993-01-01
Gap, outflow, or Squamish wind, is the cold low level seaward flow of air through fjords which dissect the coastal mountain barrier of northwestern North America. These flows, occurring mainly during winter, can be strong, threatening safety, economic activity and comfort. Howe Sound gap winds were studied using a combination of observations and several types of models. Observations of winds in Howe Sound showed that gap wind strength varied considerably along the channel, across the channel and vertically. Generally, winds increase down the channel, are strongest along the eastern side, and are below 1000 m depth. Observations were unable to answer all questions about gap winds due to data sparseness, particularly in the vertical direction. Therefore, several modelling approaches were used. The modelling began with a complete 3-dimensional quasi-Boussinesq model (CSU RAMS) and ended with the creation and testing of models which are conceptually simpler, and more easily interpreted and manipulated. A gap wind simulation made using RAMS was shown to be mostly successful by statistical evaluation compared to other mesoscale simulations, and by visual inspection of the fields. The RAMS output, which has very high temporal and spatial resolution, provided much additional information about the details of gap flow. In particular, RAMS results suggested a close analogy between gap wind and hydraulic channel flow, with hydraulic features such as supercritical flow and hydraulic jumps apparent. These findings imply gap wind flow could potentially be represented by much simpler models. The simplest possible models containing pressure gradient, advection and friction but not incorporating hydraulic effects, were created, tested, and found lacking. A hydraulic model, which in addition incorporates varying gap wind height and channel geometry, was created and shown to successfully simulate gap winds. Force balance analysis from RAMS and the hydraulic model showed that pressure gradient and advection are the most important forces, followed by friction which becomes an important force in fast supercritical flow. The sensitivity of gap wind speed to various parameters was found from sensitivity tests using the hydraulic model. Results indicated that gap wind speed increases with increasing boundary layer height and speed at the head of channel, and increasing synoptic pressure gradient. Gap wind speed decreases with increasing friction, and increasing boundary layer height at the seaward channel end. Increasing temperature differences between the cold gap wind air and the warmer air aloft was found to increase the variability of the flow--higher maximum but lower mean wind speeds.
Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells.
Steiner, D; Mokari, T; Banin, U; Millo, O
2005-07-29
The electronic properties of metal-semiconductor nanojunctions are investigated by scanning tunneling spectroscopy of gold-tipped CdSe rods. A gap similar to that in bare CdSe nanorods is observed near the nanodumbbell center, while subgap structure emerges near the metal-semiconductor nanocontact. This behavior is attributed to the formation of subgap interface states that vanish rapidly towards the center of the rod, consistent with theoretical predictions. These states lead also to modified Coulomb staircase, and in some cases to negative differential conductance, on the gold tips.
Twelve tips for teaching in a provincially distributed medical education program.
Wong, Roger Y; Chen, Luke; Dhadwal, Gurbir; Fok, Mark C; Harder, Ken; Huynh, Hanh; Lunge, Ryan; Mackenzie, Mark; Mckinney, James; Ovalle, William; Rauniyar, Pooja; Tse, Luke; Villanyi, Diane
2012-01-01
As distributed undergraduate and postgraduate medical education becomes more common, the challenges with the teaching and learning process also increase. To collaboratively engage front line teachers in improving teaching in a distributed medical program. We recently conducted a contest on teaching tips in a provincially distributed medical education program and received entries from faculty and resident teachers. Tips that are helpful for teaching around clinical cases at distributed teaching sites include: ask "what if" questions to maximize clinical teaching opportunities, try the 5-min short snapper, multitask to allow direct observation, create dedicated time for feedback, there are really no stupid questions, and work with heterogeneous group of learners. Tips that are helpful for multi-site classroom teaching include: promote teacher-learner connectivity, optimize the long distance working relationship, use the reality television show model to maximize retention and captivate learners, include less teaching content if possible, tell learners what you are teaching and make it relevant and turn on the technology tap to fill the knowledge gap. Overall, the above-mentioned tips offered by front line teachers can be helpful in distributed medical education.
A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.
Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M
2014-04-01
We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.
[Application of SPSS orthogonal design in tissue culture of Anoectochilus roxburghii].
Zhang, Fusheng; Guo, Shunxing
2009-10-01
To study the effect of the different constitutions of plant hormone on the development of Anoectochilus roxburghii. A. roxburghii were harvested after having been cultured for 60 days. An orthogonal design was used to study the effect of NAA and 6-BA on the leaf number, eustipe number, lateral branch number of the stem tip and stem section, and the height of the stem tips. All of the data were processed by SPSS. It is reported for the first time that NAA could make different development of A. roxburghii at low concentration ( < 1 mg L(-1)) and high concentration ( > 1 mg L(-1)). The optimum constitution of MS medium was NAA 0.5 mg L(-1) + 6-BA 1 mg L(-1) for the growth of the stem tip of A. roxburghii, and NAA 1 mg L(-1) + 6-BA 2 mg L(-1) for the differentiation of bud and the formation of lateral branch of the stem section. The different concentrations of NAA and 6-BA had different effects on the growth and differentiation of the stem tip and the stem section of A. roxburghii.
Variations of radon concentration in the atmosphere. Gamma dose rate
NASA Astrophysics Data System (ADS)
Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.
2018-02-01
The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.
Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II
1983-01-01
An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.
NASA Technical Reports Server (NTRS)
Rogers, D.; Malina, R. F.
1982-01-01
The effect of varying the size of the gap voltage and spacing on the performance of a tandem pair of microchannel plates (MCP) is investigated. Results show that increasing the voltage in the gap increases the gain of the pair and also produces a narrower Gaussian pulse-height distribution, although beyond a critical voltage the gain of the channel plate pair is found to plateau. A model is developed which explains the nonlinear gain behavior of individual microchannels and the behavior of the electron cloud emitted from the first MCP as it spreads out between the two MCPs and hits the surface of the second. The model calculates the plateau voltage as a function of the gap size, the gain of each MCP, and the diameter of the channels, and is found to show good agreement with the observed results. It is concluded that interplate gaps of up to several millimeters can be accommodated without a significant degradation in pulse-height distribution.
Climate limits across space and time on European forest structure
NASA Astrophysics Data System (ADS)
Moreno, A. L. S.; Neumann, M.; Hasenauer, H.
2017-12-01
The impact climate has on forests has been extensively studied. However, the large scale effect climate has on forest structures, such as average diameters, heights and basal area are understudied in a spatially explicit manner. The limits, tipping points and thresholds that climate places on forest structures dictate the services a forest may provide, the vulnerability of a forest to mortality and the potential value of the timber there within. The majority of current research either investigates climate impacts on forest pools and fluxes, on a tree physiological scale or on case studies that are used to extrapolate results and potential impacts. A spatially explicit study on how climate affects forest structure over a large region would give valuable information to stakeholders who are more concerned with ecosystem services that cannot be described by pools and fluxes but require spatially explicit information - such as biodiversity, habitat suitability, and market values. In this study, we quantified the limits that climate (maximum, minimum temperature and precipitation) places on 3 forest structures, diameter at breast height, height, and basal area throughout Europe. Our results show clear climatic zones of high and low upper limits for each forest structure variable studied. We also spatially analyzed how climate restricts the potential bio-physical upper limits and creates tipping points of each forest structure variable and which climate factors are most limiting. Further, we demonstrated how the climate change has affected 8 individual forests across Europe and then the continent as a whole. We find that diameter, height and basal area are limited by climate in different ways and that areas may have high upper limits in one structure and low upper limits in another limitted by different climate variables. We also found that even though individual forests may have increased their potential upper limit forest structure values, European forests as a whole have lost, on average, 5.0%, 1.7% and 6.5% in potential mean forest diameter, height and basal area, respectively.
Brough, Elaine; Donaldson, Ana Nora; Naini, Farhad B
2010-12-01
This study was conducted to determine whether variations in the morphology, size, or shade of maxillary canines would influence perceptions of smile attractiveness in patients with canines substituted for missing maxillary lateral incisors. A smiling photograph of a hypodontia patient who had had orthodontic space closure with maxillary canines replacing the lateral incisors was digitally modified to create a bilaterally symmetrical image. Four groups of images were created, digitally altering canine gingival height, crown tip height, canine width, and canine shade. Three groups of judges (40 orthodontists, 40 dentists, and 40 laypeople) ranked the images for smile attractiveness, also scoring the most and the least attractive of each of the 4 groups, and the most and least attractive of all images. Canine gingival height was the most attractive 0.5 mm below the gingival margin of the maxillary central incisor and progressively less attractive with increasing gingival height. Increasing canine width, increased canine tip height, and pointed canines were perceived to be unattractive. Brighter than normal shades of canines were preferred to darker shades. Narrow canine crowns were most frequently ranked as the most attractive overall, 1.5 mm narrower was preferred by the orthodontists and dentists, and 3.0 mm narrower was preferred by the laypeople. All 3 groups ranked the darkest image, 20 times darker than the original, most frequently as the least attractive image overall. There was good general agreement between orthodontists, dentists, and laypeople for all 4 parameters of smile attractiveness, although laypeople demonstrated greater intragroup variations. The morphology, size, and shade of the maxillary canine in patients having orthodontic space closure and lateral incisor substitution can have a marked effect on perceived smile attractiveness. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Reaching More Students Through Thinking in Physics
NASA Astrophysics Data System (ADS)
Coletta, Vincent P.
2017-02-01
Thinking in Physics (TIP) is a new curriculum that is more effective than commonly used interactive engagement methods for students who have the greatest difficulty learning physics. Research has shown a correlation between learning in physics and other factors, including scientific reasoning ability. The TIP curriculum addresses those factors. Features of the curriculum and evidence of its effectiveness are described. The most recent version of the TIP curriculum has greatly reduced a substantial gender gap that previously existed. More details and sample materials are provided in Thinking in Physics, a book intended for instructors of introductory physics, published in 2014 by Pearson as part of its Educational Innovation series. Additional materials, both for students and instructors, are provided on the website http://thinkinginphysics.com. Both the book and the website are free.
Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities
NASA Astrophysics Data System (ADS)
André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando
2016-09-01
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
USDA-ARS?s Scientific Manuscript database
CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...
Flame characteristics for fires in southern fuels
Ralph M. Nelson
1980-01-01
A flame model and analytical method are used to derive forest fire flame characteristics. Approximate solutions are used to express flame lengths, angles, heights, and tip velocities of headfires and calm-air fires in terms of fire intensity. Equations are compared with data from low-intensity controlled burns in southern fuels and with data from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my
2014-03-24
Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.
Imaging nanoclusters in the constant height mode of the dynamic SFM.
Barth, Clemens; Pakarinen, Olli H; Foster, Adam S; Henry, Claude R
2006-04-14
For the first time, high quality images of metal nanoclusters which were recorded in the constant height mode of a dynamic scanning force microscope (dynamic SFM) are shown. Surfaces of highly ordered pyrolytic graphite (HOPG) were used as a test substrate since metal nanoclusters with well defined and symmetric shapes can be created by epitaxial growth. We performed imaging of gold clusters with sizes between 5 and 15 nm in both scanning modes, constant Δf mode and constant height mode, and compared the image contrast. We notice that clusters in constant height images appear much sharper, and exhibit more reasonable lateral shapes and sizes in comparison to images recorded in the constant Δf mode. With the help of numerical simulations we show that only a microscopically small part of the tip apex (nanotip) is probably the main contributor for the image contrast formation. In principle, the constant height mode can be used for imaging surfaces of any material, e.g. ionic crystals, as shown for the system Au/NaCl(001).
Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang
2014-12-01
Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.
NASA Astrophysics Data System (ADS)
Wu, Huixuan; Miorini, Rinaldo L.; Katz, Joseph
2011-04-01
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.
Hwang, Jae-Ung; Wu, Guang; Yan, An; Lee, Yong-Jik; Grierson, Claire S.; Yang, Zhenbiao
2010-01-01
Rapid tip growth allows for efficient development of highly elongated cells (e.g. neuronal axons, fungal hyphae and pollen tubes) and requires an elaborate spatiotemporal regulation of the growing region. Here, we use the pollen tube as a model to investigate the mechanism regulating the growing region. ROPs (Rho-related GTPases from plants) are essential for pollen tip growth and display oscillatory activity changes in the apical plasma membrane (PM). By manipulating the ROP activity level, we showed that the PM distribution of ROP activity as an apical cap determines the tip growth region and that efficient tip growth requires an optimum level of the apical ROP1 activity. Excessive ROP activation induced the enlargement of the tip growth region, causing growth depolarization and reduced tube elongation. Time-lapse analysis suggests that the apical ROP1 cap is generated by lateral propagation of a localized ROP activity. Subcellular localization and gain- and loss-of-function analyses suggest that RhoGDI- and RhoGAP-mediated global inhibition limits the lateral propagation of apical ROP1 activity. We propose that the balance between the lateral propagation and the global inhibition maintains an optimal apical ROP1 cap and generates the apical ROP1 activity oscillation required for efficient pollen-tube elongation. PMID:20053639
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
NASA Technical Reports Server (NTRS)
Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.
2000-01-01
Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.
NASA Technical Reports Server (NTRS)
Maiti, Amitesh; Svizhenko, Alexei; Anantram, M. P.; Biegel, Bryan (Technical Monitor)
2001-01-01
Atomistic simulations using a combination of classical force field and Density-Functional-Theory (DFT) show that carbon atoms remain essentially sp2 coordinated in either bent tubes or tubes pushed by an atomically sharp AFM tip. Subsequent Green's-function-based transport calculations reveal that for armchair tubes there is no significant drop in conductance, while for zigzag tubes the conductance can drop by several orders of magnitude in AFM-pushed tubes. The effect can be attributed to simple stretching of the tube under tip deformation, which opens up an energy gap at the Fermi surface.
Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik
2015-09-01
Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ /10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.
Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies.
Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik
2015-09-18
Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.
NASA Astrophysics Data System (ADS)
Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi
2017-10-01
We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO2 thin film grown on a rutile TiO2(0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.
Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi
2017-10-11
We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO 2 thin film grown on a rutile TiO 2 (0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm; pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.
Modified Direct-Type Septal Extension Grafts: Their Stability and Usefulness in Asian Rhinoplasty.
Han, So-Eun; Han, Kihwan; Choi, Jaehoon; Yun, Tae Bin
2017-03-01
In Asian rhinoplasty, many autogenous cartilage grafts are required for correction of the nasal tip and columella, but the amount has limitations. A modified direct-type septal extension graft, in continuity with the entire caudal border of the septal cartilage with an edge-to-edge coaptation, can effectively and concomitantly correct the nasal tip and columella deformities using a limited amount of septal cartilage graft. The purpose of this study was to evaluate long-term cosmetic outcomes and stability from the modified direct extension grafts. Fifty-seven patients with a follow-up of more than 1 year were enrolled in the study. A total of 11 measurement items were evaluated from basal and right lateral views by photogrammetry using standardized clinical photographic techniques. The overall mean follow-up period was 20.4 months. When comparing the preoperative and postoperative values, the nasal tip projection, nasal bridge length, nasal tip angle, height of nose, and the columellar labial angle increased significantly; additionally, the soft nose width index, width between ac-ac index, nostril axis inclination, columellar length (Rt-Lt), and the alar length (Rt-Lt) decreased significantly. No resorption, buckling, or displacement of the graft was observed during the follow-up period. The modified direct extension graft demonstrated a marked aesthetic improvement in the nasal tip and columella, and it provided long-term stability. Therefore, the modified direct extension graft is useful for correction of the nasal tip and columella in Asian rhinoplasty.
Tapping mode imaging and measurements with an inverted atomic force microscope.
Chan, Sandra S F; Green, John-Bruce D
2006-07-18
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.
A 30 mK, 13.5 T scanning tunneling microscope with two independent tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roychowdhury, Anita; Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20740; Gubrud, M. A.
We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated viamore » spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.« less
Large-Eddy Simulation of Crashback in a Ducted Propulsor
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2011-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
NASA Astrophysics Data System (ADS)
Zhang, J.; Okin, G.
2017-12-01
Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.
Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification.
Garcés, Hugo O; Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo
2018-05-11
Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination.
Semi-span wind tunnel testing without conventional peniche
NASA Astrophysics Data System (ADS)
Skinner, S. N.; Zare-Behtash, H.
2017-12-01
Low-speed wind tunnel tests of a flexible wing semi-span model have been implemented in the 9× 7 ft de Havilland wind tunnel at the University of Glasgow. The main objective of this investigation is to quantify the effect of removing the traditional peniche boundary layer spacer utilised in this type of testing. Removal of the peniche results in a stand-off gap between the wind tunnel wall and the model's symmetry plane. This offers the advantage of preventing the development of a horseshoe vortex in front of the model, at the peniche/wall juncture. The formation of the horseshoe vortex is known to influence the flow structures around the entire model and thus alters the model's aerodynamic behaviours. To determine the influence of the stand-off gap, several gap heights have been tested for a range of angles of attack at Re=1.5× 10^6, based on the wing mean aerodynamic chord (MAC). Force platform data have been used to evaluate aerodynamic coefficients, and how they vary with stand-off heights. Stereoscopic Particle Imaging Velocimetry (sPIV) was used to examine the interaction between the tunnel boundary layer and model's respective stand-off gap. In addition, clay and tuft surface visualisation enhanced the understanding of how local flow structures over the length of the fuselage vary with stand-off height and angle of attack. The presented results show that a stand-off gap of four-to-five times the displacement thickness of the tunnel wall boundary layer is capable of achieving a flow field around the model fuselage that is representative of what would be expected for an equivalent full-span model in free-air—this cannot be achieved with the application of a peniche.
Surface-adaptable all-metal micro-four-point probe with unique configuration
NASA Astrophysics Data System (ADS)
Kim, J. K.; Choi, Y. S.; Lee, D. W.
2015-07-01
In this paper, we propose a surface-adaptable all-metal micro-four-point probe (μ4PP) with a unique configuration. The μ4PP consists of four independent metallic sub-cantilevers with sharp Cu tips, and an SU-8 body structure to support the sub-cantilevers. The tip height is approximately 15 μm, and the tips are fabricated by anisotropic wet-etching of silicon followed by Cu electroplating. Each metallic cantilever connected to the SU-8 body structure acts as a flexible spring, so that the conducting tip can make gentle, non-destructive contact with fragile surfaces. To enhance the adhesion between the metallic sub-cantilevers and the SU-8 body, mushroom-shaped Cu structures were fabricated using an under-baked and under-exposed photolithography process. Various μ4PPs were designed and fabricated to verify their diverse range of applications, and preliminary experiments were performed using these fabricated μ4PPs. The resultant flexibility and reliability were experimentally confirmed on several samples, such as a polymer cantilever, a graphene flake, and curved metallic surfaces. We also expect that the proposed μ4PP will be suitable for measuring the anisotropic characteristics of crystal materials or the Hall effect in semiconductors.
Investigation of flow in axial turbine stage without shroud-seal
NASA Astrophysics Data System (ADS)
Straka, Petr; Němec, Martin; Jelínek, Thomáš
2015-05-01
This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the "mixing plane" interface and the unsteady flow using the "sliding mesh" interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a) positive and b) negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger; Wolff, Helmut
2007-02-01
An atomic force microscope (AFM) has been developed for studying interactions between the AFM tip and the sample. Such interactions need to be taken into account when making quantitative measurements. The microscope reported here has both the conventional beam deflection system and a fibre optical interferometer for measuring the movement of the cantilever. Both can be simultaneously used so as to not only servo control the tip movements, but also detect residual movement of the cantilever. Additionally, a high-resolution homodyne differential optical interferometer is used to measure the vertical displacement between the cantilever holder and the sample, thereby providing traceability for vertical height measurements. The instrument is compatible with an x-ray interferometer, thereby facilitating high resolution one-dimensional scans in the X-direction whose metrology is based on the silicon d220 lattice spacing (0.192 nm). This paper concentrates on the first stage of the instrument's development and presents some preliminary results validating the instrument's performance and showing its potential.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
Effects of Axial Torsion on Disc Height Distribution: an In Vivo Study
Espinoza Orías, Alejandro A.; Mammoser, Nicole M.; Triano, John J.; An, Howard S.; Andersson, Gunnar B.J.; Inoue, Nozomu
2016-01-01
Objectives Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positons on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. Methods Eighty-one volunteers were CT-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each ‘disc’ set as the reference surface and separated into five anatomical zones: four peripheral and one central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions, and were compared against each other with ANOVA, with significance set at p < 0.05. Results Mean neutral disc height was 7.32 (1.59) mm. With 50° rotation, a small but significant increase to 7.44 (1.52) mm (p < 0.0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (p < 0.0001), while the left, anterior and central decreased. Conclusions This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown. PMID:27059249
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; ...
2017-02-21
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Kwon, Hyun-Jung; Jeong, Young-Il; Jun, In-Gu; Moon, Young-Jin; Lee, Yu-Mi
2018-01-01
Abstract Subclavian central venous catheterization is a common procedure for which misplacement of the central venous catheter (CVC) is a frequent complication that can potentially be fatal. The carina is located in the mid-zone of the superior vena cava (SVC) and is considered a reliable landmark for CVC placement in chest radiographs. The C-length, defined as the distance from the edge of the right transverse process of the first thoracic spine to the carina, can be measured in posteroanterior chest radiographs using a picture archiving and communication system. To evaluate the placement of the tip of the CVC in subclavian central venous catheterizations using the C-length, we reviewed the medical records and chest radiographs of 122 adult patients in whom CVC catheterization was performed (from January 2012 to December 2014) via the right subclavian vein using the C-length. The tips of all subclavian CVCs were placed in the SVC using the C-length. No subclavian CVC entered the right atrium. Tip placement was not affected by demographic characteristics such as age, sex, height, weight, and body mass index. The evidence indicates that the C-length on chest radiographs can be used to determine the available insertion length and place the right subclavian CVC tip into the SVC. PMID:29480861
Spanwise measurements of vertical components of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Sleeper, Robert K.
1990-01-01
Correlation and spectrum magnitude estimates are computed for vertical gust velocity measurements at the nose and wing tips of a NASA B-57B aircraft for six level flight, low speed and low altitude runs and are compared with those of the von Karman atmospheric turbulence model extended for spanwise relationships. The distance between the wing tips was 62.6 ft. Airspeeds ranged from about 330 to 400 ft/sec, heights above the ground ranged from near ground level to about 5250 ft. and gust velocity standard deviations ranged from 4.10 to 8.86 ft/sec. Integral scale lengths, determined by matching measured autocorrelation estimates with those of the model, ranged from 410 to 2050 ft. Digital signals derived from piezoelectric sensors provided continuous pressure and airspeed measurements. Some directional acceleration sensitivity of the sensors was eliminated by sensor orientation, and their performance was spectrally verified for the higher frequencies with supplemental onboard piezoresistive sensors. The model appeared to satisfactorily predict the trends of the measured cross-correlations and cross-spectrum magnitudes, particularly between the nose and wing tips. However, the measured magnitude estimates of the cross-spectra between the wing tips exceeded the predicted levels at the higher frequencies. Causes for the additional power across the wing tips were investigated. Vertical gust velocity components evaluated along and lateral to the flight path implied that the frozen-turbulence-field assumption is a suitable approximation.
Wang, Guorong; Guo, Ling; Jiang, Bin; Huang, Min; Zhang, Jian; Qin, Ying
2015-01-01
Amplitude changes in the P-wave of intracavitary electrocardiography have been used to assess the tip placement of central venous catheters. The research assessed the sensitivity and specificity of this sign in comparison with standard radiographic techniques for tip location, focusing on factors influencing its clinical utility. Both intracavitary electrocardiography guided tip location and X-ray positioning were used to verify catheter tip locations in patients undergoing central venous catheter insertion. Intracavitary electrocardiograms from 1119 patients (of a total 1160 subjects) showed specific amplitude changes in the P-wave. As the results show, compared with X-ray positioning, the sensitivity of electrocardiography-guided tip location was 97.3%, with false negative rate of 2.7%; the specificity was 1, with false positive rate of zero. Univariate analyses indicated that features including age, gender, height, body weight, and heart rate have no statistically significant influence on P-wave amplitude changes (P>0.05). Multivariate logistic regression revealed that catheter insertion routes (OR = 2.280, P = 0.003) and basal P-wave amplitude (OR = 0.553, P = 0.003) have statistically significant impacts on P-wave amplitude changes. As a reliable indicator of tip location, amplitude change in the P-wave has proved of good sensitivity and excellent specificity, and the minor, zero, false positive rate supports the clinical utility of this technique in early recognition of malpositioned tips. A better sensitivity was achieved in placement of centrally inserted central catheters (CICCs) than that of peripherally inserted central catheters (PICCs). In clinical practice, a combination of intracavitary electrocardiography, ultrasonic inspection and the anthropometric measurement method would further improve the accuracy. PMID:25915758
Lilliu, S; Maragliano, C; Hampton, M; Elliott, M; Stefancich, M; Chiesa, M; Dahlem, M S; Macdonald, J E
2013-11-27
We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.
Variation of the channel temperature in the transmission of lightning leader
NASA Astrophysics Data System (ADS)
Chang, Xuan; Yuan, Ping; Cen, Jianyong; Wang, Xuejuan
2017-06-01
According to the time-resolved spectra of the lightning stepped leader and dart leader processes, the channel temperature, its evolution characteristics with time and the variation along the channel height in the transmission process were analyzed. The results show that the stepped leader tip has a slightly higher temperature than the trailing end, which should be caused by a large amount of electric charges on the leader tip. In addition, both temperature and brightness are enhanced at the position of the channel node. The dart leader has a higher channel temperature than the stepped leader but a lower temperature than the return stroke. Meanwhile, the channel temperature of the dart leader obviously increases when the dart leader propagates to the ground.
Complexity of Human Circulation Design: Tips for Students
ERIC Educational Resources Information Center
Kurbel, Sven; Gros, Mario; Maric, Svjetlana
2009-01-01
Medical students are faced with a challenge to comprehend the enormous complexity of the circulatory systems. There is a gap between courses of anatomy, with detailed description of all normally present macroscopic vessels, and histology, which is focused on microscopic tissue architecture. Both courses leave arterioles, capillaries, and venules…
Shroud leakage flow discouragers
Bailey, Jeremy Clyde; Bunker, Ronald Scott
2002-01-01
A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.
3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering.
Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Das, Gobind; Zaccaria, Remo Proietti; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco; Di Fabrizio, Enzo
2014-04-16
Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SPM oxidation and parallel writing on zirconium nitride thin films
NASA Astrophysics Data System (ADS)
Farkas, N.; Comer, J. R.; Zhang, G.; Evans, E. A.; Ramsier, R. D.; Dagata, J. A.
2005-07-01
Systematic investigation of the SPM oxidation process of sputter-deposited ZrN thin films is reported. During the intrinsic part of the oxidation, the density of the oxide increases until the total oxide thickness is approximately twice the feature height. Further oxide growth is sustainable as the system undergoes plastic flow followed by delamination from the ZrN-silicon interface keeping the oxide density constant. ZrN exhibits superdiffusive oxidation kinetics in these single tip SPM studies. We extend this work to the fabrication of parallel oxide patterns 70 nm in height covering areas in the square centimeter range. This simple, quick, and well-controlled parallel nanolithographic technique has great potential for biomedical template fabrication.
2016-03-11
Police Training Center, February 2013 School Building’s Exterior Brick Wall with Gaps in Mortar Source: SIGAR, January 20, 2013 SIGAR 16-22...Deterioration Due to Water Penetration ........................................................... 6 School Building’s Exterior Brick Wall with Gaps in... Mortar ........................................................................ 6 Stairs of Different Heights and Crumbling at Garm Ser Site
Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; ...
2015-09-18
In this paper, we describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T C) and density of states over large surface areas with size up to mm 2. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that canmore » be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. Finally, the point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.« less
Pattern selection in an anisotropic Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloud, K.V.; Maher, J.V.
1995-02-01
The selection of steady-state viscous fingers has been measured in Hele-Shaw cells that are perturbed by having rectangular and square lattices etched on one of their plates. The strength of the perturbation was varied by varying the cell gap, and over a wide range of observable tip velocities this local perturbation was also made microscopic in the sense that the capillary length of the flow was large in comparison to the cell size of the underlying lattice. Above threshold the microscopic perturbation results in the selection of wider fingers than those selected in the unperturbed flow for all channel orientationsmore » in the experiment. All observed solutions are symmetric, centered in the channel, and have the relation between tip curvature and finger width expected of members of the Saffman-Taylor family of solutions. Selected solutions narrow again at tip velocities where the perturbations can no longer be considered microscopic.« less
A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1990-01-01
A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.
A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1989-01-01
A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.
USDA-ARS?s Scientific Manuscript database
The rotating cross-arm trellis and a unique cane training technique was used to produce 5- to 6-ft-long tall-cane plants of semi-erect (cv. Triple Crown) and trailing (cv. Siskiyou) blackberries. The primocanes were bent to grow horizontally at 18 in height and the lateral canes that developed on th...
A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2017-04-01
In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge compared to the ones at the lower edge), only slight lateral asymmetries were observed at the optimum tip-speed ratio for which the simulations were performed.
Alar-columellar and lateral nostril changes following tongue-in-groove rhinoplasty.
Shah, Ajul; Pfaff, Miles; Kinsman, Gianna; Steinbacher, Derek M
2015-04-01
Repositioning the medial crura cephalically onto the caudal septum (tongue-in-groove; TIG) allows alteration of the columella, ala, and nasal tip to address alar-columellar disproportion as seen from the lateral view. To date, quantitative analysis of nostril dimension, alar-columellar relationship, and nasal tip changes following the TIG rhinoplasty technique have not been described. The present study aims to evaluate post-operative lateral morphometric changes following TIG. Pre- and post-operative lateral views of a series of consecutive patients who underwent TIG rhinoplasty were produced from 3D images at multiple time points (≤2 weeks, 4-10 weeks, and >10 weeks post-operatively) for analysis. The 3D images were converted to 2D and set to scale. Exposed lateral nostril area, alar-columellar disproportion (divided into superior and inferior heights), nasolabial angle, nostril height, and nostril length were calculated and statistically analyzed using a pairwise t test. A P ≤ 0.05 was considered statistically significant. Ninety-four lateral views were analyzed from 20 patients (16 females; median age: 31.8). One patient had a history of current tobacco cigarette use. Lateral nostril area decreased at all time points post-operatively, in a statistically significant fashion. Alar-columellar disproportion was reduced following TIG at all time points. The nasolabial angle significantly increased post-operatively at ≤2 weeks, 4-10 weeks, and >10, all in a statistically significant fashion. Nostril height and nostril length decreased at all post-operative time points. Morphometric analysis reveals reduction in alar-columellar disproportion and lateral nostril shows following TIG rhinoplasty. Tip rotation, as a function of nasolabial angle, also increased. These results provide quantitative substantiation for qualitative descriptions attributed to the TIG technique. Future studies will focus on area and volumetric measurements, and assessment of long-term stability. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Song, Myung Gyu; Seo, Tae-Seok; Kim, Yun Hwan; Cho, Sung Bum; Jung, Euichul; Chung, Hwan Hoon; Lee, Seung Hwa
2016-07-12
To evaluate effectiveness of breast fixation to reduce migration of the catheter tip of a totally implantable venous access port (TIVP) in women. TIVPs were placed in 129 women via the right axillary vein from July 2012 to December 2014, with a final study population of 118 patients (mean age, 55.3 ± 13.8 years; range, 21-91 years). The patients were divided into two groups according to breast fixation during TIVP placement. A total of 56 patients received TIVP placement without breast fixation (Group 1); the remaining 62 received TIVP placement in the supine position after fixation of the ipsilateral breast on the abdominal wall in the sitting position (Group 2). Medical records were retrospectively reviewed for age, weight, height, body mass index, and underlying malignancy. We evaluated the difference in distance ratios between the port chamber and the catheter tip on supine chest and erect chest radiographs, respectively. Statistical analysis was performed using Student's t test. Differences in all parameters between Group 1 and Group 2 were not statistically significant. Mean distance ratio between the port chamber and the catheter tip was 1.95 ± 0.97 in Group 1 and 1.33 ± 0.59 in Group 2. Differences in distance ratios between the port chamber and the catheter tip were statistically significant between Group 1 and Group 2 (p = 0.001). Breast fixation seems to be effective in reducing migration of the port chamber and catheter tip with position changes in female patients during TIVP placement.
On heat transfer in squish gaps
NASA Astrophysics Data System (ADS)
Spurk, J. H.
1986-06-01
Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.
NASA Astrophysics Data System (ADS)
Ono, Ryo
2018-06-01
The spatiotemporal evolution of the temperature in the afterglow of point-to-plane, pulsed positive streamer discharge was measured near the anode tip and cathode surface using laser-induced predissociation fluorescence of OH radicals. The temperature exhibited a rapid increase and displayed a steep spatial gradient after a discharge pulse. The rate of temperature rise reached 84 K μs‑1 at mm, where z represents the distance from the anode tip. The temperature rise was much faster than in the middle of the gap; it was only 2.8 K μs‑1 at mm. The temperature reached 1700 K near the anode tip at s and 1500 K near the cathode surface at s, where t represents the postdischarge time. The spatial gradient reached 1280 K mm‑1 near the anode tip at s. The mechanism responsible for the rapid temperature increase was discussed, including rapid heating of the gas in the early postdischarge phase (s), and vibration-to-translation energy transfer in the later postdischarge phase (s). The high temperatures near the anode tip and cathode surface are particularly important for the ignition of combustible mixtures and for surface treatments, including solid-surface treatments, water treatments, and plasma medicine using pulsed streamer discharges.
Flow formed by spanwise gaps between roughness elements
NASA Technical Reports Server (NTRS)
Logan, E.; Lin, S. H.; Islam, O.
1985-01-01
Measurements of the three mean velocity components and the three Reynolds shear stresses were made in the region downstream of gaps between wall-mounted roughness elements of square cross section and high aspect ratio in a thick turbulent boundary layer. The effect of small and large gaps was studied in a wind tunnel at a Reynolds number of 3600, based on obstacle height and free-stream velocity. The small gap produces retardation of the gap flow as with a two-dimensional roughness element, but a definite interaction between gap and wake flows is observed. The interaction is more intense for the large gap than for the small. Both gaps generate a secondary crossflow which moves fluid away from the centerline in the wall region and toward the centerline in the outer (y greater than 1.5H) region.
Effects of Axial Torsion on Disc Height Distribution: An In Vivo Study.
Espinoza Orías, Alejandro A; Mammoser, Nicole M; Triano, John J; An, Howard S; Andersson, Gunnar B J; Inoue, Nozomu
2016-05-01
Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positions on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. Eighty-one volunteers were computed tomography-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each "disc" set as the reference surface and separated into 5 anatomical zones: 4 peripheral and 1 central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions and were compared against each other with analysis of variance, with significance set at P < .05. Mean neutral disc height was 7.32 mm (1.59 mm). With 50° rotation, a small but significant increase to 7.44 mm (1.52 mm) (P < .0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (P < .0001), whereas the left, anterior, and central decreased. This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Fluid front morphologies in gap-modulated Hele-Shaw cells
NASA Astrophysics Data System (ADS)
Díaz-Piola, Lautaro; Planet, Ramon; Campàs, Otger; Casademunt, Jaume; Ortín, Jordi
2017-09-01
We consider the displacement of an inviscid fluid (air) by a viscous fluid (oil) in a narrow channel with gap-thickness modulations. The interfacial dynamics of this problem is strongly nonlocal and exhibits competing effects from capillarity and permeability. We derive analytical predictions of steady-state front morphologies, which are exact at linear level in the case of a persistent modulation in the direction of front advancement. The theoretical predictions are in good agreement with experimental measurements of steady-state front morphologies obtained in a Hele-Shaw cell with modulations of the channel depth, consisting on three parallel tracks of reduced depth, for small gap modulations. The relative average distance between theoretical and experimental fronts in the region around the central track is smaller than about 4 % , provided that the height of the tracks is less than 13 % of the total channel depth and the local distortion of the front height h is small enough (|∇ h |<0.8 ) for the linear approximation to hold.
Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Boxiang; Yao, Yuhan; Groenewald, Roelof E.
Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. In this paper, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. Finally, the experimental results are consistent with previous findings as well as with amore » straightforward theoretical model that is presented here.« less
Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers
Song, Boxiang; Yao, Yuhan; Groenewald, Roelof E.; ...
2017-06-09
Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. In this paper, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. Finally, the experimental results are consistent with previous findings as well as with amore » straightforward theoretical model that is presented here.« less
McDonald, Nathan A; Vander Kooi, Craig W; Ohi, Melanie D; Gould, Kathleen L
2015-12-21
F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending. Copyright © 2015 Elsevier Inc. All rights reserved.
DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.
Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi
2017-12-06
We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.
An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H
1994-04-01
A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.
Kim, Ji-Hoon; Song, Chang Eun; Shin, Nara; Kang, Hyunbum; Wood, Sebastian; Kang, In-Nam; Kim, Bumjoon J; Kim, Bongsoo; Kim, Ji-Seon; Shin, Won Suk; Hwang, Do-Hoon
2013-12-26
Two semiconducting conjugated polymers were synthesized via Stille polymerization. The structures combined unsubstituted or (triisopropylsilyl)ethynyl (TIPS)-substituted 2,6-bis(trimethylstannyl)benzo[1,2-b:4.5-b']dithiophene (BDT) as a donor unit and benzotriazole with a symmetrically branched alkyl side chain (DTBTz) as an acceptor unit. We investigated the effects of the different BDT moieties on the optical, electrochemical, and photovoltaic properties of the polymers and the film crystallinities and carrier mobilities. The optical-band-gap energies were measured to be 1.97 and 1.95 eV for PBDT-DTBTz and PTIPSBDT-DTBTz, respectively. Bulk heterojunction photovoltaic devices were fabricated and power conversion efficiencies of 5.5% and 2.9% were found for the PTIPSBDT-DTBTz- and PBDT-DTBTz-based devices, respectively. This difference was explained by the more optimal morphology and higher carrier mobility in the PTIPSBDT-DTBTz-based devices. This work demonstrates that, under the appropriate processing conditions, TIPS groups can change the molecular ordering and lower the highest occupied molecular orbital level, providing the potential for improved solar cell performance.
Stocktype and harvest gap size influence northern red oak regeneration success
Douglass F. Jacobs; Ron A. Rathfon; Anthony S. Davis; Don E. Carlson
2006-01-01
Four different northern red oak (Quercus rubra L.) stocktypes (standard- or low-nursery-density bareroot seedlings and 11.4 or 18.9 L container seedlings) were outplanted into large-, medium-, and small-harvested gap openings (0.400, 0.024, and 0.100 ha, respectively) and closed-canopy control plots in southern Indiana. Two-year survival, height, and...
Grid Gap Measurement for an NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
Diaz, Esther M.; Soulas, George C.
2006-01-01
The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.
Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole
NASA Astrophysics Data System (ADS)
Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred
2017-06-01
Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.
Fringes, Stefan; Holzner, Felix
2018-01-01
The behavior of nanoparticles under nanofluidic confinement depends strongly on their distance to the confining walls; however, a measurement in which the gap distance is varied is challenging. Here, we present a versatile setup for investigating the behavior of nanoparticles as a function of the gap distance, which is controlled to the nanometer. The setup is designed as an open system that operates with a small amount of dispersion of ≈20 μL, permits the use of coated and patterned samples and allows high-numerical-aperture microscopy access. Using the tool, we measure the vertical position (termed height) and the lateral diffusion of 60 nm, charged, Au nanospheres as a function of confinement between a glass surface and a polymer surface. Interferometric scattering detection provides an effective particle illumination time of less than 30 μs, which results in lateral and vertical position detection accuracy ≈10 nm for diffusing particles. We found the height of the particles to be consistently above that of the gap center, corresponding to a higher charge on the polymer substrate. In terms of diffusion, we found a strong monotonic decay of the diffusion constant with decreasing gap distance. This result cannot be explained by hydrodynamic effects, including the asymmetric vertical position of the particles in the gap. Instead we attribute it to an electroviscous effect. For strong confinement of less than 120 nm gap distance, we detect the onset of subdiffusion, which can be correlated to the motion of the particles along high-gap-distance paths. PMID:29441273
An atomic-force-microscopy study of the structure of surface layers of intact fibroblasts
NASA Astrophysics Data System (ADS)
Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Nyapshaev, I. A.; Kipenko, A. V.; Timoshchuk, K. I.; Podzorova, S. A.; Krylov, B. V.
2017-02-01
Intact embryonic fibroblasts on a collagen-treated substrate have been studied by atomic-force microscopy (AFM) using probes of two types: (i) standard probes with tip curvature radii of 2-10 nm and (ii) special probes with a calibrated 325-nm SiO2 ball radius at the tip apex. It is established that, irrespective of probe type, the average maximum fibroblast height is on a level of 1.7 μm and the average stiffness of the probe-cell contact amounts to 16.5 mN/m. The obtained AFM data reveal a peculiarity of the fibroblast structure, whereby its external layers move as a rigid shell relative to the interior and can be pressed inside to a depth dependent on the load only.
van den Boom, Frank; Düssmann, Heiko; Uhlenbrock, Katharina; Abouhamed, Marouan
2007-01-01
Myosin IXb (Myo9b) is a single-headed processive myosin that exhibits Rho GTPase-activating protein (RhoGAP) activity in its tail region. Using live cell imaging, we determined that Myo9b is recruited to extending lamellipodia, ruffles, and filopodia, the regions of active actin polymerization. A functional motor domain was both necessary and sufficient for targeting Myo9b to these regions. The head domains of class IX myosins comprise a large insertion in loop2. Deletion of the large Myo9b head loop 2 insertion abrogated the enrichment in extending lamellipodia and ruffles, but enhanced significantly the enrichment at the tips of filopodia and retraction fibers. The enrichment in the tips of filopodia and retraction fibers depended on four lysine residues C-terminal to the loop 2 insertion and the tail region. Fluorescence recovery after photobleaching and photoactivation experiments in lamellipodia revealed that the dynamics of Myo9b was comparable to that of actin. The exchange rates depended on the Myo9b motor region and motor activity, and they were also dependent on the turnover of F-actin. These results demonstrate that Myo9b functions as a motorized RhoGAP molecule in regions of actin polymerization and identify Myo9b head sequences important for in vivo motor properties. PMID:17314409
Properties of GaP Schottky barrier diodes at elevated temperatures.
NASA Technical Reports Server (NTRS)
Nannichi, Y.; Pearson, G. L.
1969-01-01
Gallium phosphide Schottky barrier diodes, discussing construction and metals used, barrier height relationships to impurity concentration and temperature, rectifying characteristics and internal quantum efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.
2003-10-01
The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damagemore » levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.« less
Direct control and characterization of a Schottky barrier by scanning tunneling microscopy
NASA Technical Reports Server (NTRS)
Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.
1988-01-01
Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.
Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification
Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo
2018-01-01
Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination. PMID:29751625
Opening complete band gaps in two dimensional locally resonant phononic crystals
NASA Astrophysics Data System (ADS)
Zhou, Xiaoling; Wang, Longqi
2018-05-01
Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.
Immaterial and monetary gifts in economic transactions: evidence from the field.
Kirchler, Michael; Palan, Stefan
2018-01-01
Reciprocation of monetary gifts is well-understood in economics. In contrast, there is little research on reciprocal behavior following immaterial gifts like compliments. We narrow this gap and investigate how employees reciprocate after receiving immaterial gifts and material gifts over time. We purchase (1) ice cream from fast food restaurants, and (2) durum doner, a common lunch snack, from independent vendors. Prior to the food's preparation, we either compliment or tip the salesperson. We find that salespersons reciprocate compliments with higher product weight than in a control treatment. Importantly, this reciprocal behavior following immaterial gifts grows over repeated transactions. Tips, in contrast, have a stronger level effect which does not change over time.
Effects of height and live crown ratio imputation strategies on stand biomass estimation
Elijah J. Allensworth; Temesgen. Hailemariam
2015-01-01
The effects of subsample design and imputation of total height (ht) and live crown ratio (cr) on the accuracy of stand-level estimates of component and total aboveground biomass are not well investigated in the current body of literature. To assess this gap in research, this study uses a data set of 3,454 Douglas-fir trees obtained from 102 stands in southwestern...
Wastl, Daniel S; Judmann, Michael; Weymouth, Alfred J; Giessibl, Franz J
2015-01-01
Characterization and imaging at the atomic scale with atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomically resolved imaging of the calcite (101̅4) surface plane using stiff quartz cantilevers ("qPlus sensors", stiffness k = 1280 N/m) equipped with sapphire tips in ambient conditions without any surface preparation. With 10 atoms in one surface unit cell, calcite has a highly complex surface structure comprising three different chemical elements (Ca, C, and O). We obtain true atomic resolution of calcite in air at relative humidity ranging from 20% to 40%, imaging atomic steps and single atomic defects. We observe a great durability of sapphire tips with their Mohs hardness of 9, only one step below diamond. Depending on the state of the sapphire tip, we resolve either the calcium or the oxygen sublattice. We determine the tip termination by comparing the experimental images with simulations and discuss the possibility of chemical tip identification in air. The main challenges for imaging arise from the presence of water layers, which form on almost all surfaces and have the potential to dissolve the crystal surface. Frequency shift versus distance spectra show the presence of at least three ordered hydration layers. The measured height of the first hydration layer corresponds well to X-ray diffraction data and molecular dynamic simulations, namely, ∼220 pm. For the following hydration layers we measure ∼380 pm for the second and third layer, ending up in a total hydration layer thickness of at least 1 nm. Understanding the influence of water layers and their structure is important for surface segregation, surface reactions including reconstructions, healing of defects, and corrosion.
Nasal Sculpting: Calculated and Predictable Tip Elevation With Cephalic Trim
Redstone, Jeremiah S.; Nguyen, Jonathan; North, Durham Alan; Hazani, Ron; Drury, Brad; Yoder, Eric M.; Cooperman, Ross D.; Yoder, Virginia; Little, Jarrod A.; Florman, Larry D.; Wilhelmi, Bradon J.
2015-01-01
Background: Rhinoplasty techniques to affect nasal tip rotation are well described. Cephalic alar trim is a powerful method for achieving tip elevation. Previous studies and texts provide aesthetic guidelines for nasolabial angles. Often, surgeon experience determines the degree of lower lateral cartilage resection to achieve optimal results. This study analyzes the change in tip elevation with measured resections of the lower lateral cartilages. This can aid the surgeon in accurately predicting the effect of cephalic alar trim on tip elevation. Methods: Ten fresh cadaveric dissections were performed to determine the change in nasolabial angles after cephalic trim of the lower lateral cartilage. Closed rhinoplasty technique was performed using marginal and intercartilaginous incisions to expose the lower lateral cartilage. Caliper measurements of the lower lateral cartilage were recorded. Serial cephalic trim was performed in 25% increments. True lateral photographs were obtained before and after each serial excision. Nasolabial angle measurements were obtained using a digital goniometer for digital photo analysis. Results: Four female and 6 male cadavers were evaluated. The mean initial nasolabial angle was 106° ± 2°. The mean lower lateral cartilage width was 9.45 ± 1.38 mm. Serial 25% reductions in lower lateral cartilage height resulted in a mean total nasolabial angle change of 7.4°, 12.9°, and 19.6°, respectively. The mean incremental change in the nasolabial angle was 6.47° ± 1.25°. Conclusion: The nasolabial angle is an essential aesthetic feature. Cephalic trim is a key maneuver in affecting the nasolabial angle. A 25% lower lateral cartilage cephalic trim correlates with an average change in the nasolabial angle of 6.47°. Knowledge of the cephalic trim to nasolabial angle relationship aids in achieving desired tip elevation. PMID:26171091
NASA Astrophysics Data System (ADS)
Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.
2012-12-01
In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A S; Roeske, F; Benterou, J
2006-02-10
The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increasedmore » to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.« less
NASA Astrophysics Data System (ADS)
Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.
2018-05-01
We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-07-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.
Self-excited rotor whirl due to tip-seal leakage forces
NASA Technical Reports Server (NTRS)
Leie, B.; Thomas, H. J.
1980-01-01
The limitations in the performance of turbomachines which arise as a result of selfexcited vibration were investigated. Bearing forces, elastic hysteresis, and forces from fluid flow through clearances were considered as possible origins. A theoretical evaluation was made to determine the dependence of the forces form the leakage losses and from rotating flow in radial gaps.
Reflection plane tests of a wind turbine blade tip section with ailerons
NASA Technical Reports Server (NTRS)
Savino, J. M.; Nyland, T. W.; Birchenough, A. G.; Jordan, F. L.; Campbell, N. K.
1985-01-01
Tests were conducted in the NASA Langley 30 by 60 foot Wind Tunnel on a full scale 7.31 m (24 ft) long tip section of a wind turbine rotor blade. The blade tip section was built with ailerons on the trailing edge. The ailerons, which spanned a length of 6.1 m (20 ft), were designed so that two types could be evaluated: the plain and the balanced. The ailerons were hinged on the suction surface at the 0.62 X chord station behind the leading edge. The purpose of the tests was to measure the aerodynamic characteristics of the blade section for: an angle of attack range from 0 deg to 90 deg aileron deflections from 0 deg to -90 deg, and Reynolds numbers of 0.79 and 1.5 x 10 to the 6th power. These data were then used to determine which aileron configuration had the most desirable rotor control and aerodynamic braking characteristics. Tests were also run to determine the effects of vortex generators, leading edge roughness, and the gaps between the aileron sections on the lift, drag, and chordwise force coefficients of the blade tip section.
Metallic Electrode: Semiconducting Nanotube Junction Model
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryon (Technical Monitor)
2001-01-01
A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.
Peretz, B; Nevis, N; Smith, P
1998-07-01
The purpose of this study was firstly to characterize the changes occurring in size and form of the mineralizing maxillary second primary molar and first permanent molar crowns, and secondly to determine if similar changes in size and form characterize enamel apposition in the crowns of these teeth. Twenty-five primary second molars and 20 maxillary permanent first molars at various stages of development, found in archaeological excavations in Israel, were examined for a number of measured variables using image analyser software. Teeth were divided into two groups according to their stage of development: stage I included all teeth at an early stage of development in which mesiobuccal-cusp height was less than 5 mm for the primary molar and 5.9 mm for the permanent molar; stage 2 included all teeth in later stages of development where mesiobuccal-cusp height was greater than these values. In the primary molar, a significant increase was found between the two stages in almost all variables. Significant correlations were also found between all intercusp distances and the external variables. Strong correlations between height of the mesiobuccal cusp and all external and internal variables were noted in stage 1, but fewer in stage 2. In the permanent tooth, no increase was observed in intercusp distances and very few correlations were found between and among the variables. The results suggest that a change in the shape of the maxillary primary second molar occurs during formation, with the lingual cusp tips moving lingually and distally, and the distobuccal cusp tips moving distally. No change occurs in the shape of the maxillary permanent first molar during crown formation. Growth of the maxillary primary second and permanent first molar crowns occurs in 'bursts' of development.
Abbou, Jeremy; Anne, Agnès; Demaille, Christophe
2006-11-16
The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin
2014-11-24
We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L; Yang, F
2014-06-01
Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber andmore » EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.« less
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2014 CFR
2014-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2013 CFR
2013-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2012 CFR
2012-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
NASA Astrophysics Data System (ADS)
Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang
2015-02-01
The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.
Field emission from isolated individual vertically aligned carbon nanocones
NASA Astrophysics Data System (ADS)
Baylor, L. R.; Merkulov, V. I.; Ellis, E. D.; Guillorn, M. A.; Lowndes, D. H.; Melechko, A. V.; Simpson, M. L.; Whealton, J. H.
2002-04-01
Field emission from isolated individual vertically aligned carbon nanocones (VACNCs) has been measured using a small-diameter moveable probe. The probe was scanned parallel to the sample plane to locate the VACNCs, and perpendicular to the sample plane to measure the emission turn-on electric field of each VACNC. Individual VACNCs can be good field emitters. The emission threshold field depends on the geometric aspect ratio (height/tip radius) of the VACNC and is lowest when a sharp tip is present. VACNCs exposed to a reactive ion etch process demonstrate a lowered emission threshold field while maintaining a similar aspect ratio. Individual VACNCs can have low emission thresholds, carry high current densities, and have long emission lifetime. This makes them very promising for various field emission applications for which deterministic placement of the emitter with submicron accuracy is needed.
Foam flows through a local constriction
NASA Astrophysics Data System (ADS)
Chevalier, T.; Koivisto, J.; Shmakova, N.; Alava, M. J.; Puisto, A.; Raufaste, C.; Santucci, S.
2017-11-01
We present an experimental study of the flow of a liquid foam, composed of a monolayer of millimetric bubbles, forced to invade an inhomogeneous medium at a constant flow rate. To model the simplest heterogeneous fracture medium, we use a Hele-Shaw cell consisting of two glass plates separated by a millimetric gap, with a local constriction. This single defect localized in the middle of the cell reduces locally its gap thickness, and thus its local permeability. We investigate here the influence of the geometrical property of the defect, specifically its height, on the average steady-state flow of the foam. In the frame of the flowing foam, we can observe a clear recirculation around the obstacle, characterized by a quadrupolar velocity field with a negative wake downstream the obstacle, which intensity evolves systematically with the obstacle height.
Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport
Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.
2013-01-01
The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.
Soft Robots: Manipulation, Mobility, and Fast Actuation
NASA Astrophysics Data System (ADS)
Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George
2012-02-01
Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P., E-mail: vlabella@albany.edu
2013-11-15
The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to bemore » below the region of best fit for the power law form of the BK model, demonstrating its region of validity.« less
Multiscale regime shifts and planetary boundaries.
Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian
2013-07-01
Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer.
Roehm, Kevin D; Madihally, Sundararajan V
2017-11-30
The primary bottleneck in bioprinting cell-laden structures with carefully controlled spatial relation is a lack of biocompatible inks and printing conditions. In this regard, we explored using thermogelling chitosan-gelatin (CG) hydrogel as a novel bioprinting ink; CG hydrogels are unique in that it undergoes a spontaneous phase change at physiological temperature, and does not need post-processing. In addition, we used a low cost (<$800) compact 3D printer, and modified with a new extruder to print using disposable syringes and hypodermic needles. We investigated (i) the effect of concentration of CG on gelation characteristics, (ii) solution preparation steps (centrifugation, mixing, and degassing) on printability and fiber formation, (iii) the print bed temperature profiles via IR imaging and grid-based assessment using thermocouples, (iv) the effect of feed rate (10-480 cm min -1 ), flow rate (15-60 μl min -1 ) and needle height (70-280 μm) on fiber size and characteristics, and (v) the distribution of neuroblastoma cells in printed fibers, and the viability after five days in culture. We used agarose gel to create uniform print surfaces to maintain a constant gap with the needle tip. These results showed that degassing the solution, and precooling the solution was necessary for obtaining continuous fibers. Fiber size decreased from 760, to 243 μm as the feed rate increased from 10 to 100 cm min -1 . Bed temperature played the greatest role in fiber size, followed by feed rate. Increased needle height initially decreased fiber size but then increased showing an optimum. Cells were well distributed within the fibers and exhibited excellent viability and no contamination after 5 d. Overall we printed 3D, sterile, cell-laden structures with an inexpensive bioprinter and a novel ink, without post-processing. The bioprinter described here and the novel CG hydrogels have significant potential as an ink for bioprinitng various cell-laden structures.
2012-09-01
at the ground surface el 0 ft versus water elevation...sheet pile at the ground surface . ................ 62 Figure 3.24. Total displacements for a water elevation of 16.5 ft and a gap tip elevation of -11...103 Figure 4.19. Relative horizontal displacements of the sheet pile at the ground surface
Inside France: Three Missing Pages from Your Students' Textbook.
ERIC Educational Resources Information Center
Conniffe, Patricia, Ed.
This mini-unit seeks to fill the gap in textbooks that exists when teaching about modern France. Many textbooks end their coverage of France with the chapter on World War II. This unit offers high school students a unique introduction to France in the mid-1990s. The mini-unit includes a two-sided poster, teaching tips, and student pages. Student…
Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar
NASA Astrophysics Data System (ADS)
Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.
2017-12-01
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.
European Science Notes Information Bulletin: Reports on Current European/Middle Eastern Science
1992-06-01
potential barrier heights -re un- negligible at the long-wavelength infrared ( LWIR ). derway in the layers of different Ge content. Initial re- sults...INTRODUCTION of the adsorhate with the nonuniform electric field be- The tenth anniversary of the invention of the scanning tween the tip and sample. An...wavelength IR (SWIR) - 1-3 microns Interlaken, Switzerland 12-16 August 1991. * medium-wavelength IR (MWIR) 3-5 microns * long-wavelength IR ( LWIR ) - 8-14
Users Guide for the Single-Station Nowcast Analysis Program
1994-04-01
easily attained and support the meteorologist along with the aid of some diagnostic models to make a nowcast. With the onset of conflict and primarily...270° at 20 kn. At 400 mbbr , the next mandatory level is introduced. The code says 40752 20780 26025. The height is 7520 m. The temperature is -20.7...moisture in unstable conditions is needed. TIPS models these essential meteorological assumptions and determines if thunderstorms are expected and if
Strategic Airlift Modernization: Analysis of C-5 Modernization and C-17 Acquisition Issues
2007-11-28
shaped more like an aircraft’s wing, to generate lift through aerodynamic forces. Advocates hope airships may be capable of carrying a complete Army...sea basing concept. Detractors challenge airship survivability and ability to operate in adverse weather. Also, hybrid airships use aerodynamic lift and...100 turbofan engines Wingspan: 169 feet 10 inches (to winglet tips) (51.76 meters) Length: 174 feet (53 meters) Height: 55 feet 1 inch (16.79 meters
Bauer, Brad A; Warren, G Lee; Patel, Sandeep
2009-02-10
We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed.
Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep
2012-01-01
We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed. PMID:23133341
DFT study of gases adsorption on sharp tip nano-catalysts surface for green fertilizer synthesis
NASA Astrophysics Data System (ADS)
Yahya, Noorhana; Irfan, Muhammad; Shafie, Afza; Soleimani, Hassan; Alqasem, Bilal; Rehman, Zia Ur; Qureshi, Saima
2016-11-01
The energy minimization and spin modifications of sorbates with sorbents in magnetic induction method (MIM) play a vital role in yield of fertilizer. Hence, in this article the focus of study is the interaction of sorbates/reactants (H2, N2 and CO2) in term of average total adsorption energies, average isosteric heats of adsorption energies, magnetic moments, band gaps energies and spin modifications over identical cone tips nanocatalyst (sorbents) of Fe2O3, Fe3O4 (magnetic), CuO and Al2O3 (non-magnetic) for green nano-fertilizer synthesis. Study of adsorption energy, band structures and density of states of reactants with sorbents are purely classical and quantum mechanical based concepts that are vividly illustrated and supported by ADSORPTION LOCATOR and Cambridge Seriel Total Energy Package (CASTEP) modules following classical and first principle DFT simulation study respectively. Maximum values of total average energies, total average adsorption energies and average adsorption energies of H2, N2 and CO2 molecules are reported as -14.688 kcal/mol, -13.444 kcal/mol, -3.130 kcal/mol, - kcal/mol and -6.348 kcal/mol over Al2O3 cone tips respectively and minimum over magnetic cone tips. Whereas, the maximum and average minimum values of average isosteric heats of adsorption energies of H2, N2 and CO2 molecules are figured out to be 3.081 kcal/mol, 4.842 kcal/mol and 6.848 kcal/mol, 0.988 kcal/mol, 1.554 kcal/mol and 2.236 kcal/mol over aluminum oxide and Fe3O4 cone tips respectively. In addition to the adsorption of reactants over identical cone sorbents the maximum and minimum values of net spin, electrons and number of bands for magnetite and aluminum oxide cone structures are attributed to 82 and zero, 260 and 196, 206 and 118 for Fe3O4 and Al2O3 cones respectively. Maximum and least observed values of band gap energies are figured out to be 0.188 eV and 0.018 eV with Al2O3 and Fe3O4 cone structures respectively. Ultimately, with the adsorption of reactants an identical increment of 14 electrons each in up and down spins is resulted.
Gravitational collapse of colloidal gels: Origins of the tipping point
NASA Astrophysics Data System (ADS)
Padmanabhan, Poornima; Zia, Roseanna
2016-11-01
Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.
NASA Astrophysics Data System (ADS)
Ali, Naseem; Aseyev, A.; McCraney, J.; Vuppuluri, V.; Abbass, O.; Al Jubaree, T.; Melius, M.; Cal, R. B.
2014-11-01
Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze higher order statistics which include skewness, kurtosis as well as the ratios of structure functions and spectra. The ratios consist of wall-normal to streamwise components for both quantities. The aim is to understand the degree of anisotropy in the flow for the near- and far-wakes of the flow field where profiles at one diameter and five diameters are considered, respectively. The skewness at top tip for both wakes show a negative skewness while below the turbine canopy, this terms are positive. The kurtosis shows a Gaussian behavior in the near-wake immediately at hub-height. In addition, the effect due to the passage of the rotor in tandem with the shear layer at the top tip renders relatively high differences in the fourth order moment. The second order structure function and spectral ratios are found to exhibit anisotropic behavior at the top and bottom-tips for the large scales. Mixed structure functions and co-spectra are also considered in the context of isotropy.
The role of the substrate in Graphene/Silicon photodiodes
NASA Astrophysics Data System (ADS)
Luongo, G.; Giubileo, F.; Iemmo, L.; Di Bartolomeo, A.
2018-01-01
The Graphene/Silicon (Gr/Si) junction can function as a Schottky diode with performances strictly related to the quality of the interface. Here, we focus on the substrate geometry and on its effects on Gr/Si junction physics. We fabricate and study the electrical and optical behaviour of two types of devices: one made of a Gr/Si planar junction, the second realized with graphene on an array of Si nanotips. We show that the Gr/Si flat device exhibits a reverse photocurrent higher than the forward current and achieves a photoresponsivity of 2.5 A/W. The high photoresponse is due to the charges photogenerated in Si below a parasitic graphene/SiO2/Si structure, which are injected into the Gr/Si junction region. The other device with graphene on Si-tips displays a reverse current that grows exponentially with the bias. We explain this behaviour by taking into account the tip geometry of the substrate, which magnifies the electric field and shifts the Fermi level of graphene, thus enabling fine-tuning of the Schottky barrier height. The Gr/Si-tip device achieves a higher photoresponsivity, up to 3 A/W, likely due to photocharge internal multiplication.
Neurotrophic Electrode: Method of assembly and implantation into human motor speech cortex
Bartels, Jess; Andreasen, Dinal; Ehirim, Princewill; Mao, Hui; Seibert, Steven; Wright, E Joe; Kennedy, Philip
2008-01-01
The Neurotrophic Electrode (NE) is designed for longevity and stability of recorded signals. To achieve this aim it induces neurites to grow through its glass tip, thus anchoring it in neuropil. The glass tip contains insulated gold wires for recording the activity of the myelinated neurites that grow into the tip. Neural signals inside the tip are electrically insulated from surrounding neural activity by the glass. The most recent version of the electrode has four wires inside its tip to maximize the number of discriminable signals recorded from ingrown neurites, and has a miniature connector. Flexible coiled, insulated gold wires connect to electronics on the skull that remain subcutaneous. The implanted electronics consist of differential amplifiers, FM transmitters, and a sine wave at power up for tuning and calibration. Inclusion criteria for selecting locked-in subjects include medical stability, normal cognition, and strong caregiver support. The implant target is localized via an fMRI-naming task. Final localization at surgery is achieved by 3D stereotaxic localization. During recording, implanted electronics are powered by magnetic induction across an air gap. Coiled antennas placed on the scalp over the implanted transmitters receive the amplified FM transmitter outputs. Data is processed as described elsewhere where stability and longevity issues are addressed. Five subjects have been successfully implanted with the NE. Recorded signals persisted for over four years in two subjects who died from underlying illnesses, and continue for over three years in our present subject. PMID:18672003
Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model
NASA Astrophysics Data System (ADS)
Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.
2014-03-01
Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.
Modeling of Current-Voltage Characteristics in Large Metal-Semiconducting Carbon Nanotube Systems
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryon A. (Technical Monitor)
2000-01-01
A model is proposed for two observed current-voltage (I-V) patterns in recent experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 (1997)]. We claim that there are two contact modes for a tip (metal)-nanotube (semiconductor) junction depending whether the alignment of the metal and the semiconductor band structures is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this model to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor with metallic electrodes at low temperature [Zhou et al., Appl. Phys. Lett. 76, 1597 (2000)], and show that two independent metal-semiconductor junctions in series are responsible for the observed behavior.
Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells.
Abdelsalam, Nader R; Abdel-Megeed, Ahmed; Ali, Hayssam M; Salem, Mohamed Z M; Al-Hayali, Muwafaq F A; Elshikh, Mohamed S
2018-07-15
The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function. Copyright © 2018 Elsevier Inc. All rights reserved.
Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure
NASA Astrophysics Data System (ADS)
Saad, Mahmoud M.; Abdallah, Tamer; Easawi, Khalid; Negm, Sohair; Talaat, Hassan
2015-05-01
The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe-Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe-Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe-Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.
Electron transfer from a carbon nanotube into vacuum under high electric fields
NASA Astrophysics Data System (ADS)
Filip, L. D.; Smith, R. C.; Carey, J. D.; Silva, S. R. P.
2009-05-01
The transfer of an electron from a carbon nanotube (CNT) tip into vacuum under a high electric field is considered beyond the usual one-dimensional semi-classical approach. A model of the potential energy outside the CNT cap is proposed in order to show the importance of the intrinsic CNT parameters such as radius, length and vacuum barrier height. This model also takes into account set-up parameters such as the shape of the anode and the anode-to-cathode distance, which are generically portable to any modelling study of electron emission from a tip emitter. Results obtained within our model compare well to experimental data. Moreover, in contrast to the usual one-dimensional Wentzel-Kramers-Brillouin description, our model retains the ability to explain non-standard features of the process of electron field emission from CNTs that arise as a result of the quantum behaviour of electrons on the surface of the CNT.
Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.
2003-08-12
A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.
NASA Astrophysics Data System (ADS)
Hu, Weifei; Park, Dohyun; Choi, DongHoon
2013-12-01
A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.
Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C
2014-06-01
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection.
Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C
2014-01-01
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection. PMID:24518889
Bettger, Kenneth J; Stark, David H
2013-08-20
A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.
Effect of occlusal vertical dimension on lip positions at smile.
Chou, Jang-Ching; Thompson, Geoffrey A; Aggarwal, Harshit A; Bosio, Jose A; Irelan, Jon P
2014-09-01
In complete mouth reconstructive dentistry, the occlusal vertical dimension may be increased to provide adequate restorative space or to improve esthetics. The effect of increasing the occlusal vertical dimension on the smile is not well understood. The purpose of this study was to evaluate the effect of increasing the occlusal vertical dimension on the dimensions of the smile. Thirty dental students, 12 men and 18 women between the ages of 21 and 30 years old, participated in this study. Polyvinyl siloxane occlusal registrations 2, 4, 6, and 8 mm in thickness were fabricated from articulated stone casts. Posed smile images at occlusal vertical dimension +0, +2, +4, +6, and +8 mm were made with a digital single lens reflex camera mounted on a tripod. A wall-mounted head-positioning device, modified from a cephalometric unit, was used to stabilize the head position. Interlabial gap height, intercommissural width, incisal edge to upper lip, and incisal edge-to-lower lip measurements were made with computer software. The smile index was obtained by dividing width by height. The display zone area was measured by using computer software tracing. One-way repeated measures ANOVA (α=.05) was used for statistical analysis. With an increase in the occlusal vertical dimension, the interlabial gap height, incisal edge to lower lip distance, and display zone area increased significantly (P<.001), whereas the smile index decreased significantly (P<.001). No significant changes were observed in the intercommissural width and incisal edge to upper lip distance. The interlabial gap height, incisal edge-to-lower lip distance, and display zone area increase with increased occlusal vertical dimension. The smile index decreases with increased occlusal vertical dimension. However, the width of the smile and the length of the upper lip tend to remain unchanged. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barber, Steven
Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.
Georgescu, Dan; Kuo, Annie F; Kinard, Krista I; Olson, Randall J
2008-06-01
To compare three phacoemulsification machines for measurement accuracy and postocclusion surge (POS) in human cadaver eyes. In vitro comparisons of machine accuracy and POS. Tip vacuum and flow were compared with machine indicated vacuum and flow. All machines were placed in two human cadaver eyes and POS was determined. Vacuum (% of actual) was 101.9% +/- 1.7% for Infiniti (Alcon, Fort Worth, Texas, USA), 93.2% +/- 3.9% for Stellaris (Bausch & Lomb, Rochester, New York, USA), and 107.8% +/- 4.6% for Signature (Advanced Medical Optics, Santa, Ana, California, USA; P < .0001). At 60 ml/minute flow, actual flow and unoccluded flow vacuum (UFV) was 55.8 +/- 0.4 ml/minute and 197.7 +/- 0.7 mm Hg for Infiniti, 53.5 +/- 0.0 ml/minute and 179.8 +/- 0.9 mm Hg for Stellaris, and 58.5 +/- 0.0 ml/minute and 115.1 +/- 2.3 mm Hg for Signature (P < .0001). POS in an 32-year-old eye was 0.33 +/- 0.05 mm for Infiniti, 0.16 +/- 0.06 mm for Stellaris, and 0.13 +/- 0.04 mm for Signature at 550 mm Hg, 60 cm bottle height, 45 ml/minute flow with 19-gauge tips (P < .0001 for Infiniti vs Stellaris and Signature). POS in an 81-year-old eye was 1.51 +/- 0.22 mm for Infiniti, 0.83 +/- 0.06 mm for Stellaris, 0.67 +/- 0.01 mm for Signature at 400 mm Hg vacuum, 70 cm bottle height, 40 ml/minute flow with 19-gauge tips (P < .0001). Machine-indicated accuracy, POS, and UFV were statistically significantly different. Signature had the lowest POS and vacuum to maintain flow. Regarding POS, Stellaris was close to Signature; regarding vacuum to maintain flow, Infiniti and Stellaris were similar. Minimizing POS and vacuum to maintain flow potentially are important in avoiding ocular damage and surgical complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.
2018-01-01
The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less
NASA Technical Reports Server (NTRS)
Hoad, D. R.; Gentry, G. L., Jr.
1977-01-01
The longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport through transition were determined by an investigation conducted in the Langley V/STOL tunnel. Tests were also made with the large midspan lift-fan pods and lift-cruise fans removed to determine their their influence on the stability and control of the configuration. Data were obtained for a range of model height above ground.
Zhou, Jia; Huang, Xiaolu; Zheng, Danning; Li, Haizhou; Herrler, Tanja; Li, Qingfeng
2014-04-01
The currently recommended strategies for short nose elongation were designed primarily for the Caucasian nasal framework. For Oriental patients, more elongation often is required because a hypoplastic septal cartilage requires more elongation, resulting in a higher risk of complications. This report proposes a modified technique for Oriental nose elongation, which adjusts the pressure points after nasal elongation using an L-shaped implant. Between January 2007 and December 2009, 58 patients underwent Oriental nose elongation using an L-shaped, porous, high-density polyethylene sheet implant. Augmentation rhinoplasty and conchal cartilage shield grafts were performed depending on the nasal shape. Pre- and postoperative nasal length, height, and projection as well as columella-labial angle, columella-lobular angle, and nasal tip angle were measured and compared. A patient satisfaction survey was performed postoperatively. All occurring complications were recorded. The postoperative nasal length was significantly elongated from 47.0±10.4 mm to 49.3±10.1 mm (p=0.003), and the nasal height increased significantly from 48.5±9.1 mm to 50.4±8.5 mm (p=0.011). The initially obtuse columella-labial angle improved significantly from 100.8°±12.1° to 92.5°±15.5° (p=0.014). No significant changes were found regarding nasal projection, nasal tip angle, or columella-lobular angle. The majority of the patients (91.3%) were highly satisfied or satisfied with the aesthetic results. A major complication in terms of implant exposure was observed in one case. The minor complications included stiffness of the nasal tip (3 patients) and tip redness (1 patient). In Oriental nose elongation, the use of an L-shaped graft is a feasible and safe treatment option that allows for an excellent aesthetic outcome and reduces the incidence of complications. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Singh, U R; Enayat, M; White, S C; Wahl, P
2013-01-01
We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.
Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A
2008-07-11
Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-11-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.
Plasmon resonances on opto-capacitive nanostructures
NASA Astrophysics Data System (ADS)
Shahcheraghi, N.; Dowd, A.; Arnold, M. D.; Cortie, M. B.
2015-12-01
Silver is considered as one of the most desirable materials for plasmonic devices due to it having low loss, low epsilon2, across the visible spectrum. In addition, silver nanotriangles can self-assemble into complex structures that can include tip-totip or base-to-base arrangements. While the optical properties of tip-to-tip dimers of nanotriangles have been quite intensively studied, the geometric inverse, the base-to-base configuration, has received much less attention. Here we report the results of a computational study of the optical response of this latter configuration. Calculations were performed using the discrete dipole approximation. The effect of gap size and substrate are considered. The results indicate that the base-to-base configuration can sustain a strong coupled dipole and various multimode resonances. The pairing of the parallel triangle edges produces a strongly capacitive configuration and very intense electric fields over an extended volume of space. Therefore, the base-to-base configuration could be suitable for a range of plasmonic applications that require a strong and uniform concentration of electric field. Examples include refractometeric sensing or metal-enhanced fluorescence.
Majima, Yutaka; Ogawa, Daisuke; Iwamoto, Masachika; Azuma, Yasuo; Tsurumaki, Eiji; Osuka, Atsuhiro
2013-09-25
Tribenzosubporphyrins are boron(III)-chelated triangular bowl-shaped ring-contracted porphyrins that possess a 14π-aromatic circuit. Their flat molecular shapes and discrete molecular orbital diagrams make them ideal for observation by scanning tunneling microscopy (STM). Expanding their applications toward single molecule-based devices requires a fundamental knowledge of single molecular conductance between tribenzosubporphines and the STM metal tip. We utilized a tungsten (W) STM tip to investigate the electronic properties of B-(5-mercaptopentoxy)tribenzosubporphine 1 at the single molecular level. B-(5-mercaptopentoxy)-tribenzosubporphine 1 was anchored to the Au(111) surface via reaction with 1-heptanethiol linkers that were preorganized as a self-assembled monolayer (C7S SAM) on the Au(111) substrate. This arrangement ensured that 1 was electronically decoupled from the metal surface. Differential conductance (dI/dV - V) measurements with the bare W tip exhibited a broad gap region of low conductance and three distinct responses at 2.4,-1.3, and -2.1 V. Bias-voltage-dependent STM imaging of 1 at 65 K displayed a triangle shape at -2.1 < V < -1.3 V and a circle shape at V < -2.1 V, reflecting its HOMO and HOMO-1, respectively. In addition, different conductance behaviors were reproducibly observed, which has been ascribed to the adsorption of a tribenzosubporphine-cation on the W tip. When using a W tip doped with preadsorbed tribenzosubporphine-cation, negative differential resistance (NDR) phenomena were clearly observed in a reproducible manner with a peak-to-valley ratio of 2.6, a value confirmed by spatial mapping conductance measurements. Collectively, the observed NDR phenomena have been attributed to effective molecular resonant tunneling between a neutral tribenzosubporphine anchored to the metal surface and a tribenzosubporphine cation adsorbed on a W tip.
Fabrication and Evaluation of a Noncompliant Molar Distalizing Appliance: Bonded Molar Distalizer
Sodagar, A.; Ahmad Akhoundi, M. S.; Rafighii, A.; Arab, S.
2011-01-01
Objective Attempts to treat class II malocclusions without extraction in non-compliant patients have led to utilization of intraoral molar distalizing appliances. The purpose of this study was to investigate dental and skeletal effects of Bonded Molar Distalizer (BMD) which is a simple molar distalizing appliance. Materials and Methods Sixteen patients (12 girls, four boys) with bilateral half-cusp class II molar relationship, erupted permanent second molars and normal or vertical growth pattern were selected for bilateral distalization of maxillary molars via BMD. The screws were activated every other day, alternately. Lateral cephalograms and study models were obtained before treatment and after 11 weeks activation of the appliance. Results Significant amounts of molar distalization, molar distal tipping and anchorage loss were observed. The mean maxillary first molar distal movement was 1.22±0.936 mm with a distal tipping of 2.97±3.74 degrees in 11 weeks. The rate of distal movement was 0.48 mm per month. Reciprocal mesial movement of the first premolars was 2.26±1.12 mm with a mesial tipping of 4.25±3.12 degrees. Maxillary incisors moved 3.55±1.46 mm and tipped 9.87±5.03 degrees mesially. Lower anterior face height (LAFH) decreased 1.28±1.36 mm. Conclusion BMD is appropriate for distalizing maxillary molars, especially in patients with critical LAFH, although significant amounts of anchorage loss occur using this appliance. PMID:22457837
From Graphite to Graphene via Scanning Tunneling Microscopy
NASA Astrophysics Data System (ADS)
Qi, Dejun
The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic transition between two distinct patterns can be systematically controlled. DFT calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent agreement is found between experimental STM images and those simulated using DFT. In addition, the EM-STM technique was also used to controllably and reversibly pull freestanding graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were observed. The freestanding graphene membrane responds to a local attractive force created at the STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force.
Rouabah, K; Varoquaux, A; Caporossi, J M; Louis, G; Jacquier, A; Bartoli, J M; Moulin, G; Vidal, V
2016-11-01
The purpose of this study was to assess the feasibility and utility of image fusion (Easy-TIPS) obtained from pre-procedure CT angiography and per-procedure real-time fluoroscopy for portal vein puncture during transjugular intrahepatic portosystemic shunt (TIPS) placement. Eighteen patients (15 men, 3 women) with a mean age of 63 years (range: 48-81 years; median age, 65 years) were included in the study. All patients underwent TIPS placement by two groups of radiologists (one group with radiologists of an experience<3 years and one with an experience≥3 years) using fusion imaging obtained from three-dimensional computed tomography angiography of the portal vein and real-time fluoroscopic images of the portal vein. Image fusion was used to guide the portal vein puncture during TIPS placement. At the end of the procedure, the interventional radiologists evaluated the utility of fusion imaging for portal vein puncture during TIPS placement. Mismatch between three-dimensional computed tomography angiography and real-time fluoroscopic images of the portal vein on image fusion was quantitatively analyzed. Posttreatment CT time, number of the puncture attempts, total radiation exposure and radiation from the retrograde portography were also recorded. Image fusion was considered useful for portal vein puncture in 13/18 TIPS procedures (72%). The mean posttreatment time to obtain fusion images was 16.4minutes. 3D volume rendered CT angiography images was strictly superimposed on direct portography in 10/18 procedures (56%). The mismatch mean value was 0.69cm in height and 0.28cm laterally. A mean number of 4.6 portal vein puncture attempts was made. Eight patients required less than three attempts. The mean radiation dose from retrograde portography was 421.2dGy.cm 2 , corresponding to a mean additional exposure of 19%. Fusion imaging resulting from image fusion from pre-procedural CT angiography is feasible, safe and makes portal puncture easier during TIPS placement. Copyright © 2016 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.
Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco
2017-01-01
Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.
NASA Astrophysics Data System (ADS)
Mönch, Winfried
2016-09-01
Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.
Band gap in tubular pillar phononic crystal plate.
Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui
2016-09-01
In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.
Low power laser trigger switching of a solid insulated spark gap.
Guenther, A H; Copeland, R P; Bettis, J R
1979-11-01
The feasibility of reliably triggering solid dielectric insulated spark gaps by low power ( approximately 6 MW) lasers has been demonstrated. Breakdown of 10-mil Lexan dielectric sheets stressed to 70 kV was initiated by a focused 6 MW, Nd in YAG laser emitting 40 mJ in a pulse 6 ns wide at the half-peak intensity height. Delays achieved were in the tens of ns. Slight increases in laser power or electrical stress should produce shorter delays (<10 ns) and subnanosecond jitter.
Kane, Patrick; Vopat, Bryan; Heard, Wendell; Thakur, Nikhil; Paller, David; Koruprolu, Sarath; Born, Christopher
2014-08-01
Intertrochanteric hip fractures pose a significant challenge for the orthopaedic community as optimal surgical treatment continues to be debated. Currently, varus collapse with lag screw cutout is the most common mode of failure. Multiple factors contribute to cutout. From a surgical technique perspective, a tip apex distance less than 25 mm has been suggested to decrease the risk of cutout. We hypothesized that a low-center lag screw position in the femoral head, with a tip apex distance greater than 25 mm will provide equal, if not superior, biomechanical stability compared with a center-center position with a tip apex distance less than 25 mm in an unstable intertrochanteric hip fracture stabilized with a long cephalomedullary nail. We attempted to examine the biomechanical characteristics of intertrochanteric fractures instrumented with long cephalomedullary nails with two separate lag screw positions, center-center and low-center. Our first research purpose was to examine if there was a difference between the center-center and low-center groups in cycles to failure and failure load. Second, we analyzed if there was a difference in fracture translation between the study groups during loading. Nine matched pairs of femurs were assigned to one of two treatment groups: low-center lag screw position and center-center lag screw position. Cephalomedullary nails were placed and tip apex distance was measured. A standard unstable four-part intertrochanteric fracture was created in all samples. The femurs were loaded dynamically until failure. Cycles to failure and load and displacement data were recorded, and three-dimensional (3-D) motion was recorded using an Optotrak(®) motion tracking system. There were no significant differences between the low-center and center-center treatment groups regarding the mean number of cycles to failure and mean failure load. The 3-D kinematic data showed significantly increased motion in the center-center group compared with the low-center group. At the time of failure, the magnitude of fracture translation was statistically significantly greater in the center-center group (20 ± 2.8 mm) compared with the low-center group (15 ± 3.4 mm; p = 0.004). Additionally, there was statistically significantly increased fracture gap distraction (center-center group, 13 ± 2.8 versus low-center group, 7 ± 4; p < 0.001) and shear fracture gap translation (center-center group, 12 ± 2.3 mm; low-center group, 6 ± 2.7 mm; p < 0.001). Positioning of the lag screw inferior in the head and neck was found to be at least as biomechanically stable as the center-center group although the tip apex distance was greater than 25 mm. Our findings challenge previously accepted principles of optimal lag screw placement.
Tip-Pressure-Induced Incoherent Energy Gap in CaFe2As2
NASA Astrophysics Data System (ADS)
Jia-Xin, Yin; Ji-Hui, Wang; Zheng, Wu; Ang, Li; Xue-Jin, Liang; Han-Qing, Mao; Gen-Fu, Chen; Bing, Lv; Ching-Wu, Chu; Hong, Ding; Shu-Heng, Pan
2016-06-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11227903, the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB933000, the State of Texas through TcSUH, and the Strategic Priority Research Program B of Chinese Academy of Sciences under Grant Nos XDB07030000, XDB04040300 and Y4VX092X81.
Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang
2006-12-07
In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.
Remote control for anode-cathode adjustment
Roose, Lars D.
1991-01-01
An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.
Optimizations for optical velocity measurements in narrow gaps
NASA Astrophysics Data System (ADS)
Schlüßler, Raimund; Blechschmidt, Christian; Czarske, Jürgen; Fischer, Andreas
2013-09-01
Measuring the flow velocity in small gaps or near a surface with a nonintrusive optical measurement technique is a challenging measurement task, as disturbing light reflections from the surface appear. However, these measurements are important, e.g., in order to understand and to design the leakage flow in the tip gap between the rotor blade end face and the housing of a turbomachine. Hence, methods to reduce the interfering light power and to correct measurement errors caused by it need to be developed and verified. Different alternatives of minimizing the interfering light power for optical flow measurements in small gaps are presented. By optimizing the beam shape of the applied illumination beam using a numerical diffraction simulation, the interfering light power is reduced by up to a factor of 100. In combination with a decrease of the reflection coefficient of the rotor blade surface, an additional reduction of the interfering light power below the used scattered light power is possible. Furthermore, a correction algorithm to decrease the measurement uncertainty of disturbed measurements is derived. These improvements enable optical three-dimensional three-component flow velocity measurements in submillimeter gaps or near a surface.
Approaching the resolution limit of W-C nano-gaps using focused ion beam chemical vapour deposition
NASA Astrophysics Data System (ADS)
Dai, Jun; Chang, Hui; Maeda, Etsuo; Warisawa, Shin'ichi; Kometani, Reo
2018-01-01
Nano-gaps are fundamental building blocks for nanochannels, plasmonic nanostructures and superconducting Josephson junctions. We present a systematic study on the formation mechanism and resolution limit of W-C nano-gaps fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). First, the deposition size of the nanostructures is evaluated. The size averaged over 100 dots is 32 nm at FWHM. Line and space are also fabricated with the smallest size, having a spacing of only 5 nm at FWHM. Then, a model is developed to study the formation mechanism and provides the design basis for W-C nano-gaps. Both experimental and simulation results reveal that the shrinkage of W-C nano-gaps is accelerated as the Gaussian parts of the nano-wire profiles overlap. A Nano-gap with a length of 5 nm and height difference as high as 42 nm is synthesized. We believe that FIB-CVD opens avenues for novel functional nanodevices that can be potentially used for biosensing, photodetecting, or quantum computing.
Unsteady Turbine Blade and Tip Heat Transfer Due to Wake Passing
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur; Heidmann, James; Fabian, John C.
2007-01-01
The geometry and the flow conditions of the first stage turbine blade of GE s E3 engine have been used to obtain the unsteady three-dimensional blade and tip heat transfer. The isothermal wall boundary condition was used. The effect of the upstream wake of the first stage vane was of interest and was simulated by provision of a gust type boundary condition upstream of the blades. A one blade periodic domain was used. The consequence of this choice was explored in a preliminary study which showed little difference in the time mean heat transfer between 1:1 and 2:3 vane/blade domains. The full three-dimensional computations are of the blade having a clearance gap of 2 percent the span. Comparison between the time averaged unsteady and steady heat transfer is provided. It is shown that there is a significant difference between the steady and time mean of unsteady blade heat transfer in localized regions. The differences on the suction side of the blade in the near hub and near tip regions were found to be rather significant. Steady analysis underestimated the blade heat transfer by as much as 20 percent as compared to the time average obtained from the unsteady analysis. As for the blade tip, the steady analysis and the unsteady analysis gave results to within 2 percent.
Morphology dependent near-field response in atomistic plasmonic nanocavities.
Chen, Xing; Jensen, Lasse
2018-06-21
In this work we examine how the atomistic morphologies of plasmonic dimers control the near-field response by using an atomistic electrodynamics model. At large separations, the field enhancement in the junction follows a simple inverse power law as a function of the gap separation, which agrees with classical antenna theory. However, when the separations are smaller than 0.8 nm, the so-called quantum size regime, the field enhancement is screened and thus deviates from the simple power law. Our results show that the threshold distance for the deviation depends on the specific morphology of the junction. The near field in the junction can be localized to an area of less than 1 nm2 in the presence of an atomically sharp tip, but the separation distances leading to a large confinement of near field depend strongly on the specific atomistic configuration. More importantly, the highly confined fields lead to large field gradients particularly in a tip-to-surface junction, which indicates that such a plasmonic structure favors observing strong field gradient effects in near-field spectroscopy. We find that for atomically sharp tips the field gradient becomes significant and depends strongly on the local morphology of a tip. We expect our findings to be crucial for understanding the origin of high-resolution near-field spectroscopy and for manipulating optical cavities through atomic structures in the strongly coupled plasmonic systems.
Grade determination of crumb rubber-modified performance graded asphalt binder.
DOT National Transportation Integrated Search
2013-08-01
Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. Asphalt binder testing an...
Grade determination of crumb rubber-modified performance graded asphalt binder.
DOT National Transportation Integrated Search
2013-08-01
Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...
NASA Astrophysics Data System (ADS)
Taillebot, V.; Lexcellent, C.; Vacher, P.
2012-03-01
The thermomechanical behavior of shape memory alloys is now well mastered. However, a hindrance to their sustainable use is the lack of knowledge of their fracture behavior. With the aim of filling this partial gap, fracture tests on edge-cracked specimens in NiTi have been made. Particular attention was paid to determine the phase transformation zones in the vicinity of the crack tip. In one hand, experimental kinematic fields are observed using digital image correlation showing strain localization around the crack tip. In the other hand, an analytical prediction, based on a modified equivalent stress criterion and taking into account the asymmetric behavior of shape memory alloys in tension-compression, provides shape and size of transformation outset zones. Experimental results are relatively in agreement with our analytical modeling.
Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Kibayashi, Kazuhiko; Sakurada, Koichi; Uemura, Koichi
2016-02-01
Skull-photo superimposition is a technique used to identify the relationship between the skull and a photograph of a target person: and facial reconstruction reproduces antemortem facial features from an unknown human skull, or identifies the facial features of unknown human skeletal remains. These techniques are based on soft tissue thickness and the relationships between soft tissue and the skull, i.e., the position of the ear and external acoustic meatus, pupil and orbit, nose and nasal aperture, and lips and teeth. However, the ear and nose region are relatively difficult to identify because of their structure, as the soft tissues of these regions are lined with cartilage. We attempted to establish a more accurate method to determine the position of the nasal tip from the skull. We measured the height of the maxilla and mid-lower facial region in 55 Japanese men and generated a regression equation from the collected data. We obtained a result that was 2.0±0.99mm (mean±SD) distant from the true nasal tip, when applied to a validation set consisting of another 12 Japanese men. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Haiyang; Wu, Di; Wu, Wengang; Xu, Jun; Hao, Yilong
2009-11-01
A simple lithography-free approach for fabricating diversiform nanostructure forests is presented. The key technique of the approach is that randomly distributed nanoscale residues can be synthesized on substrates simply by removing photoresist with oxygen plasma bombardment. These nanoresidues can function as masks in the subsequent etching process for nanopillars. By further spacer and then deep etching processes, a variety of forests composed of regular, tulip-like or hollow-head nanopillars as well as nanoneedles are successfully achieved in different etching conditions. The pillars have diameters of 30-200 nm and heights of 400 nm-3 µm. The needles reach several microns in height, with their tips less than 10 nm in diameter. Moreover, microstructures containing these nanostructure forests, such as surface microchannels, have also been fabricated. This approach is compatible with conventional micro/nano-electromechanical system (MEMS/NEMS) fabrication.
Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle.
Clarke, Hugh J
2018-01-01
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis. © 2017 Wiley Periodicals, Inc.
Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays.
Oehler, Fabrice; Cattoni, Andrea; Scaccabarozzi, Andrea; Patriarche, Gilles; Glas, Frank; Harmand, Jean-Christophe
2018-02-14
The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.
On the aerodynamic forces of flapping finite-wings in forward flight: a numerical study
NASA Astrophysics Data System (ADS)
Gonzalo, Alejandro; Uhlmann, Markus; Garcia-Villalba, Manuel; Flores, Oscar
2017-11-01
We study the flow around two flapping wings in forward flight at a low Reynolds number, Re = 500 , with 3D direct numerical simulations. The flow solver used is TUCAN, an in-house code which solves the Navier-Stokes equations for incompressible flow using an immersed boundary method to model the presence of the wings. The wings are rectangular with a NACA0012 airfoil of chord c as a cross-section. They are located side by side at a distance 0.5 c between their inboard tips. The wings flap with respect to an axis parallel to the streamwise velocity, without pitching. The angle of rotation is defined using a sinusoidal function with a reduced frequency k = 1 and an amplitude such that the maximum height of the outboard tips is c in all cases. We perform several simulations varying the aspect ratio of the wings (AR = 2 and 4) and the distance between the inboard tip of the wings and the axis of rotation (R = 0 , 2 and ∞), the latter case corresponding to wings in heaving motion. In this way we can study the variation of the fictitious forces on the wings and the induced spanwise flows, and their relation to the vortical structures on the wing (i.e. leading edge vortex, trailing edge votex, tip vortices) and the resulting aerodynamic forces. This work was funded by project TRA2013-41103-P (Mineco/Feder UE). The simulations were partially performed at the Steinbuch Centre for Computing, Karlsruhe, whose support is thankfully acknowledged.
Xian, Jun-Ren; Hu, Ting-Xing; Zhang, Yuan-Bin; Wang, Kai-Yun
2007-04-01
By the method of strip transect sampling, the density, height, basal diameter, and components biomass of Abies faxoniana seedlings (H < or = 100 cm) lived in the forest gap (FG) and under the forest canopy (FC) of subalpine natural coniferous forest in West Sichuan were investigated, and the relationships among different components biomass were analyzed. The results indicated that the density and average height (H) of A. faxoniana seedlings were significantly different in FG and under FC, with the values being 12 903 and 2 017 per hectare, and 26.6 cm and 24.3 cm, respectively, while no significant differences were found in average basal diameter (D) and biomass. The biomass allocation in seedling's components was markedly affected by forest gap. In FG, the biomass ratio of branch to trunk (BRBT) reached the maximum (1.54) at 12th year, and then, declined and fluctuated at 0. 69. Under FC, the BRBT was increased with seedlings growth, and exceeded 1.0 at about 15th year. The total biomass and the biomass of leaf, stem, shoot and root grown in FG and under FC were significantly linearly correlated with D2H. There were significant positive correlations among the biomass of different seedling's components.
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
NASA Technical Reports Server (NTRS)
Sekula, Martin K.
2012-01-01
Projection moir interferometry (PMI) was employed to measure blade deflections during a hover test of a generic model-scale rotor in the NASA Langley 14x22 subsonic wind tunnel s hover facility. PMI was one of several optical measurement techniques tasked to acquire deflection and flow visualization data for a rotor at several distinct heights above a ground plane. Two of the main objectives of this test were to demonstrate that multiple optical measurement techniques can be used simultaneously to acquire data and to identify and address deficiencies in the techniques. Several PMI-specific technical challenges needed to be addressed during the test and in post-processing of the data. These challenges included developing an efficient and accurate calibration method for an extremely large (65 inch) height range; automating the analysis of the large amount of data acquired during the test; and developing a method to determinate the absolute displacement of rotor blades without a required anchor point measurement. The results indicate that the use of a single-camera/single-projector approach for the large height range reduced the accuracy of the PMI system compared to PMI systems designed for smaller height ranges. The lack of the anchor point measurement (due to a technical issue with one of the other measurement techniques) limited the ability of the PMI system to correctly measure blade displacements to only one of the three rotor heights tested. The new calibration technique reduced the data required by 80 percent while new post-processing algorithms successfully automated the process of locating rotor blades in images, determining the blade quarter chord location, and calculating the blade root and blade tip heights above the ground plane.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; Flack, Karen; Lust, Ethan
2016-11-01
2D PIV measurements in the near wake flow field (x/D<2) are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. All measurements were obtained in the USNA 380 ft tow tank with turbine towed at a constant carriage speed (Utow = 1.68 m/s), at the nominal tip speed ratio (TSR) of 7 and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. Near wake mapping is accomplished by "tiling" phase locked individual 2D PIV fields of view (nominally 30x30 cm2) with approximately 5 cm overlap. The discussion will focus on the downstream evolution of coherent tip vortices shed by the rotor blades and their vertical/horizontal displacements by the wave induced fluctuations. This observed phenomena ultimately results in significantly increased downstream wake expansion in comparison with the same conditions without waves. Office of Naval Research.
Gomila, G; Esteban-Ferrer, D; Fumagalli, L
2013-12-20
We analyze by means of finite-element numerical calculations the polarization force between a sharp conducting tip and a non-spherical uncharged dielectric nanoparticle with the objective of quantifying its dielectric constant from electrostatic force microscopy (EFM) measurements. We show that for an oblate spheroid nanoparticle of given height the strength of the polarization force acting on the tip depends linearly on the eccentricity, e, of the nanoparticle in the small eccentricity and low dielectric constant regimes (1 < e < 2 and 1 < ε(r) < 10), while for higher eccentricities (e > 2) the dependence is sub-linear and finally becomes independent of e for very large eccentricities (e > 30). These results imply that a precise account of the nanoparticle shape is required to quantify EFM data and obtain the dielectric constants of non-spherical dielectric nanoparticles. Experimental results obtained on polystyrene, silicon dioxide and aluminum oxide nanoparticles and on single viruses are used to illustrate the main findings.
Methods for fabricating a micro heat barrier
Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.
2004-01-06
Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.
The stress intensity factor for the double cantilever beam
NASA Technical Reports Server (NTRS)
Fichter, W. B.
1983-01-01
Fourier transforms and the Wiener-Hopf technique are used in conjunction with plane elastostatics to examine the singular crack tip stress field in the double cantilever beam (DCB) specimen. In place of the Dirac delta function, a family of functions which duplicates the important features of the concentrated forces without introducing unmanageable mathematical complexities is used as a loading function. With terms of order h-squared/a-squared retained in the series expansion, the dimensionless stress intensity factor is found to be K (h to the 1/2)/P = 12 to the 1/2 (a/h + 0.6728 + 0.0377 h-squared/a-squared), in which P is the magnitude of the concentrated forces per unit thickness, a is the distance from the crack tip to the points of load application, and h is the height of each cantilever beam. The result is similar to that obtained by Gross and Srawley by fitting a line to discrete results from their boundary collocation analysis.
Bartholomeus, Harm
2018-01-01
Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11–0.63 m for tree height, and 0.14–3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed. PMID:29503719
Roşca, Sabina; Suomalainen, Juha; Bartholomeus, Harm; Herold, Martin
2018-04-06
Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11-0.63 m for tree height, and 0.14-3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21-1.21 m for trees, and 1.02-2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed.
Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Larin, M. E.; Marichalar, J. J.; Kinder, G. R.; Campbell, C. H.; Riccio, J. R.; Nquyen, T. Q.; DelPapa, S. V.; Pulsonetti, M. V.
2009-01-01
A series of arc-jet tests in support of the Shuttle Orbiter Boundary Layer Transition flight experiment was conducted in the Channel Nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility. The boundary layer trip was a protrusion of a certain height and geometry fabricated as part of a 6"x6" tile insert, a special test article made of the Boeing Rigid Insulation tile material and coated with the Reaction Cured Glass used for the bottom fuselage tiles of the Space Shuttle Orbiter. A total of five such tile inserts were manufactured: four with the 0.25-in. trip height, and one with the 0.35-in. trip height. The tile inserts were interchangeably installed in the center of the 24"x24" variable configuration tile array mounted in the 24"x24" test section of the channel nozzle. The objectives of the test series were to demonstrate that the boundary layer trip can safely withstand the Space Shuttle Orbiter flight-like re-entry environments and provide temperature data on the protrusion surface, surfaces of the nearby tiles upstream and downstream of the trip, as well as the bond line between the tiles and the structure. The targeted test environments were defined for the tip of the protrusion, away from the nominal surface of the tile array. The arc jet test conditions were approximated in order to produce the levels of the free stream total enthalpy at the protrusion height similar to those expected in flight. The test articles were instrumented with surface, sidewall and bond line thermocouples. Additionally, Tempilaq temperature-indicating paint was applied to the nominal tiles of the tile array in locations not interfering with the protrusion trip. Five different grades of paint were used that disintegrate at different temperatures between 1500 and 2000 deg F. The intent of using the paint was to gauge the RCG-coated tile surface temperature, as well as determine its usefulness for a flight experiment. This paper provides an overview of the channel nozzle arc jet, test articles and test conditions, as well as the results of the arc-jet tests including the measured temperature response of the test articles, their pre- and post-test surface scans, condition of the thermal paint, and continents on the protrusion tip heating achieved in tests compared to the computational fluid dynamics predictions.
Superconductivity-induced features in the electronic Raman spectrum of monolayer graphene
NASA Astrophysics Data System (ADS)
García-Ruiz, A.; Mucha-Kruczyński, M.; Fal'ko, V. I.
2018-04-01
Using the continuum model, we investigate theoretically the contribution of the low-energy electronic excitations to the Raman spectrum of superconducting monolayer graphene. We consider superconducting phases characterised by an isotropic order parameter in a single valley and find a Raman peak at a shift set by the size of the superconducting gap. The height of this peak is proportional to the square root of the gap and the third power of the Fermi level, and we estimate its quantum efficiency as I ˜10-14 .
Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao
2015-01-14
Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.
Planetary Boundary Layer from AERI and MPL
Sawyer, Virginia
2014-02-13
The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.
Ten tips for receiving feedback effectively in clinical practice
Algiraigri, Ali H.
2014-01-01
Background Despite being recognized as a fundamental part of the educational process and emphasized for several decades in medical education, the influence of the feedback process is still suboptimal. This may not be surprising, because the focus is primarily centered on only one half of the process – the teachers. The learners are the targets of the feedback process and improvement needs to be shifted. Learners need to be empowered with the skills needed to receive and utilize feedback and compensate for less than ideal feedback delivery due to the busy clinical environment. Methods Based on the available feedback literature and clinical experience regarding feedback, the author developed 10 tips to empower learners with the necessary skills to seek, receive, and handle feedback effectively, regardless of how it is delivered. Although, most of the tips are directed at the individual clinical trainee, this model can be utilized by clinical educators involved in learner development and serve as a framework for educational workshops or curriculum. Results Ten practical tips are identified that specifically address the learner's role in the feedback process. These tips not only help the learner to ask, receive, and handle the feedback, but will also ease the process for the teachers. Collectively, these tips help to overcome most, if not all, of the barriers to feedback and bridge the gaps in busy clinical practices. Conclusions Feedback is a crucial element in the educational process and it is shown that we are still behind in the optimal use of it; thus, learners need to be taught how to better receive and utilize feedback. The focus in medical education needs to balance the two sides of the feedback process. It is time now to invest on the learner's development of skills that can be utilized in a busy day-to-day clinical practice. PMID:25079664
NASA Astrophysics Data System (ADS)
Jia, Wei; Liu, Huoxing
2014-06-01
The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.
Topographic anatomy of the great auricular point: landmarks for its localization and classification.
Raikos, Athanasios; English, Thomas; Yousif, Omar Khalid; Sandhu, Mandeep; Stirling, Allan
2017-05-01
The great auricular point (GAP) marks the exit of the great auricular nerve at the posterior border of the sternocleidomastoid muscle (SCM). It is a key landmark for the identification of the spinal accessory nerve, and its intraoperative localization is vital to avoid neurological sequelae. This study delineates the topography and surface anatomy landmarks that used to localize the GAP. Thirty cadaveric heminecks were dissected on a layer-by-layer approach. The topography of the GAP was examined relative to the insertion point of the SCM at the clavicle, tip of the mastoid process, and angle of the mandible. The GAP and its relation to the SCM were determined as a ratio of the total length of the SCM. The GAP was demonstrated to be in a predictable location. The mean length of the SCM was 131.4 ± 22 mm, and the mean distance between the GAP and the mastoid process was found to be 60.4 ± 13.76 mm. The ratio of the GAP location to the total SCM length ranged between 0.33-0.57. The mean distance between the angle of the mandible and the GAP was determined to be 57 ± 22.2 mm. Based on the midpoint of the SCM, the GAP was above it in 66.7 % of subjects and classified to Type A, and below it in 33.3 % of subjects appointed to Type B. The anatomical landmarks utilized in this study are helpful in predicting the location of the GAP relative to the midpoint of the SCM and can reduce neural injuries within the posterior triangle of the neck.
Alidousti, Hamidreza; Taylor, Mark; Bressloff, Neil W
2014-04-01
In total hip replacement (THR), wear particles play a significant role in osteolysis and have been observed in locations as remote as the tip of femoral stem. However, there is no clear understanding of the factors and mechanisms causing, or contributing to particle migration to the periprosthetic tissue. Interfacial gaps provide a route for particle laden joint fluid to transport wear particles to the periprosthetic tissue and cause osteolysis. It is likely that capsular pressure, gap dimensions and micromotion of the gap during cyclic loading of an implant, play defining roles to facilitate particle migration. In order to obtain a better understanding of the above mechanisms and factors, transient two-dimensional computational fluid dynamic simulations have been performed for the flow in the lateral side of a cementless stem-femur system including the joint capsule, a gap in communication with the capsule and the surrounding bone. A discrete phase model to describe particle motion has been employed. Key findings from these simulations include: (1) Particles were shown to enter the periprosthetic tissue along the entire length of the gap but with higher concentrations at both proximal and distal ends of the gap and a maximum rate of particle accumulation in the distal regions. (2) High capsular pressure, rather than gap micromotion, has been shown to be the main driving force for particle migration to periprosthetic tissue. (3) Implant micromotion was shown to pump out rather than draw in particles to the interfacial gaps. (4) Particle concentrations are consistent with known distributions of (i) focal osteolysis at the distal end of the gap and (ii) linear osteolysis along the entire gap length. Copyright © 2014 Elsevier Ltd. All rights reserved.
Severe short stature due to 3-M syndrome with a novel OBSL1 gene mutation.
Demir, Korcan; Altıncık, Ayça; Böber, Ece
2013-01-01
3-M syndrome is an underdiagnosed autosomal recessive disorder characterized by severe pre- and postnatal growth retardation with minimal dysmorphic features and distinguishing radiological findings. We report a patient who was first admitted at 7.5 years of age. He was born to consanguineous parents with a birth weight of 2250 g. Physical examination revealed a severe short stature (height, 95 cm; SD score -5.64) and minimal dysmorphic features. Biochemistry, endocrine work-up, and karyotype were normal. Reevaluation at 16.5 years of age revealed a height of 128.5 cm (SD score -5.27), prominent forehead, anteverted nasal openings, fleshy nasal tip, full lips, malar hypoplasia, hyperlordosis, prominent heels, testicular volumes 8-10 mL, and pubic hair consistent with Tanner stage II. Growth hormone trial for a year resulted in inadequate height gain (3 cm). The diagnosis of 3-M syndrome was made upon typical findings (thin long bones with diaphyseal narrowing and tall lumbar vertebrae) in a recent skeletal survey. Genetic analysis disclosed a homozygote frame shift mutation in exon 2: c.457_458delinsT resulting in p.Gly153fs.
Mottyll, Stephan; Skoda, Romuald
2016-07-01
As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the stationary specimen is rather unfrequently stressed at the end of each subharmonic oscillation cycle by the violent collapse of the complete cavity. Copyright © 2016 Elsevier B.V. All rights reserved.
Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates
NASA Astrophysics Data System (ADS)
Oudich, Mourad; Senesi, Matteo; Assouar, M. Badreddine; Ruzenne, Massimo; Sun, Jia-Hong; Vincent, Brice; Hou, Zhilin; Wu, Tsung-Tsong
2011-10-01
We provide experimental evidence of the existence of a locally resonant sonic band gap in a two-dimensional stubbed plate. Structures consisting of a periodic arrangement of silicone rubber stubs deposited on a thin aluminium plate were fabricated and characterized. Brillouin spectroscopy analysis is carried out to determine the elastic constants of the used rubber. The constants are then implemented in an efficient finite-element model that predicts the band structure and transmission to identify the theoretical band gap. We measure a complete sonic band gap for the out-of-plane Lamb wave modes propagating in various samples fabricated with different stub heights. Frequency domain measurements of full wave field and transmission are performed through a scanning laser Doppler vibrometer. A complete band gap from 1.9 to 2.6 kHz is showed using a sample with 6-mm stub diameter, 5-mm thickness, and 1-cm structure periodicity. Very good agreement between numerical and experimental results is obtained.
1988-07-01
present. Avian fauna included water- fowi in relatively small numbers. Tiese were heronries, like those known from Reelfoot Lake , Tennessee during...Alligator, Commerce-Caruthersville, Lilbourn-Dundee, and Tip- ronville- Reelfoot (Tanderich and Reagan, 1973). 6 Soils of the Sharkey-Alligator...parts of the terraces and have clayey tex- tures. 7 The Tipton- Reelfoot association is represented by deep, moderately well and somewhat poorly-drained
ERIC Educational Resources Information Center
Center for the Future of Teaching and Learning, 2010
2010-01-01
The issue of improving educational outcomes for children and youth in foster care is receiving some long-overdue attention, but the voices of classroom teachers have not been prominent in the discussions so far. To help fill this gap, a team from the Center for the Future of Teaching and Learning and funded by the Stuart Foundation convened six…
Combining nanofluidics and plasmonics for single molecule detection
NASA Astrophysics Data System (ADS)
West, Melanie M.
Single molecule detection is limited by the small scattering cross-section of molecules which leads to weak optical signals that can be obscured by background noise. The combination of plasmonics and nanofluidics in an integrated nano-device has the potential to provide the signal enhancement necessary for the detection of single molecules. The purpose of this investigation was to optimize the fabrication of an optofluidic device that integrates a nanochannel with a plasmonic bowtie antenna. The fluidic structure of the device was fabricated using UV-nanoimprint lithography, and the gold plasmonic antennas were fabricated using a shadow evaporation and lift-off process. The effect of electron beam lithography doses on the resolution of antenna-nanochannel configurations was studied to minimize antenna gap size while maintaining the integrity of the imprinted features. The smallest antenna gap size that was achieved was 46 nm. The antennas were characterized using dark field spectroscopy to find the resonance shift, which indicated the appropriate range for optical signal enhancement. The dark field scattering results showed antennas with a broad and well-defined resonance shift that ranged from 650--800 nm. The Raman scattering results showed the highest enhancement factor (EF = 2) for antennas with an "inverted configuration," which involved having the triangles of the antenna facing back-to-back rather than the more conventional tip-to-tip bowtie arrangement.
Study on atomization and combustion characteristics of LOX/methane pintle injectors
NASA Astrophysics Data System (ADS)
Fang, Xin-xin; Shen, Chi-bing
2017-07-01
Influences of main structural parameters of the LOX/methane pintle injectors on atomization cone angles and combustion performances were studied by experiments and numerical simulation respectively. In addition, improvement was brought up to the structure of the pintle injectors and combustion flow fields of two different pintle engines were obtained. The results indicate that, with increase of the gas-liquid mass flow ratio, the atomization cone angle decreases. In the condition of the same gas-liquid mass flow ratio, as the thickness of the LOX-injection gap grows bigger, the atomization cone angle becomes smaller. In the opposite, when the half cone angle of the LOX-injection gap grows bigger, the atomization cone angle becomes bigger. Moreover, owing to the viscous effects of the pintle tip, with increase of the 'skip distance', the atomization cone angle gets larger. Two big recirculation zones in the combustor lead to combustion stability of the pintle engines. When the value of the non-dimensional 'skip distance' is near 1, the combustion efficiency of the pintle engines is the highest. Additionally, pintle engines with LOX injected in quadrangular slots can acquire better mixing efficiency of the propellants and higher combustion efficiency as the gas methane can pass through the adjacent slots. However, the annular-channel type of pintle injectors has an 'enclosed' area near the pintle tip which has a great negative influence on the combustion efficiency.
Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth
Zheng, Xin-De; Lee, Raymond Teck Ho; Wang, Yan-Ming; Lin, Qi-Shan; Wang, Yue
2007-01-01
Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyperphosphorylation. Using the analog-sensitive Cdc28as mutant, we confirmed that Cdc28 controls Rga2 phosphorylation in vitro and in vivo. Deleting RGA2 produced elongated yeast cells without apparent effect on hyphal morphogenesis. However, deleting it or inactivating its GAP activity restored hyphal growth in hgc1Δ mutants, suggesting that Rga2 represses hyphal development and Cdc28/Hgc1 inactivates it upon hyphal induction. We provide evidence that Cdc28/Hgc1 may act to prevent Rga2 from localizing to hyphal tips, leading to localized Cdc42 activation for hyphal extension. Rga2 also undergoes transient Cdc28-dependent hyperphosphorylation at bud emergence, suggesting that regulating a GAP(s) of Cdc42 by CDKs may play an important role in governing different forms of polarized morphogenesis in yeast. This study reveals a direct molecular link between CDKs and the polarity machinery. PMID:17673907
Tajika, Tsuyoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Okura, Chisa; Kanazawa, Saeko; Nagai, Ayako; Takagishi, Kenji
2015-03-01
Grip and pinch strength are crucially important attributes and standard parameters related to the functional integrity of the hand. It seems significant to investigate normative data for grip and pinch strength of baseball players to evaluate their performance and condition. Nevertheless, few reports have explained the association between grip and pinch strength and anthropometric variables and types of pitch throwing for baseball pitchers. The aim of this study was to measure and evaluate clinical normative data for grip and tip, key, palmar pinch strength and to assess the relationship between these data and anthropometric variables and types of pitch throwing among Japanese high-school baseball pitchers. One hundred-thirty three healthy high school baseball pitchers were examined and had completed a self-administered questionnaire including items related to age, hand dominance, throwing ratio of type of pitch. A digital dynamometer was used to measure grip strength and a pinch gauge to measure tip, key and palmer pinch in both dominant and nondominant side. Body composition was measured by the multi frequency segmental body composition analyzer. Grip strength and tip and palmer pinch strength in dominant side were statistically greater than them in nondominant side (P < 0.05). There were significant associations between grip strength and height (r = 0.33, P < 0.001), body mass (r = 0.50, P < 0.001), BMI (r = 0.37, P < 0.001), muscle mass of upper extremity (r = 0.56, P < 0.001), fat free mass (r = 0.57, P < 0.001), fat mass (r = 0.22, P < 0.05) in dominant side. A stepwise multiple regression analysis revealed that fat free mass and tip, palmer, key pinch strength were predictors of grip strength in dominant side. No statistical significant correlations were found between the throwing ratio of types of pitches thrown and grip strength and tip, key, palmar pinch strength. Our result provides normative values and evidences for grip and pinch strengths in high school baseball pitchers.
NASA Technical Reports Server (NTRS)
Gray, Robin B.
1960-01-01
Hovering and steady low-speed forward-flight tests were run on a 4-foot-diameter rotor at a ground height of 1 rotor radius. The two blades had a 2 to 1 taper ratio and were mounted in a see-saw hub. The solidity ratio was 0.05. Measurements were made of the rotor rpm, collective pitch, and forward-flight velocity. Smoke was introduced into the tip vortex and the resulting vortex pattern was photographed from two positions. Using the data obtained from these photographs, wire models of the tip vortex configurations were constructed and the distribution of the normal component of induced velocity at the blade feathering axis that is associated with these tip vortex configurations was experimentally determined at 450 increments in azimuth position from this electromagnetic analog. Three steady-state conditions were analyzed. The first was hovering flight; the second, a flight velocity just under the wake "tuck under" speed; and the third, a flight velocity just above this speed. These corresponded to advance ratios of 0, 0.022, and 0.030 (or ratios of forward velocity to calculated hovering induced velocity of approximately 0, 0.48, and 0.65), respectively, for the model test rotor. Cross sections of the wake at 450 intervals in azimuth angle as determined from the path of the tip vortex are presented graphically for all three cases. The nondimensional normal component of the induced velocity that is associated with the tip vortex as determined by an electromagnetic analog at 450 increments in azimuth position and at the blade feathering axis is presented graphically. It is shown that the mean value of this component of the induced velocity is appreciably less after tuck-under than before. It is concluded that this method yields results of engineering accuracy and is a very useful means of studying vortex fields.
Treatment outcomes of pediatric rhinoplasty: the Asan Medical Center experience.
Bae, Ji Seon; Kim, Eun-Sook; Jang, Yong Ju
2013-10-01
Performing rhinoplasty in children has been an issue of some debate due to concerns about potential harmful effects on nasoseptal growth. However, there is a paucity of evidence describing the outcomes of pediatric rhinoplasty. This study presents our experience of performing this procedure in children of 17 years of age and younger. The study population consisted of 64 Korean children between 4 and 17 years of age who underwent rhinoplasty between May 2003 and August 2011. Forty-six of the patients were boys and 18 were girls with a mean follow-up period of 59 months. The diagnosis of the patients, the extent of the surgical maneuver performed, and the surgical outcomes were reviewed. Subjective satisfaction of the patients was investigated by telephone interview. Surgical outcomes, which were judged by two independent ENT surgeons, were evaluated by comparing preoperative and postoperative photographs. Satisfaction scores were graded using a visual analog scale (from 1 = satisfied, to 4 = dissatisfied). Anthropometric measurements of nasal parameters were performed preoperatively and postoperatively. Rhinoplasty was performed in our patient cohort due to a deviated nose (32.8%), nasal bone fracture (18.8%), flat nose (6.3%), nasal mass (4.7%), hump nose (3.1%), nasal dermoid sinus cyst (1.6%), and additional cosmetic rhinoplasty for planned septoplasty (32.8%). The median patient satisfaction score was 2.09 compared with a median doctor satisfaction score of 1.81. Anthropometric measurements showed statistically significant improvements in nasal tip projection, nasal length, dorsal height, and radix height after rhinoplasty. Seventeen patients (26.6%) experienced esthetic dissatisfaction such as deviation, tip depression, bulbous tip, short nose, and nostril asymmetry. Eight patients (12.5%) experienced postoperative difficulty in nasal breathing, and two patients (3.1%) complained of transient nasal pain after rhinoplasty. Six patients (9.4%) underwent revision surgery, and four patients (6.3%) were seriously considering a revision operation. The outcome analysis in our series reveals that rhinoplasty in children is complicated by a high rate of revision and esthetic dissatisfaction. The results of this study may indicate that surgeons should have a conservative attitude and apply strict indication in selecting pediatric rhinoplasty candidates. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Specificity of learning: why infants fall over a veritable cliff.
Adolph, K E
2000-07-01
Nine-month-old infants were tested at the precipice of safe and risky gaps in the surface of support. Their reaching and avoidance responses were compared in two postures, an experienced sitting posture and a less familiar crawling posture. The babies avoided reaching over risky gaps in the sitting posture but fell into risky gaps while attempting to reach in the crawling posture. This dissociation between developmental changes in posture suggests that (a) each postural milestone represents a different, modularly organized control system and (b) infants' adaptive avoidance responses are based on information about their postural stability relative to the gap size. Moreover, the results belie previous accounts suggesting that avoidance of a disparity in depth of the ground surface depends on general knowledge such as fear of heights, associations between depth information and falling, or knowledge that the body cannot be supported in empty space.
NASA Astrophysics Data System (ADS)
Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.
2018-05-01
A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.
Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE
NASA Astrophysics Data System (ADS)
Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; Keller, C. U.; Kenworthy, M.; Maire, A. L.; Ménard, F.; Mesa, D.; Milli, J.; Min, M.; Pinte, C.; Quanz, S. P.; van Boekel, R.; Bonnefoy, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Girard, J. H. V.; Keppler, M.; Kopytova, T.; Lagrange, A.-M.; Langlois, M.; Rouan, D.; Vigan, A.
2016-11-01
Aims: We studied the well-known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk which may be indicative of disk evolutionary processes such as planet formation. Methods: We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. Results: We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation 270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (≤1 MJup) nascent planets are a possible explanation. Based on data collected at the European Southern Observatory, Chile (ESO Programs 096.C-0248, 096.C-0241, 077.C-0106).
The effects of free stream turbulence on the flow field through a compressor cascade
NASA Astrophysics Data System (ADS)
Muthanna Kolera, Chittiappa
The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1°, a stagger angle of 56.9°, and a solidity of 1.08. The final turning angle of the cascade was 11.8°. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca = 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca = 0.77.
Turbine blade tip and seal clearance excitation forces
NASA Technical Reports Server (NTRS)
Martinez-Sanchez, M.; Jaroux, B.
1992-01-01
Experimental and theoretical work done as Phase 3 of a program sponsored by MSFC to investigate the magnitude, origin, and parametric variations of destabilizing forces which arise in high power turbines due to blade-tip leakage effects are described. The two facilities which were built for this purpose are first described. The larger one is a closed, 2 atm pressurized Freon-12 flow loop in which is installed a 1:1 replica of the SSME first stage hydrogen turbine, which can be driven by the flow, and which generates about 14 KW of power into a load-absorbing DC generator. The smaller facility is used to measure the forces on labyrinth seals of the same type as those used in our turbine tests with a shrouded turbine. The seals can be kinematically whirled and spun (independently), and the inlet swirl can be set to a variety of values. Air is the working fluid (with atmospheric discharge) and the data are real-time pressure distributions in the seal glands. The five different unshrouded turbine configurations were tested with static offsets, plus one with a shroud band and a two-ridge seal. Theoretical models of various degrees of complexity were developed to help interpreting and extrapolating the data. The notion of partial work done by the fluid leaking through the tip gaps was put on a quantitative basis by examining the leakage vortex roll-up dynamics. This was used to obtain a theory of the work loss due to a uniform gap. Perturbation and multiple scale arguments were then used to extend this to the case of an eccentric turbine. This yields an unsteady, 3-D theory which can predict the distribution of the approach flow, and its effect on work defect, cross-forces, pressure patterns, and dynamic damping. The predictions agree qualitatively with the data and exhibit the correct trends, but the cross-forces are generally under-predicted.
NASA Astrophysics Data System (ADS)
García-Alvarez, J. A.; Fernández-Varea, J. M.; Vanin, V. R.; Santos, O. C. B.; Barros, S. F.; Malafronte, A. A.; Rodrigues, C. L.; Martins, M. N.; Koskinas, M. F.; Maidana, N. L.
2017-08-01
We have used the low-energy beam line of the São Paulo Microtron accelerator to study the maximum energy transfer point (tip) of electron-atom bremsstrahlung spectra for C, Al, Te, Ta and Au. Absolute cross sections differential in energy and angle of the emitted photon were measured for various electron kinetic energies between 20 and 100 keV, and photon emission angles of 35◦, 90◦ and 131◦. The bremsstrahlung spectra were collected with three HPGe detectors and their response functions were evaluated analytically. Rutherford backscattering spectrometry allowed us to obtain the thicknesses of the targets with good accuracy. We propose a simple model for the tip region of the bremsstrahlung spectrum emitted at a given angle, whose adjustable parameters are the mean energy of the incident beam and its spread as well as an amplitude. The model was fitted simultaneously to the pulse-height distributions recorded at the three angles, determining the doubly differential cross sections from the corresponding amplitudes. The measured values have uncertainties between 3% and 13%. The agreement of the experimental results with the theoretical partial-wave calculations of Pratt and co-workers depends on the analyzed element and angle but is generally satisfactory. In the case of Al and Au, the uncertainty attributed to the theory is probably overestimated.
Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field
NASA Astrophysics Data System (ADS)
Georgi, Alexander; Nemes-Incze, Peter; Carrillo-Bastos, Ramon; Faria, Daiara; Viola Kusminskiy, Silvia; Zhai, Dawei; Schneider, Martin; Subramaniam, Dinesh; Mashoff, Torge; Freitag, Nils M.; Liebmann, Marcus; Pratzer, Marco; Wirtz, Ludger; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Novoselov, Kostya S.; Sandler, Nancy; Morgenstern, Markus
2017-04-01
One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudo-magnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudo-magnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudo-magnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO$_2$ support, as visible by an increased slope of the $I(z)$ curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudo-magnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudo-magnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.
Big and tall: Does a height premium dwarf an obesity penalty in the labor market?
Lee, Wang-Sheng
2017-11-01
Previous studies have shown that both height and weight are associated with wages. However, some gaps in our understanding of the relationship between body size and wages remain. For example, given a height premium and an obesity penalty, due to forces working in opposite directions, the current literature is unable to provide clear answers to questions such as whether a tall obese woman or a short healthy weight woman would earn a higher wage premium. Using Australian data and iso-contour wage curves derived from a semi-parametric wage regression model, this paper illustrates the complex nature of the relationship between height, weight and wages and how the nature of these differences depends on gender and age. As adult height is fixed, a key focus of the paper is illustrating for various height ranges whether there are any wage benefits in the labor market to increasing or decreasing one's weight. For individuals aged 25-54 as a whole, I find that there are strong effects of weight reduction at lower ends of the height distribution for females (between 1.50-1.70m) but not for males (<1.65m). For relatively taller men (>1.85m), a wage premium is found for being overweight. For relatively taller women (>1.72m), no penalty for being overweight is discernible. Copyright © 2017 Elsevier B.V. All rights reserved.
Review of the Transgender Literature: Where Do We Go from Here?
Wanta, Jonathon W; Unger, Cecile A
2017-01-01
Purpose: The "transgender tipping point" has brought transgender social and health issues to the forefront of American culture. However, medical professionals have been lagging in academic research with a transgender-specific focus resulting in significant knowledge gaps in dealing with the care of our transgender patients. The aim of this article is to analyze all published Medline-available transgender-specific articles, identify these knowledge gaps, and direct future research to where it is most needed. Methods: We surveyed all Medline-available articles up to June 2016 using a combination of medical subject headings and keywords in titles and abstracts. Articles meeting inclusion criteria were reviewed, categorized, and analyzed for content and study design. Results: In our review of the literature, we identified 2405 articles published from January 1950 to June 2016 that focused on transgender health, primarily in the fields of surgery, mental health, and endocrinology. Conclusion: Significant knowledge gaps were found across the subspecialties, and there was a lack of prospective robust research and representation of transgender-specific data in the core medical journals. More data and research are needed to bridge the knowledge gaps that currently exist and improve the care of the transgender community.
Review of the Transgender Literature: Where Do We Go from Here?
Wanta, Jonathon W.; Unger, Cecile A.
2017-01-01
Abstract Purpose: The “transgender tipping point” has brought transgender social and health issues to the forefront of American culture. However, medical professionals have been lagging in academic research with a transgender-specific focus resulting in significant knowledge gaps in dealing with the care of our transgender patients. The aim of this article is to analyze all published Medline-available transgender-specific articles, identify these knowledge gaps, and direct future research to where it is most needed. Methods: We surveyed all Medline-available articles up to June 2016 using a combination of medical subject headings and keywords in titles and abstracts. Articles meeting inclusion criteria were reviewed, categorized, and analyzed for content and study design. Results: In our review of the literature, we identified 2405 articles published from January 1950 to June 2016 that focused on transgender health, primarily in the fields of surgery, mental health, and endocrinology. Conclusion: Significant knowledge gaps were found across the subspecialties, and there was a lack of prospective robust research and representation of transgender-specific data in the core medical journals. More data and research are needed to bridge the knowledge gaps that currently exist and improve the care of the transgender community. PMID:29082332
Near-tip-screenout hydraulic fracturing of oil wells in the Bach Ho field, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, L.V.; San, N.T.; Shelomentsev, A.G.
1995-10-01
The first hydraulic fracturing of wells in Vietnam were successfully performed Offshore in the Bach Ho (White Tiger) Oil Field. Near-tip-screenouts rather than tip-screenout treatments were performed. The goal of the project was to improve production from existing wells rather than drill new wells and reduce the cost per barrel produced. This case study involves wells with multiple perforated zones completed in the Oligocene sandstone. Zones were selectively fractured in order to optimize production. A detailed description candidate selection, design, execution and evaluation processes are presented. The Bach Ho field has been producing for 8 years but not at itsmore » potential due to various reasons including drilling and completion fluid damage. Although acidizing was an option for damage removal, hydraulic fracturing was selected as a way to bypass near-wellbore damage and generate a negative skin. Production simulators were used to quantify post-frac production. Due to suspected high closure stress, high strength proppant was selected and ramped in a high temperature fracturing fluid. Calibration treatments were conducted on several wells to quantify fluid leak-off, fracture height and Young`s modulus. Based on the results of the calibration treatment, fracture designs were modified. As predicted by computer simulation, near-tip-screenouts occurred as planned. The treatments were performed using a work boat with skid pumping/blending equipment, a computer monitoring/operation center and a laboratory. Strict QC procedures were followed to ensure the quality of all products. Post-frac well tests results and production data are presented. Overall, the fracturing campaign was very successful with wells showing negative skins and up to a five fold increase of production in agreement with systems analysis predictions.« less
NASA Astrophysics Data System (ADS)
Klimenko, Vladimir; Klimenko, Maxim; Bessarab, Fedor; Korenkov, Yurij; Karpov, Ivan
The Sudden Stratospheric Warming (SSW) is a large-scale phenomenon, which response is detected in the mesosphere, thermosphere and ionosphere. SSW ionospheric effects are studied using multi-instrumental satellites and by ground-based measurements. We report a brief overview of the observational and theoretical results of the global ionospheric response and its formation mechanisms during Sudden Stratospheric Warming. We also present the results of our investigation of thermosphere-ionosphere response to the SSW obtained within the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP). The SSW effects were modeled by specifying various boundary conditions at the height of 80 km in the GSM TIP model: (1) by setting the stationary perturbations s = 1 of the temperature and density at high latitudes; (2) by setting the global distribution of the neutral atmosphere parameters, calculated in the TIME-GCM and CCM SOCOL models for the conditions of the SSW 2009 event. It has been shown that the selected low boundary conditions do not allow to fully reproduce the observed variation in the ionospheric parameters during SSW 2009 event. Based on observations of the velocity of vertical plasma drift obtained by the incoherent scatter radar at Jicamarca, we introduced additional electric potential in the GSM TIP model, which allowed us to reproduce the zonal electric field (ÉB vertical plasma drift) and the observed SSW effects in the low-latitude ionosphere. Furthermore, we tried to reproduce the SSW ionospheric effects by including internal gravity waves in the high-latitude mesosphere. We discuss the model calculation results and possible reasons for model/data disagreements and give the proposals for further investigations. This work was supported by RFBR Grants No.12-05-31217 and No.14-05-00578.
Quantifying Tip-Sample Interactions in Vacuum Using Cantilever-Based Sensors: An Analysis
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur E.; Zhou, Chao; Altman, Eric I.; Schwarz, Udo D.
2018-04-01
Atomic force microscopy is an analytical characterization method that is able to image a sample's surface topography at high resolution while simultaneously probing a variety of different sample properties. Such properties include tip-sample interactions, the local measurement of which has gained much popularity in recent years. To this end, either the oscillation frequency or the oscillation amplitude and phase of the vibrating force-sensing cantilever are recorded as a function of tip-sample distance and subsequently converted into quantitative values for the force or interaction potential. Here, we theoretically and experimentally show that the force law obtained from such data acquired under vacuum conditions using the most commonly applied methods may deviate more than previously assumed from the actual interaction when the oscillation amplitude of the probe is of the order of the decay length of the force near the surface, which may result in a non-negligible error if correct absolute values are of importance. Caused by approximations made in the development of the mathematical reconstruction procedures, the related inaccuracies can be effectively suppressed by using oscillation amplitudes sufficiently larger than the decay length. To facilitate efficient data acquisition, we propose a technique that includes modulating the drive amplitude at a constant height from the surface while monitoring the oscillation amplitude and phase. Ultimately, such an amplitude-sweep-based force spectroscopy enables shorter data acquisition times and increased accuracy for quantitative chemical characterization compared to standard approaches that vary the tip-sample distance. An additional advantage is that since no feedback loop is active while executing the amplitude sweep, the force can be consistently recovered deep into the repulsive regime.
Calvo-Alvarado, J C; McDowell, N G; Waring, R H
2008-11-01
We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.
Near-field phase-change recording using a GaN laser diode
NASA Astrophysics Data System (ADS)
Kishima, Koichiro; Ichimura, Isao; Yamamoto, Kenji; Osato, Kiyoshi; Kuroda, Yuji; Iida, Atsushi; Saito, Kimihiro
2000-09-01
We developed a 1.5-Numerical-Aperture optical setup using a GaN blue-violet laser diode. We used a 1.0 mm-diameter super-hemispherical solid immersion lens, and optimized a phase-change disk structure including the cover layer by the method of MTF simulation. The disk surface was polished by tape burnishing technique. An eye-pattern of (1-7)-coded data at the linear density of 80 nm/bit was demonstrated on the phase-change disk below a 50 nm gap height, which was realized through our air-gap servo mechanism.
Spin-resolved conductance of Dirac electrons through multibarrier arrays
NASA Astrophysics Data System (ADS)
Dahal, Dipendra; Gumbs, Godfrey; Iurov, Andrii
We use a transfer matrix method to calculate the transmission coefficient of Dirac electrons through an arbitrary number of square potential barrier in gapped monolayer graphene(MLG) and bilayer graphene (BLG). The widths of barriers may not be chosen equal. The shift in the angle of incidence and the width of the barrier required for resonance are investigated numerically for both MLG and BLG. We compare the effects due to energy gap on these two transmission coefficient for each of these two structures (MLG and BLG). We present our results as functions of barrier width, height as well as incoming electron energy as well as band gap and examine the conditions for which perfect reflection or transmission occurs. Our transmission data are further used to calculate conductivity.
36 CFR § 1192.23 - Mobility aid accessibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... at vehicle floor height with the inner barrier (if applicable) down or retracted, gaps between the.... Such space shall adjoin, and may overlap, an access path. Not more than 6 inches of the required clear floor space may be accommodated for footrests under another seat provided there is a minimum of 9 inches...
36 CFR 1192.23 - Mobility aid accessibility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at vehicle floor height with the inner barrier (if applicable) down or retracted, gaps between the.... Such space shall adjoin, and may overlap, an access path. Not more than 6 inches of the required clear floor space may be accommodated for footrests under another seat provided there is a minimum of 9 inches...
36 CFR 1192.23 - Mobility aid accessibility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... at vehicle floor height with the inner barrier (if applicable) down or retracted, gaps between the.... Such space shall adjoin, and may overlap, an access path. Not more than 6 inches of the required clear floor space may be accommodated for footrests under another seat provided there is a minimum of 9 inches...
Avoidance of Heights on the Visual Cliff in Newly Walking Infants
ERIC Educational Resources Information Center
Witherington, David C.; Campos, Joseph J.; Anderson, David I.; Lejeune, Laure; Seah, Eileen
2005-01-01
Work with infants on the "visual cliff" links avoidance of drop-offs to experience with self-produced locomotion. Adolph's (2002) research on infants' perception of slope and gap traversability suggests that learning to avoid falling down is highly specific to the postural context in which it occurs. Infants, for example, who have…
NASA Astrophysics Data System (ADS)
Basith, Abdul; Prakoso, Yudhono; Kongko, Widjo
2017-07-01
A tsunami model using high resolution geometric data is indispensable in efforts to tsunami mitigation, especially in tsunami prone areas. It is one of the factors that affect the accuracy results of numerical modeling of tsunami. Sadeng Port is a new infrastructure in the Southern Coast of Java which could potentially hit by massive tsunami from seismic gap. This paper discusses validation and error estimation of tsunami model created using high resolution geometric data in Sadeng Port. Tsunami model validation uses the height wave of Tsunami Pangandaran 2006 recorded by Tide Gauge of Sadeng. Tsunami model will be used to accommodate the tsunami numerical modeling involves the parameters of earthquake-tsunami which is derived from the seismic gap. The validation results using t-test (student) shows that the height of the tsunami modeling results and observation in Tide Gauge of Sadeng are considered statistically equal at 95% confidence level and the value of the RMSE and NRMSE are 0.428 m and 22.12%, while the differences of tsunami wave travel time is 12 minutes.
Development and performance evaluation of an MR squeeze-mode damper
NASA Astrophysics Data System (ADS)
Sapiński, Bogdan; Gołdasz, Janusz
2015-11-01
In this paper the authors present results of a magnetorheological (MR) damper prototype development and performance evaluation study. The damper is a device functioning in the so-called squeeze-mode of MR fluid flow regime of operation. By principle, in a squeeze-mode damper the control (working) gap height varies according to the prescribed displacement or force input profile. Such hardware has been claimed to be well suited to small-amplitude vibration damping applications. However, it is still in its infancy. Its potential seems appealing yet unclear. Accordingly, the authors reveal performance figures of the damper complemented by numerical finite-element simulations of the electro-magnetic circuit of the device. The numerical results are presented in the form of maps of averaged magnetic flux density versus coil current and gap height as well as magnetic flux, inductance, and cogging force calculations, respectively. The simulated data are followed by experimental evaluation of the damper performance incorporating plots of force versus piston displacement (velocity) across a prescribed range of excitation inputs. Moreover, some insight into transient (unsteady) characteristics of the device is provided through testing results involving transient currents.
NASA Astrophysics Data System (ADS)
Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.
2016-05-01
A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.
Numerical study on xenon positive column discharges of mercury-free lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Jiting; He, Feng; Miao, Jinsong
2007-02-15
In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less
NASA Astrophysics Data System (ADS)
Chauhan, Sudakar Singh; Sharma, Neha
2017-12-01
This paper proposes hetero-junctionless double gate tunnel field effect transistor (HJLDG-TFETs) for suppression of subthreshold swing (SS) using an InAs compound semiconductor material. The proposed device with high dielectric material, gives an excellent performance when InAs uses at source side. Because of low band gap of 0.36 eV , it reduces the potential barrier height of source channel interface causing higher band to band tunneling. Whereas, Si at the drain side with higher band gap of 1.12 eV , increasing the barrier height of drain channel interface causing lower quantum tunneling. As a result, the proposed device with high-k (HfO2) at 30 nm channel section provides a tremendous characteristics with high ION /IOFF ratio of 2 ×1011 , a point SS of 43.30 mV / decade and moderate SS of 56.75 mV / decade . All the above results show that the proposed device is assured for a low power switching application. The variation in gate supply voltage also analyzed for transconductance property of the device.
How empty are disk gaps opened by giant planets?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, Jeffrey; Shi, Ji-Ming; Chiang, Eugene, E-mail: fung@astro.utoronto.ca
2014-02-20
Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong co-rotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, Σ{sub gap}, depends on planet-to-star mass ratio q, Shakura-Sunyaev viscosity parameter α, and disk height-to-radius aspect ratio h/r. Our results are derived from our new graphics processing unit accelerated Lagrangian hydrodynamical code PEnGUIn and aremore » verified by independent simulations with ZEUS90. For Jupiter-like planets, we find Σ{sub gap}∝q {sup –2.2}α{sup 1.4}(h/r){sup 6.6}, and for near brown dwarf masses, Σ{sub gap}∝q {sup –1}α{sup 1.3}(h/r){sup 6.1}. Surface density contrasts inside and outside gaps can be as large as 10{sup 4}, even when the planet does not accrete. We derive a simple analytic scaling, Σ{sub gap}∝q {sup –2}α{sup 1}(h/r){sup 5}, that compares reasonably well to empirical results, especially at low Neptune-like masses, and use discrepancies to highlight areas for progress.« less
Use of high temperature insulation for ceramic matrix composites in gas turbines
Morrison, Jay Alan; Merrill, Gary Brian; Ludeman, Evan McNeil; Lane, Jay Edgar
2001-01-01
A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.
Enhanced superconductivity at the interface of W/Sr2RuO4 point contact
NASA Astrophysics Data System (ADS)
Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.
Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.
Applicability of Generalized Peek's Law to Scaling of Corona Onset Voltages in Electropositive Gases
NASA Astrophysics Data System (ADS)
Li, Yan-Ming
2008-10-01
We have developed the steady state positive corona model with the ionization zone physics in the point-plane configuration. The geometry is axisymmetric, consisting of a pointed anode of small tip radius and a planar cathode. The model solves the Poisson equation, drift dominated electron and the positive ion transport equations with the nonlinear Townsend ionization source terms, to give the complete electric field, electron and positive ion density distributions. The corona plasma properties can be determined as function of discharge current, ranging from the pico-ampere up to a milli-ampere. The calculated voltage-current characteristics obeyed the Townsend equation, agreeing with the general experimental observations. The model is applied to different electropositive gases, argon, xenon, nitrogen and mercury. Corona onset potentials are determined based on the discharge voltages at very low currents. Extensive parametric study for argon positive corona with varying anode tip radius, gap distance and gas pressure has been completed. All the simulated corona onset voltages are very well described by the generalized Peek's Law [1]. At sufficiently high current in the range of 0.1 mA, discharge filament is formed near the anode tip. [1] Peek F. W., Dielectric Phenomena in High Voltage Engineering, McGraw Hill, New York (1929).
Hughes, Louise; Towers, Katie; Starborg, Tobias; Gull, Keith; Vaughan, Sue
2013-12-15
Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.
Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2017-11-01
Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Testing of lift/cruise fan exhaust deflector. [for a tip turbine lift fan in short takeoff aircraft
NASA Technical Reports Server (NTRS)
Schlundt, D. W.
1975-01-01
A lift/cruise exhaust deflector system for the LF336/A tip turbine lift fan was designed, built, and tested to determine the design and performance characteristics of a large-scale, single swivel nozzle thrust vectoring system. The exhaust deflector static testing was performed at the Ames Research Center outside static test stand facilities. The test hardware was installed on a hydraulic lift platform to permit both in and out of ground effect testing. The exhaust flow of the LF336/A lift fan was vectored from 0 degrees through 130 degrees during selected fan speeds to obtain performance at different operating conditions. The system was operated with and without flow vanes installed in the small radius bends to evaluate the system performance based on a proposed method of improving the internal flow losses. The program also included testing at different ground heights, to the nozzle exhaust plane, to obtain ground effect data, and the testing of two methods of thrust spoiling using a duct bypass door system and nozzle flap system.
Friction measurements on InAs NWs by AFM manipulation
NASA Astrophysics Data System (ADS)
Pettersson, Hakan; Conache, Gabriela; Gray, Struan; Bordag, Michael; Ribayrol, Aline; Froberg, Linus; Samuelson, Lars; Montelius, Lars
2008-03-01
We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.
Residual Life and Strength Predictions and Life-Enhancement of Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, H.; Atluri, S.N.
1998-09-01
In this paper, a method to quantitatively evaluate the T{sub {var_epsilon}}* integral directly from the measured near-tip displacement field for laboratory specimens made of metallic materials, is presented. This is the first time that such an attempt became a success. In order to develop the procedure, we carefully examine the nature of T{sub {var_epsilon}}* Hence, the nature of T{sub {var_epsilon}}* is further revealed. Following Okada and Atluri (1997), the relationship between energy balance statements for a cracked plate and the T{sub {var_epsilon}}* is discussed. It is concluded that T{sub {var_epsilon}}* quantifies the deformation energy dissipated near crack tip region [anmore » elongating strip of height e] per unit crack extension. In the evaluation of T{sub {var_epsilon}}* integral directly from measured displacement field, the use of deformation theory plasticity (J2-D theory) and the truncation of the near crack integral path on the experimental studies of Omori et el. (1995) are presented, and these show a good agreement with the results of finite element analysis.« less
NASA Astrophysics Data System (ADS)
Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R.; Morgenstern, Markus
2017-12-01
We present the design and calibration measurements of a scanning tunneling microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.
Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R; Morgenstern, Markus
2017-12-01
We present the design and calibration measurements of a scanning tunneling microscope setup in a 3 He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pm rms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.
High-displacement spiral piezoelectric actuators
NASA Astrophysics Data System (ADS)
Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.
1999-10-01
A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.
Axial flux machine, stator and fabrication method
Carl, Ralph James
2004-03-16
An axial flux machine comprises: a soft magnetic composite stator extension positioned in parallel with a rotor disk and having slots; soft magnetic composite pole pieces attached to the stator extension and facing a permanent magnet on the rotor disk, each comprising a protrusion situated within a respective one of the slots, each protrusion shaped so as to facilitate orientation of the respective pole piece with respect to the stator extension; electrical coils, each wrapped around a respective one of the pole pieces. In another embodiment the soft magnetic composite pole pieces each comprise a base portion around with the electrical coils are wound and a trapezoidal shield portion a plurality of heights with a first height in a first region being longer than a second height in a second region, the second region being closer to a pole-to-pole gap than the first region.
Destructive examination of shipping package 9975-02644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02644 as part of a comprehensive SRS surveillance program for plutonium material stored in the K-Area Complex (KAC). During the field surveillance inspection of this package in KAC, three non-conforming conditions were noted: the axial gap of 1.389 inch exceeded the 1 inch maximum criterion, the exposed height of the lead shield was greater than the 4.65 inch maximum criterion, and the difference between the upper assembly inside height and the exposed height of the lead shield was less than the 0.425 inch minimum criterion. All threemore » of these observations relate to axial shrinkage of the lower fiberboard assembly. In addition, liquid water (condensation) was observed on the interior of the drum lid, the thermal blanket and the air shield.« less
NASA Astrophysics Data System (ADS)
Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.
On the basis of the Global Self-consistent model of the thermosphere ionosphere and protonosphere GSM TIP developed in WD IZMIRAN the calculations for the quiet geomagnetic conditions of the equinox in the minimum of solar activity are carried out In the calculations the new block of the computation of electric fields in the ionosphere briefly described in COSPAR2006-A-00108 was used Two variants of calculations are executed with the account only the dynamo field generated by the thermosphere winds - completely self-consistent and with use of the model MSIS-90 for the calculation of the composition and temperature of the neutral atmosphere The results of the calculations are compared among themselves The global distributions of the foF2 the latitude behavior of the N e and T e on the near-midnight meridian at two height levels 233 and 626 km the latitude-altitude sections on the near-midnight meridian of the T e and time developments on UT of zonal component of the thermosphere wind and ion temperature at height sim 300 km and foF2 and h m F2 for three longitudinal chains of stations - Brazil Pacific and Indian in a vicinity of geomagnetic equator COSPAR2006-A-00109 calculated in two variants are submitted It is shown that at the self-consistent approach the maxima of the crests of the equatorial ionization anomaly EIA in the foF2 are shifted concerning calculated with the MSIS aside later evening hours The equatorial electron temperature anomaly EETA is formed in both variants of calculations However at the
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
Long-term stability of Cu surface nanotips
NASA Astrophysics Data System (ADS)
Jansson, V.; Baibuz, E.; Djurabekova, F.
2016-07-01
Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the < 110> crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 {{μ }}{{s}} at room temperature. Moreover, the nanotips built up along the < 110> crystallographic directions were found to be significantly more stable than those oriented in the < 100> or < 111> crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp
We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thusmore » activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.« less
Performance and Flowfield Measurements on a 10-inch Ducted Rotor VTOL UAV
NASA Technical Reports Server (NTRS)
Martin, Preston; Tung, Chee
2004-01-01
A ducted fan VTOL UAV with a 10-inch diameter rotor was tested in the US Army 7-by 10-Foot Wind Tunnel. The test conditions covered a range of angle of attack from 0 to 110 degrees to the freestream. The tunnel velocity was varied from 0 (simulating a hover condition) to 128 ft/sec in propeller mode. A six-component internal balance measured the aerodynamic loads for a range of model configurations. including the isolated rotor, the isolated duct, and the full configuration of the duct and rotor. For some conditions, hotwire velocity surveys were conducted along the inner and outer surface of the duct and across the downstream wake. In addition, fluorescent oil flow visualization allowed the flow separation patterns inside and outside of the duct to be mapped for a few test conditions. Two different duct shapes were tested to determine the performance effects of leading edge radius. For each duct, a range of rotor tip gap from 1%R to 4.5%R was tested to determine the performance penalty in hover and axial flight. Measured results are presented in terms of hover performance, hover performance in a crosswind, and high angle of attack performance in propeller mode. In each case, the effects of both tip gap and duct leading edge radius are illustrated using measurements. Some of the hover performance issues were also studied using a simple analytical method, and the results agreed with the measurements.
Trends and Tipping Points of Drought-induced Tree Mortality
NASA Astrophysics Data System (ADS)
Huang, K.; Yi, C.; Wu, D.; Zhou, T.; Zhao, X.; Blanford, W. J.; Wei, S.; Wu, H.; Du, L.
2014-12-01
Drought-induced tree mortality worldwide has been recently reported in a review of the literature by Allen et al. (2010). However, a quantitative relationship between widespread loss of forest from mortality and drought is still a key knowledge gap. Specifically, the field lacks quantitative knowledge of tipping point in trees when coping with water stress, which inhibits the assessments of how climate change affects the forest ecosystem. We investigate the statistical relationships for different (seven) conifer species between Ring Width Index (RWI) and Standardized Precipitation Evapotranspiration Index (SPEI), based on 411 chronologies from the International Tree-Ring Data Bank across 11 states of the western United States. We found robust species-specific relationships between RWI and SPEI for all seven conifer species at dry condition. The regression models show that the RWI decreases with SPEI decreasing (drying) and more than 76% variation of tree growth (RWI) can be explained by the drought index (SPEI). However, when soil water is sufficient (i.e., SPEI>SPEIu), soil water is no longer a restrictive factor for tree growth and, therefore, the RWI shows a weak correlation with SPEI. Based on the statistical models, we derived the tipping point of SPEI (SPEItp) where the RWI equals 0, which means the carbon efflux by tree respiration equals carbon influx by tree photosynthesis. When the severity of drought exceeds this tipping point(i.e. SPEI
Heatfield, B M; Travis, D F
1975-01-01
The fine structure of regenerating tips of spines of the sea urchin Strongylocentrotus purpuratus was investigated. Each conical tip consisted of an inner dermis, which deposits and contains the calcite skeleton, and an external layer of epidermis. Although cell types termed spherulecytes containing large, intracellular membrane bound spherules were also present in spine tissues, only epidermal and dermal cell types lacking such spherules are described in this paper. The epidermis was composed largely of free cells representing several functional types. Over the apical portion of the tip these cells occurred in groups, while proximally they were distributed within longitudinal grooves present along the periphery of the spine from the base to the tip. The terminal portions of apical processes extending from some of the epidermal cells formed a thin, contiguous outer layer consisting of small individual islands of cytoplasm bearing microvilli. Adjacent islands were connected around the periphery by a junctional complex extending roughly 200 A in depth in which the opposing plasma membranes were separated by a narrow gap about 145 A in width bridged by amorphous material. Other epidermal cells were closely associated with the basal lamina, which was 900 A in thickness and delineated the dermoepidermal junction; some of these cells appeared to synthesize the lamina, while others may be sensory nerve cells. The dermis at the spine tip also consisted of several functional types of free cells; the most interesting of these was the calcoblast, which deposits the skeleton. Calcoblasts extended a thin, cytoplasmic skeletal sheath which surrounded the tips and adjacent proximal portions of each of the longitudinally oriented microspines comprising the regenerating skeleton, and distally, formed a conical extracellular channel ahead of the mineralizing tip. The intimate relationship between calcoblasts and the growing mineral surface strongly suggests that these cells directly control both the kinetics of mineral deposition and morphogenesis of the skeleton. Other cell types in the dermis were precalcoblasts and phagocytes. Precalcoblasts may function as fibroblasts and are possible precursors of calcoblasts. Closely associated with the basal lamina at the dermoepidermal junction were extracellular unbanded anchoring fi0rils 150 A to 200 A51 in diameter. Scattered proximally among dermal cells were other extracellular fibrils, presumably collagenous, about 300 A in diameter wit
Transport gap of organic semiconductors in organic modified Schottky contacts
NASA Astrophysics Data System (ADS)
Zahn, Dietrich R. T.; Kampen, Thorsten U.; Méndez, Henry
2003-05-01
Two different organic molecules with similar structure, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and N, N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (DiMe-PTCDI), were used for the modification of Ag Schottky contacts on sulphur passivated GaAs(1 0 0) (S-GaAs). Such diodes were investigated recording in situ current-voltage ( I- V) characteristics. As a function of the PTCDA thickness the effective barrier height of Ag/PTCDA/S-GaAs contacts initially increases from 0.59±0.01 to 0.72±0.01 eV, and then decreases to 0.54±0.01 eV, while only a decrease in barrier height from 0.54±0.01 to 0.45±0.01 eV is observed for DiMe-PTCDI interlayers. The initial increase and decrease in effective barrier height for PTCDA and DiMe-PTCDI respectively, is correlated with the energy level alignment of the lowest unoccupied molecular orbital (LUMO) with respect to the conduction band minimum (CBM) of S-GaAs at the organic/inorganic semiconductor interface. Whilst there is an additional barrier for electrons at the PTCDA/S-GaAs interface of about 150 meV, i.e. the LUMO lies above CBM, the LUMO is aligned or below CBM in the DiMe-PTCDI case. The results also shine light on the important issue of the transport gap in organic semiconductors for which an estimation can be obtained.
Zheng, Kang Keng; Cai, Jianhao; Rong, Shi Song; Peng, Kun; Xia, Honghe; Jin, Chuan; Lu, Xuehui; Liu, Xinyu; Chen, Haoyu; Jhanji, Vishal
2017-07-01
Ocular imaging can enhance our understanding of wound healing. We report anterior segment optical coherence tomography (ASOCT) findings in penetrating corneal injury. Serial ASOCT was performed after repair of penetrating corneal injury. Internal aberrations of wound edges were labeled as "steps" or "gaps" on ASOCT images. The wound type was characterized as: type 1: continuous inner wound edge or step height ≤ 80 µm; type 2: step height > 80 µm; type 3: gap between wound edges; and type 4: intraocular tissue adherent to wound. Surgical outcomes of different wound types were compared. 50 consecutive patients were included (6 females, 44 males; mean age 33 ± 12 years). The average size of wound was 4.2 ± 2.6 mm (type 1, 8 eyes; type 2, 27 eyes; type 3, 12 eyes; type 4, 3 eyes). At the end of 3 months, 70% (n = 35) of the wounds were type 1. At the end of 6 months, all type 1 wounds had healed completely, whereas about half of type 2 (48.1%) and type 3 (50%) wounds had recovered to type 1 configuration. The wound type at baseline affected the height of step (p = 0.047) and corneal thickness at 6 months (p = 0.035). ASOCT is a useful tool for monitoring wound healing in cases with penetrating corneal injury. Majority of the wound edges appose between 3 and 6 months after trauma. In our study, baseline wound configuration affected the healing pattern.
NASA Astrophysics Data System (ADS)
Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.
2017-12-01
Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.
Rainfall interception, and its modeling, in Pine and Eucalypt stands in Portugal
NASA Astrophysics Data System (ADS)
de Coninck, H. L.; Keizer, J. J.; Coelho, C. O. A.; van Dijck, S. J. E.; Jetten, V. G.; Warmerdam, P. M. M.; Ferreira, A. J. D.; Boulet, A. K.
2003-04-01
Within the framework of the EU-funded CLIMED project (ICA3-2000-30005), concerning the water management implications of foreseeable climate and land-use changes in central Portugal and northern Africa, the event-based Limburg Soil Erosion Model (LISEM; www.geog.uu.nl/lisem) is intended to provide further insight into water yields, peak flow and timing under possible future rainfall regimes. In the Portuguese study area, LISEM is being applied to two small (< 1km2) catchments with contrasting land covers, dominated by Pinus pinaster Ait. and Eucalyptus globulus Labill. tree stands, respectively. In LISEM, cumulative interception is modelled using the empirical formula by Ashton (1979), i.e. as a function of vegetation cover and canopy storage capacity, which in turn is estimated from the Leaf Area Index using the Von Hoyningen-Huenes (1981) formula. Besides that the appropriateness of the LISEM interception module for forested areas may be questioned, its (optional) substitution in LISEM by a more process-based model like that of Rutter would be more in line with LISEM’s overall model structure. This study has as main aims to assess the suitability of (1) the Ashton formula and (2) the sparse variants of the Gash and Rutter interception models to model rainfall interception measurements carried out in a Pinus pinaster Ait. stand as well as a Eucalyptus globulus Labill. stand. Unlike in the bulk of published studies on forest interception, the experimental set-up structures the sampling space in below-canopy and gaps. The below-canopy sampling space is further divided into two classes on the basis of dendrometric data from a prior inventory of 20x20 m. The two stands are equipped with 15 below-canopy and 5 gap rainfall collectors, 3 of which are automated tipping-buckets gauges. Stemflow is measured for 10 trees per stand, which includes 2 trees with automated tipping-bucket (0.5 l/tip). Between November 2002 and the present time, 31 rainfall events totaling about 850 mm were recorded. Interestingly, these preliminary results reveal that below-canopy rainfall may exceed gap rainfall. This phenomenon can be explained by non-vertical rainfall, increasing the probability of droplets hitting the tree canopy instead of the forest floor. If further measurements confirm it to occur regularly, the suitability of not only the LISEM interception module but also the sparse Rutter and Gash models will, at least conceptually, be in doubt.
Latitude character and evolution of Gnevyshev gap
NASA Astrophysics Data System (ADS)
Pandey, K. K.; Hiremath, K. M.; Yellaiah, G.
2017-06-01
The time interval, between two highest peaks of the sunspot maximum, during which activity energy substantially absorbed is called Gnevyshev gap. In this study we focus on mysterious evolution of the Gnevyshev gap by analyzing and comparing the integrated (over the whole Sun) characteristics of magnetic field strength of sunspot groups, soft x-ray flares, filaments or prominences and polar faculae. The time latitude distribution of these solar activities from photosphere to coronal height, for the low (≤50°) and high (≥50°) latitudes, shows the way Gnevyshev gap is evolved. The presence of double peak structure is noticed in high latitude (≥50°) activity. During activity maximum the depression (or valley) appearing, in different activity processes, probably due to shifting, spreading, and transfer of energy from higher to lower latitudes with the progress of solar cycle. The morphology of successive lower latitude zones, considering it as a wave pulse, appears to be modified/scattered, by certain degree due to shifting of magnetic energy to empower higher or lower latitudes.
Seedling survival and growth of three forest tree species: The role of spatial heterogeneity
Brian Beckage; James S. Clark
2003-01-01
Spatial heterogeneity in microenvironments may provide unique regeneration niches for trees and may promote forest diversity. We examined how heterogeneity in understory cover, mineral nutrients, and moisture and their interactions with canopy gaps contribute to the coexistence of three common, co-occuring tree species. We measured survival and height growth of 1080...
NASA Astrophysics Data System (ADS)
Eliseev, P. G.; Zakhar'ev, B. N.
1992-10-01
Some important problems concerning the profiling of the potential energy in quantum-well lasers are discussed. The goals being sought are to introduce a relative shift of the levels of localized states, to introduce an energy gap, and to reduce the transmission of barriers without increasing their height.
Extinction threshold for spatial forest dynamics with height structure.
Garcia-Domingo, Josep L; Saldaña, Joan
2011-05-07
We present a pair-approximation model for spatial forest dynamics defined on a regular lattice. The model assumes three possible states for a lattice site: empty (gap site), occupied by an immature tree, and occupied by a mature tree, and considers three nonlinearities in the dynamics associated to the processes of light interference, gap expansion, and recruitment. We obtain an expression of the basic reproduction number R(0) which, in contrast to the one obtained under the mean-field approach, uses information about the spatial arrangement of individuals close to extinction. Moreover, we analyze the corresponding survival-extinction transition of the forest and the spatial correlations among gaps, immature and mature trees close to this critical point. Predictions of the pair-approximation model are compared with those of a cellular automaton. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shah, S; Kim, S Y R; Dubov, A; Schemitsch, E H; Bougherara, H; Zdero, R
2011-09-01
Femoral shaft fractures after total hip arthroplasty (THA) remain a serious problem, since there is no optimal surgical repair method. Virtually all studies that examined surgical repair methods have done so clinically or experimentally. The present study assessed injury patterns computationally by developing three-dimensional (3D) finite element (FE) models that were validated experimentally. The investigation evaluated three different constructs for the fixation of Vancouver B1 periprosthetic femoral shaft fractures following THA. Experimentally, three bone plate repair methods were applied to a synthetic femur with a 5 mm fracture gap near the tip of a total hip implant. Repair methods were identical distal to the fracture gap, but used cables only (construct A), screws only (construct B), or cables plus screws (construct C) proximal to the fracture gap. Specimens were oriented in 15 degrees adduction to simulate the single-legged stance phase of walking, subjected to 1000 N of axial force, and instrumented with strain gauges. Computationally, a linearly elastic and isotropic 3D FE model was developed to mimic experiments. Results showed excellent agreement between experimental and FE strains, yielding a Pearson linearity coefficient, R2, of 0.92 and a slope for the line of best data fit of 1.06. FE-computed axial stiffnesses were 768 N/mm (construct A), 1023 N/mm (construct B), and 1102 N/mm (construct C). FE surfaces stress maps for cortical bone showed Von Mises stresses, excluding peaks, of 0-8 MPa (construct A), 0-15 MPa (construct B), and 0-20 MPa (construct C). Cables absorbed the majority of load, followed by the plates and then the screws. Construct A yielded peak stress at one of the empty holes in the plate. Constructs B and C had similar bone stress patterns, and can achieve optimal fixation.
Background magnetic spectra - Approximately 10 to the -5th to approximately 10 to the 5th Hz
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.; Maclennan, C. G.; Fraser-Smith, A. C.
1990-09-01
The determination of the amplitude and functional form of the geomagnetic fluctuations measured at the Arrival Heights area of the Hut Point Peninsula on Ross Island in June 1986 is presented. The frequency range covered is from approximately 10 to the -5th to approximately 10 to the 5th Hz, with a gap between 0.1 and 10 Hz due to instrumentation limitations. In spite of this gap, it is thought that these magnetic fluctuation spectra, obtained from data acquired simultaneously with two instruments, cover the broadest frequency range to date. Schematic spectra derived from the data obtained are provided.
True Shear Parallel Plate Viscometer
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2010-01-01
This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.
NASA Astrophysics Data System (ADS)
Gabersek, Sasa.; Durran, Dale R.
2004-12-01
Gap winds produced by a uniform airstream flowing over an isolated flat-top ridge cut by a straight narrow gap are investigated by numerical simulation. On the scale of the entire barrier, the proportion of the oncoming flow that passes through the gap is relatively independent of the nondimensional mountain height , even over that range of for which there is the previously documented transition from a “flow over the ridge” regime to a “flow around” regime.The kinematics and dynamics of the gap flow itself were investigated by examining mass and momentum budgets for control volumes at the entrance, central, and exit regions of the gap. These analyses suggest three basic behaviors: the linear regime (small ) in which there is essentially no enhancement of the gap flow; the mountain wave regime ( 1.5) in which vertical mass and momentum fluxes play a crucial role in creating very strong winds near the exit of the gap; and the upstream-blocking regime ( 5) in which lateral convergence generates the strongest winds near the entrance of the gap.Trajectory analysis of the flow in the strongest events, the mountain wave events, confirms the importance of net subsidence in creating high wind speeds. Neglect of vertical motion in applications of Bernoulli's equation to gap flows is shown to lead to unreasonable wind speed predictions whenever the temperature at the gap exit exceeds that at the gap entrance. The distribution of the Bernoulli function on an isentropic surface shows a correspondence between regions of high Bernoulli function and high wind speeds in the gap-exit jet similar to that previously documented for shallow-water flow.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.
2016-06-01
Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.
NASA Astrophysics Data System (ADS)
Luchau, David W.; Sinkevich, Valery G.; Wernsman, Bernard; Mulder, Daniel M.
1996-03-01
A final report on the output power characteristics and capabilities of the TOPAZ II Space Nuclear Power Unit Ya-21u is presented. Results showed that after a total of almost 8,000 hours of system testing in the U.S. and Russia, several emergency cooldowns, and three inadvertent air introductions to the interelectrode gap (IEG) that the TOPAZ II demonstrates the potential for providing reliable power in a space environment. Output power optimizations and system characteristics following a shock and vibration test are shown. These tests were performed using electrical heaters that simulate nuclear fuel heating. This paper will focus primarily on the changes in output power characteristics over the lifetime of Ya-21u. All U.S. testing was conducted at the Thermionic System Evaluation Test (TSET) Facility of the New Mexico Engineering Research Institute (NMERI) as a part of the TOPAZ International Program (TIP). TIP is managed by the Air Force Phillips Laboratory (PL) for the Ballistic Missile Defense Organization (BMDO).
Top 10 Tips for Using Advance Care Planning Codes in Palliative Medicine and Beyond.
Jones, Christopher A; Acevedo, Jean; Bull, Janet; Kamal, Arif H
2016-12-01
Although recommended for all persons with serious illness, advance care planning (ACP) has historically been a charitable clinical service. Inadequate or unreliable provisions for reimbursement, among other barriers, have spurred a gap between the evidence demonstrating the importance of timely ACP and recognition by payers for its delivery. 1 For the first time, healthcare is experiencing a dramatic shift in billing codes that support increased care management and care coordination. ACP, chronic care management, and transitional care management codes are examples of this newer recognition of the value of these types of services. ACP discussions are an integral component of comprehensive, high-quality palliative care delivery. The advent of reimbursement mechanisms to recognize these services has an enormous potential to impact palliative care program sustainability and growth. In this article, we highlight 10 tips to effectively using the new ACP codes reimbursable under Medicare. The importance of documentation, proper billing, and nuances regarding coding is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, Brian James
1994-05-01
Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H 2, O 2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8,more » results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.« less
Top 10 Tips for Using Advance Care Planning Codes in Palliative Medicine and Beyond
Acevedo, Jean; Bull, Janet; Kamal, Arif H.
2016-01-01
Abstract Although recommended for all persons with serious illness, advance care planning (ACP) has historically been a charitable clinical service. Inadequate or unreliable provisions for reimbursement, among other barriers, have spurred a gap between the evidence demonstrating the importance of timely ACP and recognition by payers for its delivery.1 For the first time, healthcare is experiencing a dramatic shift in billing codes that support increased care management and care coordination. ACP, chronic care management, and transitional care management codes are examples of this newer recognition of the value of these types of services. ACP discussions are an integral component of comprehensive, high-quality palliative care delivery. The advent of reimbursement mechanisms to recognize these services has an enormous potential to impact palliative care program sustainability and growth. In this article, we highlight 10 tips to effectively using the new ACP codes reimbursable under Medicare. The importance of documentation, proper billing, and nuances regarding coding is addressed. PMID:27682147
Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator
NASA Astrophysics Data System (ADS)
Spanier, Jonathan E.; Fridkin, Vladimir M.; Rappe, Andrew M.; Akbashev, Andrew R.; Polemi, Alessia; Qi, Yubo; Gu, Zongquan; Young, Steve M.; Hawley, Christopher J.; Imbrenda, Dominic; Xiao, Geoffrey; Bennett-Jackson, Andrew L.; Johnson, Craig L.
2016-09-01
Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley-Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm2) capable of generating a current density of 17 mA cm-2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.
DESIGN ANALYSIS OF RADIAL INFLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.
NASA Astrophysics Data System (ADS)
Pea, M.; Maiolo, L.; Giovine, E.; Rinaldi, A.; Araneo, R.; Notargiacomo, A.
2016-05-01
We report on the conductive-atomic force microscopy (C-AFM) study of metallic layers in order to find the most suitable configuration for electrical characterization of individual ZnO micro-pillars fabricated by focused ion beam (FIB). The electrical resistance between the probe tip and both as deposited and FIB processed metal layers (namely, Cr, Ti, Au and Al) has been investigated. Both chromium and titanium evidenced a non homogenous and non ohmic behaviour, non negligible scanning probe induced anodic oxidation associated to electrical measurements, and after FIB milling they exhibited significantly higher tip-sample resistance. Aluminium had generally a more apparent non conductive behaviour. Conversely, gold films showed very good tip-sample conduction properties being less sensitive to FIB processing than the other investigated metals. We found that a reliable C-AFM electrical characterization of ZnO microstructures obtained by FIB machining is feasible by using a combination of metal films as top contact layer. An Au/Ti bilayer on top of ZnO was capable to sustain the FIB fabrication process and to form a suitable ohmic contact to the semiconductor, allowing for reliable C-AFM measurement. To validate the consistency of this approach, we measured the resistance of ZnO micropillars finding a linear dependence on the pillar height, as expected for an ohmic conductor, and evaluated the resistivity of the material. This procedure has the potential to be downscaled to nanometer size structures by a proper choice of metal films type and thickness.
García-Solís, Pablo; Solís-S, Juan Carlos; García-Gaytán, Ana Cristina; Reyes-Mendoza, Vanessa A; Robles-Osorio, Ludivina; Villarreal-Ríos, Enrique; Leal-García, Luisa; Hernández-Montiel, Hebert Luis
2013-08-01
To estimate median urinary iodine concentration (UIC), and to correlate it with global nutrition indicators and social gap index (SGI) in 50 elementary state schools from 10 municipalities in the State of Queretaro, Mexico. 1,544 students were enrolled and an above of requirements of iodine intake was found (median UIC of 297 µg/L). Iodine status was found as deficient, adequate, more than adequate and excessive in 2, 4, 19 and 25 schools, respectively. Seventy seven percent of table salt samples showed adequate iodine content (20-40 ppm), while 9.6% of the samples had low iodine content (< 15 ppm). Medians of UIC per school were positively correlated with medians of body mass index (BMI) by using the standard deviation score (SDS) (r = 0.47; p < 0.005), height SDS (r = 0.41; p < 0.05), and overweight and obesity prevalence (r = 0.41; p < 0.05). Medians of UIC per school were negatively correlated with stunting prevalence (r = -0.39; p = 005) and social gap index (r = -0.36; p < 0.05). Best multiple regression models showed that BMI SDS and height were significantly related with UIC (p < 0.05). There is coexistence between the two extremes of iodine intake (insufficient and excessive). To our knowledge, the observed positive correlation between UIC and overweight and obesity has not been described before, and could be explained by the availability and consumption of snack food rich in energy and iodized salt.
Engineering biomimetic hair bundle sensors for underwater sensing applications
NASA Astrophysics Data System (ADS)
Kottapalli, Ajay Giri Prakash; Asadnia, Mohsen; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michael
2018-05-01
We present the fabrication of an artificial MEMS hair bundle sensor designed to approximate the structural and functional principles of the flow-sensing bundles found in fish neuromast hair cells. The sensor consists of micro-pillars of graded height connected with piezoelectric nanofiber "tip-links" and encapsulated by a hydrogel cupula-like structure. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. These biomimetic sensors achieve an ultrahigh sensitivity of 0.286 mV/(mm/s) and an extremely low threshold detection limit of 8.24 µm/s. A complete version of this paper has been published [1].
NASA Astrophysics Data System (ADS)
Mai, Wenjie; Zhang, Long; Gu, Yudong; Huang, Shiqing; Zhang, Zongfu; Lao, Changshi; Yang, Peihua; Qiang, Pengfei; Chen, Zhongwei
2012-08-01
With assistance from a nano-manipulator system inside a scanning electron microscope chamber, mechanical and electrical properties of ZnO nanorings were investigated. The change of a fractured nanoring to nearly straight nanobelts was strong evidence to support the previously proposed electrostatic-force-induced self-coiling model, and our computational simulation results indicated the fracture force was 25-30 μN. The contact between a tungsten tip of the manipulator and a ZnO nanoring was confirmed as the Schottky type; therefore, the change of I-V curves of the nanoring under compression was attributed to the Schottky barrier height changes.
Why Are Indian Children So Short? The Role of Birth Order and Son Preference.
Jayachandran, Seema; Pandi, Rohini
2017-09-01
Child stunting in India exceeds that in poorer regions like sub-Saharan Africa. Data on over 168,000 children show that, relative to Africa, India's height disadvantage increases sharply with birth order. We posit that India’s steep birth order gradient is due to favoritism toward eldest sons, which affects parents' fertility decisions and resource allocation across children. We show that, within India, the gradient is steeper for high-son-preference regions and religions. The gradient also varies with sibling gender as predicted. A back-of-the-envelope calculation suggests that India's steeper birth order gradient can explain over one-half of the India-Africa gap in average child height.
Bolla, Eugenio; Muratore, Filippo; Carano, Aldo; Bowman, S Jay
2002-10-01
Maxillary molar distalization is an increasingly popular option for the resolution of Class II malocclusions. This communication describes the effects of one particular molar distalizing appliance, the distal jet, in a sample of 20 consecutively treated and growing subjects (11 females, nine males; mean starting age of 13) and compares these effects with those of similar devices. Pre- and postdistalization cephalometric radiographs and dental models were analyzed to determine the dental and skeletal effects. The distal jet appliances were constructed using a biomechanical couple to direct the distalizing force to the level of the maxillary first molar's center of resistance. The distal jet was the only appliance used during the distalization phase of treatment. Examination of the cephalometric tracings demonstrated that the crowns of the maxillary first molars were distalized an average of 3.2 mm into a Class I molar relationship. In the process, the first molars were tipped distally an average of 3.1 degrees, however, the amount of tipping in each case was influenced by the state of eruption of the second molar. In subjects whose second molars had erupted only to the level of the apical third of the first molar roots, distal tipping was almost twice that seen when the second molar had completed their eruption. Anchorage loss measured at the first premolars averaged 1.3 mm, but the crowns tipped 3.1 degrees distally because of the design of the appliance. The maxillary incisors were proclined an average of 0.6 degrees with minimal effect on the mandibular plane angle and lower facial height. This study suggests that the distal jet appliance effectively moves the maxillary molars distally into a Class I molar relationship with minimal distal tipping, however, some loss of anchorage is to be expected during this process. The distal jet appliance compares favorably with other intraoral distalization devices and with mechanics featuring mandibular protraction for the resolution of patients with Class II, despite the fact that these types of mechanics address different jaws.
Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.
2013-01-01
While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.
Electron tunneling infrared sensor module with integrated control circuitry
NASA Technical Reports Server (NTRS)
Boyadzhyan-Sevak, Vardkes V. (Inventor)
2001-01-01
In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.
The SHEFEX II Thermal Protection System
NASA Astrophysics Data System (ADS)
Bohrk, H.; Elsaber, H.; Weihs, H.
2011-05-01
The SHEFEXII payload tip is ready for flight. Within a period of three years, the experiment has been designed, laid out, parts have been manufactured, mounted and instrumented for the upcoming flight in autumn 2011. The present paper gives an overview over the thermal protection system (TPS) of the SHEFEX II vehicle including the TPS-material, the overall TPS-setup, and detailed informations on the faceted ther- mal protection including the gap seal, the sharp leading edge, the transpiration-cooling experiment AKTIV, and the aerodynamic control surfaces, i.e. canards.