NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1983-01-01
An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.
Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Berry, John D.; Zori, Laith A. J.; Elliott, Joe W.
1996-01-01
An experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to quantify the rotor wake behind a scale model helicopter rotor in forward level flight at one thrust level. The rotor system in this test consisted of a four-bladed fully articulated hub with blades of rectangular planform and an NACA 0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the vortex geometry in the flow in planes parallel and perpendicular to the free-stream flow. Quantitative measurements of wake geometric proper- ties, such as vortex location, vertical skew angle, and vortex particle void radius, were obtained as well as convective velocities for blade tip vortices. Comparisons were made between experimental data and four computational method predictions of experimental tip vortex locations, vortex vertical skew angles, and wake geometries. The results of these comparisons highlight difficulties of accurate wake geometry predictions.
Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1984-01-01
The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.
Kaplan turbine tip vortex cavitation - analysis and prevention
NASA Astrophysics Data System (ADS)
Motycak, L.; Skotak, A.; Kupcik, R.
2012-11-01
The work is focused on one type of Kaplan turbine runner cavitation - a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.
Evaluation of a doubly-swept blade tip for rotorcraft noise reduction
NASA Technical Reports Server (NTRS)
Wake, Brian E.; Egolf, T. Alan
1992-01-01
A computational study was performed for a doubly-swept rotor blade tip to determine its benefit for high-speed impulsive (HSI) and blade-vortex interaction (BVI) noise. This design consists of aft and forward sweep. For the HSI-noise computations, unsteady Euler calculations were performed for several variations to a rotor blade geometry. A doubly-swept planform was predicted to increase the delocalizing Mach number to 0.94 (representative of a 200+ kt helicopter). For the BVI-noise problem, it had been hypothesized that the doubly-swept blade tip, by producing a leading-edge vortex, would reduce the tip-vortex effect on BVI noise. A procedure was used in which the tip vortex velocity profile computed by a Navier-Stokes solver was used to compute the inflow associated with BVI. This inflow was used by a Euler solver to compute the unsteady pressures for an acoustic analysis. The results of this study were inconclusive due to the difficulty in accurately predicting the viscous tip vortex downstream of the blade. Also, for the condition studied, no leading-edge vortex formed at the tip.
Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1983-01-01
Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.
Experimental and analytical studies of a model helicopter rotor in hover
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1981-01-01
A benchmark test to aid the development of various rotor performance codes was conducted. Simultaneous blade pressure measurements and tip vortex surveys were made for a wide range of tip Mach numbers including the transonic flow regime. The measured tip vortex strength and geometry permit effective blade loading predictions when used as input to a prescribed wake lifting surface code. It is also shown that with proper inflow and boundary layer modeling, the supercritical flow regime can be accurately predicted.
Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes
NASA Technical Reports Server (NTRS)
Martin, Preston B.; Leishman, J. Gordon
2003-01-01
This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.
Comparison of calculated and measured model rotor loading and wake geometry
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
The calculated blade bound circulation and wake geometry are compared with measured results for a model helicopter rotor in hover and forward flight. Hover results are presented for rectangular tip and ogee tip planform blades. The correlation is quite good when the measured wake geometry characteristics are used in the analysis. Available prescribed wake geometry models are found to give fair predictions of the loading, but they do not produce a reasonable prediction of the induced power. Forward flight results are presented for twisted and untwisted blades. Fair correlation between measurements and calculations is found for the bound circulation distribution on the advancing side. The tip vortex geometry in the vicinity of the advancing blade in forward flight was predicted well by the free wake calculation used, although the wake geometry did not have a significant influence on the calculated loading and performance for the cases considered.
2015-04-23
blade geometry parameters the TPL design 9 tool was initiated by running the MATLAB script (*.m) Main_SpeedLine_Auto. Main_SpeedLine_Auto...SolidWorks for solid model generation of the blade shapes. Computational Analysis With solid models generated of the gas -path air wedge, automated...287 mm (11.3 in) Constrained by existing TCR geometry Number of Passages 12 None A blade tip-down design approach was used. The outputs of the
Parametric analysis of swept-wing geometry with sheared wing tips
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.
1990-01-01
A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.
NASA Technical Reports Server (NTRS)
Schairer, Edward; Kushner, Laura K.; Heineck, James T.
2013-01-01
Positions of vortices shed by a full-scale UH-60A rotor in forward flight were measured during a test in the National Full- Scale Aerodynamics Complex at NASA Ames Research Center. Vortices in a region near the tip of the advancing blade were visualized from two directions by Retro-Reflective Background-Oriented Schlieren (RBOS). Correspondence of points on the vortex in the RBOS images from both cameras was established using epipolar geometry. The object-space coordinates of the vortices were then calculated from the image-plane coordinates using stereo photogrammetry. One vortex from the tip of the blade that had most recently passed was visible in most of the data. The visibility of the vortices was greatest at high thrust and low advance ratios. At these favorable conditions, vortices from the most recent passages of all four blades were detected. The vortex positions were in good agreement with PIV data for a case where PIV measurements were also made. RBOS and photogrammetry provided measurements of the angle at which each vortex passed through the PIV plane.
Tip vortices in the actuator line model
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2017-11-01
The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1986-01-01
An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Effects of a Forward-swept Front Rotor on the Flowfield of a Counterrotation Propeller
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Podboy, Gary G.
1994-01-01
The effects of a forward-swept front rotor on the flowfield of a counterrotation model propeller at takeoff conditions at zero degree angle of attack are studied by solving the unsteady three-dimensional Euler equations. The configuration considered is an uneven blade count counterrotation model with twelve forward-swept blades on the fore rotor and ten aft-swept blades on the aft rotor. The flowfield is compared with that of a reference aft-swept counterrotation geometry and Laser Doppler Velocimeter (LDV) measurements. At the operating conditions considered, the forward-swept blade experiences a higher tip loading and produces a stronger tip vortex compared to the aft-swept blade, consistent with the LDV and acoustic measurements. Neither the solution nor the LDV data indicated the formation of a leading edge vortex. The predicted radial distribution of the circumferentially averaged axial velocity at the measurement station agreed very closely with LDV data, while crossflow velocities showed poor agreement. The discrepancy between prediction and LDV data of tangential and radial velocities is due in part to the insufficient mesh resolution in the region between the rotors and in the tip region to track the tip vortex. The vortex is diffused by the time it arrives at the measurement station. The uneven blade count configuration requires the solution to be carried out for six blade passages of the fore rotor and five passages of the aft rotor, thus making grid refinement prohibitive.
Flow Field Characteristics of Finite-span Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration
2011-11-01
Past work has shown that humpback whale-like leading edge protuberances can significantly alter the load characteristics of both 2D and finite-span hydrofoils. To understand the mechanisms responsible for observed performance changes, the flow field characteristics of a baseline hydrofoil and models with leading edge protuberances were examined using the Stereo Particle Image Velocimetry (SPIV) technique. The near surface flow field on the hydrofoils was measured along with the tip vortex flow field on finite-span hydrofoils. Angles of attack ranging from 6 to 24 degrees were examined at freestream velocities of 1.8 m/s and 4.5 m/s, corresponding to Reynolds numbers of 180 and 450 thousand, respectively. While Reynolds number does not play a major role in establishing the flow field trends, both the protuberance geometry and spatial proximity to protuberances affect the velocity and vorticity characteristics near the foil surface, and in the wake and tip vortex. Near surface measurements reveal counter-rotating vortices on protuberance shoulders, while tip vortex measurements show that streamwise vorticity can be strongly affected by the presence of protuberances. The observed flow field characteristics will be presented. Sponsored by the ONR-ULI program.
Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method
NASA Astrophysics Data System (ADS)
Lawton, Stephen; Crawford, Curran
2014-06-01
Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Computation of the tip vortex flowfield for advanced aircraft propellers
NASA Technical Reports Server (NTRS)
Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph
1988-01-01
The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).
A Novel Method for Reducing Rotor Blade-Vortex Interaction
NASA Technical Reports Server (NTRS)
Glinka, A. T.
2000-01-01
One of the major hindrances to expansion of the rotorcraft market is the high-amplitude noise they produce, especially during low-speed descent, where blade-vortex interactions frequently occur. In an attempt to reduce the noise levels caused by blade-vortex interactions, the flip-tip rotor blade concept was devised. The flip-tip rotor increases the miss distance between the shed vortices and the rotor blades, reducing BVI noise. The distance is increased by rotating an outboard portion of the rotor tip either up or down depending on the flight condition. The proposed plan for the grant consisted of a computational simulation of the rotor aerodynamics and its wake geometry to determine the effectiveness of the concept, coupled with a series of wind tunnel experiments exploring the value of the device and validating the computer model. The computational model did in fact show that the miss distance could be increased, giving a measure of the effectiveness of the flip-tip rotor. However, the wind experiments were not able to be conducted. Increased outside demand for the 7'x lO' wind tunnel at NASA Ames and low priority at Ames for this project forced numerous postponements of the tests, eventually pushing the tests beyond the life of the grant. A design for the rotor blades to be tested in the wind tunnel was completed and an analysis of the strength of the model blades based on predicted loads, including dynamic forces, was done.
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
NASA Astrophysics Data System (ADS)
Kaneko, Masanao; Tsujita, Hoshio
2015-04-01
In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the interaction with the main flow, and consequently makes the flow in the impeller passage more complex by the interaction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance especially for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.
Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation
NASA Astrophysics Data System (ADS)
Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira
2015-12-01
The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.
Some observations of tip-vortex cavitation
NASA Astrophysics Data System (ADS)
Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.
1991-08-01
Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Elliott, Joe W.
1992-01-01
An experimental investigation was conducted in the 14 by 22 ft subsonic tunnel at NASA Langley Research Center to quantify the rotor wake behind a scale model helicopter rotor in forward flight (mu = 0.15 and 0.23) at one thrust level (C sub T = 0.0064). The rotor system used in the present test consisted of a four-bladed, fully articulated hub and utilized blades of rectangular planform with a NACA-0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the flow in planes parallel and perpendicular to the freestream flow. Quantitative measurements of vortex location, vertical skew angle, and vortex particle void radius were obtained for vortices in the flow; convective velocities were obtained for blade tip vortices. Comparisons were made between the experimental results and the wake geometry generated by computational predictions. The results of these comparisons show that the interaction between wake vortex structures is an important consideration for correctly predicting the wake geometry.
RANS computations of tip vortex cavitation
NASA Astrophysics Data System (ADS)
Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile
2015-12-01
The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.
Numerical simulation of tip vortices of wings in subsonic and transonic flows
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Mccroskey, W. J.; Baeder, J. D.; Edwards, T. A.
1986-01-01
A multi block zonal algorithm which solves the thin-layer Navier-Stokes and the Euler equations is used to numerically simulate the formation and roll-up of the tip vortex in both subsonic and transonic flows. Four test cases which used small and large aspect ratio wings have been considered to examine the influence of the tip-cap shape, the tip planform and the free-stream Mach number. It appears that both the tip-planform and the tip-cap shape have some influence on the formation of the tip vortex, but its subsequent roll-up seems to be more influenced by the tip-planform shape. In general, a good definition of the formation and the roll-up of the tip vortex has been observed for all the cases considered here. Comparions of the numerical results with the limited, available experimental data show good agreement with both the surface pressures and the tip-vortex strength.
Dynamics of Isolated Tip Vortex Cavitation
NASA Astrophysics Data System (ADS)
Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom
2014-11-01
Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.
Numerical study of the trailing vortex of a wing with wing-tip blowing
NASA Technical Reports Server (NTRS)
Lim, Hock-Bin
1994-01-01
Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.
The effect of tip vortex structure on helicopter noise due to blade/vortex interaction
NASA Technical Reports Server (NTRS)
Wolf, T. L.; Widnall, S. E.
1978-01-01
A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.
Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Kao, David L.
2016-01-01
Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization
User's manual for PEPSIG NASA tip vortex version
NASA Technical Reports Server (NTRS)
Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph
1988-01-01
The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. This document is the user's manual. The analysis and a series of test cases are presented in NASA-CR-182179.
Flow structure of vortex-wing interaction
NASA Astrophysics Data System (ADS)
McKenna, Christopher K.
Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.
Interaction of a trailing vortex with an oscillating wing
NASA Astrophysics Data System (ADS)
McKenna, C.; Fishman, G.; Rockwell, D.
2018-01-01
A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.
Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T
2015-10-06
Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.
Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.
2015-01-01
Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147
Numerical Simulation of Tip Vortices of Wings in Subsonic and Transonic Flows,
1986-01-01
roll-up of the tip vor- rv : dimensionless strength of tip vortex " tex in both subsonic and transonic flows. Four test cases which used small and large...of their po- tion and the roll-up of the tip vortex has been observed for tential hazard to aircraft that encounter them in flight. To all the cases...such flows encompassing large air- tip- vortex strength. craft wakes (see for example Refs. 1-2). In spite of this, the present understanding of such
Tip leakage vortex dynamics and inception
NASA Astrophysics Data System (ADS)
Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David
2002-11-01
The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.
On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface
NASA Astrophysics Data System (ADS)
Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.
2000-12-01
The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.
Tip Vortices of Isolated Wings and Helicopter Rotor Blades.
1987-12-01
root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in
Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins
NASA Astrophysics Data System (ADS)
Devoria, Adam C.; Ringuette, Matthew J.
2012-02-01
We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David
2015-01-01
The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.
Investigation of rotor blade tip-vortex aerodynamics
NASA Technical Reports Server (NTRS)
Lewellen, W. S.
1971-01-01
Several aspects of the aerodynamics of rotor blade tip vortices are examined. Two particular categories are dealt with; (1) dynamic loads on a blade passing close to or intersecting a trailing vortex, and (2) the response of the trailing vortex core to changes in the flow. Results for both categories are in reasonable agreement with existing data, although lower pressure gradients were obtained than anticipated for category one. A correlation between trailing edge sweep angle at the tip and vortex core size was noted for category two.
The migration and growth of nuclei in an ideal vortex flow
NASA Astrophysics Data System (ADS)
Zhang, Lingxin; Chen, Linya; Shao, Xueming
2016-12-01
Tip vortex cavitation occurs on ship propellers which can cause significant noise compared to the wet flow. In order to predict the inception of tip vortex cavitation, numerous researches have been investigated about the detailed flow field around the tip. According to informed studies, the inception of tip vortex cavitation is affected by many factors. To understand the effect of water quality on cavitation inception, the motion of nuclei in an ideal vortex flow, i.e., the Rankine vortex flow, was investigated. The one-way coupling point-particle tracking model was employed to simulate the trajectory of nuclei. Meanwhile, Rayleigh-Plesset equation was introduced to describe the growth of nuclei. The results show that the nucleus size has a significant effect on nucleus' trajectory. The capture time of a nucleus is approximately inversely proportional to its radius. The growth of nucleus accelerates its migration in the vortex flow and shortens its capture time, especially for the case of explosive growth.
NASA Technical Reports Server (NTRS)
Cary, Charles M.
1987-01-01
The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.
Large eddy simulation of tip-leakage flow in an axial flow fan
NASA Astrophysics Data System (ADS)
Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung
2016-11-01
An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).
Experiments on tip vortices interacting with downstream wings
NASA Astrophysics Data System (ADS)
Chen, C.; Wang, Z.; Gursul, I.
2018-05-01
The interaction of meandering tip vortices shed from a leading wing with a downstream wing was investigated experimentally in a water tunnel using flow visualization, particle image velocimetry measurements, and volumetric velocity measurements. Counter-rotating upstream vortices may exhibit sudden variations of the vortex core location when the wing-tip separation is within approximately twice the vortex core radius. This is caused by the formation of vortex dipoles near the wing tip. In contrast, co-rotating upstream vortices do not exhibit such sensitivity. Large spanwise displacement of the trajectory due to the image vortex is possible when the incident vortex is further inboard. For both co-rotating and counter-rotating vortices, as long as there is no direct impingement upon the wing, there is a little change in the structure of the time-averaged vortex past the wing, even though the tip vortex shed from the downstream wing may be substantially weakened or strengthened. In the absence of the downstream wing, as well as for weak interactions, the most energetic unsteady modes represent the first helical mode | m| = 1, which is estimated from the three-dimensional Proper Orthogonal Decomposition modes and has a very large wavelength, on the order of 102 times the vortex core radius, λ/ a = O(102). Instantaneous vorticity measurements as well as flow visualization suggest the existence of a smaller wavelength, λ/ a = 5-6, which is not among the most energetic modes. These two-orders of magnitude different wavelengths are in agreement with the previous measurements of tip vortices and also exhibit qualitative agreement with the transient energy growth analysis. The very long wavelength mode in the upstream vortex may persist during the interaction, and reveal coupling with the trailing vortex as well as increased meandering.
Influence of blade tip rounding on tip leakage vortex cavitation of axial flow pump
NASA Astrophysics Data System (ADS)
Wu, S. Q.; Shi, W. D.; Zhang, D. S.; Yao, J.; Cheng, C.
2013-12-01
Tip leakage flow in axial flow pumps is mainly caused by the tip clearance, which is the main cause of tip leakage vortex cavitation and blade tip cavitation erosion. In order to improve tip clearance flow and reduce TLV cavitation, four schemes were adopted to the round blade tip. These are: no tip rounding, one time tip clearance tip rounding, two times tip clearance tip rounding, four times tip clearance tip rounding. Using SST k-ω turbulence model and Zwart cavitation model in CFX software, this simulation obtained four kinds of inner flow field results. The numerical results indicated that with the increase of r*, NPSHc gradually increased and the cavitation performance reduced. However, corner vortex was eliminated so that cavitation in gap was restrained. But TLV vorticity increased and cavitation's range here had a little expansion. Combined with the research of this paper and the different analyses of four schemes, we recommend adopting the two times of the tip clearance rounding.
Effect of inlet ingestion of a wing tip vortex on compressor face flow and turbojet stall margin
NASA Technical Reports Server (NTRS)
Mitchell, G. A.
1975-01-01
A two-dimensional inlet was alternately mated to a coldpipe plug assembly and a J85-GE-13 turbojet engine, and placed in a Mach 0.4 stream so as to ingest the tip vortex of a forward mounted wing. Vortex properties were measured just forward of the inlet and at the compressor face. Results show that ingestion of a wing tip vortex by a turbojet engine can cause a large reduction in engine stall margin. The loss in stall compressor pressure ratio was primarily dependent on vortex location and rotational direction and not on total-pressure distortion.
NASA Astrophysics Data System (ADS)
Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire
2017-11-01
A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Hathaway, Michael; Katz, Joseph
2014-01-01
The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.
Experimental framework to study tip vortex interactions in multirotor wakes
NASA Astrophysics Data System (ADS)
Yao, Rongnan; Araya, Daniel
2017-11-01
We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.
Extended Glauert tip correction to include vortex rollup effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniaci, David; Schmitz, Sven
Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less
Extended Glauert tip correction to include vortex rollup effects
Maniaci, David; Schmitz, Sven
2016-10-03
Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less
Flow visualizations of perpendicular blade vortex interactions
NASA Technical Reports Server (NTRS)
Rife, Michael C.; Davenport, William J.
1992-01-01
Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.
Cavitation and Wake Structure of Unsteady Tip Vortex Flows
1992-12-10
wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex
Interaction of a Vortex with Axial Flow and a Cylindrical Surface
NASA Astrophysics Data System (ADS)
Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.
1998-11-01
The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.
Modeling of Wake-vortex Aircraft Encounters. Appendix B
NASA Technical Reports Server (NTRS)
Smith, Sonya T.
1999-01-01
There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.
Study of tip clearance flow in a turbomachinery cascade using large eddy simulation
NASA Astrophysics Data System (ADS)
You, Donghyun
In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.
Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Wernet, Mark P.
2012-01-01
One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.
Devices that Alter the Tip Vortex of a Rotor
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.; Tung, Chee; Heineck, James T.
2001-01-01
Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.
A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.
2015-01-01
A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.
Effect of tip flange on tip leakage flow of small axial flow fans
NASA Astrophysics Data System (ADS)
Zhang, Li; Jin, Yingzi; Jin, Yuzhen
2014-02-01
Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Moreover, the filtered N-S equations with finite volume method and RNG k-ɛ turbulence model are adopted to carry out the steady simulation calculation of several fans that differ only in tip flange shape and number. The large eddy simulation and the FW-H noise models are adopted to carry out the unsteady numerical calculation and aerodynamic noise prediction. The results of simulation calculation agree roughly with that of tests, which proves the numerical calculation method is feasible.The effects of tip flange shapes and numbers on the blade tip vortex structure and the characteristics are analyzed. The results show that tip flange of the fan has a certain influence on the characteristics of the fan. The maximum efficiencies for the fans with tip flanges are shifted towards partial flow with respect to the design point of the datum fan. Furthermore, the noise characteristics for the fans with tip flanges have become more deteriorated than that for the datum fan. Tip flange contributes to forming tip vortex shedding and the effect of the half-cylinder tip flange on tip vortex shedding is obvious. There is a distinct relationship between the characteristics of the fan and tip vortex shedding. The research results provide the profitable reference for the internal flow mechanism of the performance optimization of small axial flow fans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Punit; Nestmann, Franz
2010-09-15
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less
Aperiodicity Correction for Rotor Tip Vortex Measurements
NASA Technical Reports Server (NTRS)
Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.
2011-01-01
The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.
CERT: Center of Excellence in Rotorcraft Technology
NASA Technical Reports Server (NTRS)
2002-01-01
The research objectives of this effort are to understand the physical processes that influence the formation of the tip vortex of a rotor in advancing flight, and to develop active and passive means of weakening the tip vortex during conditions when strong blade-vortex-interaction effects are expected. A combined experimental, analytical, and computational effort is being employed. Specifically, the following efforts are being pursued: 1. Analytical evaluation and design of combined elastic tailoring and active material actuators applicable to rotor blade tips. 2. Numerical simulations of active and passive tip devices. 3. LDV Measurement of the near and far wake behind rotors in forward flight.
NASA Astrophysics Data System (ADS)
Suder, Kenneth L.; Celestina, Mark L.
1995-06-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Celestina, Mark L.
1995-01-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Technical Reports Server (NTRS)
Rorke, J. B.; Moffett, R. C.
1977-01-01
A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.
NASA Astrophysics Data System (ADS)
Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.
2015-12-01
Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.
The effects of free stream turbulence on the flow field through a compressor cascade
NASA Astrophysics Data System (ADS)
Muthanna Kolera, Chittiappa
The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1°, a stagger angle of 56.9°, and a solidity of 1.08. The final turning angle of the cascade was 11.8°. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca = 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca = 0.77.
Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence
NASA Astrophysics Data System (ADS)
Ghimire, Hari C.; Bailey, Sean C. C.
2018-03-01
Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.
Rotor blade system with reduced blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Leishman, John G. (Inventor); Han, Yong Oun (Inventor)
2005-01-01
A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.
Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.
1985-01-01
The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.
Control of submersible vortex flows
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Donaldson, C. D.
1990-01-01
Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.
Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows
NASA Technical Reports Server (NTRS)
Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.
2015-01-01
This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.
An analysis of blade vortex interaction aerodynamics and acoustics
NASA Technical Reports Server (NTRS)
Lee, D. J.
1985-01-01
The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.
NASA Technical Reports Server (NTRS)
Greenblatt, David
2005-01-01
A wind tunnel investigation was carried out on a semi-span wing model to assess the feasibility of controlling vortices emanating from outboard flaps and tip-flaps by actively varying the degree of boundary layer separation. Separation was varied by means of perturbations produced from segmented zero-efflux oscillatory blowing slots, while estimates of span loadings and vortex sheet strengths were obtained by integrating wing surface pressures. These estimates were used as input to inviscid rollup relations as a means of predicting changes to the vortex characteristics resulting from the perturbations. Surveys of flow in the wake of the outboard and tip-flaps were made using a seven-hole probe, from which the vortex characteristics were directly deduced. Varying the degree of separation had a marked effect on vortex location, strength, tangential velocity, axial velocity and size for both outboard and tip-flaps. Qualitative changes in vortex characteristics were well predicted by the inviscid rollup relations, while the failure to account for viscosity was presumed to be the main reason for observed discrepancies. Introducing perturbations near the outboard flap-edges or on the tip-flap exerted significant control over vortices while producing negligible lift excursions.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
Tip/tilt optimizations for polynomial apodized vortex coronagraphs on obscured telescope pupils
NASA Astrophysics Data System (ADS)
Fogarty, Kevin; Pueyo, Laurent; Mazoyer, Johan; N'Diaye, Mamadou
2017-09-01
Obstructions due to large secondary mirrors, primary mirror segmentation, and secondary mirror support struts all introduce diffraction artifacts that limit the performance offered by coronagraphs. However, just as vortex coronagraphs provides theoretically ideal cancellation of on-axis starlight for clear apertures, the Polynomial Apodized Vortex Coronagraph (PAVC) completely blocks on-axis light for apertures with central obscurations, and delivers off-axis throughput that improves as the topological charge of the vortex increases. We examine the sensitivity of PAVC designs to tip/tilt aberrations and stellar angular size, and discuss methods for mitigating these effects. By imposing additional constraints on the pupil plane apodization, we decrease the sensitivity of the PAVC to the small positional shifts of the on-axis source induced by either tip/tilt or stellar angular size; providing a route to overcoming an important hurdle facing the performance of vortex coronagraphs on telescopes with complicated pupils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L.; Zhu, Y.; Zhong, H.
2009-08-01
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Low Reynolds Number Wing Transients in Rotation and Translation
NASA Astrophysics Data System (ADS)
Jones, Anya; Schlueter, Kristy
2012-11-01
The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.
A viscous flow analysis for the tip vortex generation process
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Briley, W. R.
1979-01-01
A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.
The application of laser Doppler velocimetry to trailing vortex definition and alleviation
NASA Technical Reports Server (NTRS)
Orloff, K. L.; Grant, G. R.
1973-01-01
A laser Doppler velocimeter whose focal volume can be rapidly traversed through a flowfield has been used to overcome the problem introduced by excursions of the central vortex filament within a wind tunnel test section. The basic concepts of operation of the instrument are reviewed and data are presented which accurately define the trailing vortex from a square-tipped rectangular wing. Measured axial and tangential velocity distributions are given, both with and without a vortex dissipator panel installed at the wing tip. From the experimental data, circulation and vorticity distributions are obtained and the effect of turbulence injection into the vortex structure is discussed.
Mind the gap - tip leakage vortex in axial turbines
NASA Astrophysics Data System (ADS)
Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.
2014-03-01
The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.
Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices
2016-07-01
the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the
Propeller noise caused by blade tip radial forces
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1986-01-01
New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise.
Effect of cavitation on flow structure of a tip vortex
NASA Astrophysics Data System (ADS)
Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed
2013-11-01
Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.
Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft
NASA Technical Reports Server (NTRS)
Cross, E. J., Jr.; Bridges, P.; Brownlee, J. A.; Liningston, W. W.
1980-01-01
The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full-scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.
NASA Astrophysics Data System (ADS)
Wu, Huixuan; Miorini, Rinaldo L.; Katz, Joseph
2011-04-01
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
NASA Technical Reports Server (NTRS)
Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.
2016-01-01
An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.
Tip vortex computer code SRATIP. User's guide
NASA Technical Reports Server (NTRS)
Levy, R.; Lin, S. J.
1985-01-01
This User's Guide applies to the three dimensional viscous flow forward marching analysis, PEPSIG, as used for the calculation of the helicopter tip vortex flow field. The guide presents a discussion of the program flow and subroutines, as well as a list of sample input and output.
Cut-cell method based large-eddy simulation of tip-leakage flow
NASA Astrophysics Data System (ADS)
Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang
2015-07-01
The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.
NASA Astrophysics Data System (ADS)
Altaf, A.; Thong, T. B.; Omar, A. A.; Asrar, W.
2017-03-01
Particle Image Velocimetry was used in a low speed wind tunnel to investigate the effect of interactions of vortices produced by an outboard flap-tip of a half wing (NACA 23012 in landing configuration) and a slender reverse delta type add-on device, placed in the proximity of the outboard flap-tip, on the upper surface of the half wing. This work investigates the characteristics of the vortex interactions generated downstream in planes perpendicular to the free stream direction at a chord-based Reynolds number of Rec=2.74×105 . It was found that the add-on device significantly reduces the tangential velocity magnitude and enlarges the vortex core of the resultant vortex by up to 36.1% and 36.8%, respectively.
A Novel Approach for Reducing Rotor Tip-Clearance Induced Noise in Turbofan Engines
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Li, Fei; Choudhari, Meelan
2001-01-01
Rotor tip-clearance induced noise, both in the form of rotor self noise and rotor-stator interaction noise , constitutes a significant component of total fan noise. Innovative yet cost effective techniques to suppress rotor-generated noise are, therefore, of foremost importance for improving the noise signature of turbofan engines. To that end, the feasibility of a passive porous treatment strategy to positively modify the tip-clearance flow field is addressed. The present study is focused on accurate viscous flow calculations of the baseline and the treated rotor flow fields. Detailed comparison between the computed baseline solution and experimental measurements shows excellent agreement. Tip-vortex structure, trajectory, strength, and other relevant aerodynamic quantities are extracted from the computed database. Extensive comparison between the untreated and treated tip-clearance flow fields is performed. The effectiveness of the porous treatment for altering the rotor-tip vortex flow field in general and reducing the intensity of the tip vortex, in particular, is demonstrated. In addition, the simulated flow field for the treated tip clearly shows that substantial reduction in the intensity of both the shear layer roll-up and boundary layer separation on the wall is achieved.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.
NASA Astrophysics Data System (ADS)
Jin, Peitong
2000-11-01
Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.
Observations of tip vortex cavitation inception from a model marine propeller
NASA Astrophysics Data System (ADS)
Lodha, R. K.; Arakeri, V. H.
1984-01-01
Cavitation inception characteristics of a model marine propeller having three blades, developed area ratio of 0.34 and at three different pitch to diameter ratios of 0.62, 0.83 and 1.0 are reported. The dominant type of cavitation observed at inception was the tip vortex type. The measured magnitude of inception index is found to agree well with a proposed correlation due to Strasberg. Performance calculations of the propeller based on combined vortex and blade element theory are also presented.
Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model
NASA Astrophysics Data System (ADS)
Rule, John Allen
1997-08-01
The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.
A Visualization Study of Secondary Flows in Cascades
NASA Technical Reports Server (NTRS)
Herzig, Howard Z; Hansen, Arthur G; Costello, George R
1954-01-01
Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.
URANS simulations of the tip-leakage cavitating flow with verification and validation procedures
NASA Astrophysics Data System (ADS)
Cheng, Huai-yu; Long, Xin-ping; Liang, Yun-zhi; Long, Yun; Ji, Bin
2018-04-01
In the present paper, the Vortex Identified Zwart-Gerber-Belamri (VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation (V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex (TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex (TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.
NASA Astrophysics Data System (ADS)
Oweis, Ghanem; Steven, Ceccio
2003-11-01
PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.
Volumetric three-component velocimetry measurements of the turbulent flow around a Rushton turbine
NASA Astrophysics Data System (ADS)
Sharp, Kendra V.; Hill, David; Troolin, Daniel; Walters, Geoffrey; Lai, Wing
2010-01-01
Volumetric three-component velocimetry measurements have been taken of the flow field near a Rushton turbine in a stirred tank reactor. This particular flow field is highly unsteady and three-dimensional, and is characterized by a strong radial jet, large tank-scale ring vortices, and small-scale blade tip vortices. The experimental technique uses a single camera head with three apertures to obtain approximately 15,000 three-dimensional vectors in a cubic volume. These velocity data offer the most comprehensive view to date of this flow field, especially since they are acquired at three Reynolds numbers (15,000, 107,000, and 137,000). Mean velocity fields and turbulent kinetic energy quantities are calculated. The volumetric nature of the data enables tip vortex identification, vortex trajectory analysis, and calculation of vortex strength. Three identification methods for the vortices are compared based on: the calculation of circumferential vorticity; the calculation of local pressure minima via an eigenvalue approach; and the calculation of swirling strength again via an eigenvalue approach. The use of two-dimensional data and three-dimensional data is compared for vortex identification; a `swirl strength' criterion is less sensitive to completeness of the velocity gradient tensor and overall provides clearer identification of the tip vortices. The principal components of the strain rate tensor are also calculated for one Reynolds number case as these measures of stretching and compression have recently been associated with tip vortex characterization. Vortex trajectories and strength compare favorably with those in the literature. No clear dependence of trajectory on Reynolds number is deduced. The visualization of tip vortices up to 140° past blade passage in the highest Reynolds number case is notable and has not previously been shown.
NASA Astrophysics Data System (ADS)
Herraez, Ivan; Micallef, Daniel; van Kuik, Gijs A. M.; Peinke, Joachim
2015-11-01
At the tip of wind turbine blades, the radial bound circulation is transformed into chordwise circulation just before being released as trailing vorticity, giving rise to the tip vortex. The force acting on the chordwise circulation contains a radial and a normal component with respect to the blade axis. This load does not contribute to the torque, so it is a conservative load. Due to this, it is disregarded in the engineering tools used for the design of wind turbines. However, as we demonstrated in a previous work, the conservative load might influence the trajectory of the tip vortex. In order to see how this affects the blade loads, in this research we perform large eddy simulations with an actuator line model where the conservative load has been included. The conservative load reduces the angle of attack in the tip region as a consequence of the modified tip vortex trajectory. This has a negative influence on the lift and the power output. We conclude that the accuracy of engineering design tools of wind turbines can be improved if the conservative load acting at the tip is considered.
NASA Technical Reports Server (NTRS)
Hoad, D. R.
1979-01-01
The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.
NASA Technical Reports Server (NTRS)
Gray, Robin B.
1960-01-01
Hovering and steady low-speed forward-flight tests were run on a 4-foot-diameter rotor at a ground height of 1 rotor radius. The two blades had a 2 to 1 taper ratio and were mounted in a see-saw hub. The solidity ratio was 0.05. Measurements were made of the rotor rpm, collective pitch, and forward-flight velocity. Smoke was introduced into the tip vortex and the resulting vortex pattern was photographed from two positions. Using the data obtained from these photographs, wire models of the tip vortex configurations were constructed and the distribution of the normal component of induced velocity at the blade feathering axis that is associated with these tip vortex configurations was experimentally determined at 450 increments in azimuth position from this electromagnetic analog. Three steady-state conditions were analyzed. The first was hovering flight; the second, a flight velocity just under the wake "tuck under" speed; and the third, a flight velocity just above this speed. These corresponded to advance ratios of 0, 0.022, and 0.030 (or ratios of forward velocity to calculated hovering induced velocity of approximately 0, 0.48, and 0.65), respectively, for the model test rotor. Cross sections of the wake at 450 intervals in azimuth angle as determined from the path of the tip vortex are presented graphically for all three cases. The nondimensional normal component of the induced velocity that is associated with the tip vortex as determined by an electromagnetic analog at 450 increments in azimuth position and at the blade feathering axis is presented graphically. It is shown that the mean value of this component of the induced velocity is appreciably less after tuck-under than before. It is concluded that this method yields results of engineering accuracy and is a very useful means of studying vortex fields.
Vortex coupling in trailing vortex-wing interactions
NASA Astrophysics Data System (ADS)
Chen, C.; Wang, Z.; Gursul, I.
2018-03-01
The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.
Hover and Wind-Tunnel Testing of Shrouded Rotors for Improved Micro Air Vehicle Design
2008-01-01
and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip...213 3.35 Effect of blade tip clearance on shrouded-rotor exit-plane wake profiles215 3.36 Effects of changing blade tip clearance on induced...Wright [139] developed a vortex wake model for heavily loaded ducted fans, in which the “inner vortex sheets [shed from the blades ] move at a different
1980-05-28
Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade
An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Parker, Colin M.
The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot-wire measurement locations are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine. Changing the tip-speed ratio leads to substantial wake variation possibly because changing the tip-speed ratio changes the dynamic solidity. In this work, we achieve a similar change in dynamic solidity by varying the D/c ratio and holding the tip-speed ratio constant. This change leads to very similar characteristic shifts in the wake, such as a greater blockage effect, including averaged flow reversal in the case of high dynamic solidity (D/c = 3). The phase-averaged vortex identification shows that both the blockage effect and the wake structures are similarly affected by a change in dynamic solidity. At lower dynamic solidity, pairs of vortices are shed into the wake directly downstream of the turbine. For all three models, a vortex chain is shed into the shear layer at the edge of the wake where the blade is processing into the freestream.
Flowfield And Download Measurements And Computation of a Tiltrotor Aircraft In Hover
NASA Technical Reports Server (NTRS)
Brand, Albert G.; Peryea, Martin A.; Wood, Tom L.; Meakin, Robert L.
2001-01-01
A multipart study of the V-22 hover flowfield was conducted. Testing involved a 0.15-scale semispan model with multiple independent force balance systems. The velocity flowfield surrounding the airframe was measured using a robotic positioning system and anemometer. Both time averaged and cycle-averaged results are reported. It is shown that the fuselage download in hover can be significantly reduced using a small download reduction device. Measurements indicate that the success of the device is attributed to the substantial elimination of tiltrotor fountain flow. As part of.the study, an unsteady CFD prediction is time-averaged, and shown to have excellent agreement in predicting the baseline configuration fountain flow. Some discrepancies at the outboard edge of the rotor are discussed. An &&sessment of an advanced tip shape rotor comp"'Ietes the study. Derived from a nonrotating study, the advanced tip shape rotor was developed and tested on the Bell 0.15 scale semi-span V-22 model. The tip shape was intended to diffuse the tip vortex and reduce BVI noise. Rotor wake vorticity is extracted from the measured velocity dam to show that the advanced tip shape produces a tip vortex that is only slightly more diffuse than the baseline tip blade. The results indicate that nonrotating tests may overpredict the amount of tip vortex diffusion achieved by tip shape design in a rotating environment.
NASA Technical Reports Server (NTRS)
Hall, G. F.; Shamroth, S. J.; Mcdonald, H.; Briley, W. R.
1976-01-01
A method was developed for determining the aerodynamic loads on the tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of attack which is operating subsonically in an inviscid medium and is subjected to a sinusoidal gust. Under the assumption of linearized aerodynamics, the loads on the tip are obtained by superposition of the steady aerodynamic results for angle of attack and camber, and the unsteady results for the response to the sinusoidal gust. The near field disturbance pressures in the fluid surrounding the tip are obtained by assuming a dipole representation for the loading on the tip and calculating the pressures accordingly. The near field pressures are used to drive a reduced form of the Navier-Stokes equations which yield the tip vortex formation. The combined viscid-inviscid analysis is applied to determining the pressures and examining the vortex rollup in the vicinity of an unswept, uncambered wing moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. The viscous tip flow calculation shows features expected in the tip flow such as the qualitatively proper development of boundary layers on both the upper and lower airfoil surfaces. In addition, application of the viscous solution leads to the generation of a circular type flow pattern above the airfoil suction surface.
Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaolei; Hong, Jiarong; Barone, Matthew
Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less
Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines
Yang, Xiaolei; Hong, Jiarong; Barone, Matthew; ...
2016-09-08
Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less
A Numerical Study of Cavitation Inception in Complex Flow Fields
2007-12-01
field in a tip vortex flow of an open propeller to better describe the interaction between the blade wake and the tip vortex (i.e. the roll-up... WAKE INTERACTION ON CAVITATION INCEPTION IN AN OPEN PROPELLER ................15 2.5 NON-SPHERICAL BUBBLE EFFECTS ON CAVITATION INCEPTION [14,15...18 2.6 STUDY OF CAVITATION INCEPTION NOISE [16,17,18
Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)
NASA Technical Reports Server (NTRS)
Bushnell, D. M.
1992-01-01
A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.
Numerical Capture of Wing-tip Vortex Using Vorticity Confinement
NASA Astrophysics Data System (ADS)
Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard
2012-11-01
Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.
Aerodynamics of yacht sails: viscous flow features and surface pressure distributions
NASA Astrophysics Data System (ADS)
Viola, Ignazio Maria
2014-11-01
The present paper presents the first Detached Eddy Simulation (DES) on a yacht sails. Wind tunnel experiments on a 1:15th model-scale sailing yacht with an asymmetric spinnaker (fore sail) and a mainsails (aft sail) were modelled using several time and grid resolutions. Also the Reynolds-average Navier-Stokes (RANS) equations were solved for comparison with DES. The computed forces and surface pressure distributions were compared with those measured with both flexible and rigid sails in the wind tunnel and good agreement was found. For the first time it was possible to recognise the coherent and steady nature of the leading edge vortex that develops on the leeward side of the asymmetric spinnaker and which significantly contributes to the overall drive force. The leading edge vortex increases in diameter from the foot to the head of the sail, where it becomes the tip vortex and convects downstream in the direction of the far field velocity. The tip vortex from the head of the mainsail rolls around the one of the spinnaker. The spanwise twist of the spinnaker leads to a mid-span helicoidal vortex, which has never been reported by previous authors, with an horizontal axis and rotating in the same direction of the tip vortex.
Inviscid Analysis of Extended Formation Flight
NASA Technical Reports Server (NTRS)
Kless, James; Aftosmis, Michael J.; Ning, Simeon Andrew; Nemec, Marian
2012-01-01
Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, are investigated at subsonic and transonic speeds for a matrix of vortex locations. The results show that at fixed lift and trimmed for roll, the optimal location of vortex impingement is about 10% inboard of the trailing airplane s wing-tip. Interestingly, early results show the variation in drag fraction reduction is small in the neighborhood of the optimal position. Over 90% of energy benefits can be obtained with a 5% variation in transverse and 10% variation in crossflow directions. Early results suggest control surface deflections required to achieve trim reduce the benefits of formation flight by 3-5% at subsonic speeds. The final paper will include transonic effects and trim on extended formation flight drag benefits.
Wake structure and wing motion in bat flight
NASA Astrophysics Data System (ADS)
Hubel, Tatjana; Breuer, Kenneth; Swartz, Sharon
2008-11-01
We report on experiments concerning the wake structure and kinematics of bat flight, conducted in a low-speed wind tunnel using time-resolved PIV (200Hz) and 4 high-speed cameras to capture wake and wing motion simultaneously. 16 Lesser dog-faced fruit bats (C. brachyotis) were trained to fly in the wind tunnel at 3-6.5m/s. The PIV recordings perpendicular to the flow stream allowed observing the development of the tip vortex and circulation over the wing beat cycle. Each PIV acquisition sequence is correlated with the respective kinematic history. Circulation within wing beat cycles were often quite repeatable, however variations due to maneuvering of the bat are clearly visible. While no distinct vortex structure was observed at the upper reversal point (defined according the vertical motion of the wrist) a tip vortex was observed to develop in the first third of the downstroke, growing in strength, and persisting during much of the upstroke. Correlated to the presence of a strong tip vortex the circulation has almost constant strength over the middle half of the wing beat. At relatively low flight speeds (3.4 m/s), a closed vortex structure behind the bat is postulated.
Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files.
Plotino, Gianluca; Grande, Nicola M; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca
2014-09-01
The aim of the present study was to evaluate the difference in cyclic fatigue resistance between Vortex Blue (Dentsply Tulsa Dental, Tulsa, OK) and Profile Vortex nickel-titanium (Dentsply Tulsa Dental) rotary instruments. Two groups of nickel-titanium endodontic instruments, ProFile Vortex and Vortex Blue, consisting of identical instruments in tip size and taper (15/.04, 20/.06, 25/.04, 25/.06, 30/.06, 35/.06, and 40/.04) were tested. Ten instruments from each system and size were tested for cyclic fatigue resistance, resulting in a total of 140 new instruments. All instruments were rotated in a simulated root canal with a 60° angle of curvature and a 5-mm radius of curvature of a specific cyclic fatigue testing device until fracture occurred. The number of cycles to failure and the length of the fractured tip were recorded for each instrument in each group. The mean values and standard deviation were calculated, and data were subjected to 1-way analysis of variance and a Bonferroni t test. Significance was set at the 95% confidence level. When comparing the same size of the 2 different instruments, a statistically significant difference (P < .05) was noted between all sizes of Vortex Blue and Profile Vortex instruments except for tip size 15 and .04 taper (P = 1.000). No statistically significant difference (P > .05) was noted among all groups tested in terms of fragment length. Vortex Blue showed a significant increase in cyclic fatigue resistance when compared with the same sizes of ProFile Vortex. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Roger, Michel; Schram, Christophe; Moreau, Stéphane
2014-01-01
A linear analytical model is developed for the chopping of a cylindrical vortex by a flat-plate airfoil, with or without a span-end effect. The major interest is the contribution of the tip-vortex produced by an upstream rotating blade in the rotor-rotor interaction noise mechanism of counter-rotating open rotors. Therefore the interaction is primarily addressed in an annular strip of limited spanwise extent bounding the impinged blade segment, and the unwrapped strip is described in Cartesian coordinates. The study also addresses the interaction of a propeller wake with a downstream wing or empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two-dimensional gusts in the reference frame of the airfoil. For each gust the response of the airfoil is derived, first ignoring the effect of the span end, assimilating the airfoil to a rigid flat plate, with or without sweep. The corresponding unsteady lift acts as a distribution of acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actual extent of the airfoil. In the case of tip-vortex interaction noise in CRORs the acoustic signature is determined for vortex trajectories passing beyond, exactly at and below the tip radius of the impinged blade segment, in a reference frame attached to the segment. In a second step the same problem is readdressed accounting for the effect of span end on the aerodynamic response of a blade tip. This is achieved through a composite two-directional Schwarzschild's technique. The modifications of the distributed unsteady lift and of the radiated sound are discussed. The chained source and radiation models provide physical insight into the mechanism of vortex chopping by a blade tip in free field. They allow assessing the acoustic benefit of clipping the rear rotor in a counter-rotating open-rotor architecture.
Interaction of a turbulent vortex with a lifting surface
NASA Technical Reports Server (NTRS)
Lee, D. J.; Roberts, L.
1985-01-01
The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.
AlShwaimi, E
2018-01-01
To compare the cyclic fatigue properties of a novel file made using controlled memory Ni-Ti technology with those of files made from M-wire. Twelve files with similar cross-sectional geometry and tip size from each of the following groups were tested: Proflexendo made from CMT (PE; size 30 0.04; Nexden, Houston, Tx, USA), ProFile Vortex made from M-wire (PV; size 30 0.04; Dentsply Tulsa Dental, Tulsa, OK, USA) and ProTaper Universal made from regular alloy (PU; F3; Dentsply Tulsa Dental). A custom-made cyclic fatigue device was made to evaluate the total number of cycles to failure for each system. A scanning electron microscope (SEM) was used to examine the fractured surfaces of the fragments. The arithmetic means and standard deviations were calculated for the total number of cycles to failure. One-way analysis of variance was used to compare the mean cyclic failure amongst the three groups. Post hoc Tukey's test was performed to compare the difference of the means between the groups at a significance level of P < 0.05. Proflexendo had a significantly greater resistance to cyclic fatigue compared to other systems (P < 0.001). Proflexendo files were able to withstand 500% more cycles to fracture when compared to ProFile Vortex files. Manufacturing technique had a significant impact on the resistance to cyclic fatigue. Proflexendo files made from controlled memory Ni-Ti technology had the highest number of cycles to failure compared to ProFile Vortex made from M-wire files with similar taper and tip size. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Fontana, R. R.; Hubbard, J. E., Jr.
1983-01-01
Mini-tuft and smoke flow visualization techniques have been developed for the investigation of model helicopter rotor blade vortex interaction noise at low tip speeds. These techniques allow the parameters required for calculation of the blade vortex interaction noise using the Widnall/Wolf model to be determined. The measured acoustics are compared with the predicted acoustics for each test condition. Under the conditions tested it is determined that the dominating acoustic pulse results from the interaction of the blade with a vortex 1-1/4 revolutions old at an interaction angle of less than 8 deg. The Widnall/Wolf model predicts the peak sound pressure level within 3 dB for blade vortex separation distances greater than 1 semichord, but it generally over predicts the peak S.P.L. by over 10 dB for blade vortex separation distances of less than 1/4 semichord.
Aerodynamic Analysis of Variable Geometry Raked Wingtips for Mid-Range Transonic Transport Aircraft
NASA Astrophysics Data System (ADS)
Jingeleski, David J.
Previous applications have shown that a wingtip treatment on a commercial airliner will reduce drag and increase fuel efficiency and the most common types of treatment are blended winglets and raked wingtips. With Boeing currently investigating novel designs for its next generation of airliners, a variable geometry raked wingtip novel control effector (VGRWT/NCE) was studied to determine the aerodynamic performance benefits over an untreated wingtip. The Boeing SUGAR design employing a truss-braced wing was selected as the baseline. Vortex lattice method (VLM) and computational fluid dynamics (CFD) software was implemented to analyze the aerodynamic performance of such a configuration applied to a next-generation, transonic, mid-range transport aircraft. Several models were created to simulate various sweep positions for the VGRWT/NCE tip, as well as a baseline model with an untreated wingtip. The majority of investigation was conducted using the VLM software, with CFD used largely as a validation of the VLM analysis. The VGRWT/NCE tip was shown to increase the lift of the wing while also decreasing the drag. As expected, the unswept VGRWT/NCE tip increases the amount of lift available over the untreated wingtip, which will be very beneficial for take-off and landing. Similarly, the swept VGRWT/NCE tip reduced the drag of the wing during cruise compared to the unmodified tip, which will favorably impact the fuel efficiency of the aircraft. Also, the swept VGRWT/NCE tip showed an increase in moment compared to the unmodified wingtip, implying an increase in stability, as well providing an avenue for roll control and gust alleviation for flexible wings. CFD analysis validated VLM as a useful low fidelity tool that yielded quite accurate results. The main results of this study are tabulated "deltas" in the forces and moments on the VGRWT/NCE tip as a function of sweep angle and aileron deflection compared to the baseline wing. A side study of the effects of the joint between the main wing and the movable tip showed that the drag impact can be kept small by careful design.
Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model
NASA Astrophysics Data System (ADS)
Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.
2014-03-01
Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.
Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices
NASA Astrophysics Data System (ADS)
Agui, J. H.; Andreopoulos, J.
1998-11-01
Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.
NASA Technical Reports Server (NTRS)
Chokani, Ndaona; Gittner, N. M.
1992-01-01
An experimental study of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was studied. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were studied and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.
NASA Astrophysics Data System (ADS)
Jain, Akash; Mehdi, Faraz; Sheng, Jian
2014-11-01
The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.
Vortex Shedding Inside a Baffled Air Duct
NASA Technical Reports Server (NTRS)
Davis, Philip; Kenny, R. Jeremy
2010-01-01
Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.
NACA 0015 wing pressure and trailing vortex measurements
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Takahashi, R. K.
1991-01-01
A NACA 0015 semispan wing was placed in a low-speed wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of velocity across the vortex trailing downstream from the tip of the wing. Pressure data were obtained for both 2-D and 3-D configurations. These data feature a detailed comparison between wing tips with square and round lateral edges. A two-component laser velocimeter was used to measure velocity profiles across the vortex at numerous stations behind the wing and for various combinations of conditions. These conditions include three aspect ratios, three chord lengths, a square- and a round lateral-tip, presence or absence of a boundary-layer trip, and three image plane positions located opposite the wing tip. Both pressure and velocity measurements were made for the angles of attack 4 deg less than or equal to alpha less than or equal to 12 deg and for Reynolds numbers 1 x 10(exp 6) less than or equal to Re less than or equal to 3 x 10(exp 6).
Aerodynamic Inner Workings of Circumferential Grooves in a Transonic Axial Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin; Schiffer, Heinz-Peter
2007-01-01
The current paper reports on investigations of the fundamental flow mechanisms of circumferential grooves applied to a transonic axial compressor. Experimental results show that the compressor stall margin is significantly improved with the current set of circumferential grooves. The primary focus of the current investigation is to advance understanding of basic flow mechanics behind the observed improvement of stall margin. Experimental data and numerical simulations of a circumferential groove were analyzed in detail to unlock the inner workings of the circumferential grooves in the current transonic compressor rotor. A short length scale stall inception occurs when a large flow blockage is built on the pressure side of the blade near the leading edge and incoming flow spills over to the adjacent blade passage due to this blockage. The current study reveals that a large portion of this blockage is created by the tip clearance flow originating from 20% to 50% chord of the blade from the leading edge. Tip clearance flows originating from the leading edge up to 20% chord form a tip clearance core vortex and this tip clearance core vortex travels radially inward. The tip clearance flows originating from 20% to 50% chord travels over this tip clearance core vortex and reaches to the pressure side. This part of tip clearance flow is of low momentum as it is coming from the casing boundary layer and the blade suction surface boundary layer. The circumferential grooves disturb this part of the tip clearance flow close to the casing. Consequently the buildup of the induced vortex and the blockage near the pressure side of the passage is reduced. This is the main mechanism of the circumferential grooves that delays the formation of blockage near the pressure side of the passage and delays the onset of short length scale stall inception. The primary effect of the circumferential grooves is preventing local blockage near the pressure side of the blade leading edge that directly determines flow spillage around the leading edge. The circumferential grooves do not necessarily reduce the over all blockage built up at the rotor tip section.
Forward rotor vortex effects on counter rotating propeller noise
NASA Technical Reports Server (NTRS)
Laur, Michele; Squires, Becky; Nagel, Robert T.
1992-01-01
Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.
Near wakes of advanced turbopropellers
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Patrick, W. P.
1989-01-01
The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.
Prediction of the Aero-Acoustic Performance of Open Rotors
NASA Technical Reports Server (NTRS)
VanZante, Dale; Envia, Edmane
2014-01-01
The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.
Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique
NASA Astrophysics Data System (ADS)
Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.
2015-12-01
Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.
ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.
Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus
2015-06-01
The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P < .001). However, the transformation behavior of Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gittner, Nathan M.
1992-01-01
An experimental investigation of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was investigated. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were investigated and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.
Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.
2013-01-01
A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.
Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity
NASA Technical Reports Server (NTRS)
Martin, R. M.; Marcolini, Michael A.; Splettstoesser, W. R.; Schultz, K.-J.
1990-01-01
Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed.
Tip-path-plane angle effects on rotor blade-vortex interaction noise levels and directivity
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Martin, Ruth M.
1988-01-01
Acoustic data of a scale model BO-105 main rotor acquired in a large aeroacoustic wind tunnel are presented to investigate the parametric effects of rotor operating conditions on blade-vortex interaction (BVI) impulsive noise. Contours of a BVI noise metric are employed to quantify the effects of rotor advance ratio and tip-path-plane angle on BVI noise directivity and amplitude. Acoustic time history data are presented to illustrate the variations in impulsive characteristics. The directionality, noise levels and impulsive content of both advancing and retreating side BVI are shown to vary significantly with tip-path-plane angle and advance ratio over the range of low and moderate flight speeds considered.
NASA Astrophysics Data System (ADS)
Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang
2015-02-01
The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.
Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV
NASA Astrophysics Data System (ADS)
Asano, Shinichiro; Sato, Haru; Sakakibara, Jun
2017-11-01
Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.
Attenuation of the tip vortex flow using a flexible thread
NASA Astrophysics Data System (ADS)
Lee, Seung-Jae; Shin, Jin-Woo; Arndt, Roger E. A.; Suh, Jung-Chun
2018-01-01
Tip vortex cavitation (TVC) is important in a number of practical engineering applications. The onset of TVC is a critical concern for navy surface ships and submarines that aim to increase their capability to evade detection. A flexible thread attachment at blade tips was recently suggested as a new method to delay the onset of TVC. Although the occurrence of TVC can be reduced using a flexible thread, no scientific investigation focusing on its mechanisms has been undertaken. Thus, herein, we experimentally investigated the use of the flexible thread to suppress TVC from an elliptical wing. These investigations were performed in a cavitation tunnel and involved an observation of TVC using high-speed cameras, motion tracking of the thread using image-processing techniques, and near-field flow measurements performed using stereoscopic particle image velocimetry. The experimental data suggested that the flexible thread affects the axial velocity field more than the circumferential velocity field around the TVC axis. Furthermore, we observed no clear dependence of the vortex core size, circulation, and flow unsteadiness on TVC suppression. However, the presence of the thread at the wing tip led to a notable reduction in the streamwise velocity field, thereby alleviating TVC.
Farfield structure of an aircraft trailing vortex, including effects of mass injection
NASA Technical Reports Server (NTRS)
Mason, W. H.; Marchman, J. F., III
1972-01-01
Wind tunnel tests to predict the aircraft wake turbulence due to the tip trailing vortex are discussed. A yawhead pressure probe was used in a subsonic wind tunnel to obtain detailed mean flow measurements at stations up to 30 chordlengths downstream in an aircraft trailing vortex. Mass injection at the wingtip was shown to hasten the decay of the trailing vortex. A theoretical method is presented to show the effect which the circulation distribution on the wing has on the structure of the outer portion of the vortex.
An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2005-01-01
An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.
Dynamic stall - The case of the vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Laneville, A.; Vittecoq, P.
1986-05-01
This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.
Numerical Study of Tip Vortex Flows
NASA Technical Reports Server (NTRS)
Dacles-Mariani, Jennifer; Hafez, Mohamed
1998-01-01
This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.
CFD simulations of a wind turbine for analysis of tip vortex breakdown
NASA Astrophysics Data System (ADS)
Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.
2016-09-01
This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.
The Vortex Lattice Method for the Rotor-Vortex Interaction Problem
NASA Technical Reports Server (NTRS)
Padakannaya, R.
1974-01-01
The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.
Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone
NASA Astrophysics Data System (ADS)
Chen, Zixiang; Martinuzzi, Robert J.
2018-04-01
The periodic shedding of vortex pairs in the turbulent wake of a surface-mounted right cone of aspect ratio 0.867 protruding a thin turbulent boundary layer is investigated experimentally. A phase-averaged volumetric velocity field is reconstructed from planar stereoscopic particle image velocimetry. During a typical (phase-averaged) shedding cycle, counter-rotating base vortices alternately form. These are tilted and stretched to merge with stream-wise tip vortices. The merged structure sheds and is convected downstream. A synthesis of earlier observations suggests that a similar shedding process exists for other low aspect ratio tapered geometries and is more complex than the shedding patterns observed for cantilevered cylinders, despite similarities of the mean flow field structure.
NASA Technical Reports Server (NTRS)
Hefner, J. N.
1973-01-01
Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
NASA Technical Reports Server (NTRS)
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Cavitation noise studies on marine propellers
NASA Astrophysics Data System (ADS)
Sharma, S. D.; Mani, K.; Arakeri, V. H.
1990-04-01
Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated wake of a typical single screw ship. The wake was simulated by using a wire screen technique. Observations of cavitation and measurement of noise clearly showed that the presence of the wake had a strong influence on the propeller cavitation and noise performance. Cavitation was found to be of the cloud type, which generated very intense noise compared to that generated by tip vortex cavitation along with leading edge suction side sheet cavitation in the uniform flow conditions. The noise spectra obtained with wake simulation also are presented in a normalized form to be of general utility.
An Investigation of the Effects of Discrete Wing Tip Jets on Wake Vortex Roll Up.
1983-08-01
failure of these devices does not mean that the vortex structure cannot be altered such as to reduce rolling moment. On the contrary, Yuan and Bloom (43...which has demonstrated a capabilitv, to e:ra induced rolling moment - the downward blowing jet of ., ,and Bloom (43)- was also the only jet...eliminated the large vortex excursions associated with close approaches. Bloom and Jen (83) used the method of Kuwahara and Takami to calculate vortex roll up
3D vortex formation of drag-based propulsors
NASA Astrophysics Data System (ADS)
Kim, Daegyoum; Gharib, Morteza
2008-11-01
Three dimensional vortex formation mechanism of impulsively rotating plates is studied experimentally using defocusing digital particle image velocimetry. The plate face is normal to the moving direction to simulate drag-based propulsion and only one power stroke is considered. In order to compare the effect of shape on vortex generation, three different shapes of plate (rectangular, triangular and duck's webbed-foot shapes) are used. These three cases show striking differences in vortex formation process during power stroke. Axial flow is shown to play an important role in the tip vortex formation. Correlation between hydrodynamic forces acting on the plate and vortex formation processes is described.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
NASA Technical Reports Server (NTRS)
Zaman, Khairul; Fagan, Amy; Mankbadi, Mina
2016-01-01
An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.
NASA Astrophysics Data System (ADS)
Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio
2016-11-01
The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.
On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.
Blade vortex interaction noise reduction techniques for a rotorcraft
NASA Technical Reports Server (NTRS)
Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)
1996-01-01
An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).
Blade vortex interaction noise reduction techniques for a rotorcraft
NASA Technical Reports Server (NTRS)
Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)
1998-01-01
An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).
Comparative performance tests on the Mod-2, 2.5-mW wind turbine with and without vortex generators
NASA Technical Reports Server (NTRS)
Miller, G. E.
1995-01-01
A test program was conducted on the third Mod-2 unit at Goldendale, Washington, to systematically study the effect of vortex generators (VG's) on power performance. The subject unit was first tested without VG's to obtain baseline data. Vortex generators were then installed on the mid-blade assemblies, and the resulting 70% VG configuration was tested. Finally, vortex generators were mounted on the tip assemblies, and data was recorded for the 100% VG configuration. This test program and its results are discussed in this paper. The development of vortex generators is also presented.
Investigation of tip clearance flow physics in axial flow turbine rotors
NASA Astrophysics Data System (ADS)
Xiao, Xinwen
In axial turbines, the tip clearance between casing wall and rotating blades results in a tip leakage flow, which significantly affects loss production, heat protection, vibration and noise. It is important to minimize these effects for a better turbine engine performance and higher reliability. Most of previous efforts were concentrated on turbine cascades that however may not completely and correctly simulate the flow physics in practical turbine rotors. An investigation has to be performed in turbine rotors to reveal the real tip leakage flow physics in order to provide a scientific basis for minimizing its effects. This is the objective of this thesis research. The three dimensional flow field near the end wall/tip clearance region in a turbine rotor has been investigated experimentally, complemented by a numerical simulation to study the influences of inlet turbulence intensities on the development of the tip leakage flow. The experimental investigation is carried out in a modern unshrouded high pressure turbine stage. The survey region covers 20% span near the end wall, and extends axially from 10% chord upstream of the leading edge, through the rotor passage, and to 20% chord downstream of the trailing edge. It has been found that the tip leakage effects extend only to the surveyed region. The three dimensional LDV technique is used to measure the velocity and turbulence field upstream of the rotor, inside the rotor passage, and near the trailing edge. The static pressure on blade surfaces is surveyed from the rotating frame. The transient pressure on the casing wall is measured using a dynamic pressure sensor with a shaft encoder. A rotating Five Hole Probe is employed to measure the losses as well as the pressure and the three dimensional velocity field at 20% chord downstream of the rotor. The unsteady flow field is also investigated at this location by using a slanted single-element Hot Wire technique. The physics of the tip leakage flow and vortex in turbine rotors, including its inception location, development, interaction with the main stream and the passage vortex, and decay, are revealed. The rotation effects on the boundary layer flow and the turbulence structure are discussed. The effects of the relative motion between the blade and the casing wall on the flow field near the tip clearance region are also investigated. The structure of the rotor wake, the nozzle wake, and their interaction are interpreted based on the instantaneous Hot Wire data. The numerical simulation on the influence of the inlet turbulence intensity on the development of the tip leakage flow is based on previous efforts. The results indicate that the tip leakage vortex diffuses very quickly under a high inlet turbulence intensity, resulting in a very weak tip leakage vortex and less losses.
Further Studies of the Response of Single Rotor Helicopters to Vortex Encounters
DOT National Transportation Integrated Search
1985-09-01
This report is a continuation of the studies described in Reference where a simplified approach to the problem of predicting the uncontrolled response of a single rotor helicopter to an encounter with the wing tip vortex of a large transport aircraft...
Analysis of the sweeped actuator line method
Nathan, Jörn; Masson, Christian; Dufresne, Louis; ...
2015-10-16
The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less
NASA Astrophysics Data System (ADS)
Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders
2016-04-01
Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.
Analysis of the sweeped actuator line method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, Jörn; Masson, Christian; Dufresne, Louis
The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less
NASA Technical Reports Server (NTRS)
Patterson, James C., Jr. (Inventor)
1990-01-01
A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.
Broadband rotor noise analyses
NASA Technical Reports Server (NTRS)
George, A. R.; Chou, S. T.
1984-01-01
The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.
A Preliminary Study of the Response of Single Rotor Helicopters to Vortex Encounters
DOT National Transportation Integrated Search
1985-04-01
This report examines some aspects of the uncontrolled dynamic response of a single rotor helicopter to an encounter with the wing tip vortex of a large transport aircraft. The primary emphasis in the study was to investigate the importance of various...
Experimental investigation of the wake behind a model of wind turbine in a water flume
NASA Astrophysics Data System (ADS)
Okulov, V. L.; Naumov, I. N.; Kabardin, I.; Mikkelsen, R.; Sørensen, J. N.
2014-12-01
The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
An analytical parametric study of the broadband noise from axial-flow fans
NASA Technical Reports Server (NTRS)
Chou, Shau-Tak; George, Albert R.
1987-01-01
The rotating dipole analysis of Ffowcs Williams and Hawkings (1969) is used to predict the far field noise radiation due to various rotor broadband noise mechanisms. Consideration is given to inflow turbulence noise, attached boundary layer/trailing-edge interaction noise, tip-vortex formation noise, and trailing-edge thickness noise. The parametric dependence of broadband noise from unducted axial-flow fans on several critical variables is studied theoretically. The angle of attack of the rotor blades, which is related to the rotor performance, is shown to be important to the trailing-edge noise and to the tip-vortex formation noise.
The Spectral and Statistical Properties of Turbulence Generated by a Vortex/Blade-Tip Interaction
NASA Technical Reports Server (NTRS)
Devenport, William J.; Wittmer, Kenneth S.; Wenger, Christian W.
1997-01-01
The perpendicular interaction of a streamwise vortex with the tip of a lifting blade was studied in incompressible flow to provide information useful to the accurate prediction of helicopter rotor noise and the understanding of vortex dominated turbulent flows. The vortex passed 0.3 chord lengths to the suction side of the blade tip, providing a weak interaction. Single and two-point turbulence measurements were made using sub-miniature four sensor hot-wire probes 15 chord lengths downstream of the blade trailing edge; revealing the mean velocity and Reynolds stress tensor distributions of the turbulence, as well as its spanwise length scales as a function of frequency. The single point measurements show the flow downstream of the blade to be dominated by the interaction of the original tip vortex and the vortex shed by the blade. These vortices rotate about each other under their mutual induction, winding up the turbulent wakes of the blades. This interaction between the vortices appears to be the source of new turbulence in their cores and in the region between them. This turbulence appears to be responsible for some decay in the core of the original vortex, not seen when the blade is removed. The region between the vortices is not only a region of comparatively large stresses, but also one of intense turbulence production. Velocity autospectra measured near its center suggests the presence quasi-periodic large eddies with axes roughly parallel to a line joining the vortex cores. Detailed two-point measurements were made on a series of spanwise cuts through the flow so as to reveal the turbulence scales as they would be seen along the span of an intersecting airfoil. The measurements were made over a range of probe separations that enabled them to be analyzed not only in terms of coherence and phase spectra but also in terms of wave-number frequency (kappa-omega) spectra, computed by transforming the measured cross-spectra with respect to the spanwise separation of the probes. These data clearly show the influence of the coherent eddies in the spiral wake and the turbulent region between the cores. These eddies produce distinct peaks in the upwash velocity kappa-omega spectra, and strong anisotropy manifested both in the decay of the kappa-omega spectrum at larger wave-numbers and in differences between the kappa-omega spectra of different components. None of these features are represented in the von Karman spectrum for isotropic turbulence that is often used in broadband noise computations. Wave-number frequency spectra measured in the cores appear to show some evidence that the turbulence outside sets tip core waves, as has previously been hypothesized. These spectra also provide for the first time a truly objective method for distinguishing velocity fluctuations produced by core wandering from other motions.
Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Fuchs, Roman; Nordborg, Henrik
2012-11-01
We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.
Numerical investigation of tip clearance cavitation in Kaplan runners
NASA Astrophysics Data System (ADS)
Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.
2016-11-01
There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.
Rotorcraft Blade-Vortex Interaction Controller
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (Inventor)
1995-01-01
Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.
Studies in Forecasting Upper-Level Turbulence
2006-09-01
path, where they begin 9 to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing tips. b...the flight path, where they begin to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing
Can Wing Tip Vortices Be Accurately Simulated?
2011-07-01
additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.
Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Fontana, Richard Remo
1988-01-01
This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.
Identification of vortexes obstructing the dynamo mechanism in laboratory experiments
NASA Astrophysics Data System (ADS)
Limone, A.; Hatch, D. R.; Forest, C. B.; Jenko, F.
2013-06-01
The magnetohydrodynamic dynamo effect explains the generation of self-sustained magnetic fields in electrically conducting flows, especially in geo- and astrophysical environments. Yet the details of this mechanism are still unknown, e.g., how and to which extent the geometry, the fluid topology, the forcing mechanism, and the turbulence can have a negative effect on this process. We report on numerical simulations carried out in spherical geometry, analyzing the predicted velocity flow with the so-called singular value decomposition, a powerful technique that allows us to precisely identify vortexes in the flow which would be difficult to characterize with conventional spectral methods. We then quantify the contribution of these vortexes to the growth rate of the magnetic energy in the system. We identify an axisymmetric vortex, whose rotational direction changes periodically in time, and whose dynamics are decoupled from those of the large scale background flow, that is detrimental for the dynamo effect. A comparison with experiments is carried out, showing that similar dynamics were observed in cylindrical geometry. These previously unexpected eddies, which impede the dynamo effect, offer an explanation for the experimental difficulties in attaining a dynamo in spherical geometry.
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed
NASA Technical Reports Server (NTRS)
Smith, Willard G.; Lazzeroni, Frank A.
1960-01-01
A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.
Vortex Formation During Unsteady Boundary-Layer Separation
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.
NASA Astrophysics Data System (ADS)
Zhang, Yanfeng; Lu, Xingen; Chu, Wuli; Zhu, Junqiang
2010-08-01
It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception. Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor. For steady analysis, the predicted results agree well with the experimental data for the estimation of compressor rotor global performance. For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage. On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale — spike type rotating stall inception at blade tip region. It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased, the rotating stall cell was further developed in the blade passage.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage
NASA Astrophysics Data System (ADS)
Papell, S. S.
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.
Holm, Darryl D; Jacobs, Henry O
2017-01-01
Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.
Investigation of helicopter rotor blade/wake interactive impulsive noise
NASA Technical Reports Server (NTRS)
Miley, S. J.; Hall, G. F.; Vonlavante, E.
1987-01-01
An analysis of the Tip Aerodynamic/Aeroacoustic Test (TAAT) data was performed to identify possible aerodynamic sources of blade/vortex interaction (BVI) impulsive noise. The identification is based on correlation of measured blade pressure time histories with predicted blade/vortex intersections for the flight condition(s) where impulsive noise was detected. Due to the location of the recording microphones, only noise signatures associated with the advancing blade were available, and the analysis was accordingly restricted to the first and second azimuthal quadrants. The results show that the blade tip region is operating transonically in the azimuthal range where previous BVI experiments indicated the impulsive noise to be. No individual blade/vortex encounter is identifiable in the pressure data; however, there is indication of multiple intersections in the roll-up region which could be the origin of the noise. Discrete blade/vortex encounters are indicated in the second quadrant; however, if impulsive noise were produced here, the directivity pattern would be such that it was not recorded by the microphones. It is demonstrated that the TAAT data base is a valuable resource in the investigation of rotor aerodynamic/aeroacoustic behavior.
Downwash in Vortex Region Behind Rectangular Half-wing at Mach Number 1.91
NASA Technical Reports Server (NTRS)
Cummings, John L; Haefeli, Rudolph C
1950-01-01
Results of an experimental investigation to determine downwash and wake characteristics in region of trailing vortex system behind a rectangular half-wing at Mach number 1.91 are presented. The wing had a 5-percent thick symmetric diamond cross section beveled to a knife edge at the tip. At small angles of attack, downwash angles were in close agreement with predictions of linearized theory based on the assumption of an undistorted vortex sheet. At higher angles of attack, the flow was greatly influenced by the rolling up of the vortex sheet.
Determination of Wind Turbine Near-Wake Length Based on Stability Analysis
NASA Astrophysics Data System (ADS)
Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan
2014-06-01
A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.
NASA Astrophysics Data System (ADS)
Maines, Brant H.; Arndt, Roger E. A.
2000-11-01
Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics
NASA Technical Reports Server (NTRS)
Casalino, D.; Hazir, A.; Fares, E.; Duda, B.; Khorrami, M. R.
2015-01-01
The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed.
Analysis of helicopter blade vortex structure by laser velocimetry
NASA Astrophysics Data System (ADS)
Boutier, A.; Lefèvre, J.; Micheli, F.
1996-05-01
In descent flight, helicopter external noise is mainly generated by the Blade Vortex Interaction (BVI). To under-stand the dynamics of this phenomenon, the vortex must be characterized before its interaction with the blade, which means that its viscous core radius, its strength and its distance to the blade have to be determined by non-intrusive measurement techniques. As part of the HART program (Higher Harmonic Control Aeroacoustic Rotor Test, jointly conducted by US Army, NASA, DLR, DNW and ONERA), a series of tests have been made in the German Dutch Wind Tunnel (DNW) on a helicopter rotor with 2 m long blades, rotating at 1040 rpm; several flight configurations, with an advance ratio of 0.15 and a shaft angle of 5.3°, have been studied with different higher harmonic blade pitch angles superposed on the conventional one (corresponding to the baseline case). The flow on the retreating side has been analyzed with an especially designed 3D laser velocimeter, and, simultaneously, the blade tip attitude has been determined in order to get the blade-vortex miss distance, which is a crucial parameter in the noise reduction. A 3D laser velocimeter, in backscatter mode with a working distance of 5 m, was installed on a platform 9 m high, and flow seeding with submicron incense smoke was achieved in the settling chamber using a remotely controlled displacement device. Acquisition of instantaneous velocity vectors by an IFA 750 yielded mean velocity and turbulence maps across the vortex as well as the vortex position, intensity and viscous radius. The blade tip attitude (altitude, jitter, angle of incidence) was recorded by the TART method (Target Attitude in Real Time) which makes use of a CCD camera on which is formed the image of two retroreflecting targets attached to the blade tip and lighted by a flash lamp. In addition to the mean values of the aforementioned quantities, spectra of their fluctuations have been established up to 8 Hz.
A linear shock cell model for jets of arbitrary exit geometry
NASA Technical Reports Server (NTRS)
Morris, P. J.; Bhat, T. R. S.; Chen, G.
1989-01-01
The shock cell structures of single supersonic non-ideally expanded jets with arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles are considered for the jet shear layer. The boundary element method is used to predict the shock spacing and screech tones in a vortex sheet model of a single jet. This formulation enables the calculations to be performed only on the vortex sheet. This permits the efficient and convenient study of complicated jet geometries. Results are given for circular, elliptic and rectangular jets and the results are compared with analysis and experiment. The agreement between the predictions and measurements is very good but depends on the assumptions made to predict the geometry of the fully expanded jet. A finite diffference technique is used to examine the effect of finite mixing layer thickness for a single jet. The finite thickness of the mixing layer is found to decrease the shock spacing by approximately 20 percent over the length of the jet potential core.
A point vortex model for the formation of ocean eddies by flow separation
NASA Astrophysics Data System (ADS)
Southwick, O. R.; Johnson, E. R.; McDonald, N. R.
2015-01-01
A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown-Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown-Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.
Development of a rotor wake-vortex model, volume 1
NASA Technical Reports Server (NTRS)
Majjigi, R. K.; Gliebe, P. R.
1984-01-01
Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.
NASA Astrophysics Data System (ADS)
Jia, Wei; Liu, Huoxing
2014-06-01
The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.
Effects of boundary layer forcing on wing-tip vortices
NASA Astrophysics Data System (ADS)
Shaw-Ward, Samantha
The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot-wire measurements in the 2D wing wake revealed the potential origin of dominant length-scales observed in the vortex power spectra. At angles above 5 degrees, the 2D wing wake had both higher velocity deficits and higher levels of total wake kinetic energy for the rough wing as compared to the smooth wing.
Compressive spherical beamforming for localization of incipient tip vortex cavitation.
Choo, Youngmin; Seong, Woojae
2016-12-01
Noises by incipient propeller tip vortex cavitation (TVC) are generally generated at regions near the propeller tip. Localization of these sparse noises is performed using compressive sensing (CS) with measurement data from cavitation tunnel experiments. Since initial TVC sound radiates in all directions as a monopole source, a sensing matrix for CS is formulated by adopting spherical beamforming. CS localization is examined with known source acoustic measurements, where the CS estimated source position coincides with the known source position. Afterwards, CS is applied to initial cavitation noise cases. The result of cavitation localization was detected near the upper downstream area of the propeller and showed less ambiguity compared to Bartlett spherical beamforming. Standard constraint in CS was modified by exploiting the physical features of cavitation to suppress remaining ambiguity. CS localization of TVC using the modified constraint is shown according to cavitation numbers and compared to high-speed camera images.
Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip
Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.
2016-01-01
Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations. PMID:27934960
NASA Astrophysics Data System (ADS)
Shin, Sangmook
2001-07-01
A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. The code has been validated by comparisons with available computational and experimental results for several test cases: inviscid flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9°. The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. (Abstract shortened by UMI.)
Vector vortex beam generation with dolphin-shaped cell meta-surface.
Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang
2017-09-18
We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.
NASA Astrophysics Data System (ADS)
Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.
2014-12-01
Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth and fail catastrophically by tooth failure, whereas larger tip angles exhibit a shear failure of the interfaces. Therefore, larger tip angles and trapezoidal or triangular geometries promote graceful failure, and smaller tip angles and anti-trapezoidal geometries promote more brittle-like failure. This dependence is reminiscent of biological systems, which exhibit a range of failure behaviors with limited materials and varied geometry. Triangular geometries uniquely exhibit uniform stress distributions in its teeth and promote the greatest amplification of mechanical properties. In both the bonded and unbonded cases, the predictions from the presented analytical models and experimental results on 3D printed prototypes show excellent agreement. This validates the analytical models and allows for the models to be used as a tool for the design of new materials and interfaces with tailored mechanical behavior.
Study on tip leakage vortex cavitating flows using a visualization method
NASA Astrophysics Data System (ADS)
Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu
2018-01-01
Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.
NASA Technical Reports Server (NTRS)
Pao, J. L.; Mehrotra, S. C.; Lan, C. E.
1982-01-01
A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.
Aerodynamic performance of a wing with a deflected tip-mounted reverse half-delta wing
NASA Astrophysics Data System (ADS)
Lee, T.; Su, Y. Y.
2012-11-01
The impact of a tip-mounted 65°-sweep reverse half-delta wing (RHDW), set at different deflections, on the aerodynamic performance of a rectangular NACA 0012 wing was investigated experimentally at Re = 2.45 × 105. This study is a continuation of the work of Lee and Su (Exp Fluids 52(6):1593-1609, 2012) on the passive control of wing tip vortex by the use of a reverse half-delta wing. The present results show that for RHDW deflection with -5° ≤ δ ≤ +15°, the lift was found to increase nonlinearly with increasing δ compared to the baseline wing. The lift increment was accompanied by an increased total drag. For negative RHDW deflection with δ < -5°, the RHDW-induced lift decrement was, however, accompanied by an improved drag. The deflected RHDW also significantly modified and weakened the tip vortex, leading to a persistently lowered lift-induced drag, regardless of its deflection, compared to the baseline wing. Physical mechanisms responsible for the observed RHDW-induced phenomenon were also discussed.
Flow visualization study of a vortex-wing interaction
NASA Technical Reports Server (NTRS)
Mehta, R. D.; Lim, T. T.
1984-01-01
A flow visualization study in water was completed on the interaction of a streamwise vortex with a laminar boundary layer on a two-dimensional wing. The vortex was generated at the tip of a finite wing at incidence, mounted perpendicular to the main wing, and having the same chord as the main wing. The Reynolds number based on wing chord was about 5000. Two different visualization techniques were used. One involved the injection of two different colored dyes into the vortex and the boundary layer. The other technique utilized hydrogen bubbles as an indicator. The position of the vortex was varied in a directional normal to the wing. The angle of attack of the main wing was varied from -5 to +12.5 deg. The vortex induced noticeable cross flows in the wing boundary layer from a distance equivalent to 0.75 chords. When very close to the wing, the vortex entrained boundary layer fluid and caused a cross flow separation which resulted in a secondary vortex.
The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1991-01-01
A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.
Propeller tip and hub vortex dynamics in the interaction with a rudder
NASA Astrophysics Data System (ADS)
Felli, Mario; Falchi, Massimo
2011-11-01
In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1-11, 2006a, Exp Fluids 46(1):147-1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.
Prediction of aerodynamic noise in a ring fan based on wake characteristics
NASA Astrophysics Data System (ADS)
Sasaki, Soichi; Fukuda, Masaharu; Tsujino, Masao; Tsubota, Haruhiro
2011-06-01
A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.
Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Raghavan, V.; Duque, E. P. N.
1991-01-01
The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.
Method and apparatus for enhancing vortex pinning by conformal crystal arrays
Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan
2015-07-14
Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.
Localization of incipient tip vortex cavitation using ray based matched field inversion method
NASA Astrophysics Data System (ADS)
Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon
2015-10-01
Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.
Aerodynamic loads on a Darrieus rotor blade
NASA Astrophysics Data System (ADS)
Wilson, R. E.; McKie, W. R.; Lissaman, P. B. S.; James, M.
1983-03-01
A method is presented for the free vortex analysis of a Darrieus rotor blade in nonsteady motion, which employs the circle theorem to map the moving rotor airfoil into the circle plane and models the wake generated in terms of point vortices. Nascent vortex strength and position are taken from the Kutta condition, so that the nascent vortex has the same strength as a vortex sheet of uniform strength. Pressure integration over the plate and wake vortex impulse methods yields the same numerical results. The numerical results presented for a one-bladed Darrieus rotor at a tip/speed ratio of three, and two different chord sizes, indicate that the moment on the blade can be adequately approximated by quasi-steady relationships, although the accurate determination of local velocity and circulation are still required.
Intersecting solitons, amoeba, and tropical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi
2008-11-15
We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortexmore » charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.« less
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
NASA aircraft trailing vortex research
NASA Technical Reports Server (NTRS)
Mcgowan, W. A.
1971-01-01
A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.
3D visualization of unsteady 2D airplane wake vortices
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Zheng, Z. C.
1994-01-01
Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.
Leading-edge vortex research: Some nonplanar concepts and current challenges
NASA Technical Reports Server (NTRS)
Campbell, J. F.; Osborn, R. F.
1986-01-01
Some background information is provided for the Vortex Flow Aerodynamics Conference and that current slender wing airplanes do not use variable leading edge geometry to improve transonic drag polar is shown. Highlights of some of the initial studies combining wing camber, or flaps, with vortex flow are presented. Current vortex flap studies were reviewed to show that there is a large subsonic data base and that transonic and supersonic generic studies have begun. There is a need for validated flow field solvers to calculate vortex/shock interactions at transonic and supersonic speeds. Many important research opportunities exist for fundamental vortex flow investigations and for designing advanced fighter concepts.
A coupled CFD and wake model simulation of helicopter rotor in hover
NASA Astrophysics Data System (ADS)
Zhao, Qinghe; Li, Xiaodong
2018-03-01
The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.
The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex
NASA Technical Reports Server (NTRS)
Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2002-01-01
Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.
Effect of Fin Porosity on Wake Geometry for Flapping Fins at Intermediate Reynolds Number
NASA Astrophysics Data System (ADS)
Chen, J.; Xia, B.; Krueger, P. S.
2017-11-01
Low aspect ratio flapping fins generate interesting 3-dimensional flow structures as has been observed, for example, in studies of fish swimming. As the Reynolds number is reduced, the exact geometry of the fin is less important and even certain amounts of porosity might be allowed without significantly affecting propulsive performance. These effects are investigated experimentally using flapping rectangular fins of aspect ratio 2 at Reynolds numbers in the range 100 - 1000. The experiments were conducted using a water tunnel to supply the free stream flow and the fin flapping parameters were set to provide a Strouhal number (based on amplitude of the fin tip motion) in the range 0.15 - 0.35. Phase-averaged measurements were made of the 3-dimensional, volumetric flow field, allowing visualization of the typical shed vortex structure behind the fin and calculation of time averaged thrust and propulsive efficiency. Results comparing the flow structure in the fin wake and the resulting propulsive performance will be presented for several fins with different planform porosities where the porosities are set using arrays of holes in the fins. This material is based on the work supported by the National Science Foundation under Grant No. 1510707.
The dynamic inducer as a cost-effective wind turbine system
NASA Astrophysics Data System (ADS)
Gyatt, G.; Zalay, A.
The efficacy of dynamic inducer tip vanes, short airfoil sections attached perpendicularly at the outer end of wind turbine rotors, were investigated analytically and experimentally. The airfoil section is oriented to lift toward the center of the rotor, thereby forcing a greater flow toward the center of the actuator disk. Also, since the vortex shed by one tip vane posterior edge is exactly opposite in sign to the vortex produced at the anterior edge of the immediately preceeding vane, a synchronous state arises wherein drag on the tip vanes is eliminated. A numerical model was developed for the wind turbine power coefficient in a synchronous state. The simulation indicated that more kinetic energy than present in the actuator disk alone can be captured. Design features of the blades and fairing are described. Dynamic inducer WECS were projected to cost 20% less than equivalent conventional horizontal axis machines, while power augmentation can approach 70%, thus exceeding the Betz limit.
Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations
NASA Technical Reports Server (NTRS)
Lazos, Barry S.; Visser, Kenneth D.
2006-01-01
An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.
Core structure of two-dimensional Fermi gas vortices in the BEC-BCS crossover region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madeira, Lucas; Gandolfi, Stefano; Schmidt, Kevin E.
2017-05-02
We report T = 0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. We investigate how vortex core structure properties behave over the BEC-BCS crossover. We calculate the vortex excitation energy, density pro les, and vortex core properties related to the current. We nd a density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit. Size-effect dependencies in the disk geometry were carefully studied.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Lu, P.; Tinoco, E. N.
1980-01-01
An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.
1992-01-01
An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.
NASA Technical Reports Server (NTRS)
McAlister, K. W.; Huang, S. S.; Abrego, A. I.
2001-01-01
A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL<0.7 . For CL>0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.
The application of experimental data to blade wake interaction noise prediction
NASA Technical Reports Server (NTRS)
Glegg, Stewart A. L.; Devenport, William J.
1991-01-01
Blade wake interaction noise (BWI) has been defined as the broadband noise generated by the ingestion of turbulent trailing tip vortices by helicopter rotors. This has been shown to be the dominant contributor to the subjectively important part of the acoustic spectrum for the approach stage of a helicopter flyover. A prediction method for BWI noise based on the calculated trailing vortex trajectories has been developed and estimates of the vortex turbulence have been made. These measurements were made on a trailing vortex from a split wing arrangement and did not give the spectrum of the velocity fluctuations. A recent experiment carried out to measure the turbulence associated with a trailing vortex and the application of the results to BWI noise prediction is described.
NASA Technical Reports Server (NTRS)
Devenport, William J.; Ragab, Saad A.
2000-01-01
Work was performed under this grant with a view to providing the experimental and computational results needed to improve the prediction of broadband stator noise in large bypass ratio aircraft engines. The central hypothesis of our study was that a large fraction of this noise was generated by the fan tip leakage vortices. More specifically, that these vortices are a significant component of the fan wake turbulence and they contain turbulent eddies of a type that can produce significant broadband noise. To test this hypothesis we originally proposed experimental work and computations with the following objectives: (1) to build a large scale two-dimensional cascade with a tip gap and a stationary endwall that, as far as possible, simulates the fan tip geometry, (2) to build a moving endwall for use with the large scale cascade, (3) to measure, in detail, the turbulence structure and spectrum generated by the blade wake and tip leakage vortex, for both endwall configurations, (4) to use the CFD to compute the flow and turbulence distributions for both the experimental configurations and the ADP fan, (5) to provide the experimental and CFD results for the cascades and the physical understanding gained from their study as a basis for improving the broadband noise prediction method. In large part these objectives have been achieved. The most important achievements and findings of our experimental and computational efforts are summarized below. The bibliography at the end of this report includes a list of all publications produced to date under this project. Note that this list is necessarily incomplete the task of publication (particularly in journal papers) continues.
NASA Astrophysics Data System (ADS)
Jing, Ze; Yong, Huadong; Zhou, Youhe
2018-05-01
In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.
Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio
NASA Astrophysics Data System (ADS)
Carr, Z. R.; Chen, C.; Ringuette, M. J.
2013-02-01
We investigate experimentally the effect of aspect ratio ( [InlineMediaObject not available: see fulltext.] ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of [InlineMediaObject not available: see fulltext.] = 2 and 4 are tested in a 50 % by mass glycerin-water mixture, with a total rotation of ϕ = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the {Q}-criterion, helicity density, and spanwise quantities. For both [InlineMediaObject not available: see fulltext.] s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ϕ = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For [InlineMediaObject not available: see fulltext.] = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ϕ = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for [InlineMediaObject not available: see fulltext.] = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the [InlineMediaObject not available: see fulltext.] = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the [InlineMediaObject not available: see fulltext.] = 2 LEV is distinct from the TV and is similarly stable. The [InlineMediaObject not available: see fulltext.] = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a "four-lobed" distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both [InlineMediaObject not available: see fulltext.] s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For [InlineMediaObject not available: see fulltext.] = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for [InlineMediaObject not available: see fulltext.] = 4. The TV circulation for each [InlineMediaObject not available: see fulltext.] is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for [InlineMediaObject not available: see fulltext.] = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For [InlineMediaObject not available: see fulltext.] = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.
The leading-edge vortex of yacht sails
NASA Astrophysics Data System (ADS)
Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
We experimentally show, for the first time, that a stable Leading-Edge Vortex (LEV) can be formed on an asymmetric spinnaker, which is a high-lift sail used by yachts to sail downwind. We tested a 3D printed rigid sail in a water flume at a chord-based Reynolds number of ca. 104. We found that on the leeward side of the sail (the suction side), the flow separates at the leading edge reattaching further downstream and forming a stable LEV. The LEV grows in diameter from the root to the tip of the sail, where it merges with the tip vortex. We detected the LEV using the γ criterion, and we verified its stability over time. The lift contribution provided by the LEV was computed solving a complex potential model of each sail section. This analysis indicated that the LEV provides a substantial contribution to the total sail's lift. These findings suggest that the maximum lift of low-aspect-ratio wings with a sharp leading edge, such as spinnakers, can be enhanced by promoting a stable LEV. This work was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT).
NASA Astrophysics Data System (ADS)
Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team
2014-11-01
We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.
Vortices and turbulence (The 23rd Lanchester Memorial Lecture)
NASA Astrophysics Data System (ADS)
Lilley, G. M.
1983-12-01
A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.
Computational investigation of cicada aerodynamics in forward flight.
Wan, Hui; Dong, Haibo; Gai, Kuo
2015-01-06
Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward.
Computational investigation of cicada aerodynamics in forward flight
Wan, Hui; Dong, Haibo; Gai, Kuo
2015-01-01
Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward. PMID:25551136
NASA Astrophysics Data System (ADS)
Xing, Pengju; Yoshioka, Keita; Adachi, Jose; El-Fayoumi, Amr; Bunger, Andrew P.
2017-07-01
The tip behavior of hydraulic fractures is characterized by a rich nesting of asymptotic solutions, comprising a formidable challenge for the development of efficient and accurate numerical simulators. We present experimental validation of several theoretically-predicted asymptotic behaviors, namely for hydraulic fracture growth under conditions of negligible fracture toughness, with growth progressing from early-time radial geometry to large-time blade-like (PKN) geometry. Our experimental results demonstrate: 1) existence of a asymptotic solution of the form w ∼ s3/2 (LEFM) in the near tip region, where w is the crack opening and s is the distance from the crack tip, 2) transition to an asymptotic solution of the form w ∼ s2/3 away from the near-tip region, with the transition length scale also consistent with theory, 3) transition to an asymptotic solution of the form w ∼ s1/3 after the fracture attains blade-like (PKN) geometry, and 4) existence of a region near the tip of a blade-like (PKN) hydraulic fracture in which plane strain conditions persist, with the thickness of this region of the same order as the crack height.
NASA Technical Reports Server (NTRS)
Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.
1975-01-01
A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.
Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems
NASA Astrophysics Data System (ADS)
Akturk, Ali
The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at elevated forward flight velocities. The (DDF) is self-adjusting in a wide forward flight velocity range. DDFs corrective aerodynamic in influence becomes more pronounced with increasing flight velocity due to its inherent design properties. RANS simulations of the flow around rotor blades and duct geometry in the rotating frame of reference provided a comprehensive description of the tip leakage and passage flow in the flow environment of the two ducted fan research facilities developed throughout this thesis. The aerodynamic measurements and results of the RANS simulation showed good agreement especially near the tip region. A number of novel tip treatments based on custom designed pressure side extensions were introduced. Various tip leakage mitigation schemes were introduced by varying the chordwise location and the width of the extension in the circumferential direction. The current study showed that a proper selection of the pressure side bump location and width were the two critical parameters in influencing the success of the tip leakage mitigation approach. Significant gains in axial mean velocity component were observed when a proper pressure side tip extension was used. It is also observed that an effective tip leakage mitigation scheme significantly reduced the tangential velocity component near the tip of the axial fan blade. Reduced tip clearance related flow interactions were essential in improving the energy efficiency and range of ducted fan based vehicle. Full and inclined pressure side tip squealers were designed. Squealer tips were effective in changing the overall trajectory of the tip vortex to a higher path in radial direction. The interaction of rotor blades and tip vortex was effectively reduced and aerodynamic performance of the rotor blades was improved. The overall aerodynamic gain was a measurable reduction in leakage mass flow rate. This leakage reduction increased thrust significantly. Full and inclined pressure side tip squealers increased thrust obtained in hover condition by 9.1 % and 9.6 % respectively. A reduction or elimination of the momentum deficit in tip vortices is essential to reduce the adverse performance effects originating from the unsteady and highly turbulent tip leakage flows rotating against a stationary casing. The novel tip treatments developed throughout this thesis research are highly effective in reducing the adverse performance effects of ducted fan systems developed for VTOL vehicles. (Abstract shortened by UMI.)
Plasma arc welding torch having means for vortexing plasma gas exiting the welding torch
NASA Technical Reports Server (NTRS)
Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)
1994-01-01
A plasma arc welding torch is described wherein a plasma gas is directed through the body of the welding torch and out of the body across the tip of the welding electrode disposed at the forward end of the body. The plasma gas is provided with a vortexing motion prior to exiting the body by a vortex motion imparting member which is mounted in an orifice housing member and carried in the forward portion of the torch body. The orifice housing member is provided with an orifice of an predetermined diameter through which the electric arc and the plasma gas exits.
Rolling moments in a trailing vortex flow field
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.; Schwind, R. G.; Nielsen, J. N.; Dillenius, M. F. E.
1977-01-01
Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented.
Geometry-dependent viscosity reduction in sheared active fluids
NASA Astrophysics Data System (ADS)
Słomka, Jonasz; Dunkel, Jörn
2017-04-01
We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan
2017-07-01
Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
2004-01-01
A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.
Short revolving wings enable hovering animals to avoid stall and reduce drag
NASA Astrophysics Data System (ADS)
Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.
2014-11-01
Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eltschka, Matthias, E-mail: m.eltschka@fkf.mpg.de; Jäck, Berthold; Assig, Maximilian
The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparingmore » our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.« less
Optical vortex generation from a diode-pumped alexandrite laser
NASA Astrophysics Data System (ADS)
Thomas, G. M.; Minassian, A.; Damzen, M. J.
2018-04-01
We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1995-01-01
Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.
A new methodology for free wake analysis using curved vortex elements
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.
1987-01-01
A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.
NASA Technical Reports Server (NTRS)
Sugioka, I.; Widnall, S. E.
1985-01-01
The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.
Effects of geometric variables on rub characteristics of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wolak, J.; Wisander, D. W.
1981-01-01
Experiments simulating rub interactions between Ti-6Al-4V blade tips and various seal materials were conducted. The number of blade tips and the blade tip geometry were varied to determine their effects on rub forces and on wear phenomena. Contact was found to be quite unsteady for all blade tip geometries except for those incorporating deliberately rounded blade tips. The unsteady contact was characterized by long periods of rubbing contact and increasing blade tip that terminated in sudden rapid metal removal, sometimes accompanied by tearing and disruption of porous seal material under the rub surface. A model describing the blade tip loading is proposed and is based on the propagation of an elastic stress wave through the seal material as the seal material is dynamically compressed by the blade tip leading edge.
Vortex sensing tests at NAFEC.
DOT National Transportation Integrated Search
1972-01-01
The report describes the results of a series of tests to determine and evaluate three experimental techniques for remote sensing of the wing-tip vortices generated by heavy commercial and military aircraft. These techniques involved a pulsed, bistati...
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1975-01-01
Optimization of L/D through minimizing induced drag through a detailed flow study together with force, pressure and vorticity measurements is considered. Flow visualization with neutral helium bubbles provides an excellent means of observing the effects of configuration changes.
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser
NASA Astrophysics Data System (ADS)
Stuparu, Adrian; Susan-Resiga, Romeo
2016-11-01
The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-01-01
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442
NASA Technical Reports Server (NTRS)
Patterson, J. C., Jr.; Jordan, F. L., Jr.
1975-01-01
A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-07-18
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.
NASA Astrophysics Data System (ADS)
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-07-01
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.
Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezovsky, Jesse
2017-09-29
This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessarymore » to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.« less
Efficient creation of electron vortex beams for high resolution STEM imaging.
Béché, A; Juchtmans, R; Verbeeck, J
2017-07-01
The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.
Vortex Core Size in the Rotor Near-Wake
NASA Technical Reports Server (NTRS)
Young, Larry A.
2003-01-01
Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.
Performance of high-area-ratio annular dump diffuser using suction-stabilized-vortex flow control
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Smith, J. M.
1977-01-01
A short annular dump diffuser having a geometry conductive to formation of suction stabilized toroidal vortices in the region of abrupt area change was tested. The overall diffuser area ratio was 4.0 and the length to inlet height ratio was 2.0. Performance data were obtained at near ambient temperature and pressure for inlet Mach numbers of 0.18 and 0.30 with suction rates ranging from 0 to 18 percent of total inlet mass flowrate. Results show that the exit velocity profile could be readily biased toward either wall by adjustment of inner and outer wall suction rates. Symmetric exit velocity profiles were inherently unstable with a tendency to revert to a hub or tip bias. Diffuser effectiveness was increased from about 38 percent without suction to over 85 percent at a total suction rate of 10 to 12 percent. At the same time diffuser total pressure loss was reduced from 3.1 percent to 1.1 percent at an inlet Mach number of 0.3.
Influence of disk leakage path on labyrinth seal inlet swirl ratio
NASA Technical Reports Server (NTRS)
Kirk, R. Gordon
1987-01-01
The results of numerous investigators have shown the importance of labyrinth seal inlet swirl on the calculated dynamic stiffness of labyrinth seals. These results have not included any calculation of inlet leakage swirl as a function of geometry and sealing conditions of the given seal. This paper outlines a method of calculating the inlet swirl at a given seal by introducing a radial chamber to predict the gas swirl as it goes from the stage tip down to the seal location. For a centrifugal compressor, this amounts to including the flow path from the impeller discharge, down the back of the disk or front of the cover, then into the shaft seal or eye packing, respectively. The solution includes the friction factors of both the disk and stationary wall with account for mass flow rate and calculation of radial pressure gradients by a free vortex solution. The results of various configurations are discussed and comparisons made to other published results of disk swirl.
Quantized vortices and superflow in arbitrary dimensions: structure, energetics and dynamics
NASA Astrophysics Data System (ADS)
Goldbart, Paul M.; Bora, Florin
2009-05-01
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of codimension 2, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between the vortical superflow and Ampère-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension 4 and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three-dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors.
NASA Technical Reports Server (NTRS)
Smith, C. W.; Bhateley, I. C.
1976-01-01
Two techniques for extending the range of applicability of the basic vortex-lattice method are discussed. The first improves the computation of aerodynamic forces on thin, low-aspect-ratio wings of arbitrary planforms at subsonic Mach numbers by including the effects of leading-edge and tip vortex separation, characteristic of this type wing, through use of the well-known suction-analogy method of E. C. Polhamus. Comparisons with experimental data for a variety of planforms are presented. The second consists of the use of the vortex-lattice method to predict pressure distributions over thick multi-element wings (wings with leading- and trailing-edge devices). A method of laying out the lattice is described which gives accurate pressures on the top and part of the bottom surface of the wing. Limited comparisons between the result predicted by this method, the conventional lattice arrangement method, experimental data, and 2-D potential flow analysis techniques are presented.
Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly.
Villanueva, Alex; Vlachos, Pavlos; Priya, Shashank
2014-01-01
The development of a rowing jellyfish biomimetic robot termed as "Robojelly", has led to the discovery of a passive flexible flap located between the flexion point and bell margin on the Aurelia aurita. A comparative analysis of biomimetic robots showed that the presence of a passive flexible flap results in a significant increase in the swimming performance. In this work we further investigate this concept by developing varying flap geometries and comparing their kinematics with A. aurita. It was shown that the animal flap kinematics can be replicated with high fidelity using a passive structure and a flap with curved and tapered geometry gave the most biomimetic performance. A method for identifying the flap location was established by utilizing the bell curvature and the variation of curvature as a function of time. Flaps of constant cross-section and varying lengths were incorporated on the Robojelly to conduct a systematic study of the starting vortex circulation. Circulation was quantified using velocity field measurements obtained from planar Time Resolved Digital Particle Image Velocimetry (TRDPIV). The starting vortex circulation was scaled using a varying orifice model and a pitching panel model. The varying orifice model which has been traditionally considered as the better representation of jellyfish propulsion did not appear to capture the scaling of the starting vortex. In contrast, the pitching panel representation appeared to better scale the governing flow physics and revealed a strong dependence on the flap kinematics and geometry. The results suggest that an alternative description should be considered for rowing jellyfish propulsion, using a pitching panel method instead of the traditional varying orifice model. Finally, the results show the importance of incorporating the entire bell geometry as a function of time in modeling rowing jellyfish propulsion.
Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.
2016-01-01
Vortex generators within a two-dimensional, external-compression supersonic inlet for Mach 1.6 were investigated to determine their ability to increase total pressure recovery, reduce total pressure distortion, and improve the boundary layer. The vortex generators studied included vanes and ramps. The geometric factors of the vortex generators studied included height, length, spacing, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated through the computational solution of the steady-state Reynolds-averaged Navier-Stokes equations on multi-block, structured grids. The vortex generators were simulated by either gridding the geometry of the vortex generators or modeling the vortices generated by the vortex generators. The inlet performance was characterized by the inlet total pressure recovery, total pressure distortion, and incompressible shape factor of the boundary-layer at the engine face. The results suggested that downstream vanes reduced the distortion and improved the boundary layer. The height of the vortex generators had the greatest effect of the geometric factors.
Giant moving vortex mass in thick magnetic nanodots
Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.
2015-01-01
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430
Giant moving vortex mass in thick magnetic nanodots.
Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O
2015-09-10
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.
Generation of abnormal acoustic noise: Singing of a cavitating tip vortex
NASA Astrophysics Data System (ADS)
Peng, Xiaoxing; Wang, Benlong; Li, Haoyu; Xu, Lianghao; Song, Mingtai
2017-05-01
We present experimental results and a theoretical analysis for the singing of a cavitating tip vortex (SCTV), which has been occasionally observed under special conditions in a few experimental facilities around the world since the 1990s. Due to lack of repeatability, little is known about the generation mechanism of SCTV [R. E. A. Arndt, Annu. Rev. Fluid Mech. 34, 143 (2002), 10.1146/annurev.fluid.34.082301.114957]. In the present work we propose an experimental procedure to produce the SCTV phenomenon at selected flow conditions in the China Ship Scientific Research Center cavitation mechanism tunnel. By analyzing the frequency characteristics of the acoustical signal and the bubble dynamics, it is found that the tone of SCTV matches the natural frequency of radial oscillation of the cylinder bubble and a formulation to predict SCTV is developed. Good agreement is obtained between the proposed formulation and the experimental data from different facilities.
A study of rotor broadband noise mechanisms and helicopter tail rotor noise
NASA Technical Reports Server (NTRS)
Chou, Shau-Tak Rudy
1990-01-01
The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.
Vortex formation and instability in the left ventricle
NASA Astrophysics Data System (ADS)
Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel
2012-09-01
We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.
An Experimental Study and Database for Tip Vortex Flow From an Airfoil
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Fagan, Amy F.; Mankbadi, Mina R.
2017-01-01
An experimental investigation of tip vortices from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number (Rc) of 4×10(exp 4 ). Data for the stationary airfoil at various angles of attack (alpha) are first discussed. Detailed flow-field surveys are done for two cases: alpha = 10deg with attached flow and alpha = 25deg with massive flow separation. Data include mean velocity, streamwise vorticity, and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficits in these cases trace to the airfoil wake, part of which gets wrapped up by the tip vortex. Comparison with data from the literature suggests that with increasing Rc, the deficit turns into an excess, with the transition occurring in the approximate Rc range of 2×10(exp 5) to 5×10(exp 5). Survey results for various shapes of the airfoil wingtip are then presented. The shapes include square and rounded ends and a number of winglet designs. Finally, data under sinusoidal pitching condition, for the airfoil with square ends, are documented. All pitching cases pertain to a mean alpha = 15deg, while the amplitude and frequency are varied. Amplitudes of +/-5deg, +/-10deg, and +/-15deg and reduced frequencies k = 0.08, 0.2, and 0.33 are covered. Digital records of all data and some of the hardware design are made available on a supplemental CD with the electronic version of the paper for those interested in numerical simulation.
Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep
NASA Technical Reports Server (NTRS)
Hah, Chunill; Shin, Hyoun-Woo
2011-01-01
Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.
Wind-tunnel acoustic results of two rotor models with several tip designs
NASA Technical Reports Server (NTRS)
Martin, R. M.; Connor, A. B.
1986-01-01
A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.
NASA Astrophysics Data System (ADS)
Ali, Md. Nesar; Alam, Mahbubul
2017-06-01
A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases, and the induced drag increases, reducing overall efficiency. To complement the high aspect ratio wing case, a slender wing model is formulated so that the lift and drag can be estimated for this limiting case as well. We analyze the stability performance of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing by using experimental method and simulation software. The experimental method includes fabrication of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing which making material is Gamahr wood. Testing this model wing in wind tunnel test and after getting expected data we also compared this value with analyzing software data for furthermore experiment.
Investigation of aerodynamic characteristics of subsonic wings
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Frink, N. T.
1979-01-01
An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics.
A Study of the Flow Structure of Tip Vortices on a Hydrofoil
1986-11-28
as measured from the flow visualization imager. . . 0 . . . 61 III.10 The vertical location of the tip vortex center as measured from the flow...pressure gra- dients of opposite sign exist on both sides of an airfoil . These gradients induce an inward lateral flow on the suc- tion side and an...And most recently, Cebeci et al. (1986) developed a viscous/inviscid interaction method to calculate the flow around airfoils , emphasizing the
An experimental study of heat transfer in a large-scale turbine rotor passage
NASA Astrophysics Data System (ADS)
Blair, Michael F.
1992-06-01
An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three-dimensionality on the heat transfer in a rotating blade row (vs a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system.
NASA Astrophysics Data System (ADS)
Larrabee, E. E.
1980-07-01
Marine and air screw propellers are considered in terms of theoretical hydrodynamics as developed by Joukowsky, Prandtl, and Betz. Attention is given to the flow around wings of finite span where spanwise flow exists and where lift and the bound vorticity must all go smoothly to zero at the wing tips. The concept of a trailing vortex sheet made up of infinitesimal line vortexes roughly aligned with the direction of flight is discussed in this regard. Also considered is induced velocity, which tends to convect the sheet downward at every stage in the roll-up process, the vortex theory of propellers and the Betz-Prandtl circulation distribution. The performance of the Gossamer Albatross and of a pedal-driven biplane called the Chrysalis are also discussed.
Generating A Strobed Laser Light Sheet
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.
1994-01-01
An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.
Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2015-11-01
Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.
NASA Technical Reports Server (NTRS)
Dowker, Fay; Gregory, Ruth; Traschen, Jennie
1991-01-01
We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.
Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu
2014-08-04
We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, andmore » results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.« less
The Relation Between Dry Vortex Merger and Tropical Cyclone Genesis over the Atlantic Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shu-Hua; Liu, Yi-Chin
2014-10-27
A strong, convective African tropical disturbance has a greater chance to develop into a Tropical 23 Depression (TD) if it merges with a shallow, dry vortex (D-vortex) from the north of the African 24 easterly jet (AEJ) after leaving the western coast. Using 11-year reanalysis data we found that the 25 western tip of a vortex strip at northwestern Africa can serve as dry vortices for the D-vortex 26 merger if it shifts southward. Another source of D-vortices is the westward propagating lows 27 along the southern edge of the Saharan air. The D-vortex merger process occurred for 63.5% ofmore » 28 tropical cyclones (TCs) or developing systems over the main development region of the Atlantic 29 Ocean, while it occurred for 54% of non-developing systems. TC genesis could be largely 30 controlled by the large-scale environment, but the differences in characteristics of vortices 31 associated with the D-vortex merger between developing and non-developing systems could 32 potentially help determine their destinies; in general, developing systems were dominated by a 33 more intense and moist south vortex, while non-developing systems were dominated by a north 34 vortex which was more intense, drier, and larger in size. Analysis also shows that 74% of intense 35 developing systems were involved with the D-vortex merger process. More attention needs to be 36 paid to the D-vortex merger and the characteristics of those vortices as they can play significant 37 roles or have a strong indication in Atlantic TC genesis.« less
Evolution of a Collection of Bubbles with Application to Wakes, Bubble Screens, and Cloud Noise
1994-08-01
Hydrodynamics", Santa Barbara, CA, August 1994.. 2. G.L. CHAIIINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by...2. G.L. CHAHINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by Klttwer Academic, (1993). 3. G.L. CHAHINE...Tip Vortei, ASME Cavitation and Multiphase Flow Forum, Washington D.C., FED-VoL 153, pp. 93-99. (24] Green , S.I., 1991, "Correlatiag Single Phase Flow
Can Wing Tip Vortices Be Accurately Simulated?
2011-07-01
additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...towed vehicles and cause additional tail buffeting (Ref 2). In commercial applications, winglets have been installed on passenger aircraft to
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
Characteristics of a wingtip vortex from an oscillating winglet
NASA Astrophysics Data System (ADS)
Guha, T. K.; Kumar, R.
2017-01-01
Initial perturbations in the wingtip vortices can potentially lead to instabilities that significantly reduce their lifetime in the wake of an aircraft. An active winglet capable of oscillating about its point of attachment to the main wing-section is developed using piezoelectric macro fiber composite, to actively perturb the vortex at its onset. Resonance characteristics of the actuated winglet oscillations are evaluated at different excitation levels and aerodynamic loading. Mean near-field characteristics of the vortex, developing from a stationary and an oscillating winglet, are investigated with the help of stereoscopic particle image velocimetry. Results show that the amplitude of winglet oscillations increases linearly with input excitation, to a highest attainable value of nearly four times the airfoil thickness at the winglet tip. The vortex developing from a winglet is stretched along its axis, having an elliptical core with non-uniform vorticity distribution. Actuation leads to spatial oscillations of the vortex core together with a reduction in the mean peak vorticity levels. The amplitude of the actuated core oscillations remains constant in the investigated region of the wake.
An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Patel, D. K.
1974-01-01
Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.
Periodic vortex shedding in the supersonic wake of a planar plate
NASA Technical Reports Server (NTRS)
Xing, W. F.; Marenbach, G.
1985-01-01
Vortex sheets in the wake have been mainly studied in incompressible flows and in the transonic region. Heinemann et al. (1976) have shown that for the subsonic region the Strouhal number is nearly independent of the Mach number. Motallebi and Norbury (1981) have observed an increase in the Strouhal number in transonic supersonic flow at Mach numbers up to 1.25. The present investigation is concerned with an extension of the studies of vortex shedding to higher supersonic Mach numbers, taking into account questions regarding the possibility of a generation of stable von Karman vortex paths in the considered Mach number range. It is found that the vortex sheet observed in a supersonic wake behind a rough plate is only stable and reproducible in cases involving a certain surface roughness and certain aspects of trailing edge geometry.
Large Hysteresis effect in Synchronization of Nanocontact Vortex Oscillators by Microwave Fields
Perna, S.; Lopez-Diaz, L.; d’Aquino, M.; Serpico, C.
2016-01-01
Current-induced vortex oscillations in an extended thin-film with point-contact geometry are considered. The synchronization of these oscillations with a microwave external magnetic field is investigated by a reduced order model that takes into account the dynamical effects associated with the significant deformation of the vortex structure produced by the current, which cannot be taken care of by using the standard rigid vortex theory. The complete phase diagram of the vortex oscillation dynamics is derived and it is shown that strong hysteretic behavior occurs in the synchronization with the external field. The complex nonlinear nature of the synchronization manifests itself also through the appearance of asymmetry in the locking frequency bands for moderate microwave field amplitudes. Predictions from the reduced order model are confirmed by full micromagnetic simulations. PMID:27538476
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1972-01-01
Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.
Interactions of a co-rotating vortex pair at multiple offsets
NASA Astrophysics Data System (ADS)
Forster, Kyle J.; Barber, Tracie J.; Diasinos, Sammy; Doig, Graham
2017-05-01
Two NACA0012 vanes at various lateral offsets were investigated by wind tunnel testing to observe the interactions between the streamwise vortices. The vanes were separated by nine chord lengths in the streamwise direction to allow the upstream vortex to impact on the downstream geometry. These vanes were evaluated at an angle of incidence of 8° and a Reynolds number of 7 ×104 using particle image velocimetry. A helical motion of the vortices was observed, with rotational rate increasing as the offset was reduced to the point of vortex merging. Downstream meandering of the weaker vortex was found to increase in magnitude near the point of vortex merging. The merging process occurred more rapidly when the upstream vortex was passed on the pressure side of the vane, with the downstream vortex being produced with less circulation and consequently merging into the upstream vortex. The merging distance was found to be statistical rather than deterministic quantity, indicating that the meandering of the vortices affected their separations and energies. This resulted in a fluctuation of the merging location. A loss of circulation associated with the merging process was identified, with the process of achieving vortex circularity causing vorticity diffusion, however all merged cases maintained higher circulation than a single vortex condition. The presence of the upstream vortex was found to reduce the strength of the downstream vortex in all offsets evaluated.
NASA Technical Reports Server (NTRS)
Maskew, B.
1983-01-01
A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J
2015-10-09
Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.
Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity
NASA Astrophysics Data System (ADS)
Musta, Mustafa
2013-11-01
Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.
Analytical and numerical performance models of a Heisenberg Vortex Tube
NASA Astrophysics Data System (ADS)
Bunge, C. D.; Cavender, K. A.; Matveev, K. I.; Leachman, J. W.
2017-12-01
Analytical and numerical investigations of a Heisenberg Vortex Tube (HVT) are performed to estimate the cooling potential with cryogenic hydrogen. The Ranque-Hilsch Vortex Tube (RHVT) is a device that tangentially injects a compressed fluid stream into a cylindrical geometry to promote enthalpy streaming and temperature separation between inner and outer flows. The HVT is the result of lining the inside of a RHVT with a hydrogen catalyst. This is the first concept to utilize the endothermic heat of para-orthohydrogen conversion to aid primary cooling. A review of 1st order vortex tube models available in the literature is presented and adapted to accommodate cryogenic hydrogen properties. These first order model predictions are compared with 2-D axisymmetric Computational Fluid Dynamics (CFD) simulations.
Wingtip Devices for Marine Applications
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Barrett, Timothy; Wojtowicz, Aleksandra; Wosnik, Martin
2016-11-01
Wingtip devices are widely used in aeronautics, and have been gaining popularity in wind and marine turbine applications. Although the principles of operation of the devices in air and water are similar, one major difference in the marine environment is the presence of cavitation. In an integrated numerical and experimental study, three wingtip devices were attached to an elliptical foil and compared to a reference case (no wingtip). Lift, drag, and cavitation characteristics were obtained both numerically (in OpenFOAM) and experimentally (in the University of New Hampshire High-Speed Cavitation Tunnel). As expected, with the addition of wingtip devices, the maximum lift/drag ratio increases and tip vortex cavitation is suppressed. The next step in the study is to develop a theoretical relationship between tip-vortex cavitation inception and flow parameters for foils with non-elliptical load distribution, such as foils with wingtips. The authors would like to acknowledge Ian Gagnon, Benjamin Mitchell, and Alexander Larson for their help in conducting experiments.
NASA Astrophysics Data System (ADS)
Strasser, Matthew N.
Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias
2014-01-01
RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width)more » setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 um. Conclusions: A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.« less
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J
2014-08-15
Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
On the role of tip curvature on flapping plates.
Martin, Nathan; Gharib, Morteza
2018-01-09
During the flapping motion of a fish's tail, the caudal fin exhibits antero-posterior bending and dorso-ventral bending, the latter of which is referred to as chord-wise bending herein. The impact of chord-wise tip curvature on the hydrodynamic forces for flapping plates is investigated to explore potential mechanisms to improve the maneuverability or the performance of autonomous underwater vehicles. First, actuated chord-wise tip curvature is explored. Comparison of rigid curved geometries to a rigid flat plate as a baseline suggests that an increased curvature decreases the generated forces. An actuated plate with a dynamic tip curvature is created to illustrate a modulation of this decrease in forces. Second, the impact of curvature is isolated using curved plates with an identical planform area. Comparison of rigid curved geometries as a baseline corroborates the result that an increased curvature decreases the generated forces, with the exception that presenting a concave geometry into the flow increases the thrust and the efficiency. A passively-actuated plate is designed to capitalize on this effect by presenting a concave geometry into the flow throughout the cycle. The dynamically and passively actuated plates show potential to improve the maneuverability and the efficiency of autonomous underwater vehicles, respectively.
Evolution of vortex-surface fields in transitional boundary layers
NASA Astrophysics Data System (ADS)
Yang, Yue; Zhao, Yaomin; Xiong, Shiying
2016-11-01
We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.
Point vortex interactions on a toroidal surface.
Sakajo, Takashi; Shimizu, Yuuki
2016-07-01
Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N -point vortices from Green's function associated with the Laplace-Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance.
Point vortex interactions on a toroidal surface
Shimizu, Yuuki
2016-01-01
Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N-point vortices from Green's function associated with the Laplace–Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance. PMID:27493577
How effective is aeration with vortex flow regulators? Pilot scale experiments
NASA Astrophysics Data System (ADS)
Wójtowicz, Patryk; Szlachta, Małgorzata
2017-11-01
Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.
Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.
Soba, Alejandro; González, Graciela; Calivar, Lucas; Marshall, Guillermo
2012-11-01
Electrochemical deposition (ECD) in thin cells in a vertical position relative to gravity, subject to an external uniform magnetic field, yields a growth pattern formation with dense branched morphology with branches tilted in the direction of the magnetic force. We study the nature of the inclined growth through experiments and theory. Experiments in ECD, in the absence of magnetic forces, reveal that a branch grows by allowing fluid to penetrate its tip and to be ejected from the sides through a pair of symmetric vortices attached to the tip. The upper vortices zone defines an arch separating an inner zone ion depleted and an outer zone in a funnel-like form with a concentrated solution through which metal ions are carried into the tip. When a magnetic field is turned on, vortex symmetry is broken, one vortex becoming weaker than the other, inducing an inclination of the funnel. Consequently, particles entering the funnel give rise to branch growth tilted in the same direction. Theory predicts, in the absence of a magnetic force, funnel symmetry induced through symmetric vortices driven by electric and gravitational forces; when the magnetic force is on, it is composed with the pair of clockwise and counterclockwise vortices, reducing or amplifying one or the other. In turn, funnel tilting modifies particle trajectories, thus, growth orientation.
NASA Astrophysics Data System (ADS)
Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.
2017-04-01
Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.
Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.
2002-01-01
In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.
Development and testing of tip devices for horizontal axis wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyatt, G.W.; Lissaman, P.B.S.
1985-05-01
A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. Objective was to improve performance by the reduction of tip losses. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbines. The types were a change in tip planform, and a single-element and double-element nonplannar tip extension (winglets). Approximately 270 h of performance data were collected over a three-month period. The sampling interval was 2.4 s; thus over 400,000 raw data points were logged.more » Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted. The computer model used does not have adequate lifting surface resolution or accuracy to design these small winglet extensions.« less
Vortex breakdown in simple pipe bends
NASA Astrophysics Data System (ADS)
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Spontaneous ordering and vortex states of active fluids in circular confinement
NASA Astrophysics Data System (ADS)
Theillard, Maxime; Ezhilan, Barath; Saintillan, David
2015-11-01
Recent experimental, theoretical and simulation studies have shown that confinement can profoundly affect self-organization in active suspensions leading to striking features such as directed fluid pumping in planar confinement, formation of steady and spontaneous vortices in radial confinement. Motivated by this, we study the dynamics in a suspension of biologically active particles confined in spherical geometries using a mean-field kinetic theory for which we developed a novel numerical solver. In the case of circular confinement, we conduct a systematic exploration of the entire parameter space and distinguish 3 broad states: no-flow, stable vortex and chaotic and several interesting sub-states. Our efficient numerical framework is also employed to study 3D effects and dynamics in more complex geometries.
The turblent mixing layer - Geometry of large vortices
NASA Astrophysics Data System (ADS)
Browand, F. K.; Troutt, T. R.
1985-09-01
Large spanwide vortices in a mixing layer have been studied in numerous investigations. The present study represents an attempt to define the geometry of the large vortices. In the conducted experiments, the flow develops from a laminar boundary layer, or from an intentionally tripped turbulent boundary layer. However, no other forcing is provided. It is pointed out that in both cases the downstream structure becomes indistinguishable. The experimental apparatus and the employed techniques are discussed, taking into account details regarding the wind tunnel, the detection of the structure, and aspects of digitization. Attention is given to the mean growth of the mixing layer, the mean vortex spacing, the spanwise correlation of vortex structure, velocity-field visualizations, the transition criterion, and the permanence of structure.
A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion
NASA Astrophysics Data System (ADS)
Shavalikul, Akamol
In this current study, the flow field in the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF) was simulated. This study examined four sets of simulations. The first two sets are for an individual NGV and for an individual rotor. The last two sets use a multiple reference frames approach for a complete turbine stage with two different interface models: a steady circumferential average approach called a mixing plane model, and a time accurate flow simulation approach called a sliding mesh model. The NGV passage flow field was simulated using a three-dimensional Reynolds Averaged Navier-Stokes finite volume solver (RANS) with a standard kappa -- epsilon turbulence model. The mean flow distributions on the NGV surfaces and endwall surfaces were computed. The numerical solutions indicate that two passage vortices begin to be observed approximately at the mid axial chord of the NGV suction surface. The first vortex is a casing passage vortex which occurs at the corner formed by the NGV suction surface and the casing. This vortex is created by the interaction of the passage flow and the radially inward flow, while the second vortex, the hub passage vortex, is observed near the hub. These two vortices become stronger towards the NGV trailing edge. By comparing the results from the X/Cx = 1.025 plane and the X/Cx = 1.09 plane, it can be concluded that the NGV wake decays rapidly within a short axial distance downstream of the NGV. For the rotor, a set of simulations was carried out to examine the flow fields associated with different pressure side tip extension configurations, which are designed to reduce the tip leakage flow. The simulation results show that significant reductions in tip leakage mass flow rate and aerodynamic loss reduction are possible by using suitable tip platform extensions located near the pressure side corner of the blade tip. The computations used realistic turbine rotor inlet flow conditions in a linear cascade arrangement in the relative frame of reference; the boundary conditions for the computations were obtained from inlet flow measurements performed in the AFTRF. A complete turbine stage, including an NGV and a rotor row was simulated using the RANS solver with the SST kappa -- o turbulence model, with two different computational models for the interface between the rotating component and the stationary component. The first interface model, the circumferentially averaged mixing plane model, was solved for a fixed position of the rotor blades relative to the NGV in the stationary frame of reference. The information transferred between the NGV and rotor domains is obtained by averaging across the entire interface. The quasi-steady state flow characteristics of the AFTRF can be obtained from this interface model. After the model was validated with the existing experimental data, this model was not only used to investigate the flow characteristics in the turbine stage but also the effects of using pressure side rotor tip extensions. The tip leakage flow fields simulated from this model and from the linear cascade model show similar trends. More detailed understanding of unsteady characteristics of a turbine flow field can be obtained using the second type of interface model, the time accurate sliding mesh model. The potential flow interactions, wake characteristics, their effects on secondary flow formation, and the wake mixing process in a rotor passage were examined using this model. Furthermore, turbine stage efficiency and effects of tip clearance height on the turbine stage efficiency were also investigated. A comparison between the results from the circumferential average model and the time accurate flow model results is presented. It was found that the circumferential average model cannot accurately simulate flow interaction characteristics on the interface plane between the NGV trailing edge and the rotor leading edge. However, the circumferential average model does give accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)
A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows
NASA Astrophysics Data System (ADS)
Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.
2015-11-01
The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.
Analysis of the aerodynamic performance of the multi-rotor concept
NASA Astrophysics Data System (ADS)
Chasapogiannis, Petros; Prospathopoulos, John M.; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.
2014-06-01
The concept of a large (~20MW) multi-rotor wind turbine intended for offshore installations is analysed with respect to its aerodynamic performance. The effect of closely clustering rotors on a single actuator disk is estimated using two different modelling approaches: a CFD solver in which the rotors are simulated as distinct actuator disks and a vortex based solver in which the blade geometry is exactly considered. In the present work, a system of 7 rotors is simulated with a centre to centre spacing of 1.05D. At nominal conditions (tip speed ratio=9) both models predict an increase in power of ~3% alongside with an increase in thrust of ~1.5%. The analysis of the flow field indicates that in the 7 rotor system the individual wakes merge into one wake at ~2D and that flow recovery starts at approximately the same downstream distance as in the single rotor case. As regards the dynamic implications of the close spacing of the rotors it was found that there is an increase in the loading amplitude ranging from 0.30-2.13% at blade level in rated conditions.
Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight
2017-01-01
Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw (Corvus monedula) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. PMID:28539482
Preliminary results of the on-demand vortex-generator experiments
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1995-01-01
This is a report on the continuation of our experimental investigations (Saddoughi 1994) of 'on-demand' vortex generators. Conventional vortex generators as found on aircraft wings are mainly for suppression of separation during the off-design conditions. In cruise they perform no useful function and exert a significant drag penalty. Therefore, replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would be of interest. Also in our previous report, we described one example of an 'on-demand' device, which was developed by Jacobson & Reynolds (1995) at Stanford University, suitable for manufacture by micro-electro-mechanical technology. This device consists of a surface cavity elongated in the stream direction and covered with a lid cantilevered at the upstream end. The lid, which is a metal sheet with a sheet of piezoelectric ceramic bonded to it, lies flush with the boundary. On application of a voltage the ceramic expands or contracts; however, adequate amplitude can be obtained only by running at the cantilever resonance frequency and applying amplitude modulation: for 2.5 mm x 20 mm cantilevered lids, they obtained maximum tip displacements of the order of 100 pm. Thus fluid is expelled from the cavity through the gap around the lid on the downstroke. They used an asymmetrical gap configuration and found that periodic emerging jets on the narrow side induced periodic longitudinal vorticity into the boundary layer. Their device was used to modify the inner layer of the boundary layer for skin-friction reduction. The same method could be implemented for the replacement of the conventional vortex generators; however, to promote mixing and suppress separation we needed to deposit longitudinal vortices into the outer layer of the boundary layer, which required a larger vortex generator than the device built by Jacobson & Reynolds. Our vortex generator was built with a mechanically-driven cantilevered lid with an adjustable frequency. The device was made about ten times the size of Jacobson & Reynolds', the shape or size of the cavity and lid (28 mm x 250 mm) could be easily changed. The cavity depth, the cantilever-tip displacement, and the maximum lid frequency were 20 mm, 10 mm, and 60 Hz respectively. Our vortex generator was mounted on a turntable so that its yaw angle could be changed. Finally, tests over a range of ratios of vortex generator size to boundary-layer thickness could be carried out simply by changing the streamwise location of the device.
Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point
NASA Astrophysics Data System (ADS)
Kim, Se Kwon; Tserkovnyak, Yaroslav
2017-07-01
We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.
Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J
2014-09-27
LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.
NASA Astrophysics Data System (ADS)
Mitrofanova, O.
2017-01-01
The analysis of the results of experimental researches on revealing the mechanisms of vortex formation in channels of complex geometry in the neutral and conductive media is carried out. The directions of researches related to the study of mechanisms of vortex generation and accumulation of energy by large-scale vortex structures are considered for the possibility of predictions of the man-made accidents and catastrophic natural phenomena. The main goal of ongoing investigations is the solution of the task aimed at improving the safety of nuclear power installations and, in particular, of the fast neutron reactors with liquid-metal coolants, and the prevention of emergency modes arising from acoustic, magnetic and hydrodynamic resonance effects.
Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.
1982-04-01
Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard
Aperiodicity Correction for Rotor Tip Vortex Measurements
2011-05-01
where α = 1.25643. The Iversen and the transitional models are not closed-form solutions but are formulated as solutions to an ordinary differential ...edition, 1932, pp. 592– 593. [7] Oseen, C. W., “ Uber Wirbelbewegung in Einer Reibenden Flussigkeit,” Ark. J. Mat. Astrom. Fys., Vol. 7, (Nonumber), 1912
The QACITS pointing sensor: from theory to on-sky operation on Keck/NIRC2
NASA Astrophysics Data System (ADS)
Huby, Elsa; Absil, Olivier; Mawet, Dimitri; Baudoz, Pierre; Femenıa Castellã, Bruno; Bottom, Michael; Ngo, Henry; Serabyn, Eugene
2016-07-01
Small inner working angle coronagraphs are essential to benefit from the full potential of large and future extremely large ground-based telescopes, especially in the context of the detection and characterization of exoplanets. Among existing solutions, the vortex coronagraph stands as one of the most effective and promising solutions. However, for focal-plane coronagraph, a small inner working angle comes necessarily at the cost of a high sensitivity to pointing errors. This is the reason why a pointing control system is imperative to stabilize the star on the vortex center against pointing drifts due to mechanical flexures, that generally occur during observation due for instance to temperature and/or gravity variations. We have therefore developed a technique called QACITS1 (Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing), which is based on the analysis of the coronagraphic image shape to infer the amount of pointing error. It has been shown that the flux gradient in the image is directly related to the amount of tip-tilt affecting the beam. The main advantage of this technique is that it does not require any additional setup and can thus be easily implemented on all current facilities equipped with a vortex phase mask. In this paper, we focus on the implementation of the QACITS sensor at Keck/NIRC2, where an L-band AGPM has been recently commissioned (June and October 2015), successfully validating the QACITS estimator in the case of a centrally obstructed pupil. The algorithm has been designed to be easily handled by any user observing in vortex mode, which is available for science in shared risk mode since 2016B.
Periodicity of the density wake past a vortex ring in a stratified liquid
NASA Astrophysics Data System (ADS)
Prokhorov, V.
2009-04-01
Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed
Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Delfrate, John
1994-01-01
A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.
An Evaluation of the Measurement Requirements for an In-Situ Wake Vortex Detection System
NASA Technical Reports Server (NTRS)
Fuhrmann, Henri D.; Stewart, Eric C.
1996-01-01
Results of a numerical simulation are presented to determine the feasibility of estimating the location and strength of a wake vortex from imperfect in-situ measurements. These estimates could be used to provide information to a pilot on how to avoid a hazardous wake vortex encounter. An iterative algorithm based on the method of secants was used to solve the four simultaneous equations describing the two-dimensional flow field around a pair of parallel counter-rotating vortices of equal and constant strength. The flow field information used by the algorithm could be derived from measurements from flow angle sensors mounted on the wing-tip of the detecting aircraft and an inertial navigation system. The study determined the propagated errors in the estimated location and strength of the vortex which resulted from random errors added to theoretically perfect measurements. The results are summarized in a series of charts and a table which make it possible to estimate these propagated errors for many practical situations. The situations include several generator-detector airplane combinations, different distances between the vortex and the detector airplane, as well as different levels of total measurement error.
Holmberg, Rebecca C; Gindlesperger, Alissa; Stokes, Tinsley; Brady, Dane; Thakore, Nitu; Belgrader, Philip; Cooney, Christopher G; Chandler, Darrell P
2013-06-11
TruTip is a simple nucleic acid extraction technology whereby a porous, monolithic binding matrix is inserted into a pipette tip. The geometry of the monolith can be adapted for specific pipette tips ranging in volume from 1.0 to 5.0 ml. The large porosity of the monolith enables viscous or complex samples to readily pass through it with minimal fluidic backpressure. Bi-directional flow maximizes residence time between the monolith and sample, and enables large sample volumes to be processed within a single TruTip. The fundamental steps, irrespective of sample volume or TruTip geometry, include cell lysis, nucleic acid binding to the inner pores of the TruTip monolith, washing away unbound sample components and lysis buffers, and eluting purified and concentrated nucleic acids into an appropriate buffer. The attributes and adaptability of TruTip are demonstrated in three automated clinical sample processing protocols using an Eppendorf epMotion 5070, Hamilton STAR and STARplus liquid handling robots, including RNA isolation from nasopharyngeal aspirate, genomic DNA isolation from whole blood, and fetal DNA extraction and enrichment from large volumes of maternal plasma (respectively).
The effect of crack blunting on the competition between dislocation nucleation and cleavage
NASA Astrophysics Data System (ADS)
Fischer, Lisa L.; Beltz, Glenn E.
2001-03-01
To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.
Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, JiaCheng; Peterson, Sean D., E-mail: peterson@mme.uwaterloo.ca; Porfiri, Maurizio
Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensionsmore » with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.« less
An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Gautam, Sashank; Lang, Amy; Wilroy, Jacob
2016-11-01
Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.
Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
KleinHeerenbrink, Marco; Johansson, L Christoffer; Hedenström, Anders
2017-05-01
Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw ( Corvus monedula ) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. © 2017 The Author(s).
Helicopter Blade-Vortex Interaction Noise with Comparisons to CFD Calculations
NASA Technical Reports Server (NTRS)
McCluer, Megan S.
1996-01-01
A comparison of experimental acoustics data and computational predictions was performed for a helicopter rotor blade interacting with a parallel vortex. The experiment was designed to examine the aerodynamics and acoustics of parallel Blade-Vortex Interaction (BVI) and was performed in the Ames Research Center (ARC) 80- by 120-Foot Subsonic Wind Tunnel. An independently generated vortex interacted with a small-scale, nonlifting helicopter rotor at the 180 deg azimuth angle to create the interaction in a controlled environment. Computational Fluid Dynamics (CFD) was used to calculate near-field pressure time histories. The CFD code, called Transonic Unsteady Rotor Navier-Stokes (TURNS), was used to make comparisons with the acoustic pressure measurement at two microphone locations and several test conditions. The test conditions examined included hover tip Mach numbers of 0.6 and 0.7, advance ratio of 0.2, positive and negative vortex rotation, and the vortex passing above and below the rotor blade by 0.25 rotor chords. The results show that the CFD qualitatively predicts the acoustic characteristics very well, but quantitatively overpredicts the peak-to-peak sound pressure level by 15 percent in most cases. There also exists a discrepancy in the phasing (about 4 deg) of the BVI event in some cases. Additional calculations were performed to examine the effects of vortex strength, thickness, time accuracy, and directionality. This study validates the TURNS code for prediction of near-field acoustic pressures of controlled parallel BVI.
NASA Technical Reports Server (NTRS)
Boshar, John
1947-01-01
A preliminary analytical investigation was made to determine the feasibility of the basic idea of controlled failure points as safety valves for the primary airplane structure. The present analysis considers the possibilities of the breakable wing tip which, in failing as a weak link, would relieve the bending moments on the wing structure. The analysis was carried out by computing the time histories of the wing and stabilizer angle of attack in a 10g pull-up for an XF8F airplane with tips fixed and comparing the results with those for the same maneuver, that is, elevator motion but with tips jettisoned at 8g. The calculations indicate that the increased stability accompanying the loss of the wing tips reduces the bending moment an additional amount above that which would be expected from the initial loss in lift and the inboard shift in load. The vortex shed when the tips are lost may induce a transient load requiring that the tail be made stronger than otherwise.
Characteristics of tip-leakage flow in an axial fan
NASA Astrophysics Data System (ADS)
Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol
2014-11-01
An axial fan with a shroud generates complicated vortical structures by the interaction of the axial flow with the fan blades and shroud near the blade tips. Large eddy simulation (LES) is performed for flow through a forward-swept axial fan, operating at the design condition of Re = 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model (Lee et al. 2010) is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame (Kim & Choi 2006) is adopted for the present simulation. It is found that two vortical structures are formed near the blade tip: the main tip leakage vortex (TLV) and the auxiliary TLV. The main TLV is initiated near the leading edge, develops downstream, and impinges on the pressure surface of the next blade, where the pressure fluctuations and turbulence intensity become high. On the other hand, the auxiliary TLV is initiated at the aft part of the blade but is relatively weak such that it merges with the main TLV. Supported by the KISTI Supercomputing Center (KSC-2014-C2-014).
Aerodynamic tip desensitization in axial flow turbines
NASA Astrophysics Data System (ADS)
Dey, Debashis
The leakage flow near the tip of unshrouded rotor blades in axial turbines imposes significant thermal loads on the blade. It is also responsible for up to a third of aerodynamic losses in a turbine stage. The leakage flow, mainly induced by the pressure differential across the rotor tip section, usually rolls into a stream-wise vertical structure near the suction side part of the blade tip. The current study uses several concepts to reduce the severity of losses introduced by the leakage vortex. Three tip desensitization techniques, both active and passive, are examined. Coolant flow from a tip trench is used to counter the momentum of the leakage jet. Next, a very short winglet obtained by slightly extending the tip platform in the tangential direction is investigated. Lastly, the widely used concept of squealer tip is studied. The current investigation is performed in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University. Rotating frame five hole probe measurements as well as stationary frame phase averaged total pressure measurements downstream of a single stage turbine facility were taken. The study enables one to draw conclusions about the nature of the flowfield in the rotor tip region. It also shows that significant efficiency gains could be obtained by using some of these techniques.
Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald
2014-01-01
Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.
PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A
2008-04-01
Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement between PIV and CFD suggests that CFD can reliably predict the details of the intra-aneurysmal flow dynamics observed in anatomically realistic in vitro models. Nevertheless, given the various modeling assumptions, this does not prove that they are mimicking the actual in vivo hemodynamics, and so validations against in vivo data are encouraged whenever possible.
Lift enhancement by trapped vortex
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
1992-01-01
The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.
Effects of spoilers and gear on B-747 wake vortex velocities
NASA Technical Reports Server (NTRS)
Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.
1976-01-01
Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.
Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow
NASA Technical Reports Server (NTRS)
Reddy, C. S.
1980-01-01
Many modern aircraft designed for supersonic speeds employ highly swept-back and low-aspect-ratio wings with sharp or thin edges. Flow separation occurs near the leading and tip edges of such wings at moderate to high angles of attack. Attempts have been made over the years to develop analytical methods for predicting the aerodynamic characteristics of such aircraft. Before any method can really be useful, it must be tested against a standard set of data to determine its capabilities and limitations. The present work undertakes such an investigation. Three methods are considered: the free-vortex-sheet method (Weber et al., 1975), the vortex-lattice method with suction analogy (Lamar and Gloss, 1975), and the quasi-vortex lattice method of Mehrotra (1977). Both flat and cambered wings of different configurations, for which experimental data are available, are studied and comparisons made.
NASA Technical Reports Server (NTRS)
Gittner, Nathan M.; Chokani, Ndaona
1991-01-01
An experimental study of the effects of aft blowing on the forebody vortex asymmetry over a 3.0 caliber tangent ogive body at high angles of attack was conducted. The tip of the ogive body was equipped with a single blowing nozzle whose position could be adjusted. The tests were conducted in a subsonic wind tunnel at laminar flow conditions. The effects of model roll, angle of attack, blowing coefficient, and blowing nozzle axial position were independently studied. Surface pressure measurements and flow visualization results were obtained. Aft blowing was observed to alleviate the degree of vortex asymmetry at all angles of attack. The blowing was found to be more effective at the higher angles of attack. However, proportional control of the degree of vortex asymmetry was not observed, because the initial flowfield was highly asymmetric.
Airfoil self-noise and prediction
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.
1989-01-01
A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.
NASA Astrophysics Data System (ADS)
Luo, Xichun; Tong, Zhen; Liang, Yingchun
2014-12-01
In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.
NASA Technical Reports Server (NTRS)
Childers, Brooks A.; Snow, Walter L.
1990-01-01
Considerations for acquiring and analyzing 30 Hz video frames from charge coupled device (CCD) cameras mounted in the wing tips of a Beech T-34 aircraft are described. Particular attention is given to the characterization and correction of optical distortions inherent in the data.
2013-05-10
John Zseleczky, Mr. Daniel Rhodes, Mr. Bill Beaver and all staff of US Naval Academy Hydromechanics Laboratory for their contributions in designing...turbine centerline. Tip vortex influence was most prevalent at X/D = 0.19, the closest measured plane to the turbine plane pictured in Figure 31
Interaction of a shock with a longitudinal vortex
NASA Technical Reports Server (NTRS)
Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang
1996-01-01
In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.
Magnetic zero-modes, vortices and Cartan geometry
NASA Astrophysics Data System (ADS)
Ross, Calum; Schroers, Bernd J.
2018-04-01
We exhibit a close relation between vortex configurations on the 2-sphere and magnetic zero-modes of the Dirac operator on R^3 which obey an additional nonlinear equation. We show that both are best understood in terms of the geometry induced on the 3-sphere via pull-back of the round geometry with bundle maps of the Hopf fibration. We use this viewpoint to deduce a manifestly smooth formula for square-integrable magnetic zero-modes in terms of two homogeneous polynomials in two complex variables.
Spanwise loading distribution and wake velocity surveys of a semi-span wing
NASA Technical Reports Server (NTRS)
Felker, F. F., III; Piziali, R. A.; Gall, J. K.
1982-01-01
The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.
Study on design and cutting parameters of rotating needles for core biopsy.
Giovannini, Marco; Ren, Huaqing; Cao, Jian; Ehmann, Kornel
2018-06-15
Core needle biopsies are widely adopted medical procedures that consist in the removal of biological tissue to better identify a lesion or an abnormality observed through a physical exam or a radiology scan. These procedures can provide significantly more information than most medical tests and they are usually performed on bone lesions, breast masses, lymph nodes and the prostate. The quality of the samples mainly depends on the forces exerted by the needle during the cutting process. The reduction of these forces is critical to extract high-quality tissue samples. The most critical factors that affect the cutting forces are the geometry of the needle tip and its motion while it is penetrating the tissue. However, optimal needle tip configurations and cutting parameters are not well established for rotating insertions. In this paper, the geometry and cutting forces of hollow needles are investigated. The fundamental goal of this study is to provide a series of guidelines for clinicians and surgeons to properly select the optimal tip geometries and speeds. Analytical models related to the cutting angles of several needle tip designs are presented and compared. Several needle tip geometries were manufactured from a 14-gauge cannula, commonly adopted during breast biopsies. The needles were then tested at different speeds and on different phantom tissues. According to these experimental measurements recommendations were formulated for rotating needle insertions. The findings of this study can be applied and extended to several biopsy procedures in which a cannula is used to extract tissue samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Chenghai; Ma, Ning; Wang, Kai; Du, Juan; Van den Braembussche, R. A.; Lin, Feng
2014-04-01
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.
Contact Geometry and Distribution of Plasma Generated in the Vicinity of Sliding Contact
NASA Astrophysics Data System (ADS)
Nakayama, Keiji
2007-09-01
The effect of the geometry of the smaller sliding partner on plasma (triboplasma) generation has been investigated as a function of the tip radius of a diamond pin, which slides against a single crystal sapphire disk under atmospheric dry air pressure. It was found that the diameter and the total intensity of the circular triboplasma increase parabolically with an increase in the tip radius of the pin under constant normal force and sliding velocity. The plasma is most intense at the crossing point of the plasma ring and the frictional track in the plasma circle. The gap distance at the crossing point is independent of the tip radius. The ring diameter increases with an increase in the tip radius, keeping the gap distance constant and obeying Paschen’s law of gas discharge.
Inclined Jet in Crossflow Interacting with a Vortex Generator
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.
2011-01-01
An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.
Analytical and Experimental Investigations of Delta Wings in Incompressible Flow
1976-08-01
posi- tion unless so designated by other official documents. Rep roduct ion Reproduction in whole or in part is permitted for any purpose of the...Trailing Edge of Free-Wake Model 56 19 Polar Coordinate System 5i 20 Free-Wake Geometry Prediction 5 21 Finite-Size Core 58 22 Vortex Core Position of Smith...k=0.4 70 34 Details of a Helical Type Burst 71 35 Vortex Burst-Steady Flow 72 36 Location of Pressure Ports 73 37 Pressure Destribution on a Delta
NASA Astrophysics Data System (ADS)
Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka
2016-02-01
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.
ERIC Educational Resources Information Center
Cuoco, Albert A.; And Others, Eds.
1994-01-01
Contains tips from readers about using technology in the classroom, including notebook computers, classroom sets of calculators, geometry software, LOGO software, publisher discounts, curriculum materials in CD-ROM, and volunteer help in computers and computer networking for schools. (MKR)
NASA Technical Reports Server (NTRS)
Heil, Robert Milton
1994-01-01
A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.
Design and evaluation of a Dean vortex-based micromixer.
Howell, Peter B; Mott, David R; Golden, Joel P; Ligler, Frances S
2004-12-01
A mixer, based on the Dean vortex, is fabricated and tested in an on-chip format. When fluid is directed around a curve under pressure driven flow, the high velocity streams in the center of the channel experience a greater centripetal force and so are deflected outward. This creates a pair of counter-rotating vortices moving fluid toward the inner wall at the top and bottom of the channel and toward the outer wall in the center. For the geometries studied, the vortices were first seen at Reynolds numbers between 1 and 10 and became stronger as the flow velocity is increased. Vortex formation was monitored in channels with depth/width ratios of 0.5, 1.0, and 2.0. The lowest aspect ratio strongly suppressed vortex formation. Increasing the aspect ratio above 1 appeared to provide improved mixing. This design has the advantages of easy fabrication and low surface area.
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.
Mateo, David; Eloranta, Jussi; Williams, Gary A
2015-02-14
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He
NASA Astrophysics Data System (ADS)
Mateo, David; Eloranta, Jussi; Williams, Gary A.
2015-02-01
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.
Cylindrically distributing optical fiber tip for uniform laser illumination of hollow organs
NASA Astrophysics Data System (ADS)
Buonaccorsi, Giovanni A.; Burke, T.; MacRobert, Alexander J.; Hill, P. D.; Essenpreis, Matthias; Mills, Timothy N.
1993-05-01
To predict the outcome of laser therapy it is important to possess, among other things, an accurate knowledge of the intensity and distribution of the laser light incident on the tissue. For irradiation of the internal surfaces of hollow organs, modified fiber tips can be used to shape the light distribution to best suit the treatment geometry. There exist bulb-tipped optical fibers emitting a uniform isotropic distribution of light suitable for the treatment of organs which approximate a spherical geometry--the bladder, for example. For the treatment of organs approximating a cylindrical geometry--e.g. the oesophagus--an optical fiber tip which emits a uniform cylindrical distribution of light is required. We report on the design, development and testing of such a device, the CLD fiber tip. The device was made from a solid polymethylmethacrylate (PMMA) rod, 27 mm in length and 4 mm in diameter. One end was shaped and 'silvered' to form a mirror which reflected the light emitted from the delivery fiber positioned at the other end of the rod. The shape of the mirror was such that the light fell with uniform intensity on the circumferential surface of the rod. This surface was coated with BaSO4 reflectance paint to couple the light out of the rod and onto the surface of the tissue.
Aeroacoustic flowfield and acoustics of a model helicopter tail rotor at high advance ratio
NASA Technical Reports Server (NTRS)
Shenoy, Rajarama K.
1989-01-01
Some results, relevant to rotorcraft noise generation process at high advance ratio, are presented in this paper from schlieren flow visualization and acoustic tests of a model tail rotor. The measured in-plane noise trends are consistent with the growth of the tip supersonic region seen in the schlieren visuals. Schlieren flow visuals reveal a propagating pressure wave in the second quadrant. Simultaneously measured acoustic data and the results of two-dimensional transonic Blade-Vortex Interaction analysis code ATRAN-2 indicate that this pressure wave is attributable to BVI activity in the first quadrant. This paper establishes that the transonic Blade-Vortex Interactions contribute to noise at high advance ratio level flight conditions.
NASA Technical Reports Server (NTRS)
Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.
1999-01-01
A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.
Impact of building configuration on air quality in street canyon
NASA Astrophysics Data System (ADS)
Xie, Xiaomin; Huang, Zhen; Wang, Jia-song
The objective of this study is to provide a simulation of emissions from vehicle exhausts in a street canyon within an urban environment. Standard, RNG and Chen-Kim k- ɛ turbulence models are compared with the wind tunnel measured data for optimization of turbulence model. In the first approach, the investigation is made into the effect of the different roof shapes and ambient building structures. The results indicate that the in-canyon vortex dynamics (e.g. vortex orientation) and the characteristics of pollutant dispersion are dependent on the roof shapes and ambient building structures strongly. A second set of calculations for a three-dimensional simulation of the street canyon setup was performed to investigate the influence of building geometry on pollutant dispersion. The validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (Studie on different roof geometries in a simplified urban environment, 1995). The studies give evidence that roof shapes, the ambient building configurations and building geometries are important factors determining the flow patterns and pollutant dispersion in street canyon.
Modelisation of the SECMin molten salts environment
NASA Astrophysics Data System (ADS)
Lucas, M.; Slim, C.; Delpech, S.; di Caprio, D.; Stafiej, J.
2014-06-01
We develop a cellular automata modelisation of SECM experiments to study corrosion in molten salt media for generation IV nuclear reactors. The electrodes used in these experiments are cylindrical glass tips with a coaxial metal wire inside. As the result of simulations we obtain the current approach curves of the electrodes with geometries characterized by several values of the ratios of glass to metal area at the tip. We compare these results with predictions of the known analytic expressions, solutions of partial differential equations for flat uniform geometry of the substrate. We present the results for other, more complicated substrate surface geometries e. g. regular saw modulated surface, surface obtained by Eden model process, ...
Vortex lattices and defect-mediated viscosity reduction in active liquids
NASA Astrophysics Data System (ADS)
Slomka, Jonasz; Dunkel, Jorn
2016-11-01
Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.
String cavitation formation inside fuel injectors
NASA Astrophysics Data System (ADS)
Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; McDavid, R. M.
2015-12-01
The formation of vortex or ‘string’ cavitation has been visualised at pressures up to 2000 bar in an automotive-sized optical diesel fuel injector nozzle. The multi-hole nozzle geometry studied allowed observation of the hole-to-hole vortex interaction and, in particular, that of a bridging vortex in the sac region between the holes. Above a threshold Reynolds number, their formation and appearance during a 2 ms injection event was repeatable and independent of upstream pressure and cavitation number. In addition, two different hole layouts and threedimensional flow simulations have been employed to describe how, the relative positions of adjacent holes influenced the formation and hole-to-hole interaction of the observed string cavitation vortices, with good agreement between the experimental and simulation results being achieved.
Calculation of tip clearance effects in a transonic compressor rotor
NASA Technical Reports Server (NTRS)
Chima, R. V.
1996-01-01
The flow through the tip clearance region of a transonic compressor rotor (NASA rotor 37) was computed and compared to aerodynamic probe and laser anemometer data. Tip clearance effects were modeled both by gridding the clearance gap and by using a simple periodicity model across the ungridded gap. The simple model was run with both the full gap height, and with half the gap height to simulate a vena-contracta effect. Comparisons between computed and measured performance maps and downstream profiles were used to validate the models and to assess the effects of gap height on the simple clearance model. Recommendations were made concerning the use of the simple clearance model. Detailed comparisons were made between the gridded clearance gap solution and the laser anemometer data near the tip at two operating points. The computer results agreed fairly well with the data but overpredicted the extent of the casing separation and underpredicted the wake decay rate. The computations were then used to describe the interaction of the tip vortex, the passage shock, and the casing boundary layer.
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
Aono, Hikaru; Liang, Fuyou; Liu, Hao
2008-01-01
We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.
NASA Astrophysics Data System (ADS)
Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.
2016-01-01
The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.
Acoustic properties associated with rectangular geometry supersonic nozzles
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Manning, J. C.; Ponton, M. K.
1986-01-01
Acoustic property experiments have been conducted to ascertain the behavior of rectangular geometry supersonic nozzles whose throat aspect ratios vary over a 2.0-7.6 range, and whose three partial sidewall geometries range from full to 75-percent cutback. The tests employed unheated air at static conditions for nozzle Mach numbers of 1.35-1.66. It is found that sonic fatigue failures are possible at certain partial sidewall geometries and high nozzle aspect ratios. Unlike axisymmetric supersonic nozzles, shock noise dominates both the rear and forward arc for throat aspect ratio cases greater than 5.6. Jet screech frequency was adequately predicted with a simple vortex sheel model.
Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs
NASA Astrophysics Data System (ADS)
Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki
2017-11-01
We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist,
Flow-induced vibration testing of replacement thermowell designs
NASA Astrophysics Data System (ADS)
Haslinger, K. H.
2003-09-01
Inconel 600 Primary Water Stress Corrosion Cracking (PWSCC) in Nuclear Pressurized Water Reactors (PWRs) has necessitated the repair/replacement of various small bore nozzles. These repairs/replacements must be designed to avoid unwanted vibrations. So, to this end, new RTD-Thermowell-Nozzle replacement designs were developed and subjected to flow testing over a velocity range from 9.14 to 33.53m/s (30-110ft/s), and temperatures ranging from 121°C to 316°C (250-600°F). The replacement nozzles are welded on the pipe OD, rather than on the pipe ID. A split, tapered ferrule is used to support the nozzle tip inside the pipe bore. This maintains high thermowell tip-resonance frequencies with the objective of avoiding self-excitation from vortex shedding that is believed to have caused failures in an earlier design during initial, precritical plant startup testing. The flow testing was complicated by the small size of the thermowell tips (5.08mm or 0.2in ID), which necessitated use of a complement of low temperature and high temperature instrumentation. Since the high temperature device had an internal resonance (750Hz) within the frequency range of interest (0-2500Hz), adequate sensor correlations had to be derived from low temperature tests. The current nozzle/thermowell design was tested concurrently with two slight variations of the replacement design. The acceleration signals were acquired during incremental and continuous flow sweeps, nominally at 5kHz sampling rates and for time domain processing as high as 25kHz. Whereas vortex-shedding frequencies were predicted to prevail between 400 and 1500Hz, no such response was observed at these frequencies. Rather, the thermowell tips responded due to turbulent buffeting with a peak response that was related directly to flow velocity. Lift direction response was always larger than drag direction response. The thermowell tips also responded at their natural tip frequencies in a narrow band random fashion. At the higher flow rates, one replacement design experienced an instability mode leading to high tip stresses. Although this instability did not repeat, this particular design was eliminated from consideration. The second replacement design performed almost identically to the current in-plant design. The experimental data were used to extract forcing functions and thermowell responses that were used as input into the design calculations.
Experimental and numerical study of the British Experimental Rotor Programme blade
NASA Technical Reports Server (NTRS)
Brocklehurst, Alan; Duque, Earl P. N.
1990-01-01
Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.
NASA Technical Reports Server (NTRS)
Malpica, Carlos
2017-01-01
This paper presents an acoustics parametric study of the effect of varying lateral and longitudinal rotor trim flapping angles (tip-path-plane tilt) on noise radiated by an isolated 26-ft diameter proprotor, similar to that of the AW609 tiltrotor, in edgewise flight. Three tip-path-plane angle of attack operating conditions of -9, 0 and 6 deg, at 80 knots, were investigated. Results showed that: 1) minimum noise was attained for the tip-path-plane angle of attack value of -9 deg, and 2) changing the cyclic trim state (i.e., controls) altered the airloads and produced noticeable changes to the low-frequency (LF) and blade-vortex interaction (BVI) radiated-noise magnitude and directionality. In particular, by trimming the rotor to a positive (inboard) lateral flapping angle of 4 deg, further reductions up to 3 dB in the low-frequency noise sound pressure level were attained without significantly impacting the BVI noise for longitudinal tip-path-plane angles of -9 and 6 deg.
NASA Technical Reports Server (NTRS)
Devenport, William J.; Glegg, Stewart A. L.
1993-01-01
Perpendicular blade vortex interactions are a common occurrence in helicopter rotor flows. Under certain conditions they produce a substantial proportion of the acoustic noise. However, the mechanism of noise generation is not well understood. Specifically, turbulence associated with the trailing vortices shed from the blade tips appears insufficient to account for the noise generated. The hypothesis that the first perpendicular interaction experienced by a trailing vortex alters its turbulence structure in such a way as to increase the acoustic noise generated by subsequent interactions is examined. To investigate this hypothesis a two-part investigation was carried out. In the first part, experiments were performed to examine the behavior of a streamwise vortex as it passed over and downstream of a spanwise blade in incompressible flow. Blade vortex separations between +/- one eighth chord were studied for at a chord Reynolds number of 200,000. Three-component velocity and turbulence measurements were made in the flow from 4 chord lengths upstream to 15 chordlengths downstream of the blade using miniature 4-sensor hot wire probes. These measurements show that the interaction of the vortex with the blade and its wake causes the vortex core to loose circulation and diffuse much more rapidly than it otherwise would. Core radius increases and peak tangential velocity decreases with distance downstream of the blade. True turbulence levels within the core are much larger downstream than upstream of the blade. The net result is a much larger and more intense region of turbulent flow than that presented by the original vortex and thus, by implication, a greater potential for generating acoustic noise. In the second part, the turbulence measurements described above were used to derive the necessary inputs to a Blade Wake Interaction (BWI) noise prediction scheme. This resulted in significantly improved agreement between measurements and calculations of the BWI noise spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.
Peculiarities of field penetration in the presence of cross-flux interaction
NASA Astrophysics Data System (ADS)
Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.
1996-02-01
The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less
NASA Astrophysics Data System (ADS)
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.
2017-02-01
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.
NASA Astrophysics Data System (ADS)
Sadovskyy, Ivan; Wang, Yonglei; Xiao, Zhili; Kwok, Wai-Kwong; Glatz, Andreas
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers - varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic field dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.
Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...
2017-02-07
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less
PIV Measurements on a Blowing Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.
2004-01-01
PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
Measurements of the Early Development of Trailing Vorticity from a Rotor
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.; Heineck, James T.
2002-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the "void" region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44% and 12% of the rotor tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10% of the rotor-blade chord, but more than doubled its size after one revolution of the rotor.
Vortex methods for separated flows
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.
1988-01-01
The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.
Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.
1991-01-01
The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.
Sequential vortex hopping in an array of artificial pinning centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keay, J. C.
2010-02-24
We use low-temperature magnetic force microscopy (MFM) to study the hopping motion of vortices in an array of artificial pinning centers (APCs). The array consists of nanoscale holes etched in a niobium thin film by Ar-ion sputtering through an anodic aluminum-oxide template. Variable-temperature magnetometry shows a transition temperature of 7.1 K and an enhancement of the magnetization up to the third matching field at 5 K. Using MFM with attractive and repulsive tip-vortex interaction, we measure the vortex-pinning strength and investigate the motion of individual vortices in the APC array. The depinning force for individual vortices at low field rangedmore » from 0.7 to 1.2 pN. The motion of individual vortices was found to be reproducible and consistent with movement between adjacent holes in the film. The movements are repeatable but the sequence of hops depends on the scan direction. This asymmetry in the motion indicates nonuniform local pinning, a consequence of array disorder and hole-size variation.« less
Some observations of separated flow on finite wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.
1982-01-01
Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.
NASA Astrophysics Data System (ADS)
Kleusberg, E.; Sarmast, S.; Schlatter, P.; Ivanell, S.; Henningson, D. S.
2016-09-01
The wake structure behind a wind turbine, generated by the spectral element code Nek5000, is compared with that from the finite volume code EllipSys3D. The wind turbine blades are modeled using the actuator line method. We conduct the comparison on two different setups. One is based on an idealized rotor approximation with constant circulation imposed along the blades corresponding to Glauert's optimal operating condition, and the other is the Tjffireborg wind turbine. The focus lies on analyzing the differences in the wake structures entailed by the different codes and corresponding setups. The comparisons show good agreement for the defining parameters of the wake such as the wake expansion, helix pitch and circulation of the helical vortices. Differences can be related to the lower numerical dissipation in Nek5000 and to the domain differences at the rotor center. At comparable resolution Nek5000 yields more accurate results. It is observed that in the spectral element method the helical vortices, both at the tip and root of the actuator lines, retain their initial swirl velocity distribution for a longer distance in the near wake. This results in a lower vortex core growth and larger maximum vorticity along the wake. Additionally, it is observed that the break down process of the spiral tip vortices is significantly different between the two methods, with vortex merging occurring immediately after the onset of instability in the finite volume code, while Nek5000 simulations exhibit a 2-3 radii period of vortex pairing before merging.
NASA Astrophysics Data System (ADS)
Zade, Vishal; Kang, Hung-Sen; Lee, Min Hwan
2018-01-01
Conductive atomic force microscopy has been widely employed to study the localized electrical properties of a wide range of substrates in non-vacuum conditions by the use of noble metal-coated tips. However, quantitative characterization of the electrical properties was often precluded by unpredictable changes in the tip apex morphology, and/or electronic transport characteristics of undesired oxide overcoats on the tip. In this paper, the impact of mechanical and electrical stimuli on the apex geometry of gold coated tips and electrical conduction properties at the tip-substrate contact is discussed by choosing gold and highly ordered pyrolytic graphite as the representative tip and substrate materials, respectively.
NASA Astrophysics Data System (ADS)
Engle, J. A.; Riousset, J. A.
2016-12-01
In order to determine the most effective geometry of a lightning rod, one must first understand the physical difference between their current designs. Benjamin Franklin's original theory of sharp tipped rods suggests an increase of local electric field, while Moore et al.'s (2000) studies of rounded tips evince an increased probability of strike (Moore et al., 2000; Gibson et al., 2009).In this analysis, the plasma discharge is produced between two electrodes with a high potential difference, resulting in ionization of the neutral gas particle. This process, when done at low current and low temperature can create a corona discharges, which can be observed as a luminescent emission. The Cartesian geometry known as Paschen, or Townsend, theory is particularly well suited to model experimental laboratory scenario, however, it is limited in its applicability to lightning rods. Franklin's sharp tip and Moore et al.'s (2000) rounded tip fundamentally differ in the radius of curvature of the upper end of the rod. As a first approximation, the rod can be modelled as an equipotential conducting sphere above the ground. Hence, we expand the classic Cartesian geometry into spherical and cylindrical geometries. In this work we explore the effects of shifting from the classical parallel plate analysis to spherical and cylindrical geometries more adapted for studies of lightning rods or power lines. Utilizing Townsend's equation for corona discharge, we estimate a critical radius and minimum breakdown voltage that allows ionization of the air around an electrode. Additionally, we explore the influence of the gas in which the discharge develops. We use BOLSIG+, a numerical solver for the Boltzmann equation, to calculate Townsend coefficients for CO2-rich atmospheric conditions. This allows us to expand the scope of this study to other planetary bodies such as Mars (Hagelaar, 2005). We solve the problem both numerically and analytically to present simplified formulas per each geometry and gas mixture. The development of a numerical framework will ultimately let us test the influence of additional parameters such as background ionization, initiation criterion, and charge conservation on the values of the critical radius and minimum breakdown voltage.
Studies of blade-vortex interaction noise reduction by rotor blade modification
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.
1993-01-01
Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.
The response of an individual vortex to local mechanical contact
NASA Astrophysics Data System (ADS)
Kremen, Anna; Wissberg, Shai; Shperber, Yishai; Kalisky, Beena
2016-05-01
Recently we reported a new way to manipulate vortices in thin superconducting films by local mechanical contact without magnetic field, current or altering the pinning landscape [1]. We use scanning superconducting interference device (SQUID) microscopy to image the vortices, and a piezo element to push the tip of a silicon chip into contact with the sample. As a result of the stress applied at the contact point, vortices in the proximity of the contact point change their location. Here we study the characteristics of this vortex manipulation, by following the response of individual vortices to single contact events. Mechanical manipulation of vortices provides local view of the interaction between strain and nanomagnetic objects, as well as controllable, effective, localized, and reproducible manipulation technique.
Effects of wingtip modifications on handling qualities of agricultural aircraft
NASA Technical Reports Server (NTRS)
Van Dam, C. P.
1981-01-01
The effect of wingtip modifications on the stability and control characteristics of an agricultural airplane has been studied by means of a nonplanar quasi-vortex-lattice method. The method is used to compute the changes in steady state and perturbed state lateral-directional stability and control derivatives produced by wingtip mounted winglets, vortex diffuser vanes, and tip extensions. The study shows that the combination of the excessive positive dihedral effect produced by the winglets and adverse yaw due to aileron deflection can have a detrimental effect on the roll control characteristics of the airplane. Introduction of an aileron-rudder-interconnect, and reduction of the effective dihedral by canting-in of the winglets, or addition of a lower winglet can eliminate the roll control problems.
Phase locking of vortex cores in two coupled magnetic nanopillars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi
2014-11-15
Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. Thismore » work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.« less
Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans
NASA Astrophysics Data System (ADS)
Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas
2018-03-01
Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1987-01-01
Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.
Vortex Dynamics of Asymmetric Heave Plates
NASA Astrophysics Data System (ADS)
Rusch, Curtis; Maurer, Benjamin; Polagye, Brian
2017-11-01
Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.
Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106
NASA Astrophysics Data System (ADS)
Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team
2015-11-01
We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1971-01-01
Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.
Vortex dynamics in the near-wake of tabs with various geometries using 2D and 3D PIV
NASA Astrophysics Data System (ADS)
Pagan-Vazquez, Axy; Khovalyg, Dolaana; Marsh, Charles; Hamed, Ali M.; Chamorro, Leonardo P.
2016-11-01
The vortex dynamics and turbulence statistics in the near-wake of rectangular, trapezoidal, triangular, and ellipsoidal tabs were studied in a refractive-index-matching channel at Re = 2000 and 13000, based on the tab height. The tabs share the same bulk dimensions including a 17 mm height, a 28 mm base width, and a 24.5o angle. 3D PIV was used to study the mean flow and dominant large-scale vortices, while high-spatial resolution planar PIV was used to quantify high-order statistics. The results show the coexistence of counter-rotating vortex pair (CVP) and hairpin structures. These vortices exhibit distinctive topology and strength across Re and tab geometry. The CVP is a steady structure that grows in strength over a significantly longer distance at the low Re due to the lower turbulence levels and the delayed shedding of the hairpin vortices. These features at the low Re are associated with the presence of K-H instability that develops over three tab heights. The interaction between the hairpins and CVP is measured in 3D for the first time and shows complex coexistence. Although the CVP suffers deformation and splitting at times, it maintains its presence and leads to significant spanwise and wall-normal flows.
A computational study of coherent structures in the wakes of two-dimensional bluff bodies
NASA Astrophysics Data System (ADS)
Pearce, Jeffrey Alan
1988-08-01
The periodic shedding of vortices from bluff bodies was first recognized in the late 1800's. Currently, there is great interest concerning the effect of vortex shedding on structures and on vehicle stability. In the design of bluff structures which will be exposed to a flow, knowledge of the shedding frequency and the amplitude of the aerodynamic forces is critical. The ability to computationally predict parameters associated with periodic vortex shedding is thus a valuable tool. In this study, the periodic shedding of vortices from several bluff body geometries is predicted. The study is conducted with a two-dimensional finite-difference code employed on various grid sizes. The effects of the grid size and time step on the accuracy of the solution are addressed. Strouhal numbers and aerodynamic force coefficients are computed for all of the bodies considered and compared with previous experimental results. Results indicate that the finite-difference code is capable of predicting periodic vortex shedding for all of the geometries tested. Refinement of the finite-difference grid was found to give little improvement in the prediction; however, the choice of time step size was shown to be critical. Predictions of Strouhal numbers were generally accurate, and the calculated aerodynamic forces generally exhibited behavior consistent with previous studies.
Reconstruction of Propagating Kelvin-Helmholtz Vortices at Mercury's Magnetopause
NASA Technical Reports Server (NTRS)
Sundberg, Torbjoern; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje
2011-01-01
A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER s rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft s magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.
Rotor Wake Development During the First Revolution
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.
2003-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.
Inertial instabilities in a mixing-separating microfluidic device
NASA Astrophysics Data System (ADS)
Domingues, Allysson; Poole, Robert; Dennis, David
2017-11-01
Combining and separating fluids has many industrial and biomedical applications. This numerical and experimental study explores inertial instabilities in a so-called mixing-separating cell micro-geometry which could potentiality be used to enhance mixing. Our microfluidic mixing-separating cell consists of two straight square parallel channels with flow from opposite directions with a central gap that allows the streams to interact, mix or remain separate (often referred to as the `H' geometry). A stagnation point is generated at the centre of symmetry due to the two opposed inlets and outlets. Under creeping flow conditions (Reynolds number [ Re 0 ]) the flow is steady, two-dimensional and produces a sharp symmetric boundary between fluids stream entering the geometry from opposite directions. For Re > 30 , an inertial instability appears which leads to the generation of a central vortex and the breaking of symmetry, although the flow remains steady. As Re increases the central vortex divides into two vortices. Our experimental and numerical investigations both show the same phenomena. The results suggest that the effect observed can be exploited to enhance mixing in biomedical or other applications. Work supported by CNPq Grant 203195/2014-0.
Sea trials of a ducted tip propeller designed for improved cavitation performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hordnes, I.; Bidaud, A.; Green, S.I.
1994-12-31
Studies have shown that ``ring-wing`` or ``ducted`` tip devices reduce substantially the inception index of trailing vortices generated by a hydrofoil (Green et al. 1988). It has also been shown that these devices improve the lift/drag ratio of an airfoil at high angle of incidence (Duan et al. 1992). These finding indicate that there may be a marine application for the ducted tip. Experimental equipment has been designed and manufactured in preparation for upcoming tests of a propeller with ducted tips. The tips are tubes aligned with the propeller blade tips that will replace a radial fraction of the originalmore » blade tips equal to the diameter of the tubes. The tube dimensions have been chosen according to the span/tip diameter and chord/tip length ratios used by Duan et al. (1992), and the tubes will be given a curvature equal to the propeller tip radius. Field trials will be given a curvature equal to the propeller tip radius. Field trials will be conducted on a 36 inch diameter propeller that is used to propel a 45 ft. fishing (seine) boat operating in the coastal waters outside Vancouver. The performance of the propeller will be measured in terms of the propeller efficiency as a function of advance ratio. A special force transducer has been designed that is capable of recording both torque and thrust on the propeller shaft even though these are expected to produce shaft strains of different orders of magnitude. As a supplementary means of monitoring the propeller performance, a hydrophone will be located near the propeller wake in order to measure the tip vortex cavitation noise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu; Wabiszewski, Graham E.; Goodman, Alexander J.
2016-01-15
The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tipmore » has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.« less
Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges
2016-08-15
aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model
Turbulence Measurements in the Near Field of a Wingtip Vortex
NASA Technical Reports Server (NTRS)
Chow, Jim; Zilliac, Greg; Bradshaw, Peter
1997-01-01
The roll-up of a wingtip vortex, at Reynolds number based on chord of 4.6 million was studied with an emphasis on suction side and near wake measurements. The research was conducted in a 32 in. x 48 in. low-speed wind tunnel. The half-wing model had a semi-span of 36 in. a chord of 48 in. and a rounded tip. Seven-hole pressure probe measurements of the velocity field surrounding the wingtip showed that a large axial velocity of up to 1.77 U(sub infinity) developed in the vortex core. This level of axial velocity has not been previously measured. Triple-wire probes have been used to measure all components of the Reynolds stress tensor. It was determined from correlation measurements that meandering of the vortex was small and did not appreciably contribute to the turbulence measurements. The flow was found to be turbulent in the near-field (as high as 24 percent RMS w - velocity on the edge of the core) and the turbulence decayed quickly with streamwise distance because of the nearly solid body rotation of the vortex core mean flow. A streamwise variation of the location of peak levels of turbulence, relative to the core centerline, was also found. Close to the trailing edge of the wing, the peak shear stress levels were found at the edge of the vortex core, whereas in the most downstream wake planes they occurred at a radius roughly equal to one-third of the vortex core radius. The Reynolds shear stresses were not aligned with the mean strain rate, indicating that an isotropic-eddy-viscosity based prediction method cannot accurately model the turbulence in the cortex. In cylindrical coordinates, with the origin at the vortex centerline, the radial normal stress was found to be larger than the circumferential.
Numerical Analysis of the Acoustic Field of Tip-Clearance Flow
NASA Astrophysics Data System (ADS)
Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team
2015-11-01
Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.
Quantized vortices in arbitrary dimensions and the normal-to-superfluid phase transition
NASA Astrophysics Data System (ADS)
Bora, Florin
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of co-dimension two, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between vortical superflow and Ampere-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension four and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors. Extending these results to systems containing multiple vortices is elementary due to the linearity of the theory. The energy for multiple vortices is thus a sum of self-energies and power-law interaction terms. The statistical mechanics of a system containing vortices is addressed via the grand canonical partition function. A renormalization-group analysis in which the low energy excitations are integrated approximately, is used to compute certain critical coefficients. The exponents obtained via this approximate procedure are compared with values obtained previously by other means. For dimensions higher than three the superfluid density is found to vanish as the critical temperature is approached from below.
NASA Astrophysics Data System (ADS)
Wang, H. S.; Honda, Hiroshi
A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.
Design, analysis, optimization and control of rotor tip flows
NASA Astrophysics Data System (ADS)
Maesschalck, Cis Guy M. De
Developments in turbomachinery focus on efficiency and reliability enhancements, while reducing the production costs. In spite of the many noteworthy experimental and numerical investigations over the past decades, the turbine tip design presents numerous challenges to the engine manufacturers, and remains the primary factor defining the machine durability for the periodic removal of the turbine components during overhaul. Due to the hot gases coming from the upstream combustion chamber, the turbine blades are subjected to temperatures far above the metal creep temperature, combined with severe thermal stresses induced within the blade material. Inadequate designs cause early tip burnouts leading to considerable performance degradations, or even a catastrophic turbine failure. Moreover, the leakage spillage, nowadays often exceeding the transonic regime, generates large aerodynamic penalties which are responsible for about one third of the turbine losses. In this view, the current doctoral research exploits the potential through the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics and manage the heat load distribution over the blade profile to improve the turbine efficiency and durability. Three main design strategies for unshrouded turbine blade tips were analyzed and optimized: tight running clearances, blade tip contouring and the use of complex squealer-like geometries. The altered overtip flow physics and heat transfer characteristics were simulated for tight gap sizes as low as 0.5% down to 0.1% of the blade height, occurring during engine transients and soon to be expected due to recent developments in active clearance control strategies. The potential of fully 3D contoured blade top surfaces, allowing to adapt the profile locally to the changing flow conditions throughout the camberline, is quantified. First adopting a quasi-3D approach and subsequently using a full 3D optimization. For the industrial rub-safe squealer profiles featuring cavities separated by upstanding rims, a topology-like multi-objective 3D optimization strategy is used to identify so far undiscovered, optimal blade tip profiles. Furthermore, the additional potential of the widely adopted shroud coolant injection just upstream of the rotor blade is examined. Specifically, the possibility of combining the beneficial effect of the purge flow in the overtip region while minimizing the detrimental influence on the upper passage vortex is explored. Eventually, a high-speed rotating turbine facility at the von Karman Institute was redesigned, allowing simultaneous testing of multiple distinct blade (tip) profiles mounted in separate sectors around the rotor annulus. Important considerations related with the balancing and precise clearance design are highlighted, arising from the complexity of such rainbow-rotor configuration. Moreover, approaches are described to integrate Reynolds-Averaged Navier-Stokes simulations to a priori estimate the errors induced by the finite spatial sampling and inherent limited sensor bandwidth. This research effort provided new insights into the overtip flow topology and aerothermal characteristics, identified new design strategies to create future turbines with enhanced aerodynamic efficiencies and reduced thermal loads, and paved the way for an elaborate experimental validation in a rotating turbine facility, at engine-matched conditions.
NASA Technical Reports Server (NTRS)
Meyn, Larry A.; Bennett, Mark S.
1993-01-01
A description is presented of two enhancements for a two-camera, video imaging system that increase the accuracy and efficiency of the system when applied to the determination of three-dimensional locations of points along a continuous line. These enhancements increase the utility of the system when extracting quantitative data from surface and off-body flow visualizations. The first enhancement utilizes epipolar geometry to resolve the stereo "correspondence" problem. This is the problem of determining, unambiguously, corresponding points in the stereo images of objects that do not have visible reference points. The second enhancement, is a method to automatically identify and trace the core of a vortex in a digital image. This is accomplished by means of an adaptive template matching algorithm. The system was used to determine the trajectory of a vortex generated by the Leading-Edge eXtension (LEX) of a full-scale F/A-18 aircraft tested in the NASA Ames 80- by 120-Foot Wind Tunnel. The system accuracy for resolving the vortex trajectories is estimated to be +/-2 inches over distance of 60 feet. Stereo images of some of the vortex trajectories are presented. The system was also used to determine the point where the LEX vortex "bursts". The vortex burst point locations are compared with those measured in small-scale tests and in flight and found to be in good agreement.
Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors
NASA Astrophysics Data System (ADS)
Ul Hassan, Hafeez; Nielsen, Kristian; Aasmul, Soren; Bang, Ole
2015-09-01
The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm.
Effects of local and global mechanical distortions to hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, William P.
The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.
NASA Technical Reports Server (NTRS)
Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.
1992-01-01
Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.
Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters
NASA Astrophysics Data System (ADS)
Gildersleeve, Samantha; Amitay, Michael
2017-11-01
Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.
NASA Astrophysics Data System (ADS)
Prothin, Sebastien; Djeridi, Henda; Billard, Jean-Yves
2014-05-01
In this paper, the influence of a single tip vortex on boundary layer detachment is studied. This study offers a preliminary approach in order to better understand the interaction between a propeller hub vortex and the rudder installed in its wake. This configuration belongs to the field of marine propulsion and encompasses such specific problem as cavitation inception, modification of propulsive performances and induced vibrations. To better understand the complex mechanisms due to propeller-rudder interactions it was decided to emphasize configurations where the hub vortex is generated by an elliptical 3-D foil and is located upstream of a 2-D NACA0015 foil at high incidences for a Reynolds number of 5×105. The physical mechanisms were studied using Time Resolved Stereoscopic Particle Image Velocimetry (TR-SPIV) techniques. Particular attention was paid to the detachment at 25° incidence and a detailed cartography of the mean and turbulent properties of the wake is presented. Proper Orthogonal Decomposition (POD) analysis was applied in order to highlight the unsteady nature of the flow using phase averaging based on the first POD coefficients to characterize the turbulent and coherent process in the near wake of the rudder.
Flow Structure and Force Variation with Aspect Ratio for a Two-Degree-of-Freedom Flapping Wing
NASA Astrophysics Data System (ADS)
Burge, Matthew; Favale, James; Ringuette, Matthew
2014-11-01
We investigate experimentally the effect of aspect ratio (AR) on the flow structure and forces of a two-degree-of-freedom flapping wing. Flapping wings are known to produce complex and unsteady vortex loop structures, and the objective is to characterize their variation with AR and how this influences the lift force. Previous results on rotating wings demonstrated that changes in AR significantly affect the three-dimensional flow structure and lift coefficient. This is primarily due to the relatively greater influence of the tip vortex for lower AR. At Reynolds number of order O(103) we test wings of AR = 2-4, values typically found in nature, with simplified planform shapes. The lift force is measured using a submersible transducer at the base of the wing in a glycerin-water mixture. The qualitative, three-dimensional vortex loop structure for different ARs is obtained using multi-color dye flow visualization. Guided by this, quantitative three-component flow information, namely vorticity, the Q-criterion, and circulation, is acquired from stereoscopic particle image velocimetry in key planes. Of interest is how these parameters and the vortex loop topology vary with AR, and their connection to features in the unsteady force signal. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.
NASA Technical Reports Server (NTRS)
Budair, M.; Ayoub, A.; Karamcheti, K.
1981-01-01
Results of hot wire measurements made in the near wake at a Reynolds number of 9955 are reported. The measurements include the mean velocity profiles, root mean square values of the velocity fluctuations, frequency spectra, and velocity cross correlations. The mean velocity profiles were used to determine the wake width, whose variation in the downstream and spanwise directions was examined. It is observed that close to the cylinder, the wake is narrower toward the free end than it is away from it, while further downstream the wake is wider toward the tip than it is away from it. It is found that the flow over the span can be characterized by four regions: a tip region where vortex shedding occurs at a lower frequency than that prevalent for away from the tip; an intermediate region adjacent to the first one where a frequency component of a nonshedding character is present; a third region characterized by a gradually increasing shedding frequency with increasing distance from the tip; and a two dimensional region where the shedding frequency is constant.
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Steinthorsson, E.; Rigby, David L.
1998-01-01
Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E 3 first stage turbine, which represents a modem gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.
NASA Technical Reports Server (NTRS)
Treiber, David A.; Muilenburg, Dennis A.
1995-01-01
The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.
Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.S.; Bellan, J.
1998-08-01
A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects frommore » thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.« less
Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN
Kirchgessner, Norbert; Walter, Achim
2017-01-01
Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344
On the motion of multiple helical vortices
NASA Astrophysics Data System (ADS)
Wood, D. H.; Boersma, J.
2001-11-01
The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.
Unsteady numerical simulation of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Javadi, Ardalan; Nilsson, Håkan
2014-03-01
The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.
Air injection test on a Kaplan turbine: prototype - model comparison
NASA Astrophysics Data System (ADS)
Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.
2016-11-01
Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.
Effect of wing flexibility in dragonfly hovering flight
NASA Astrophysics Data System (ADS)
Naidu, Vishal; Young, John; Lai, Joseph
2011-11-01
Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.
Time frequency analysis of sound from a maneuvering rotorcraft
NASA Astrophysics Data System (ADS)
Stephenson, James H.; Tinney, Charles E.; Greenwood, Eric; Watts, Michael E.
2014-10-01
The acoustic signatures produced by a full-scale, Bell 430 helicopter during steady-level-flight and transient roll-right maneuvers are analyzed by way of time-frequency analysis. The roll-right maneuvers comprise both a medium and a fast roll rate. Data are acquired using a single ground based microphone that are analyzed by way of the Morlet wavelet transform to extract the spectral properties and sound pressure levels as functions of time. The findings show that during maneuvering operations of the helicopter, both the overall sound pressure level and the blade-vortex interaction sound pressure level are greatest when the roll rate of the vehicle is at its maximum. The reduced inflow in the region of the rotor disk where blade-vortex interaction noise originates is determined to be the cause of the increase in noise. A local decrease in inflow reduces the miss distance of the tip vortex and thereby increases the BVI noise signature. Blade loading and advance ratios are also investigated as possible mechanisms for increased sound production, but are shown to be fairly constant throughout the maneuvers.
NASA Astrophysics Data System (ADS)
Trout, Joseph; Manson, J. Russell; King, David; Decicco, Nicolas; Prince, Alyssa; di Mercurio, Alexis; Rios, Manual
2017-01-01
Wake Vortex Turbulence is the turbulence generated by an aircraft in flight. This turbulence is created by vortices at the tips of the wing that may decay slowly and persist for several minutes after creation. These vortices and turbulence are hazardous to other aircraft in the vicinity. The strength, formation and lifetime of the turbulence and vortices are effected by many things including the weather. Here we present the final results of the pilot project to investigation of low level wind fields generated by the Weather Research and Forecasting Model and an analysis of historical data. The findings from the historical data and the data simulations were used as inputs for the computational fluid dynamics model (OpenFoam) to show that the vortices could be simulated using OpenFoam. Presented here are the updated results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Stockton University and the FAA''.
Forebody vortex control for suppressing wing rock on a highly-swept wing configuration
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Kramer, Brian R.; Ayers, Bert; Malcolm, Gerald N.
1992-01-01
Free-to-roll tests were conducted in a wind tunnel with a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. A limit cycle oscillation was observed for angles of attack between 22 and 30 deg. In general, the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. Various blowing techniques were evaluated as means of wing rock suppression. Blowing tangentially aft from leeward side nozzles near the forebody tip can damp the roll motion at low blowing rates and stop it completely at higher blowing rates. At the high rates, significant vortex asymmetries are created, causing the model to stop at a non-zero roll angle. Forward blowing and alternating right/left pulsed blowing appear to be more efficient techniques for suppressing wing rock. The oscillations can be damped almost completely at lower blowing coefficients, and, apparently, no major vortex asymmetries are induced. Good agreement is observed between this study and previous water tunnel tests on the same configuration.
F/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project
NASA Technical Reports Server (NTRS)
Vachon, M. Jake; Ray, Ronald J.; Walsh, Kevin R.; Ennix, Kimberly
2003-01-01
The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.
Magnetic-Field-Tunable Superconducting Rectifier
NASA Technical Reports Server (NTRS)
Sadleir, John E.
2009-01-01
Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.
Warren, Jamie M; Pawliszyn, Janusz
2011-12-16
For air/headspace analysis, needle trap devices (NTDs) are applicable for sampling a wide range of volatiles such as benzene, alkanes, and semi-volatile particulate bound compounds such as pyrene. This paper describes a new NTD that is simpler to produce and improves performance relative to previous NTD designs. A NTD utilizing a side-hole needle used a modified tip, which removed the need to use epoxy glue to hold sorbent particles inside the NTD. This design also improved the seal between the NTD and narrow neck liner of the GC injector; therefore, improving the desorption efficiency. A new packing method has been developed and evaluated using solvent to pack the device, and is compared to NTDs prepared using the previous vacuum aspiration method. The slurry packing method reduced preparation time and improved reproducibility between NTDs. To evaluate the NTDs, automated headspace extraction was completed using benzene, toluene, ethylbenzene, p-xylene (BTEX), anthracene, and pyrene (PAH). NTD geometries evaluated include: blunt tip with side-hole needle, tapered tip with side-hole needle, slider tip with side-hole, dome tapered tip with side-hole and blunt with no side-hole needle (expanded desorptive flow). Results demonstrate that the tapered and slider tip NTDs performed with improved desorption efficiency. Copyright © 2011 Elsevier B.V. All rights reserved.
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.
Spindt cold cathode electron gun development program
NASA Technical Reports Server (NTRS)
Spindt, C. A.
1983-01-01
A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.
Virtual Tool Mark Generation for Efficient Striation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekstrand, Laura; Zhang, Song; Grieve, Taylor
2014-02-16
This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley et al. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguishedmore » known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within ±5–10°. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.« less
Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development
NASA Astrophysics Data System (ADS)
Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.
2017-12-01
The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.
The effect of butterfly-scale inspired patterning on leading-edge vortex growth
NASA Astrophysics Data System (ADS)
Wilroy, Jacob Aaron
Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.
Lu, Bing-Rui; Deng, Jianan; Li, Qi; Zhang, Sichao; Zhou, Jing; Zhou, Lei; Chen, Yifang
2018-06-14
Metasurfaces consisting of a two-dimensional metallic nano-antenna array are capable of transferring a Gaussian beam into an optical vortex with a helical phase front and a phase singularity by manipulating the polarization/phase status of light. This miniaturizes a laboratory scaled optical system into a wafer scale component, opening up a new area for broad applications in optics. However, the low conversion efficiency to generate a vortex beam from circularly polarized light hinders further development. This paper reports our recent success in improving the efficiency over a broad waveband at the visible frequency compared with the existing work. The choice of material, the geometry and the spatial organization of meta-atoms, and the fabrication fidelity are theoretically investigated by the Jones matrix method. The theoretical conversion efficiency over 40% in the visible wavelength range is worked out by systematic calculation using the finite difference time domain (FDTD) method. The fabricated metasurface based on the parameters by theoretical optimization demonstrates a high quality vortex in optical frequencies with a significantly enhanced efficiency of over 20% in a broad waveband.
Infinite lattices of vortex molecules in Rabi-coupled condensates
NASA Astrophysics Data System (ADS)
Mencia Uranga, B.; Lamacraft, Austen
2018-04-01
Vortex molecules can form in a two-component superfluid when a Rabi field drives transitions between the two components. We study the ground state of an infinite system of vortex molecules in two dimensions, using a numerical scheme which makes no use of the lowest Landau level approximation. We find the ground state lattice geometry for different values of intercomponent interactions and strength of the Rabi field. In the limit of large field when molecules are tightly bound, we develop a complementary analytical description. The energy governing the alignment of molecules on a triangular lattice is found to correspond to that of an infinite system of two-dimensional quadrupoles, which may be written in terms of an elliptic function Q (zi j;ω1,ω2) . This allows for a numerical evaluation of the energy which enables us to find the ground state configuration of the molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Richen; Guo, Hanqi; Yuan, Xiaoru
Most of the existing approaches to visualize vector field ensembles are to reveal the uncertainty of individual variables, for example, statistics, variability, etc. However, a user-defined derived feature like vortex or air mass is also quite significant, since they make more sense to domain scientists. In this paper, we present a new framework to extract user-defined derived features from different simulation runs. Specially, we use a detail-to-overview searching scheme to help extract vortex with a user-defined shape. We further compute the geometry information including the size, the geo-spatial location of the extracted vortexes. We also design some linked views tomore » compare them between different runs. At last, the temporal information such as the occurrence time of the feature is further estimated and compared. Results show that our method is capable of extracting the features across different runs and comparing them spatially and temporally.« less
Formation of high-order acoustic Bessel beams by spiral diffraction gratings
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.
2016-11-01
The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.
Development and testing of tip devices for horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Gyatt, G. W.; Lissaman, P. B. S.
1985-01-01
A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of perormance data were collected over a three-month period. The sampling interval was 2.4 sec; thrus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted.
Effect of mitral orifice shape on intra-ventricular filling fluid dynamics
NASA Astrophysics Data System (ADS)
Okafor, Ikechukwu; Angirish, Yagna; Yoganathan, Ajit; Santhanakrishnan, Arvind
2013-11-01
The natural geometry of the mitral orifice is D-shaped. However, most current designs of prosthetic valves employ O-shaped orifice geometry. The goal of this study was to compare the effect of geometrical modification between the D and O orifice on the intra-ventricular fluid dynamics during diastolic filling. The different mitral orifice geometries were incorporated into an in vitro left heart simulator consisting of a flexible-walled anatomical left ventricle (LV) physical model enclosed in an acrylic housing. Physiological flow rates and pressures were obtained via tuning systemic resistance and compliance elements in the flow loop. A programmable piston pump was used to generate the LV model wall motion. 2D Particle image velocimetry measurements were conducted along multiple longitudinal planes perpendicular to the annulus plane. During peak diastole, the incoming jet width at the LV central plane was smaller for the D-orifice than that of the O-orifice. Further, the core of the vortex ring in the D-orifice was reduced in size compared to that of the O-orifice. The spatiotemporal spreading of the inflow jet as well as the propagation of the vortex ring will be discussed. This study was funded by a grant from the National Heart, Lung and Blood Institute (RO1HL70262).
How do seal whiskers suppress vortex shedding
NASA Astrophysics Data System (ADS)
Rinehart, Aidan; Flaherty, Justin; Bunjavick, Joseph; Shyam, Vikram; Zhang, Wei
2016-11-01
Certain seal whiskers possess a unique geometry that significantly reduces the vortex-induced vibration; which has attracted great attention to understand how the unique shape re-organizes the wake structure and its potential for passive flow control. The shape of the whiskers can be described as an elliptical cross-section that is lofted along the length of the whisker. Along the entire length of the whisker the ellipse varies in major and minor axis as well as angle of incidence with respect to the axis of the whisker. Of particular interest in this study is to identify what effect the angle of incidence has on the flow structure around the whisker, which has been overlooked in the past. The study will analyze the wake structure behind various scaled-up whisker models using particle image velocimitry (PIV). These whisker models share common geometry dimensions except for the angle of incidence. Flow conditions are created in a water channel and a wind tunnel, covering a wide range of Reynolds number (a few hundreds to thousands), similar to the ambient flow environment of seals and to the targeted aero-propulsion applications. This study will help address knowledge gaps in understanding of how certain geometry features of seal whiskers influence the wake and establish best practices for its application as effective passive flow control strategy.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Obara, Clifford J.; Fisher, Bruce D.; Fisher, David F.
2001-01-01
Geometrical, flight, computational fluid dynamics (CFD), and wind-tunnel studies for the F-16XL-1 airplane are summarized over a wide range of test conditions. Details are as follows: (1) For geometry, the upper surface of the airplane and the numerical surface description compare reasonably well. (2) For flight, CFD, and wind-tunnel surface pressures, the comparisons are generally good at low angles of attack at both subsonic and transonic speeds, however, local differences are present. In addition, the shock location at transonic speeds from wind-tunnel pressure contours is near the aileron hinge line and generally is in correlative agreement with flight results. (3) For boundary layers, flight profiles were predicted reasonably well for attached flow and underneath the primary vortex but not for the secondary vortex. Flight data indicate the presence of an interaction of the secondary vortex system and the boundary layer and the boundary-layer measurements show the secondary vortex located more outboard than predicted. (4) Predicted and measured skin friction distributions showed qualitative agreement for a two vortex system. (5) Web-based data-extraction and computational-graphical tools have proven useful in expediting the preceding comparisons. (6) Data fusion has produced insightful results for a variety of visualization-based data sets.
NASA Astrophysics Data System (ADS)
Swiecicki, I.; Ulysse, C.; Wolf, T.; Bernard, R.; Bergeal, N.; Briatico, J.; Faini, G.; Lesueur, J.; Villegas, Javier E.
2012-06-01
We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adjust the depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an unusually wide range of temperatures and applied fields for high-temperature superconducting films.
DoD High Performance Computing Modernization Program FY16 Annual Report
2018-05-02
vortex shedding from rotor blade tips using adaptive mesh refinement gives Helios the unique capability to assess the interaction of these vortices...with the fuselage and nearby rotor blades . Helios provides all the benefits for rotary-winged aircraft that Kestrel does for fixed-wing aircraft...rotor blade upgrade of the CH-47F Chinook helicopter to achieve up to an estimated 2,000 pounds increase in hover thrust (~10%) with limited
Swirl Ring Improves Performance Of Welding Torch
NASA Technical Reports Server (NTRS)
Mcgee, William F.; Rybicki, Daniel J.
1995-01-01
Plasma-arc welding torch modified to create vortex in plasma gas to focus arc into narrower and denser column. Swirl ring contains four channels with angled exit holes to force gas to swirl as it flows out of torch past tip of electrode. Degradation of electrode and orifice more uniform and need to rotate torch during operation to compensate for asymmetry in arc reduced or eliminated. Used in both keyhole and nonkeyhole welding modes.
A Higher-Order Trapezoidal Vector Vortex Panel for Subsonic Flow.
1980-12-01
Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the...Requirements for the Degree of Master of Science by Ronald E. Luther, B.S. Capt USAF Graduate Aeronautical Engineering December 1980 Approved for public... methd also permits analysis of cranked leading and/or trailiig edges. The root edge, tip edge and all chordwise boundaries are parallel to the x-axis
Problem of Vortex Turbulence behind Wings (II),
1980-09-23
these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1998-01-01
This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
Finite Element Model and Validation of Nasal Tip Deformation
Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian JF
2016-01-01
Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39mm ± 1.04 mm and deviated up to 2mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow. PMID:27633018
Finite Element Model and Validation of Nasal Tip Deformation.
Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F
2017-03-01
Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.
Cascading gauge theory on dS4 and String Theory landscape
NASA Astrophysics Data System (ADS)
Buchel, Alex; Galante, Damián A.
2014-06-01
Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Bunker, R. S.
1999-01-01
A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (>1OOMW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip were considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade.
Helicopter flight dynamics simulation with a time-accurate free-vortex wake model
NASA Astrophysics Data System (ADS)
Ribera, Maria
This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.
Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation
NASA Technical Reports Server (NTRS)
Chang, I. C.
1985-01-01
A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.
Influence of Finite Span and Sweep on Active Flow Control Efficacy
NASA Technical Reports Server (NTRS)
Greenblatt, David; Washburn, Anthony E.
2008-01-01
Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.
Reflection plane tests of a wind turbine blade tip section with ailerons
NASA Technical Reports Server (NTRS)
Savino, J. M.; Nyland, T. W.; Birchenough, A. G.; Jordan, F. L.; Campbell, N. K.
1985-01-01
Tests were conducted in the NASA Langley 30 by 60 foot Wind Tunnel on a full scale 7.31 m (24 ft) long tip section of a wind turbine rotor blade. The blade tip section was built with ailerons on the trailing edge. The ailerons, which spanned a length of 6.1 m (20 ft), were designed so that two types could be evaluated: the plain and the balanced. The ailerons were hinged on the suction surface at the 0.62 X chord station behind the leading edge. The purpose of the tests was to measure the aerodynamic characteristics of the blade section for: an angle of attack range from 0 deg to 90 deg aileron deflections from 0 deg to -90 deg, and Reynolds numbers of 0.79 and 1.5 x 10 to the 6th power. These data were then used to determine which aileron configuration had the most desirable rotor control and aerodynamic braking characteristics. Tests were also run to determine the effects of vortex generators, leading edge roughness, and the gaps between the aileron sections on the lift, drag, and chordwise force coefficients of the blade tip section.
NASA Astrophysics Data System (ADS)
Harrison, R. J.; Einsle, J. F.; Williams, W.; Ó Conbhuí, P.; Fu, R. R.; Weiss, B. P.; Kasama, T.
2015-12-01
Dusty-olivine chondrules are carriers of stable pre-accretionary remanence, and have recently been used to obtain the first reliable estimate of the magnetic field of the early solar nebula. Here we show how the magnetic architecture of a single dusty olivine grain from the Semarkona LL3.0 ordinary chondrite meteorite can be fully characterised in three-dimensions, using a combination of Focussed-Ion-Beam nanotomography (FIB-nt), electron tomography and finite-element micromagnetic modelling. We present a 3D volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including the distribution of particle sizes, shapes, interparticle spacings and preferred orientations. Iron particles are predominantly oblate ellipoids. Particles nucleate on dislocation networks and are loosely arranged in a series of parallel sheets with their shortest dimension oriented normal to the sheets and their longest dimensions preferentially aligned within the sheets. Individual particle geometries are converted to a finite-element mesh and used to perform micromagnetic simulations. The majority of particles adopt a single vortex state, with 'bulk' spins that rotate around a central vortex core. The results challenge pre-conceived ideas about the remanence carrying properties of vortex states. We find that remanence is carried by bulk spins rather than the vortex core. Although the orientation of the core is determined by the ellipsoidal geometry (parallel to the major axis for prolate ellipsoids; parallel to the minor axis for oblate ellipsoids), the remanence vectors generally lie at large angles (and in many cases antiparallel) to the core magnetisation. Even in the case of prolate particles, the resulting remanence vector can make a large angle of ~50° to the expected easy axis. The results reconcile the predicted and observed directions of remanence anisotropy, and demonstrate how this combination of nanotomography and micromagnetics will become an essential component of future single-crystal paleomagnetic studies.
Tips on Creating Complex Geometry Using Solid Modeling Software
ERIC Educational Resources Information Center
Gow, George
2008-01-01
Three-dimensional computer-aided drafting (CAD) software, sometimes referred to as "solid modeling" software, is easy to learn, fun to use, and becoming the standard in industry. However, many users have difficulty creating complex geometry with the solid modeling software. And the problem is not entirely a student problem. Even some teachers and…
Experimental study of a generic high-speed civil transport: Tabulated data
NASA Technical Reports Server (NTRS)
Belton, Pamela S.; Campbell, Richard L.
1992-01-01
An experimental study of a generic high-speed civil transport was conducted in LaRC's 8-Foot Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wing tip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wing tip shape while the second model has a more conventional straight wing tip shape. The study was conducted at Mach numbers from 0.30-1.19. Force data were obtained on both the straight and curved wing tip models. Only the curved wing tip model was instrumented for measuring pressures. Longitudinal and lateral-directional aerodynamic data are presented without analysis in tabulated form. Pressure coefficients for the curved wing tip model are also presented in tabulated form.
Applying Dynamic Wake Models to Induced Power Calculations for an Optimum Rotor
2009-08-01
versions being special cases of the general one. Although the rotor blade may be moving at transonic speeds near the tip, the rotor wake is...The effect of a finite number of blades incurs an additional loss in wake energy due to the individual vortex sheets from each blade . In 1929... blades . Up to this point, previous developments have been able to achieve the full description of the wake in all ranges of flight regime
Roberts, Matthew; Ford, James L; MacLeod, Graeme S; Fell, John T; Smith, George W; Rowe, Philip H; Dyas, A Mark
2004-07-01
The sticking of a model ibuprofen-lactose formulation with respect to compaction force, punch tip geometry and punch tip embossment was assessed. Compaction was performed at 10, 25 or 40 kN using an instrumented single-punch tablet press. Three sets of 'normal' concave punches were used to evaluate the influence of punch curvature and diameter. The punches were 10, 11 and 12 mm in diameter, respectively. The 10-mm punch was embossed with a letter 'A' logo to assess the influence of an embossment on sticking. Flat-faced punches (12.5 mm) were used for comparison with the concave tooling. Surface profiles (Taylor Hobson Talysurf 120) of the upper punch faces were obtained to evaluate the surface quality of the tooling used. Following compaction, ibuprofen attached to the upper punch face was quantified by spectroscopy. Increasing punch curvature from flat-faced punches to concave decreased sticking. Altering punch diameter of the concave punches had no effect on sticking when expressed as microg mm(-2). The embossed letter 'A' logo increased sticking considerably owing to the probable concentration of shear stresses at the lateral faces of the embossed logo.
Comparison of different focusing fiber tips for improved oral diode laser surgery.
Stock, Karl; Stegmayer, Thomas; Graser, Rainer; Förster, Wolfram; Hibst, Raimund
2012-12-01
State of the art for use of the fiber guided diode laser in dental therapy is the application of bare fibers. A novel concept with delivery fiber and exchangeable fiber tips enables the use of tips with special and optimized geometries for various applications. The aim of this study is the comparison of different focusing fiber tips for enhanced cutting efficacy in oral surgery. For this purpose various designs of tip geometry were investigated and optimized by ray tracing simulations. Two applicators, one with a sphere, and another one with a taper, were realized and tested on porcine gingiva (diode laser, 940 nm, 5 W/cw; 7 W/modulated). The cutting depth and quality were determined by light microscope. Histological sections of the cuts were prepared by a cryo-microtome and microscopically analyzed to determine the cut depths and thermal damage zones. The simulations show that, using a sphere as fiber tip, an intensity increase of up to a factor of 16.2 in air, and 13.2 in water compared to a bare 200 µm fiber can be achieved. Although offering high focusing factor in water, the cutting quality of the sphere was rather poor. This is probably caused by a derogation of the focusing quality due to contamination during cutting and light scattering. Much better results were achieved with conically shaped fiber tips. Compared to bare fibers they exhibit improved handling properties with no hooking, more regular and deeper cuts (5 W/cw: 2,393 ± 468 µm, compared to the cleaved bare fiber 5 W/cw: 711 ± 268 µm). The thermal damage zones of the cuts are comparable for the various tips and fibers. In conclusion the results of our study show that cutting quality and efficiency of diode laser on soft tissue can be significantly improved using conically shaped fiber tips. Copyright © 2012 Wiley Periodicals, Inc.
Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings
NASA Astrophysics Data System (ADS)
Mawass, Mohamad-Assaad; Richter, Kornel; Bisig, Andre; Reeve, Robert M.; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Krone, Andrea; Kronast, Florian; Schütz, Gisela; Kläui, Mathias
2017-04-01
Spintronic applications based on magnetic domain-wall (DW) motion, such as magnetic data storage, sensors, and logic devices, require approaches to reliably manipulate the magnetization in nanowires. In this paper, we report the direct dynamic experimental visualization of reliable switching from the onion to the vortex state by DW automotion at zero field in asymmetric ferromagnetic rings using a uniaxial field pulse. Employing time-resolved x-ray microscopy, we demonstrate that depending on the detailed spin structure of the DWs and the size and geometry of the rings, the automotive propagation can be tailored during the DW relaxation from the higher-energy onion state to the energetically favored vortex state, where both DWs annihilate. Our measurements show DW automotion with an average velocity of about 60 m /s , which is a significant speed for spintronic devices. Such motion is mostly governed by local forces resulting from the geometry variations in the device. A closer study of the annihilation process via micromagnetic simulations reveals that a new vortex is nucleated in between the two initial walls. We demonstrate that the annihilation of DWs through automotion in our scheme always occurs with the detailed topological nature of the walls influencing only the DW dynamics on a local scale. The simulations show good quantitative agreement with our experimental results. These findings shed light on a robust and reliable switching process of the onion state in ferromagnetic rings, which paves the way for further optimization of these devices.
Arias, Ana; Paqué, Frank; Shyn, Stephanie; Murphy, Sarah; Peters, Ove A
2018-04-01
The purpose of this study was to assess the geometry of non-round root canals after preparation with TRUShape (a novel instrument with s-shaped longitudinal design) in comparison to conventional rotary instrumentation using micro-computed tomography. Twenty distal root canals of mandibular molars were randomly distributed in two groups to be shaped with either TRUShape or Vortex rotaries. Percentages of unprepared surface and volume of dentin removal for the entire canal and for the apical 4 mm were calculated. Canal transportation and the structure model index (SMI) were assessed. Data were compared with Student t-tests. Shaping with both techniques resulted in similar prepared surface and volume of dentin removed, as well as the extent of canal transportation. The SMI shape factor was significantly lower for TRUShape preparations (P = 0.04) suggesting less rounding during rotary preparation. Although both instruments were suitable for the preparation of oval canals, TRUShape appeared to better conform to the original ribbon-shaped anatomy. © 2017 Australian Society of Endodontology Inc.
Aerodynamic drag control by pulsed jets on simplified car geometry
NASA Astrophysics Data System (ADS)
Gilliéron, Patrick; Kourta, Azeddine
2013-02-01
Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.
NASA Technical Reports Server (NTRS)
Visser, Kenneth D.
1991-01-01
Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating factors leading to the onset of breakdown are felt to be the local circulation of the vortex and the accompanying pressure field.
Improved method for determining the stress relaxation at the crack tip
NASA Astrophysics Data System (ADS)
Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.
2017-10-01
A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.
NASA Astrophysics Data System (ADS)
Salem-Sugui, S., Jr.; Alvarenga, A. D.; Luo, H.-Q.; Zhang, R.; Gong, D.-L.
2017-01-01
We analysed the flux-flow region of isofield magnetoresistivity data obtained on three crystals of {{BaFe}}2-x Ni x As2 with T c ˜ 20 K for three different geometries relative to the angle formed between the applied magnetic field and the c-axis of the crystals. The field dependent activation energy, U 0, was obtained from the thermal assisted flux-flow (TAFF) and modified vortex-glass models, which were compared with the values of U 0 obtained from flux-creep available in the literature. We observed that the U 0 obtained from the TAFF model show deviations among the different crystals, while the correspondent glass lines obtained from the vortex-glass model are virtually coincident. It is shown that the data is well explained by the modified vortex-glass model, allowing extract of values of T g, the glass transition temperature, and {T}* , a temperature which scales with the mean field critical temperature {T}{{c}}(H). The resulting glass lines obey the anisotropic Ginzburg-Landau theory and are well fitted by a theory developed in the literature by considering the effect of disorder.
NASA Astrophysics Data System (ADS)
Ancilotto, Francesco; Barranco, Manuel; Eloranta, Jussi; Pi, Martí
2017-08-01
Two-dimensional flow past an infinitely long cylinder of nanoscopic radius in superfluid 4He at zero temperature is studied using time-dependent density-functional theory. The calculations reveal two distinct critical phenomena for the onset of dissipation: (i) vortex-antivortex pair shedding from the periphery of the moving cylinder, and (ii) the appearance of cavitation in the wake, which possesses similar geometry to that observed experimentally for fast-moving micrometer-scale particles in superfluid 4He. The formation of cavitation bubbles behind the cylinder is accompanied by a sudden jump in the drag exerted on the moving cylinder by the fluid. Vortex pairs with the same circulation are occasionally emitted in the form of dimers, which constitute the building blocks for the Benard-von Karman vortex street structure observed in classical turbulent fluids and Bose-Einstein condensates. The cavitation-induced dissipation mechanism should be common to all superfluids that are self-bound and have a finite surface tension, which include the recently discovered self-bound droplets in ultracold Bose gases. These systems would provide an ideal testing ground for further exploration of this mechanism experimentally.
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung; ...
2017-02-10
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Near-body vorticity dynamics of a square cylinder subjected to an inline pulsatile free stream flow
NASA Astrophysics Data System (ADS)
Krishnan, Hrisheekesh; Agrawal, Amit; Sharma, Atul; Sheridan, John
2016-09-01
In the present work, the effect of an inflow sinusoidal excitation that is superimposed over the mean flow on the vortex-shedding characteristics of a square cylinder is studied. The frequency of pulsation is varied around the natural vortex-shedding frequency, and the amplitude of pulsation is varied moderately in comparison to the cylinder diameter, at a fixed Reynolds number (=100). A flow regime map is prepared and compared with the experimental results, which are available for a circular cylinder that is subjected to inline excitation. We correlate the spectra to the corresponding flow regime. Visualization of the vorticity contours reveals that the significant interaction of the base-region vorticities with the main shear layer vorticities is important in the mechanism of formation of the several vortex-shedding modes. The strength and sign of base region vorticity with respect to the shear layers has a fundamental role to play in the mechanism of formation. It is hypothesized that the similarity in vortex-shedding modes across different excitation types, bluff body geometry, and for different parameters is due to the similarity in the underlying vorticity dynamics.
NASA Technical Reports Server (NTRS)
Nelson, Robert C.; Visser, Kenneth D.
1990-01-01
Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve.
NASA Technical Reports Server (NTRS)
Stephenson, James H.; Greenwood, Eric
2015-01-01
Blade-vortex interaction noise measurements are analyzed for an AS350B helicopter operated at 7000 ft elevation above sea level. Blade-vortex interaction (BVI) noise from four, 6 degree descent conditions are investigated with descents flown at 80 knot true and indicated airspeed, as well as 4400 and 3915 pound take-off weights. BVI noise is extracted from the acquired acoustic signals by way of a previously developed time-frequency analysis technique. The BVI extraction technique is shown to provide a better localization of BVI noise, compared to the standard Fourier transform integration method. Using this technique, it was discovered that large changes in BVI noise amplitude occurred due to changes in vehicle gross weight. Changes in BVI noise amplitude were too large to be due solely to changes in the vortex strength caused by varying vehicle weight. Instead, it is suggested that vehicle weight modifies the tip-path-plane angle of attack, as well as induced inflow, resulting in large variations of BVI noise. It was also shown that defining flight conditions by true airspeed, rather than indicated airspeed, provides more consistent BVI noise signals.
Modelling exhaust plume mixing in the near field of an aircraft
NASA Astrophysics Data System (ADS)
Garnier, F.; Brunet, S.; Jacquin, L.
1997-11-01
A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. Our investigation is focused on the near field, extending from the exit nozzle until about 30 s after the wake is generated, in the vortex phase. This study was performed by using an integral model and a numerical simulation for two large civil aircraft: a two-engine Airbus 330 and a four-engine Boeing 747. The influence of the wing-tip vortices on the dilution ratio (defined as a tracer concentration) shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. In the early wake, the engine jet location (i.e. inboard or outboard engine jet) has an important influence on the mixing rate. The plume streamlines inside the vortices are subject to distortion and stretching, and the role of the descent of the vortices on the maximum tracer concentration is discussed. Qualitative comparison with contrail photograph shows similar features. Finally, tracer concentration of inboard engine centreline of B-747 are compared with other theoretical analyses and measured data.
A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration.
Li, Zhe; Yang, Daoguo; Hao, Weidong; Wu, Tiecheng; Wu, Song; Li, Xiaoping
2016-04-01
Micro-hole opening on skull is technically challenging and is hard to realize by micro-drilling. Low-stiffness of the drill bit is a serious drawback in micro-drilling. To deal with this problem, a novel ultrasonic vibration assisted micro-hole forming technique has been developed. Tip geometry and vibration amplitude are two key factors affecting the performance of this hole forming technique. To investigate their effects, experiment was carried out with 300μm diameter tools of three different tip geometries at three different vibration amplitudes. Hole forming performance was evaluated by the required thrust force, dimensional accuracy, exit burr and micro-structure of bone tissue around the generated hole. Based on the findings from current study, the 60° conically tipped tool helps generate a micro-hole of better quality at a smaller thrust force, and it is more suitable for hole forming than the 120° conically tipped tool and the blunt tipped tool. As for the vibration amplitude, when a larger amplitude is used, a micro-hole of better quality and higher dimensional accuracy can be formed at a smaller thrust force. Findings from this study would lay a technical foundation for accurately generating a high-quality micro-hole on skull, which enables minimally invasive insertion of a microelectrode into brain for neural activity measuring. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Peugeot, John W.
2017-01-01
OBJECTIVES: To evaluate proposed anti-vortex design in suppressing swirling flow during US burn. APPROACH: Include two major body forces in the analysis a)Vehicle acceleration (all three components); b)Vehicle maneuvers (roll, pitch, and yaw). Perform two drainage analyses of Ares I LOX tank using 6 DOF body forces predicted by GN&C analysis (Guidance Navigation and Control) during vehicle ascent: one with baffle, one without baffle. MODEL: Use Ares I defined geometry. O-Grid for easy fitting of baffle. In this preliminary analysis the holes are sealed. Use whole 360 deg. model with no assumption of symmetry or cyclic boundary conditions. Read in 6DOF data vs time from a file.
Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, W.; Austin, J. M.
2013-10-01
We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.