Micatu Tissue Arrayer | NCI Technology Transfer Center | TTC
An NCI researcher recognized a critical need to create a low-cost, easy-to-use tissue microarrayer (TMA), an instrument used by researchers and pathologists to accurately examine tissue samples from patients.
Fast photoacoustic imaging system based on 320-element linear transducer array.
Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun
2004-04-07
A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.
Li, Shuyu; Li, Yiqun Helen; Wei, Tao; Su, Eric Wen; Duffin, Kevin; Liao, Birong
2006-10-25
The tissue expression pattern of a gene often provides an important clue to its potential role in a biological process. A vast amount of gene expression data have been and are being accumulated in public repository through different technology platforms. However, exploitations of these rich data sources remain limited in part due to issues of technology standardization. Our objective is to test the data comparability between SAGE and microarray technologies, through examining the expression pattern of genes under normal physiological states across variety of tissues. There are 42-54% of genes showing significant correlations in tissue expression patterns between SAGE and GeneChip, with 30-40% of genes whose expression patterns are positively correlated and 10-15% of genes whose expression patterns are negatively correlated at a statistically significant level (p = 0.05). Our analysis suggests that the discrepancy on the expression patterns derived from technology platforms is not likely from the heterogeneity of tissues used in these technologies, or other spurious correlations resulting from microarray probe design, abundance of genes, or gene function. The discrepancy can be partially explained by errors in the original assignment of SAGE tags to genes due to the evolution of sequence databases. In addition, sequence analysis has indicated that many SAGE tags and Affymetrix array probe sets are mapped to different splice variants or different sequence regions although they represent the same gene, which also contributes to the observed discrepancies between SAGE and array expression data. To our knowledge, this is the first report attempting to mine gene expression patterns across tissues using public data from different technology platforms. Unlike previous similar studies that only demonstrated the discrepancies between the two gene expression platforms, we carried out in-depth analysis to further investigate the cause for such discrepancies. Our study shows that the exploitation of rich public expression resource requires extensive knowledge about the technologies, and experiment. Informatic methodologies for better interoperability among platforms still remain a gap. One of the areas that can be improved practically is the accurate sequence mapping of SAGE tags and array probes to full-length genes.
ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.
Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles
2018-04-19
Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We developed a novel de-arraying approach for TMA analysis. By combining wavelet-based detection, active contour segmentation, and thin-plate spline interpolation, our approach is able to handle TMA images with high dynamic, poor signal-to-noise ratio, complex background and non-linear deformation of TMA grid. In addition, the deformation estimation produces quantitative information to asset the manufacturing quality of TMAs.
Carbon Nanotube Array for Infrared Detection
2011-09-28
Scientific Progress Technology Transfer 1 Carbon Nanotube Array for Infrared Detection Final Report Jimmy Xu...devices. In contrast to photocarrier generation across a band gap, nature’s bolometers convert infrared radiation into heating of tissues thereby...been investigated. [5, 6] High TCR is, however, not the only important parameter for bolometric sensing. Heat capacity, thermal conductivity
NASA Astrophysics Data System (ADS)
Goncalves, S. B.; Peixoto, A. C.; Silva, A. F.; Correia, J. H.
2015-05-01
This paper presents a detailed description of the design, fabrication and mechanical characterization of 3D microelectrode arrays (MEA) that comprise high aspect-ratio shafts and different penetrating lengths of electrodes (from 3 mm to 4 mm). The array’s design relies only on a bulk silicon substrate dicing saw technology. The encapsulation process is accomplished by a medical epoxy resin and platinum is used as the transduction layer between the probe and neural tissue. The probe’s mechanical behaviour can significantly affect the neural tissue during implantation time. Thus, we measured the MEA maximum insertion force in an agar gel phantom and a porcine cadaver brain. Successful 3D MEA were produced with shafts of 3 mm, 3.5 mm and 4 mm in length. At a speed of 180 mm min-1, the MEA show maximum penetrating forces per electrode of 2.65 mN and 12.5 mN for agar and brain tissue, respectively. A simple and reproducible fabrication method was demonstrated, capable of producing longer penetrating shafts than previously reported arrays using the same fabrication technology. Furthermore, shafts with sharp tips were achieved in the fabrication process simply by using a V-shaped blade.
Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.
2014-01-01
Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513
2016-03-31
transcutaneously via the outer ear using a high-resolution, addressable array of organic light emitting diodes (OLEDs) manufactured on a flexible...therapeutic optical stimulation in optogenetically modified neural tissue. Keywords: Optogenetics; neuromodulation; organic light emitting diode ...the outer ear using a high-resolution, two-dimensional (2-D), addressable array of red organic light - emitting diodes (OLEDs) manufactured on a thin
Biofabricated constructs as tissue models: a short review.
Costa, Pedro F
2015-04-01
Biofabrication is currently able to provide reliable models for studying the development of cells and tissues into multiple environments. As the complexity of biofabricated constructs is becoming increasingly higher their ability to closely mimic native tissues and organs is also increasing. Various biofabrication technologies currently allow to precisely build cell/tissue constructs at multiple dimension ranges with great accuracy. Such technologies are also able to assemble together multiple types of cells and/or materials and generate constructs closely mimicking various types of tissues. Furthermore, the high degree of automation involved in these technologies enables the study of large arrays of testing conditions within increasingly smaller and automated devices both in vitro and in vivo. Despite not yet being able to generate constructs similar to complex tissues and organs, biofabrication is rapidly evolving in that direction. One major hurdle to be overcome in order for such level of complex detail to be achieved is the ability to generate complex vascular structures within biofabricated constructs. This review describes several of the most relevant technologies and methodologies currently utilized within biofabrication and provides as well a brief overview of their current and future potential applications.
NASA Astrophysics Data System (ADS)
Yokoyama, Ryouta; Yagi, Shin-ichi; Tamura, Kiyoshi; Sato, Masakazu
2009-07-01
Ultrahigh speed dynamic elastography has promising potential capabilities in applying clinical diagnosis and therapy of living soft tissues. In order to realize the ultrahigh speed motion tracking at speeds of over thousand frames per second, synthetic aperture (SA) array signal processing technology must be introduced. Furthermore, the overall system performance should overcome the fine quantitative evaluation in accuracy and variance of echo phase changes distributed across a tissue medium. On spatial evaluation of local phase changes caused by pulsed excitation on a tissue phantom, investigation was made with the proposed SA signal system utilizing different virtual point sources that were generated by an array transducer to probe each component of local tissue displacement vectors. The final results derived from the cross-correlation method (CCM) brought about almost the same performance as obtained by the constrained least square method (LSM) extended to successive echo frames. These frames were reconstructed by SA processing after the real-time acquisition triggered by the pulsed irradiation from a point source. The continuous behavior of spatial motion vectors demonstrated the dynamic generation and traveling of the pulsed shear wave at a speed of one thousand frames per second.
Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, D H; Littrup, P
2002-01-24
Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparablemore » resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.« less
Fabrication of cell container arrays with overlaid surface topographies.
Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios
2012-02-01
This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.
NASA Astrophysics Data System (ADS)
Hara, Seth A.; Kim, Brian J.; Kuo, Jonathan T. W.; Lee, Curtis D.; Meng, Ellis; Pikov, Victor
2016-12-01
Objective. Acquisition of reliable and robust neural recordings with intracortical neural probes is a persistent challenge in the field of neuroprosthetics. We developed a multielectrode array technology to address chronic intracortical recording reliability and present in vivo recording results. Approach. The 2 × 2 Parylene sheath electrode array (PSEA) was microfabricated and constructed from only Parylene C and platinum. The probe includes a novel three-dimensional sheath structure, perforations, and bioactive coatings that improve tissue integration and manage immune response. Coatings were applied using a sequential dip-coating method that provided coverage over the entire probe surface and interior of the sheath structure. A sharp probe tip taper facilitated insertion with minimal trauma. Fabricated probes were subject to examination by optical and electron microscopy and electrochemical testing prior to implantation. Main results. 1 × 2 arrays were successfully fabricated on wafer and then packaged together to produce 2 × 2 arrays. Then, probes having electrode sites with adequate electrochemical properties were selected. A subset of arrays was treated with bioactive coatings to encourage neuronal growth and suppress inflammation and another subset of arrays was implanted in conjunction with a virally mediated expression of Caveolin-1. Arrays were attached to a custom-made insertion shuttle to facilitate precise insertion into the rat motor cortex. Stable electrophysiological recordings were obtained during the period of implantation up to 12 months. Immunohistochemical evaluation of cortical tissue around individual probes indicated a strong correlation between the electrophysiological performance of the probes and histologically observable proximity of neurons and dendritic sprouting. Significance. The PSEA demonstrates the scalability of sheath electrode technology and provides higher electrode count and density to access a greater volume for recording. This study provided support for the importance of creating a supportive biological environment around the probes to promote the long-term electrophysiological performance of flexible probes in the cerebral cortex. In particular, we demonstrated beneficial effects of the Matrigel coating and the long-term expression of Caveolin-1. Furthermore, we provided support to an idea of using an artificial acellular tissue compartment as a way to counteract the walling-off effect of the astrocytic scar formation around the probes as a means of establishing a more intimate and stable neural interface.
Intracavitary ultrasound phased arrays for thermal therapies
NASA Astrophysics Data System (ADS)
Hutchinson, Erin
Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
Technologies for Protein Analysis and Tissue Engineering, with Applications in Cancer
NASA Astrophysics Data System (ADS)
Vermesh, Udi Benjamin
The first part of this thesis describes electrolyte transport through an array of 20 nm wide, 20 mum long SiO2 nanofluidic transistors. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source-drain biases > 5 V, the current exhibits a sharp, nonlinear increase, with a 20 - 50-fold conductance enhancement. This behavior is attributed to a breakdown of the zero-slip condition. Implications for peptide sequencing as well as energy conversion devices are discussed. The next part describes a technology for the detection of the highly aggressive brain cancer glioblastoma multiforme (GBM). In this study, we used an antibody-based microarray to compare plasma samples from glioblastoma patients and healthy controls with respect to the plasma levels of 35 different proteins known to be generally associated with tumor growth, survival, invasion, migration, and immune regulation. Average-linkage hierarchical clustering of the patient data stratified the two groups effectively, permitting accurate assignment of test samples into either GBM or healthy control groups with a sensitivity and specificity as high as 90 % and 94 %, respectively. Using the same 35-protein panel, we then analyzed plasma samples from GBM patients who were treated with the chemotherapeutic drug Avastin (Bevacizumab) and were able to effectively stratify patients based on treatment-responsiveness. Finally, single-cell resolution patterning of tissue engineered structures is demonstrated. The proper functioning of engineered constructs for tissue and organ transplantation requires positioning different cell types in anatomically precise arrangements that mimic their configurations in native tissues. Toward this end, we have developed a technique that involves two microfluidic-patterning steps run perpendicularly to each other using "anchor" and "bridge" DNA oligomers to create dense arrays of DNA grids which can then be converted into cell arrays. As a proof-of-concept, both a neuron-astrocyte construct and a pancreatic islet construct containing 2 distinct islet cell types were patterned separately as a dense array of cell grids. Once fixed in a hydrogel matrix, layers of patterned cells were then stacked to form 3-D tissue engineered constructs.
NASA Astrophysics Data System (ADS)
Guo, Liang
2011-12-01
Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.
Tissue matrix arrays for high throughput screening and systems analysis of cell function
Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.
2015-01-01
Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475
Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy
NASA Astrophysics Data System (ADS)
Hynynen, Kullervo; Jones, Ryan M.
2016-09-01
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.
Hynynen, Kullervo; Jones, Ryan M
2016-09-07
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy
Hynynen, Kullervo; Jones, Ryan M.
2016-01-01
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561
Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm
NASA Astrophysics Data System (ADS)
Austin, Robert; Wunsch, Benjamin; Smith, Joshua; Gifford, Stacey; Wang, Chao; Brink, Markus; Bruce, Robert; Stolovitzky, Gustavo; Astier, Yann
Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites1, bacteria2, blood cells3 and circulating tumour cells in blood4. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of liquid biopsies, are secreted by cells and contain nucleic acid and protein information about their originating tissue5. One challenge in the study of exosome biology is to sort exosomes by size and surface markers6, 7. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.
Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm
NASA Astrophysics Data System (ADS)
Wunsch, Benjamin H.; Smith, Joshua T.; Gifford, Stacey M.; Wang, Chao; Brink, Markus; Bruce, Robert L.; Austin, Robert H.; Stolovitzky, Gustavo; Astier, Yann
2016-11-01
Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites, bacteria, blood cells and circulating tumour cells in blood. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of 'liquid biopsies', are secreted by cells and contain nucleic acid and protein information about their originating tissue. One challenge in the study of exosome biology is to sort exosomes by size and surface markers. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.
Minkis, Kira; Alam, Murad
2014-01-01
Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.
A simple method for the construction of small format tissue arrays
Hidalgo, A; Piña, P; Guerrero, G; Lazos, M; Salcedo, M
2003-01-01
Tissue arrays can evaluate molecular targets in high numbers of samples in parallel. Array construction presents technical difficulties and tissue arrayers are expensive, particularly for small and medium sized laboratories. This report describes a method for the construction of 36 sample arrays using widely available materials. A blunted 16 gauge needle for bone marrow aspiration was used to extract paraffin wax cylinders and manually define a 6 × 6 matrix on a blank paraffin wax block. Tissue cores from 36 paraffin wax embedded premalignant lesions and invasive cervical carcinomas were injected into the matrix using a 14 gauge needle. This tissue array was sectioned using a standard microtome and used for the immunodetection of CD44 variant 9 and interleukin 18 with satisfactory results. This method can be applied in any laboratory, without the need of specialised equipment, offering a good alternative for the wider application of tissue arrays. PMID:12560397
Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients.
Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut
2016-01-01
Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.
Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients
Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A.; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut
2016-01-01
Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). Conclusions We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation. PMID:26863016
a New ER Fluid Based Haptic Actuator System for Virtual Reality
NASA Astrophysics Data System (ADS)
Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.
The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.
Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt
2007-08-12
The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.
Pine, P S; Boedigheimer, M; Rosenzweig, B A; Turpaz, Y; He, Y D; Delenstarr, G; Ganter, B; Jarnagin, K; Jones, W D; Reid, L H; Thompson, K L
2008-11-01
Effective use of microarray technology in clinical and regulatory settings is contingent on the adoption of standard methods for assessing performance. The MicroArray Quality Control project evaluated the repeatability and comparability of microarray data on the major commercial platforms and laid the groundwork for the application of microarray technology to regulatory assessments. However, methods for assessing performance that are commonly applied to diagnostic assays used in laboratory medicine remain to be developed for microarray assays. A reference system for microarray performance evaluation and process improvement was developed that includes reference samples, metrics and reference datasets. The reference material is composed of two mixes of four different rat tissue RNAs that allow defined target ratios to be assayed using a set of tissue-selective analytes that are distributed along the dynamic range of measurement. The diagnostic accuracy of detected changes in expression ratios, measured as the area under the curve from receiver operating characteristic plots, provides a single commutable value for comparing assay specificity and sensitivity. The utility of this system for assessing overall performance was evaluated for relevant applications like multi-laboratory proficiency testing programs and single-laboratory process drift monitoring. The diagnostic accuracy of detection of a 1.5-fold change in signal level was found to be a sensitive metric for comparing overall performance. This test approaches the technical limit for reliable discrimination of differences between two samples using this technology. We describe a reference system that provides a mechanism for internal and external assessment of laboratory proficiency with microarray technology and is translatable to performance assessments on other whole-genome expression arrays used for basic and clinical research.
NASA Astrophysics Data System (ADS)
Kang, Woojin; Jung, Joontaek; Lee, Wonjun; Ryu, Jungho; Choi, Hongsoo
2018-07-01
Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
A Flexible Annular-Array Imaging Platform for Micro-Ultrasound
Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei
2013-01-01
Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923
Distinct microbiological signatures associated with triple negative breast cancer.
Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R; Alwine, James C; Robertson, Erle S
2015-10-15
Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential.
Assessment of tissue viability by polarization spectroscopy
NASA Astrophysics Data System (ADS)
Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.
2008-09-01
A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.
Polymer microarray technology for stem cell engineering
Coyle, Robert; Jia, Jia; Mei, Ying
2015-01-01
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624
Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J
2013-04-23
In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.
Pixel detectors for use in retina neurophysiology studies
NASA Astrophysics Data System (ADS)
Cunningham, W.; Mathieson, K.; Horn, M.; Melone, J.; McEwan, F. A.; Blue, A.; O'Shea, V.; Smith, K. M.; Litke, A.; Chichilnisky, E. J.; Rahman, M.
2003-08-01
One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed ˜500 electrode arrays with feature sizes down to below 2 μm. The neural signals from significant areas of the retina may thus be captured.
Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray
Ramirez, Lisa S.; Wang, Jun
2016-01-01
Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370
Benayahu, Dafna; Socher, Rina; Shur, Irena
2008-01-01
Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.
Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays
Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.
2016-01-01
Objective Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks. PMID:27705958
Chronic in vivo stability assessment of carbon fiber microelectrode arrays
NASA Astrophysics Data System (ADS)
Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.
2016-12-01
Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.
Whole genome amplification of DNA extracted from FFPE tissues.
Bosso, Mira; Al-Mulla, Fahd
2011-01-01
Whole genome amplification systems were developed to meet the increasing research demands on DNA resources and to avoid DNA shortage. The technology enables amplification of nanogram amounts of DNA into microgram quantities and is increasingly used in the amplification of DNA from multiple origins such as blood, fresh frozen tissue, formalin-fixed paraffin-embedded tissues, saliva, buccal swabs, bacteria, and plant and animal sources. This chapter focuses on the use of GenomePlex(®) tissue Whole Genome Amplification Kit, to amplify DNA directly from archived tissue. In addition, this chapter documents our unique experience with the utilization of GenomePlex(®) amplified DNA using several molecular techniques including metaphase Comparative Genomic Hybridization, array Comparative Genomic Hybridization, and real-time quantitative polymerase chain reaction assays. GenomePlex(®) is a registered trademark of Rubicon Genomics Incorporation.
Cifola, Ingrid; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A
2011-06-13
Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures. © 2011 Cifola et al; licensee BioMed Central Ltd.
High Resolution Analysis of Copy Number Mutation in Breast Cancer
2005-05-01
tissues and Epstein - Barr sentations and arrays of Hind III probes additional CNPs, as would an increase in the virus -immortalized lymphoblastoid cell...software and laboratory procedures for the design of inter-phase FISH primers. We have also made progress in developing database and data processing...Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultane- ous measurement of copy
Design and demonstration of an intracortical probe technology with tunable modulus.
Simon, Dustin M; Charkhkar, Hamid; St John, Conan; Rajendran, Sakthi; Kang, Tong; Reit, Radu; Arreaga-Salas, David; McHail, Daniel G; Knaack, Gretchen L; Sloan, Andrew; Grasse, Dane; Dumas, Theodore C; Rennaker, Robert L; Pancrazio, Joseph J; Voit, Walter E
2017-01-01
Intracortical probe technology, consisting of arrays of microelectrodes, offers a means of recording the bioelectrical activity from neural tissue. A major limitation of existing intracortical probe technology pertains to limited lifetime of 6 months to a year of recording after implantation. A major contributor to device failure is widely believed to be the interfacial mechanical mismatch of conventional stiff intracortical devices and the surrounding brain tissue. We describe the design, development, and demonstration of a novel functional intracortical probe technology that has a tunable Young's modulus from ∼2 GPa to ∼50 MPa. This technology leverages advances in dynamically softening materials, specifically thiol-ene/acrylate thermoset polymers, which exhibit minimal swelling of < 3% weight upon softening in vitro. We demonstrate that a shape memory polymer-based multichannel intracortical probe can be fabricated, that the mechanical properties are stable for at least 2 months and that the device is capable of single unit recordings for durations up to 77 days in vivo. This novel technology, which is amenable to processes suitable for manufacturing via standard semiconductor fabrication techniques, offers the capability of softening in vivo to reduce the tissue-device modulus mismatch to ultimately improve long term viability of neural recordings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 159-168, 2017. © 2016 Wiley Periodicals, Inc.
Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.
2014-01-01
High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539
[Flexible print circuit technology application in biomedical engineering].
Jiang, Lihua; Cao, Yi; Zheng, Xiaolin
2013-06-01
Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.
Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu
2012-09-21
Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.
Mohapatra, Gayatry; Engler, David A.; Starbuck, Kristen D.; Kim, James C.; Bernay, Derek C.; Scangas, George A.; Rousseau, Audrey; Batchelor, Tracy T.; Betensky, Rebecca A.; Louis, David N.
2010-01-01
Molecular genetic analysis of cancer is rapidly evolving as a result of improvement in genomic technologies and the growing applicability of such analyses to clinical oncology. Array based comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA), particularly in solid tumors, and has been applied to the study of malignant gliomas. In the clinical setting, however, gliomas are often sampled by small biopsies and thus formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis, especially for rare types of gliomas. Moreover, the biological basis for the marked intratumoral heterogeneity in gliomas is most readily addressed in FFPE material. Therefore, for gliomas, the ability to use DNA from FFPE tissue is essential for both clinical and research applications. In this study, we have constructed a custom bacterial artificial chromosome (BAC) array and show excellent sensitivity and specificity for detecting CNAs in a panel of paired frozen and FFPE glioma samples. Our study demonstrates a high concordance rate between CNAs detected in FFPE compared to frozen DNA. We have also developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. This labeling technique was applied to a panel of biphasic anaplastic oligoastrocytomas (AOA) to identify genetic changes unique to each component. Together, results from these studies suggest that BAC and oligonucleotide aCGH are sensitive tools for detecting CNAs in FFPE DNA, and can enable genome-wide analysis of rare, small and/or histologically heterogeneous gliomas. PMID:21080181
Napoli, Alessandro; Obeid, Iyad
2016-03-01
Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.
Petersson, Linn; Dexlin-Mellby, Linda; Bengtsson, Anders A; Sturfelt, Gunnar; Borrebaeck, Carl A K; Wingren, Christer
2014-06-07
In the quest to decipher disease-associated biomarkers, miniaturized and multiplexed antibody arrays may play a central role in generating protein expression profiles, or protein maps, of crude serum samples. In this conceptual study, we explored a novel, 4-times larger pen design, enabling us to, in a unique manner, simultaneously print 48 different reagents (antibodies) as individual 78.5 μm(2) (10 μm in diameter) sized spots at a density of 38,000 spots cm(-2) using dip-pen nanolithography technology. The antibody array set-up was interfaced with a high-resolution fluorescent-based scanner for sensitive sensing. The performance and applicability of this novel 48-plex recombinant antibody array platform design was demonstrated in a first clinical application targeting SLE nephritis, a severe chronic autoimmune connective tissue disorder, as the model disease. To this end, crude, directly biotinylated serum samples were targeted. The results showed that the miniaturized and multiplexed array platform displayed adequate performance, and that SLE-associated serum biomarker panels reflecting the disease process could be deciphered, outlining the use of miniaturized antibody arrays for disease proteomics and biomarker discovery.
Cell and tissue microarray technologies for protein and nucleic acid expression profiling.
Cardano, Marina; Diaferia, Giuseppe R; Falavigna, Maurizio; Spinelli, Chiara C; Sessa, Fausto; DeBlasio, Pasquale; Biunno, Ida
2013-02-01
Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.
Ontology-based, Tissue MicroArray oriented, image centered tissue bank
Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano
2008-01-01
Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177
Artificial tactile sensing in minimally invasive surgery - a new technical approach.
Schostek, Sebastian; Ho, Chi-Nghia; Kalanovic, Daniel; Schurr, Marc O
2006-01-01
The loss of tactile sensation is a commonly known drawback of minimally invasive surgery (MIS). Since the advent of MIS, research activities in providing tactile information to the surgeon are still ongoing, in order to improve patient safety and to extend the indications for MIS. We have designed a tactile sensor system comprising a tactile laparoscopic grasper for surgical palpation. For this purpose, we developed a novel tactile sensor technology which allows the manufacturing of an integrated sensor array within an acceptable price range. The array was integrated into the jaws of a 10mm laparoscopic grasper. The tactile data are transferred wirelessly via Bluetooth and are presented visually to the surgeon. The goal was to be able to obtain information about the shape and consistency of tissue structures by gently compressing the tissue between the jaws of the tactile instrument and thus to be able to recognize and assess anatomical or pathological structures, even if they are hidden in the tissue. With a prototype of the tactile sensor system we have conducted bench-tests as well as in-vitro and in-vivo experiments. The system proved feasibility in an experimental environment, it was easy to use, and the novel tactile sensor array was applicable for both palpation and grasping manoeuvres with forces of up to 60N. The tactile data turned out to be a useful supplement to the minimal amount of haptic feedback that is provided by current endoscopic instruments and the endoscopic image under certain conditions.
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.
2015-01-01
Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310
Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A
2016-07-01
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.
Exploring the potential of laser capture microdissection technology in integrated oral biosciences.
Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R
2017-09-01
Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Synthetic Nanoelectronic Probes for Biological Cells and Tissue
2013-01-01
Research at the interface between nanoscience and biology has the potential to produce breakthroughs in fundamental science and lead to revolutionary technologies. In this review, we focus on nanoelectronic/biological interfaces. First, we discuss nanoscale field effect transistors (nanoFETs) as probes to study cellular systems, including the realization of nanoFET comparable in size to biological nanostructures involved in communication using synthesized nanowires. Second, we overview current progress in multiplexed extracellular sensing using planar nanoFET arrays. Third, we describe the design and implementation of three distinct nanoFETs used to realize the first intracellular electrical recording from single cells. Fourth, we present recent progress in merging electronic and biological systems at the 3D tissue level by using macroporous nanoelectronic scaffolds. Finally, we discuss future development in this research area, the unique challenges and opportunities, and the tremendous impact these nanoFET based technologies might have in advancing biology and medical sciences. PMID:23451719
A multi-element high intensity focused ultrasound transducer: Design, fabrication, and testing
NASA Astrophysics Data System (ADS)
Vaezy, Shahram; Held, Robert; Miller, Blake; Fleury, Gerard
2004-05-01
The goal of this project is to develop an intra-cavity image-guided high intensity focused ultrasound (HIFU) device using piezocomposite technology and commercially available ultrasound imaging. The HIFU array, manufactured by Imasonic Corporation, is an 11-element annular phased array, with a focal length range of 30-60 mm, and operating frequency of 3 MHz (bandwidth of 1 MHz). The imaging probe (C9-5, Philips) is configured such that the focal axis of the HIFU beam was within the image plane. The array includes six complete central rings and five side-truncated peripheral rings, all with the natural radius of curvature of 50 mm. Impedance of all elements is approximately 50 ohms (10% accuracy for real and imaginary parts). Cross coupling between adjacent elements is less than, -40 dB. High power measurements showed more than 75% efficiency, at surface intensity of 2.66 W/cm2. Schlieren imaging showed effective focusing at all focal lengths (30-60 mm). The image-guided HIFU device requires water or hydrogel coupling, and possibly water cooling. The results of the full characterization for lesion formation in tissue-mimicking phantoms and biological tissues will be presented. Possible applications include uterine fibroids, abnormal uterine bleeding, and intraoperative hemostasis of occult hemorrhage.
Herpel, E; Koleganova, N; Schirmacher, P
2008-11-01
The tissue bank of the National Centre for Tumour Diseases (NCT) in Heidelberg, Germany, was founded in 2005 by the University Hospital of Heidelberg and the German Cancer Research Centre as a section of the NCT. It is a nonprofit organization with a completely evaluated legal and ethical framework and supports the Comprehensive Cancer Centre concept. Its main aim is the acquisition and characterization of fresh-frozen and paraffin-embedded human tissues according to the standards of good scientific practice and the promotion of interdisciplinary tumour research of the comprehensive cancer centre and its cooperating partners. It also offers expert project assistance: a project leader can submit a short proposal, and the tissue collecting/preparing process will be performed in cooperation with a specialised pathologist and, if applicable, an experienced clinical researcher. The tissue bank is also a central platform for further developing of innovative technologies for tissue handling, e.g. multi-tissue-array and virtual microscopy, with links to digital image analysis and bioinformatics. Thus, the NCT tissue bank represents a model for innovative biobanking and for institutions with active interdisciplinary cancer research.
Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B
2009-03-01
Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).
Cell and Tissue Microarray Technologies for Protein and Nucleic Acid Expression Profiling
Cardano, Marina; Diaferia, Giuseppe R.; Falavigna, Maurizio; Spinelli, Chiara C.; Sessa, Fausto; DeBlasio, Pasquale
2013-01-01
Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform. PMID:23172795
Design of an Oximeter Based on LED-LED Configuration and FPGA Technology
Stojanovic, Radovan; Karadaglic, Dejan
2013-01-01
A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575
Mohapatra, Gayatry; Engler, David A; Starbuck, Kristen D; Kim, James C; Bernay, Derek C; Scangas, George A; Rousseau, Audrey; Batchelor, Tracy T; Betensky, Rebecca A; Louis, David N
2011-04-01
Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
The Implementation of Advanced Solar Array Technology in Future NASA Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan
2003-01-01
Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.
WE-H-209-01: Advances in Ultrasound Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hynynen, K.
Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives:more » Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.« less
WE-H-209-00: Carson/Zagzebski Distinguished Lectureship: Image Guided Ultrasound Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives:more » Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.« less
González, Maraelys Morales; Aguilar, Claudia Hernández; Pacheco, Flavio Arturo Domínguez; Cabrales, Luis Enrique Bergues; Reyes, Juan Bory; Nava, Juan José Godina; Ambrosio, Paulo Eduardo; Domiguez, Dany Sanchez; Sierra González, Victoriano Gustavo; Pupo, Ana Elisa Bergues; Ciria, Héctor Manuel Camué; Alemán, Elizabeth Issac; García, Francisco Monier; Rivas, Clara Berenguer; Reina, Evelyn Chacón
2018-01-01
One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato ( Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.
Additive manufacturing techniques for the production of tissue engineering constructs.
Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo
2015-03-01
'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
Clinical implementation of RNA signatures for pharmacogenomic decision-making
Tang, Weihua; Hu, Zhiyuan; Muallem, Hind; Gulley, Margaret L
2011-01-01
RNA profiling is increasingly used to predict drug response, dose, or toxicity based on analysis of drug pharmacokinetic or pharmacodynamic pathways. Before implementing multiplexed RNA arrays in clinical practice, validation studies are carried out to demonstrate sufficient evidence of analytic and clinical performance, and to establish an assay protocol with quality assurance measures. Pathologists assure quality by selecting input tissue and by interpreting results in the context of the input tissue as well as the technologies that were used and the clinical setting in which the test was ordered. A strength of RNA profiling is the array-based measurement of tens to thousands of RNAs at once, including redundant tests for critical analytes or pathways to promote confidence in test results. Instrument and reagent manufacturers are crucial for supplying reliable components of the test system. Strategies for quality assurance include careful attention to RNA preservation and quality checks at pertinent steps in the assay protocol, beginning with specimen collection and proceeding through the various phases of transport, processing, storage, analysis, interpretation, and reporting. Specimen quality is checked by probing housekeeping transcripts, while spiked and exogenous controls serve as a check on analytic performance of the test system. Software is required to manipulate abundant array data and present it for interpretation by a laboratory physician who reports results in a manner facilitating therapeutic decision-making. Maintenance of the assay requires periodic documentation of personnel competency and laboratory proficiency. These strategies are shepherding genomic arrays into clinical settings to provide added value to patients and to the larger health care system. PMID:23226056
A focused microarray approach to functional glycomics: transcriptional regulation of the glycome.
Comelli, Elena M; Head, Steven R; Gilmartin, Tim; Whisenant, Thomas; Haslam, Stuart M; North, Simon J; Wong, Nyet-Kui; Kudo, Takashi; Narimatsu, Hisashi; Esko, Jeffrey D; Drickamer, Kurt; Dell, Anne; Paulson, James C
2006-02-01
Glycosylation is the most common posttranslational modification of proteins, yet genes relevant to the synthesis of glycan structures and function are incompletely represented and poorly annotated on the commercially available arrays. To fill the need for expression analysis of such genes, we employed the Affymetrix technology to develop a focused and highly annotated glycogene-chip representing human and murine glycogenes, including glycosyltransferases, nucleotide sugar transporters, glycosidases, proteoglycans, and glycan-binding proteins. In this report, the array has been used to generate glycogene-expression profiles of nine murine tissues. Global analysis with a hierarchical clustering algorithm reveals that expression profiles in immune tissues (thymus [THY], spleen [SPL], lymph node, and bone marrow [BM]) are more closely related, relative to those of nonimmune tissues (kidney [KID], liver [LIV], brain [BRN], and testes [TES]). Of the biosynthetic enzymes, those responsible for synthesis of the core regions of N- and O-linked oligosaccharides are ubiquitously expressed, whereas glycosyltransferases that elaborate terminal structures are expressed in a highly tissue-specific manner, accounting for tissue and ultimately cell-type-specific glycosylation. Comparison of gene expression profiles with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) profiling of N-linked oligosaccharides suggested that the alpha1-3 fucosyltransferase 9, Fut9, is the enzyme responsible for terminal fucosylation in KID and BRN, a finding validated by analysis of Fut9 knockout mice. Two families of glycan-binding proteins, C-type lectins and Siglecs, are predominately expressed in the immune tissues, consistent with their emerging functions in both innate and acquired immunity. The glycogene chip reported in this study is available to the scientific community through the Consortium for Functional Glycomics (CFG) (http://www.functionalglycomics.org).
Wireless fluorescence capsule for endoscopy using single photon-based detection
NASA Astrophysics Data System (ADS)
Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.
2015-12-01
Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.
González, Maraelys Morales; Aguilar, Claudia Hernández; Pacheco, Flavio Arturo Domínguez; Cabrales, Luis Enrique Bergues; Reyes, Juan Bory; Nava, Juan José Godina; Ambrosio, Paulo Eduardo; Domiguez, Dany Sanchez; Sierra González, Victoriano Gustavo; Pupo, Ana Elisa Bergues; Ciria, Héctor Manuel Camué; Alemán, Elizabeth Issac; García, Francisco Monier; Rivas, Clara Berenguer; Reina, Evelyn Chacón
2018-01-01
One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor. PMID:29725584
Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.
Flood, P; Alvarez, L; Reynaud, E G
2016-10-11
Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturing printers and open source 3D design software offers us the possibility to easily create affordable 3D cell culture platforms. To demonstrate this, we established a simple, inexpensive and robust method for producing arrays of free-floating epithelial micro-tissues. Using a combination of 3D computer aided design and 3D printing, hydrogel micro-moulding and collagen cell encapsulation we engineered microenvironments that consistently direct the growth of micro-tissue arrays. We described the adaptability of this technique by testing several immortalised epithelial cell lines (MDCK, A549, Caco-2) and by generating branching morphology and micron to millimetre scaled micro-tissues. We established by fluorescence and electron microscopy that micro-tissues are polarised, have cell type specific differentiated phenotypes and regain native in vivo tissue qualities. Finally, using Salmonella typhimurium we show micro-tissues display a more physiologically relevant infection response compared to epithelial monolayers grown on permeable filter supports. In summary, we have developed a robust and adaptable technique for producing arrays of epithelial micro-tissues. This in vitro model has the potential to be a valuable tool for studying epithelial cell and tissue function/architecture in a physiologically relevant context.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
Overview of existing cartilage repair technology.
McNickle, Allison G; Provencher, Matthew T; Cole, Brian J
2008-12-01
Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.
Evaluation of space station solar array technology
NASA Technical Reports Server (NTRS)
1972-01-01
The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.
Stephens, Douglas N.; Mahmoud, Ahmed M.; Ding, Xuan; Lucero, Steven; Dutta, Debaditya; Yu, Francois T.H.; Chen, Xucai
2013-01-01
Ultrasound-induced thermal strain imaging (US-TSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US induced heating to elevate the tissue temperature (~1-3°C within 1-3 cardiac cycles) in order to produce a noticeable change in sound speed in the targeted tissues. Since the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented that utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3D printed manifold was built to support both a high resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5-4 MHz range. For the application of US-TSI on carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm2 in tissue target region. PMID:24297029
Silicon microneedle array for minimally invasive human health monitoring
NASA Astrophysics Data System (ADS)
Smith, Rosemary L.; Collins, Scott D.; Duy, Janice; Minogue, Timothy D.
2018-02-01
A silicon microneedle array with integrated microfluidic channels is presented, which is designed to extract dermal interstitial fluid (ISF) for biochemical analysis. ISF is a cell-free biofluid that is known to contain many of the same constituents as blood plasma, but the scope and dynamics of biomarker similarities are known for only a few components, most notably glucose. Dermal ISF is accessible just below the outer skin layer (epidermis), which can be reached and extracted with minimal sensation and tissue trauma by using a microneedle array. The microneedle arrays presented here are being developed to extract dermal ISF for off-chip profiling of nucleic acid constituents in order to identify potential biomarkers of disease. In order to assess sample volume requirements, preliminary RNA profiling was performed with suction blister ISF. The microneedles are batch fabricated using established silicon technology (low cost), are small in size, and can be integrated with sensors for on-chip analysis. This approach portends a more rapid, less expensive, self-administered assessment of human health than is currently achievable with blood sampling, especially in non-clinical and austere settings. Ultimately, a wearable device for monitoring a person's health in any setting is envisioned.
Ultrasonic brain therapy: First trans-skull in vivo experiments on sheep using adaptive focusing
NASA Astrophysics Data System (ADS)
Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Michael; Fink, Mathias; Boch, Anne-Laure; Kujas, Michèle
2004-05-01
A high-power prototype dedicated to trans-skull therapy has been tested in vivo on 20 sheep. The array is made of 200 high-power transducers working at 1-MHz central and is able to reach 260 bars at focus in water. An echographic array connected to a Philips HDI 1000 system has been inserted in the therapeutic array in order to perform real-time monitoring of the treatment. A complete craniotomy has been performed on half of the treated animal models in order to get a reference model. On the other animals, a minimally invasive surgery has been performed thanks to a time-reversal experiment: a hydrophone was inserted at the target inside the brain thanks to a 1-mm2 craniotomy. A time-reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. For all the animals a specified region around the target was treated thanks to electronic beam steering. Animals were finally divided into three groups and sacrificed, respectively, 0, 1, and 2 weeks after treatment. Finally, histological examination confirmed tissue damage. These in vivo experiments highlight the strong potential of high-power time-reversal technology.
Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods.
Gallagher, Rosa I; Blakely, Steven R; Liotta, Lance A; Espina, Virginia
2012-01-01
Laser capture microdissection (LCM) is a technique that allows the precise procurement of enriched cell populations from a heterogeneous tissue under direct microscopic visualization. LCM can be used to harvest the cells of interest directly or can be used to isolate specific cells by ablating the unwanted cells, resulting in histologically enriched cell populations. The fundamental components of laser microdissection technology are (a) visualization of the cells of interest via microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. Laser energy supplied by LCM instruments can be infrared (810 nm) or ultraviolet (355 nm). Infrared lasers melt thermolabile polymers for cell capture, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes the unique features of the Arcturus(XT) laser capture microdissection instrument, which incorporates both infrared capture and ultraviolet cutting technology in one instrument, using a proteomic downstream assay as a model.
Kateb, Babak; Ryan, M A; Homer, M L; Lara, L M; Yin, Yufang; Higa, Kerin; Chen, Mike Y
2009-08-01
A proof-of-concept study was done to determine whether an electronic nose developed for air quality monitoring at the Jet Propulsion Laboratory (JPL) could be used to distinguish between the odors of organ and tumor tissues, with an eye to using such a device as one of several modes in multi-modal imaging and tumor differentiation during surgery. We hypothesized that the JPL electronic nose (ENose) would be able to distinguish between the odors of various organ and tumor tissues. The odor signatures, or array response, of two organs, chicken heart and chicken liver, and cultured glioblastoma and melanoma tumor cell lines were recorded using the JPL Electronic Nose. The overall array responses were compared to determine whether they were sufficiently different to allow the organs and cell lines to be identified by their array responses. The ENose was able to distinguish between the two types of organ tissue and between the two types of tumor cell lines. The variation in array response for the organ tissues was 19% and between the two types of cultured cell lines was 22%. This study shows that it is possible to use an electronic nose to distinguish between two types of tumor cells and between two types of organ tissue. As we conducted the experiment with a sensor array built for air quality monitoring rather than for medical purposes, it may be possible to select an array that is optimized to distinguish between different types of cells and organ tissues. Further focused studies are needed to investigate the odor signatures of different cells as well as cellular proliferation, growth, differentiation and infiltration.
Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.
Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent
2009-01-01
Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.
Development of an Ultraflex-Based Thin Film Solar Array for Space Applications
NASA Technical Reports Server (NTRS)
White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.
2003-01-01
As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.
Development of a c-scan photoacoutsic imaging probe for prostate cancer detection
NASA Astrophysics Data System (ADS)
Valluru, Keerthi S.; Chinni, Bhargava K.; Rao, Navalgund A.; Bhatt, Shweta; Dogra, Vikram S.
2011-03-01
Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.
3D cardiac μ tissues within a microfluidic device with real-time contractile stress readout
Aung, Aereas; Bhullar, Ivneet Singh; Theprungsirikul, Jomkuan; Davey, Shruti Krishna; Lim, Han Liang; Chiu, Yu-Jui; Ma, Xuanyi; Dewan, Sukriti; Lo, Yu-Hwa; McCulloch, Andrew; Varghese, Shyni
2015-01-01
We present the development of three-dimensional (3D) cardiac microtissues within a microfluidic device with the ability to quantify real-time contractile stress measurements in situ. Using a 3D patterning technology that allows for the precise spatial distribution of cells within the device, we created an array of 3D cardiac microtissues from neonatal mouse cardiomyocytes. We integrated the 3D micropatterning technology with microfluidics to achieve perfused cell-laden structures. The cells were encapsulated within a degradable gelatin methacrylate hydrogel, which was sandwiched between two polyacrylamide hydrogels. The polyacrylamide hydrogels were used as “stress sensors” to acquire the contractile stresses generated by the beating cardiac cells. The cardiac-specific response of the engineered 3D system was examined by exposing it to epinephrine, an adrenergic neurotransmitter known to increase the magnitude and frequency of cardiac contractions. In response to exogenous epinephrine the engineered cardiac tissues exhibited an increased beating frequency and stress magnitude. Such cost-effective and easy-to-adapt 3D cardiac systems with real-time functional readout could be an attractive technological platform for drug discovery and development. PMID:26588203
Mass properties survey of solar array technologies
NASA Technical Reports Server (NTRS)
Kraus, Robert
1991-01-01
An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.
Zaric, Marija; Becker, Pablo Daniel; Hervouet, Catherine; Kalcheva, Petya; Ibarzo Yus, Barbara; Cocita, Clement; O'Neill, Lauren Alexandra; Kwon, Sung-Yun; Klavinskis, Linda Sylvia
2017-12-28
The generation of tissue resident memory (T RM ) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8 + T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8 + T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8 + T cell expression of CXCR3 + , CD103 +, CD49a + , CD69 + , CD127 + homing, retention and survival markers. Furthermore, memory CD8 + T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8 + T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Theophilou, Georgios; Morais, Camilo L M; Halliwell, Diane E; Lima, Kássio M G; Drury, Josephine; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Hapangama, Dharani K; Martin, Francis L
2018-05-09
The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-μm-thick parallel tissue sections and were floated onto BaF 2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards ν s PO 2 - in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.
MR-guided noninvasive thermal coagulation of in-vivo liver tissue using ultrasonic phased array
NASA Astrophysics Data System (ADS)
Daum, Douglas R.; Smith, Nadine; McDannold, Nathan; Hynynen, Kullervo H.
1999-05-01
Magnetic resonance (MR) imaging was used to guide and monitor the thermal tissue coagulation of in vivo porcine tissue using a 256 element ultrasonic phased array. The array could coagulate tissue volumes greater than 2 cm3 in liver and 0.5 cm3 in kidney using a single 20 second sonication. This sonication used multiple focus fields which were temporally cycled to heat large tissue volumes simultaneously. Estimates of the coagulated tissue using a thermal dose threshold compare well with T2-weighted images of post sonication lesions. The overlapping large focal volumes could aid in the treatment of large tumor volumes which require multiple overlapping sonications. The ability of MR to detect the presence and undesirable thermal increases at acoustic obstacle such as cartilaginous and bony ribs is demonstrated. This could have a significant impact on the ability to monitor thermal treatments of the liver and other organs which are acoustically blocked.
Martínez-Ballesta, MCarment; García-Viguera, Cristina
2018-01-01
Nanotechnology is a field of research that has been stressed as a very valuable approach for the prevention and treatment of different human health disorders. This has been stressed as a delivery system for the therapeutic fight against an array of pathophysiological situations. Actually, industry has applied this technology in the search for new oral delivery alternatives obtained upon the modification of the solubility properties of bioactive compounds. Significant works have been made in the last years for testing the input that nanomaterials and nanoparticles provide for an array of pathophysiological situations. In this frame, this review addresses general questions concerning the extent to which nanoparticles offer alternatives that improve therapeutic value, while avoid toxicity, by releasing bioactive compounds specifically to target tissues affected by specific chemical and pathophysiological settings. In this regard, to date, the contribution of nanoparticles to protect encapsulated bioactive compounds from degradation as a result of gastrointestinal digestion and cellular metabolism, to enable their release in a controlled manner, enhancing biodistribution of bioactive compounds, and to allow them to target those tissues affected by biological disturbances has been demonstrated. PMID:29735897
NASA advanced space photovoltaic technology-status, potential and future mission applications
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.
1989-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping
2015-11-07
Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.
Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N
2009-07-06
As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.
Electrochemical imaging of cells and tissues
Lin, Tzu-En; Rapino, Stefania; Girault, Hubert H.
2018-01-01
The technological and experimental progress in electrochemical imaging of biological specimens is discussed with a view on potential applications for skin cancer diagnostics, reproductive medicine and microbial testing. The electrochemical analysis of single cell activity inside cell cultures, 3D cellular aggregates and microtissues is based on the selective detection of electroactive species involved in biological functions. Electrochemical imaging strategies, based on nano/micrometric probes scanning over the sample and sensor array chips, respectively, can be made sensitive and selective without being affected by optical interference as many other microscopy techniques. The recent developments in microfabrication, electronics and cell culturing/tissue engineering have evolved in affordable and fast-sampling electrochemical imaging platforms. We believe that the topics discussed herein demonstrate the applicability of electrochemical imaging devices in many areas related to cellular functions. PMID:29899947
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
High-performance, flexible, deployable array development for space applications
NASA Technical Reports Server (NTRS)
Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.
1994-01-01
Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.
Smart medical systems with application to nutrition and fitness in space
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.
2002-01-01
Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiologic status in real time. In a smart medical system, sensor arrays assess subject status, which is interpreted by computer processors that analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, thus closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend inflight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near-infrared spectroscopy can be used to non-invasively measure several blood and tissue parameters that are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The non-invasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors is also described.
Smart Medical Systems with Application to Nutrition and Fitness in Space
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.
2002-01-01
Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiological status in real time. In a smart medical system sensor arrays assess subject status, which are interpreted by computer processors which analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend in-flight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near infrared spectroscopy can be used to noninvasively measure several blood and tissue parameters which are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The noninvasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors are also described.
Wei, Zewen; Zheng, Shuquan; Wang, Renxin; Bu, Xiangli; Ma, Huailei; Wu, Yidi; Zhu, Ling; Hu, Zhiyuan; Liang, Zicai; Li, Zhihong
2014-10-21
In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to simultaneously facilitate low-voltage electroporation and accomplish good coverage of the tissue surface. The efficient delivery of both DNA and siRNA was demonstrated on mice. Upon penetrating the high-resistance stratum corneum, the electroporation voltage was reduced to about 35 V, which was generally recognized safe for humans. Also, a pathological analysis of the microneedle-electroporated tissues was carried out to thoroughly assess the skin damage, which is an important consideration in pre-clinical studies of electroporation devices. This MNAE constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs with satisfactory efficiency and good adaptation to the tissue surface profile as well as minimum tissue damage, thus avoiding the disadvantages of existing electroporation methods.
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.
2013-01-01
Background To detect genes correlated with hepatocellular carcinoma (HCC), we developed a triple combination array consisting of methylation array, gene expression array and single nucleotide polymorphism (SNP) array analysis. Methods A surgical specimen obtained from a 68-year-old female HCC patient was analyzed by triple combination array, which identified doublecortin domain-containing 2 (DCDC2) as a candidate tumor suppressor gene of HCC. Subsequently, samples from 48 HCC patients were evaluated for their DCDC2 methylation and expression status using methylation specific PCR (MSP) and semi-quantitative reverse transcriptase (RT) PCR, respectively. Then, we investigated the relationship between clinicopathological factors and methylation status of DCDC2. Results DCDC2 was revealed to be hypermethylated (methylation value 0.846, range 0–1.0) in cancer tissue, compared with adjacent normal tissue (0.212) by methylation array in the 68-year-old female patient. Expression array showed decreased expression of DCDC2 in cancerous tissue. SNP array showed that the copy number of chromosome 6p22.1, in which DCDC2 resides, was normal. MSP revealed hypermethylation of the promoter region of DCDC2 in 41 of the tumor samples. DCDC2 expression was significantly decreased in the cases with methylation (P = 0.048). Furthermore, the methylated cases revealed worse prognosis for overall survival than unmethylated cases (P = 0.048). Conclusions The present study indicates that triple combination array is an effective method to detect novel genes related to HCC. We propose that DCDC2 is a tumor suppressor gene of HCC. PMID:24034596
NASA Technical Reports Server (NTRS)
Berman, P. A.
1972-01-01
Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.
Fang, Hui; Yu, Ki Jun; Gloschat, Christopher; Yang, Zijian; Chiang, Chia-Han; Zhao, Jianing; Won, Sang Min; Xu, Siyi; Trumpis, Michael; Zhong, Yiding; Song, Enming; Han, Seung Won; Xue, Yeguang; Xu, Dong; Cauwenberghs, Gert; Kay, Matthew; Huang, Yonggang; Viventi, Jonathan; Efimov, Igor R.; Rogers, John A.
2017-01-01
Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin, leakage-free, biocompatible dielectric layer can completely seal an underlying layer of flexible electronics while allowing for electrophysiological measurements through capacitive coupling between tissue and the electronics, and thus without the need for direct metal contact. The resulting current-leakage levels and operational lifetimes are, respectively, four orders of magnitude smaller and between two and three orders of magnitude longer than those of any other flexible-electronics technology. Systematic electrophysiological studies with normal, paced and arrhythmic conditions in Langendorff hearts highlight the capabilities of the capacitive-coupling approach. Our technology provides a realistic pathway towards the broad applicability of biocompatible, flexible electronic implants. PMID:28804678
Akbani, Rehan; Becker, Karl-Friedrich; Carragher, Neil; Goldstein, Ted; de Koning, Leanne; Korf, Ulrike; Liotta, Lance; Mills, Gordon B; Nishizuka, Satoshi S; Pawlak, Michael; Petricoin, Emanuel F; Pollard, Harvey B; Serrels, Bryan; Zhu, Jingchun
2014-07-01
Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chin-Rang
Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complementmore » Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.« less
NASA Astrophysics Data System (ADS)
Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.
2017-08-01
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Laser Capture Microdissection for Protein and NanoString RNA analysis
Golubeva, Yelena; Salcedo, Rosalba; Mueller, Claudius; Liotta, Lance A.; Espina, Virginia
2013-01-01
Laser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly, or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are a) visualization of cells via light microscopy, b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and c) removal of cells of interest from the heterogeneous tissue section. The capture and cutting methods (instruments) for laser microdissection differ in the manner by which cells of interest are removed from the heterogeneous sample. Laser energy in the capture method is infrared (810nm), while in the cutting mode the laser is ultraviolet (355nm). Infrared lasers melt a thermolabile polymer that adheres to the cells of interest, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes laser capture microdissection using an ArcturusXT instrument for protein LCM sample analysis, and using a mmi CellCut Plus® instrument for RNA analysis via NanoString technology. PMID:23027006
Time reversal for ultrasonic transcranial surgery and echographic imaging
NASA Astrophysics Data System (ADS)
Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias
2005-09-01
High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.
Recent results from advanced research on space solar cells at NASA
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1990-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Two-photon polymerization for fabrication of biomedical devices
NASA Astrophysics Data System (ADS)
Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.
2007-01-01
Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
NASA Technical Reports Server (NTRS)
1987-01-01
The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.
NASA Astrophysics Data System (ADS)
Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.
2013-04-01
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm-2 in the free field in water and 40 W cm-2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.
Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.
2013-01-01
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path, and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low power sonications. Intensity levels at the face of the array elements that corresponded to formation of high amplitude shock fronts in the focal region were determined as 10 W·cm−2 in the free field in water and 40 W·cm−2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue. PMID:23528338
Electrostatic Microactuators for Precise Positioning of Neural Microelectrodes
Muthuswamy, Jit; Okandan, Murat; Jain, Tilak; Gilletti, Aaron
2006-01-01
Microelectrode arrays used for monitoring single and multineuronal action potentials often fail to record from the same population of neurons over a period of time likely due to micromotion of neurons away from the microelectrode, gliosis around the recording site and also brain movement due to behavior. We report here novel electrostatic microactuated microelectrodes that will enable precise repositioning of the microelectrodes within the brain tissue. Electrostatic comb-drive microactuators and associated microelectrodes are fabricated using the SUMMiT V™ (Sandia's Ultraplanar Multilevel MEMS Technology) process, a five-layer polysilicon micromachining technology of the Sandia National labs, NM. The microfabricated microactuators enable precise bidirectional positioning of the microelectrodes in the brain with accuracy in the order of 1 μm. The microactuators allow for a linear translation of the microelectrodes of up to 5 mm in either direction making it suitable for positioning microelectrodes in deep structures of a rodent brain. The overall translation was reduced to approximately 2 mm after insulation of the microelectrodes with epoxy for monitoring multiunit activity. The microactuators are capable of driving the microelectrodes in the brain tissue with forces in the order of several micro-Newtons. Single unit recordings were obtained from the somatosensory cortex of adult rats in acute experiments demonstrating the feasibility of this technology. Further optimization of the insulation, packaging and interconnect issues will be necessary before this technology can be validated in long-term experiments. PMID:16235660
NASA photovoltaic research and technology
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.
DNA arrays to monitor gene expression in rat blood and uterus following 17-b-estradiol exposure - biomonitoring environmental effects using surrogate tissues
John C. Rockett, Robert J. Kavlock, Christy R. Lambright, Louise G. Parks, Judith E. Schmid, Vickie S. Wilson, Carmen W...
ERIC Educational Resources Information Center
Eberhart, Charles G.; Copeland, Joshua; Abel, Ty W.
2006-01-01
Few autistic brain samples are available for study, limiting investigations into molecular and histopathological abnormalities associated with this common disease. To facilitate distribution of samples, we have constructed a tissue array containing cerebral and cerebellar cores from 5 autistic children, 1 girl with Rett syndrome, and 5 age-matched…
Peña-Llopis, Samuel; Brugarolas, James
2014-01-01
Genomic technologies have revolutionized our understanding of complex Mendelian diseases and cancer. Solid tumors present several challenges for genomic analyses, such as tumor heterogeneity and tumor contamination with surrounding stroma and infiltrating lymphocytes. We developed a protocol to (i) select tissues of high cellular purity on the basis of histological analyses of immediately flanking sections and (ii) simultaneously extract genomic DNA (gDNA), messenger RNA (mRNA), noncoding RNA (ncRNA; enriched in microRNA (miRNA)) and protein from the same tissues. After tissue selection, about 12–16 extractions of DNA/RNA/protein can be obtained per day. Compared with other similar approaches, this fast and reliable methodology allowed us to identify mutations in tumors with remarkable sensitivity and to perform integrative analyses of whole-genome and exome data sets, DNA copy numbers (by single-nucleotide polymorphism (SNP) arrays), gene expression data (by transcriptome profiling and quantitative PCR (qPCR)) and protein levels (by western blotting and immunohistochemical analysis) from the same samples. Although we focused on renal cell carcinoma, this protocol may be adapted with minor changes to any human or animal tissue to obtain high-quality and high-yield nucleic acids and proteins. PMID:24136348
Prostate histotripsy for BPH: initial canine results
NASA Astrophysics Data System (ADS)
Roberts, William W.; Hall, Timothy L.; Hempel, Christopher R.; Cain, Charles A.
2009-02-01
Histotripsy is an extracorporeal ablative technology that utilizes microsecond pulses of intense ultrasound (< 1% duty cycle) to produce nonthermal, mechanical fractionation of targeted tissue. We have previously demonstrated the feasibility of histotripsy prostate ablation. In this study we sought to assess the chronic tissue response, tolerability and safety of histotripsy in a chronic in vivo canine model. Five acute and thirteen chronic canine subjects were anesthetized and treated with histotripsy targeting the prostate. Pulses consisted of 3 cycle bursts of 750 kHz ultrasound at a repetition rate of 300 Hz delivered transabdominally from a highly focused 15 cm aperture array. Transrectal ultrasound imaging provided accurate targeting and real-time monitoring of histotripsy treatment. Prostates were harvested at 0, 7, 28, or 56 days after treatment. Consistent mechanical tissue fractionation and debulking of prostate tissue was seen acutely and at delayed time points without collateral injury. Urothelialization of the treatment cavity was apparent 28 days after treatment. Canine subjects tolerated histotripsy with minimal hematuria or discomfort. Only mild transient lab abnormalities were noted. Histotripsy is a promising non-invasive therapy for prostate tissue fractionation and debulking that appears safe and well tolerated without systemic side effects in the canine model.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Medical tomograph system using ultrasonic transmission
NASA Technical Reports Server (NTRS)
Heyser, Richard C. (Inventor); Nathan, Robert (Inventor)
1978-01-01
Ultrasonic energy transmission in rectilinear array scanning patterns of soft tissue provides projection density values of the tissue which are recorded as a function of scanning position and angular relationship, .theta., of the subject with a fixed coordinate system. A plurality of rectilinear scan arrays in the same plane for different angular relationships .theta..sub.1 . . . .theta..sub.n thus recorded are superimposed. The superimposition of intensity values thus yields a tomographic image of an internal section of the tissue in the scanning plane.
2007-05-01
BOX 25046, FEDERAL CENTER, M.S. 964 DENVER, CO 80225-0046 TECHNOLOGY TYPE/PLATFORM: TMGS MAGNETOMETER/TOWED ARRAY PREPARED BY: U.S. ARMY...GEOLOGICAL SURVEY, TMGS MAGNETOMETER/TOWED ARRAY) 8-CO-160-UXO-021 Karwatka, Michael... TMGS Magnetometer/Towed Array, MEC Unclassified Unclassified Unclassified SAR (Page ii Blank) i ACKNOWLEDGMENTS
Integration of Antibody Array Technology into Drug Discovery and Development.
Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan
Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.
Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.
2016-01-01
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777
Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J
2016-10-01
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gibson, Garth Alan
1990-01-01
During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.
Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays
DOT National Transportation Integrated Search
1981-06-01
Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...
A novel surface modification approach for protein and cell microarrays
NASA Astrophysics Data System (ADS)
Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.
2007-01-01
Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.
NASA Astrophysics Data System (ADS)
Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.
2016-02-01
Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than elimination of the glial scar.
Photovoltaic cell and array technology development for future unique NASA missions
NASA Technical Reports Server (NTRS)
Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.;
2002-01-01
A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.
Zeng, Xiaozheng Jenny; Li, Jian; McGough, Robert J
2010-01-01
A waveform-diversity-based approach for 3-D tumor heating is compared to spot scanning for hyperthermia applications. The waveform diversity method determines the excitation signals applied to the phased array elements and produces a beam pattern that closely matches the desired power distribution. The optimization algorithm solves the covariance matrix of the excitation signals through semidefinite programming subject to a series of quadratic cost functions and constraints on the control points. A numerical example simulates a 1444-element spherical-section phased array that delivers heat to a 3-cm-diameter spherical tumor located 12 cm from the array aperture, and the results show that waveform diversity combined with mode scanning increases the heated volume within the tumor while simultaneously decreasing normal tissue heating. Whereas standard single focus and multiple focus methods are often associated with unwanted intervening tissue heating, the waveform diversity method combined with mode scanning shifts energy away from intervening tissues where hotspots otherwise accumulate to improve temperature localization in deep-seated tumors.
Golestanirad, Laleh; Keil, Boris; Angelone, Leonardo M.; Bonmassar, Giorgio; Mareyam, Azma; Wald, Lawrence L.
2016-01-01
Purpose MRI of patients with deep brain stimulation (DBS) implants is strictly limited due to safety concerns, including high levels of local specific absorption rate (SAR) of radiofrequency (RF) fields near the implant and related RF-induced heating. This study demonstrates the feasibility of using a rotating linearly polarized birdcage transmitter and a 32-channel close-fit receive array to significantly reduce local SAR in MRI of DBS patients. Methods Electromagnetic simulations and phantom experiments were performed with generic DBS lead geometries and implantation paths. The technique was based on mechanically rotating a linear birdcage transmitter to align its zero electric-field region with the implant while using a close-fit receive array to significantly increase signal to noise ratio of the images. Results It was found that the zero electric-field region of the transmitter is thick enough at 1.5 Tesla to encompass DBS lead trajectories with wire segments that were up to 30 degrees out of plane, as well as leads with looped segments. Moreover, SAR reduction was not sensitive to tissue properties, and insertion of a close-fit 32-channel receive array did not degrade the SAR reduction performance. Conclusion The ensemble of rotating linear birdcage and 32-channel close-fit receive array introduces a promising technology for future improvement of imaging in patients with DBS implants. PMID:27059266
Ka-band MMIC subarray technology program (Ka-Mist)
NASA Technical Reports Server (NTRS)
Pottenger, Warren
1995-01-01
The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
NASA Astrophysics Data System (ADS)
Mashburn, David; Wikswo, John
2007-11-01
Prevailing theories about the response of the heart to high field shocks predict that local regions of high resistivity distributed throughout the heart create multiple small virtual electrodes that hyperpolarize or depolarize tissue and lead to widespread activation. This resetting of bulk tissue is responsible for the successful functioning of cardiac defibrillators. By activating cardiac tissue with regular linear arrays of spatially alternating bipolar currents, we can simulate these potentials locally. We have studied the activation time due to distributed currents in both a 1D Beeler-Reuter model and on the surface of the whole heart, varying the strength of each source and the separation between them. By comparison with activation time data from actual field shock of a whole heart in a bath, we hope to better understand these transient virtual electrodes. Our work was done on rabbit RV using florescent optical imaging and our Phased Array Stimulator for driving the 16 current sources. Our model shows that for a total absolute current delivered to a region of tissue, the entire region activates faster if above-threshold sources are more distributed.
Winberg, Johanna; Berggren, Håkan; Malm, Torsten; Johansson, Sune; Johansson Ramgren, Jens; Nilsson, Boris; Liedén, Agne; Nordenskjöld, Agneta; Gustavsson, Peter; Nordgren, Ann
2015-03-01
The aim of this study was to investigate if pathogenic copy number variations (CNVs) are present in mosaic form in patients with congenital heart malformations. We have collected cardiac tissue and blood samples from 23 patients with congenital heart malformations that underwent cardiac surgery and screened for mosaic gene dose alterations restricted to cardiac tissue using array comparative genomic hybridization (array CGH). We did not find evidence of CNVs in mosaic form after array CGH analysis. Pathogenic CNVs that were present in both cardiac tissue and blood were detected in 2/23 patients (9%), and in addition we found several constitutional CNVs of unclear clinical significance. This is the first study investigating mosaicism for CNVs in heart tissue compared to peripheral blood and the results do not indicate that pathogenic mosaic copy number changes are common in patients with heart malformations. Importantly, in line with previous studies, our results show that constitutional pathogenic CNVs are important factors contributing to congenital heart malformations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Wachholz, James J.; Murphy, David M.
1996-01-01
The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachholz, J.J.; Murphy, D.M.
1996-05-01
The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and designmore » development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.« less
Li, Wangzhe; Zhang, Xia; Yao, Jianping
2013-08-26
We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.
Hutzler, Michael; Fromherz, Peter
2004-04-01
Probing projections between brain areas and their modulation by synaptic potentiation requires dense arrays of contacts for noninvasive electrical stimulation and recording. Semiconductor technology is able to provide planar arrays with high spatial resolution to be used with planar neuronal structures such as organotypic brain slices. To address basic methodical issues we developed a silicon chip with simple arrays of insulated capacitors and field-effect transistors for stimulation of neuronal activity and recording of evoked field potentials. Brain slices from rat hippocampus were cultured on that substrate. We achieved local stimulation of the CA3 region by applying defined voltage pulses to the chip capacitors. Recording of resulting local field potentials in the CA1 region was accomplished with transistors. The relationship between stimulation and recording was rationalized by a sheet conductor model. By combining a row of capacitors with a row of transistors we determined a simple stimulus-response matrix from CA3 to CA1. Possible contributions of inhomogeneities of synaptic projection, of tissue structure and of neuroelectronic interfacing were considered. The study provides the basis for a development of semiconductor chips with high spatial resolution that are required for long-term studies of topographic mapping.
Methods for implementing microbeam radiation therapy
Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.
2007-03-20
A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.
Feltovich, Helen; Homyk, Andrew D.; Carlson, Lindsey C.; Hall, Timothy J.
2015-01-01
The uterine cervix softens, shortens, and dilates throughout pregnancy in response to progressive disorganization of its layered collagen microstructure. This process is an essential part of normal pregnancy, but premature changes are associated with preterm birth. Clinically, there are no reliable noninvasive methods to objectively measure cervical softening or assess cervical microstructure. The goal of these preliminary studies was to evaluate the feasibility of using an intracavity ultrasound array to generate acoustic radiation force impulse (ARFI) excitations in the uterine cervix through simulation, and to optimize the acoustic radiation force (ARF) excitation for shear wave elasticity imaging (SWEI) of the tissue stiffness. The cervix is a unique soft tissue target for SWEI because it has significantly greater acoustic attenuation (α = 1.3 to 2.0 dB·cm−1·MHz−1) than other soft tissues, and the pathology being studied tends to lead to an increase in tissue compliance, with healthy cervix being relatively stiff compared with other soft tissues (E ≈ 25 kPa). Additionally, the cervix can only be accessed in vivo using a transvaginal or catheter-based array, which places additional constraints on the excitation focal characteristics that can be used during SWEI. Finite element method (FEM) models of SWEI show that larger-aperture, catheter-based arrays can utilize excitation frequencies up to 7 MHz to generate adequate focal gain up to focal depths 10 to 15 mm deep, with higher frequencies suffering from excessive amounts of near-field acoustic attenuation. Using full-aperture excitations can yield ~40% increases in ARFI-induced displacements, but also restricts the depth of field of the excitation to ~0.5 mm, compared with 2 to 6 mm, which limits the range that can be used for shear wave characterization of the tissue. The center-frequency content of the shear wave particle velocity profiles ranges from 1.5 to 2.5 kHz, depending on the focal configuration and the stiffness of the material being imaged. Overall, SWEI is possible using catheter-based imaging arrays to generate adequate displacements in cervical tissue for shear wave imaging, although specific considerations must be made when optimizing these arrays for this shear wave imaging application. PMID:24081254
Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng
2017-11-14
Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a tradeoff between attenuation rate and focality in the application of multi-coil arrays. Coil-energizing strategies and array dimensions should be based on an adequate evaluation of these two important demands and the topological structure of target tissues.
Increased expression of resistin in ectopic endometrial tissue of women with endometriosis.
Oh, Yoon Kyung; Ha, Young Ran; Yi, Kyong Wook; Park, Hyun Tae; Shin, Jung-Ho; Kim, Tak; Hur, Jun-Young
2017-11-01
Inflammation is a key process in the establishment and progression of endometriosis. Resistin, an adipocytokine, has biological properties linked to immunologic functions, but its role in endometriosis is unclear. Resistin gene expression was examined in eutopic and ectopic endometrial tissues from women with (n=25) or without (n=25) endometriosis. Resistin mRNA and protein levels were determined in endometrial tissue using quantitative real-time reverse transcription PCR and Western blotting, following adipokine profiling arrays. Resistin protein was detected in human endometrial tissues using an adipokine array test. Resistin mRNA and protein levels were significantly higher in ectopic endometrial tissue of patients with endometriosis than in normal eutopic endometrial tissue. Our results indicate that resistin is differentially expressed in endometrial tissues from women with endometriosis and imply a role for resistin in endometriosis-associated pelvic inflammation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology
NASA Technical Reports Server (NTRS)
Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank
2013-01-01
This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.
The Advanced Photovoltaic Solar Array (APSA) technology status and performance
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1991-01-01
In 1985, the Jet Propulsion Laboratory initiated the Advanced Photovoltaic Solar Array (APSA) program. The program objective is to demonstrate a producible array system by the early 1990s with a specific performance of at least 130 W/kG (beginning-of-life) as an intermediate milestone towards the long range goal of 300 W/kG. The APSA performance represents an approximately four-fold improvement over existing rigid array technology and a doubling of the performance of the first generation NASA/OAST SAFE flexible blanket array of the early 1980s.
Mattout, Anna; Pike, Brietta L; Towbin, Benjamin D; Bank, Erin M; Gonzalez-Sandoval, Adriana; Stadler, Michael B; Meister, Peter; Gruenbaum, Yosef; Gasser, Susan M
2011-10-11
In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal
2016-12-01
In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.
Chang, Xuefeng; Ge, Xiaohong; Li, Hui
2014-01-01
Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063
Nanofluidic interfaces in microfluidic networks
Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.
2015-09-24
The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less
Cytomorphology of Circulating Colorectal Tumor Cells:A Small Case Series
Marrinucci, Dena; Bethel, Kelly; Lazar, Daniel; Fisher, Jennifer; Huynh, Edward; Clark, Peter; Bruce, Richard; Nieva, Jorge; Kuhn, Peter
2010-01-01
Several methodologies exist to enumerate circulating tumor cells (CTCs) from the blood of cancer patients; however, most methodologies lack high-resolution imaging, and thus, little is known about the cytomorphologic features of these cells. In this study of metastatic colorectal cancer patients, we used immunofluorescent staining with fiber-optic array scanning technology to identify CTCs, with subsequent Wright-Giemsa and Papanicolau staining. The CTCs were compared to the corresponding primary and metastatic tumors. The colorectal CTCs showed marked intrapatient pleomorphism. In comparison to the corresponding tissue biopsies, cells from all sites showed similar pleomorphism, demonstrating that colorectal CTCs retain the pleomorphism present in regions of solid growth. They also often retain particular cytomorphologic features present in the patient's primary and/or metastatic tumor tissue. This study provides an initial analysis of the cytomorphologic features of circulating colon cancer cells, providing a foundation for further investigation into the significance and metastatic potential of CTCs. PMID:20111743
Recent technologic advances in multi-detector row cardiac CT.
Halliburton, Sandra Simon
2009-11-01
Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.
Ka-Band MMIC Subarray Technology Program (Ka-Mist)
NASA Technical Reports Server (NTRS)
Pottinger, W.
1995-01-01
Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.
Review of infrared scene projector technology-1993
NASA Astrophysics Data System (ADS)
Driggers, Ronald G.; Barnard, Kenneth J.; Burroughs, E. E.; Deep, Raymond G.; Williams, Owen M.
1994-07-01
The importance of testing IR imagers and missile seekers with realistic IR scenes warrants a review of the current technologies used in dynamic infrared scene projection. These technologies include resistive arrays, deformable mirror arrays, mirror membrane devices, liquid crystal light valves, laser writers, laser diode arrays, and CRTs. Other methods include frustrated total internal reflection, thermoelectric devices, galvanic cells, Bly cells, and vanadium dioxide. A description of each technology is presented along with a discussion of their relative benefits and disadvantages. The current state of each methodology is also summarized. Finally, the methods are compared and contrasted in terms of their performance parameters.
2014-01-01
Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139
Ultrasoft microwire neural electrodes improve chronic tissue integration
Du, Zhanhong Jeff; Kolarcik, Christi L.; Kozai, Takashi D.Y.; Luebben, Silvia D.; Sapp, Shawn A.; Zheng, Xin Sally; Nabity, James A.; Cui, X. Tracy
2017-01-01
Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8 weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. PMID:28185910
Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi
2012-07-01
Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.
The effect of micro-ECoG substrate footprint on the meningeal tissue response
NASA Astrophysics Data System (ADS)
Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.
2014-08-01
Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.
Sun, Yulong; Chakrabartty, Avi
2016-12-01
Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.
Nikoozadeh, Amin; Wygant, Ira O.; Lin, Der-Song; Oralkan, Ömer; Ergun, A. Sanlı; Stephens, Douglas N.; Thomenius, Kai E.; Dentinger, Aaron M.; Wildes, Douglas; Akopyan, Gina; Shivkumar, Kalyanam; Mahajan, Aman; Sahn, David J.; Khuri-Yakub, Butrus T.
2009-01-01
Minimally invasive catheter-based electrophysiological (EP) interventions are becoming a standard procedure in diagnosis and treatment of cardiac arrhythmias. As a result of technological advances that enable small feature sizes and a high level of integration, nonfluoroscopic intracardiac echocardiography (ICE) imaging catheters are attracting increasing attention. ICE catheters improve EP procedural guidance while reducing the undesirable use of fluoroscopy, which is currently the common catheter guidance method. Phased-array ICE catheters have been in use for several years now, although only for side-looking imaging. We are developing a forward-looking ICE catheter for improved visualization. In this effort, we fabricate a 24-element, fine-pitch 1-D array of capacitive micromachined ultrasonic transducers (CMUT), with a total footprint of 1.73 mm × 1.27 mm. We also design a custom integrated circuit (IC) composed of 24 identical blocks of transmit/receive circuitry, measuring 2.1 mm × 2.1 mm. The transmit circuitry is capable of delivering 25-V unipolar pulses, and the receive circuitry includes a transimpedance preamplifier followed by an output buffer. The CMUT array and the custom IC are designed to be mounted at the tip of a 10-Fr catheter for high-frame-rate forward-looking intracardiac imaging. Through-wafer vias incorporated in the CMUT array provide access to individual array elements from the back side of the array. We successfully flip-chip bond a CMUT array to the custom IC with 100% yield. We coat the device with a layer of polydimethylsiloxane (PDMS) to electrically isolate the device for imaging in water and tissue. The pulse-echo in water from a total plane reflector has a center frequency of 9.2 MHz with a 96% fractional bandwidth. Finally, we demonstrate the imaging capability of the integrated device on commercial phantoms and on a beating ex vivo rabbit heart (Langendorff model) using a commercial ultrasound imaging system. PMID:19126489
The history of MR imaging as seen through the pages of radiology.
Edelman, Robert R
2014-11-01
The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.
Kim, Taegyo; Branner, Almut; Gulati, Tanuj
2013-01-01
Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128
NASA Astrophysics Data System (ADS)
Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.
2013-08-01
Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.
NASA Technical Reports Server (NTRS)
Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark
2012-01-01
The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.
Guo, Liang; Meacham, Kathleen W.; Hochman, Shawn
2012-01-01
A method for fabricating polydimethylsiloxane (PDMS)-based microelectrode arrays (MEAs) featuring novel conical-well microelectrodes is described. The fabrication technique is reliable and efficient, and facilitates controllability over both the depth and the slope of the conical wells. Because of the high PDMS elasticity (as compared to other MEA substrate materials), this type of compliant MEA is promising for acute and chronic implantation in applications that benefit from conformable device contact with biological tissue surfaces and from minimal tissue damage. The primary advantage of the conical-well microelectrodes—when compared to planar electrodes—is that they provide an improved contact on tissue surface, which potentially provides isolation of the electrode microenvironment for better electrical interfacing. The raised wells increase the uniformity of current density distributions at both the electrode and tissue surfaces, and they also protect the electrode material from mechanical damage (e.g. from rubbing against the tissue). Using this technique, electrodes have been fabricated with diameters as small as 10µm and arrays have been fabricated with center-to-center electrode spacings of 60µm. Experimental results are presented, describing electrode-profile characterization, electrode-impedance measurement, and MEA-performance evaluation on fiber bundle recruitment in spinal cord white matter. PMID:20550983
Developing an Inflatable Solar Array
NASA Technical Reports Server (NTRS)
Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.
1992-01-01
Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.
Development of new stem cell-based technologies for carnivore reproduction research.
Travis, A J; Kim, Y; Meyers-Wallen, V
2009-07-01
New reproductive technologies based on stem cells offer several potential benefits to carnivore species. For example, development of lines of embryonic stem cells in cats and dogs would allow for the generation of transgenic animal models, which could be used to advance both veterinary and human health. Techniques such as spermatogonial stem cell transplantation (SSCT) and testis xenografting offer new approaches to propagate genetically valuable individual males, even if they should die before producing sperm. These techniques might therefore have application to the conservation of endangered species of carnivores, as well as to biomedical research. Recently, our laboratory has successfully performed SSCT in the dog, with a recipient dog producing sperm of donor genetic origin. Testis xenografting has been used to produce sperm from pre-pubertal testis tissue from both cats and ferrets. These early steps reinforce the need not only for research on stem cell technologies, but also for additional research into complementary technologies of assisted reproduction in carnivores, so that the widest array of research and clinical benefits can be realized.
NASA Technical Reports Server (NTRS)
Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.
2004-01-01
A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.
Integrated residential photovoltaic array development
NASA Astrophysics Data System (ADS)
Shepard, N. F., Jr.
1981-12-01
An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.
Coherent Detector Arrays for Continuum and Spectral Line Applications
NASA Technical Reports Server (NTRS)
Gaier, Todd C.
2006-01-01
This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.
Fabrication of 3D Reconstituted Organoid Arrays by DNA-programmed Assembly of Cells (DPAC)
Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J
2016-01-01
Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) that are composed into specific three dimensional (3D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this unit, we describe DNA-programmed Assembly of Cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids, and permits positioning constituent cells with single-cell resolution even within cultures several centimeters long. PMID:27622567
2014-01-01
Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid organ and hematologic malignancies. Chondroitin sulfate proteoglycan 4 (CSPG4) is a promising target antigen that is overexpressed in multiple cancer histologies including melanoma, triple-negative breast cancer, glioblastoma, mesothelioma and sarcoma. Methods CSPG4 expression in cancer cell lines was assayed using flow cytometry (FACS) and reverse-transcription PCR (RT-PCR). Immunohistochemistry was utilized to assay resected melanomas and normal human tissues (n = 30) for CSPG4 expression and a reverse-phase protein array comprising 94 normal tissue samples was also interrogated for CSPG4 expression. CARs were successfully constructed from multiple murine antibodies (225.28S, TP41.2, 149.53) using second generation (CD28.CD3ζ) signaling domains. CAR sequences were cloned into a gamma-retroviral vector with subsequent successful production of retroviral supernatant and PBL transduction. CAR efficacy was assayed by cytokine release and cytolysis following coculture with target cell lines. Additionally, glioblastoma stem cells were generated from resected human tumors, and CSPG4 expression was determined by RT-PCR and FACS. Results Immunohistochemistry demonstrated prominent CSPG4 expression in melanoma tumors, but failed to demonstrate expression in any of the 30 normal human tissues studied. Two of 94 normal tissue protein lysates were positive by protein array. CAR constructs demonstrated cytokine secretion and cytolytic function after co-culture with tumor cell lines from multiple different histologies, including melanoma, breast cancer, mesothelioma, glioblastoma and osteosarcoma. Furthermore, we report for the first time that CSPG4 is expressed on glioblastoma cancer stem cells (GSC) and demonstrate that anti-CSPG4 CAR-transduced T cells recognize and kill these GSC. Conclusions The functionality of multiple different CARs, with the widespread expression of CSPG4 on multiple malignancies, suggests that CSPG4 may be an attractive candidate tumor antigen for CAR-based immunotherapies using appropriate technology to limit possible off-tumor toxicity. PMID:25197555
NASA Technical Reports Server (NTRS)
1985-01-01
The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.
Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B; Schmidt, Daniel F; Gil, Eun Seok; Kaplan, David L
2012-12-01
In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering 'tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. Copyright © 2012 Elsevier Ltd. All rights reserved.
A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.
Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao
2014-12-19
To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.
Proceedings of the Third Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, Craig R. (Compiler)
1989-01-01
This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.
NASA Astrophysics Data System (ADS)
Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun
2015-03-01
To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.
Phased Arrays 1985 Symposium - Proceedings
1985-08-01
have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed
Proceedings of the Second Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, C. R. (Compiler)
1986-01-01
The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.
Microelectronic electroporation array
NASA Astrophysics Data System (ADS)
Johnson, Lee J.; Shaffer, Kara J.; Skeath, Perry; Perkins, Frank K.; Pancrazio, Joseph; Scribner, Dean
2004-06-01
Gene Array technology has allowed for the study of gene binding by creating thousands of potential binding sites on a single device. A limitation of the current technology is that the effects of the gene and the gene-derived proteins cannot be studied in situ the same way, thousand site cell arrays are not readily available. We propose a new device structure to study the effects of gene modification on cells. This new array technology uses electroporation to target specific areas within a cell culture for transfection of genes. Electroporation arrays will allow high throughput analysis of gene effects on a given cell's response to a stress or a genes ability to restore normal cell function in disease modeling cells. Fluorescent imaging of dye labeled indicator molecules or cell viability will provide results indicating the most effective genes. The electroporation array consists of a microelectronic circuit, ancillary electronics, protecting electrode surface for cell culturing and a perfusion system for gene or drug delivery. The advantages of the current device are that there are 3200 sites for electroporation, all or any subsets of the electrodes can be activated. The cells are held in place by the electrode material. This technology could also be applied to high throughput screening of cell impermeant drugs.
Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array
NASA Astrophysics Data System (ADS)
Shan, Jing
X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by retrofitting the source array to a Carestream digital radiography system. The system passed the electrical and radiation safety tests, and was installed in Marsico Hall. The patient trial started in March of 2015, and the first patient was successfully imaged.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.
Palmer, Brian C; DeLouise, Lisa A
2016-12-15
Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.
Ferguson, John E; Boldt, Christopher; Puhl, Joshua G; Stigen, Tyler W; Jackson, Jadin C; Crisp, Kevin M; Mesce, Karen A; Netoff, Theoden I; Redish, A David
2012-01-01
Aims Nanoelectrodes are an emerging biomedical technology that can be used to record intracellular membrane potentials from neurons while causing minimal damage during membrane penetration. Current nanoelectrode designs, however, have low aspect ratios or large substrates and thus are not suitable for recording from neurons deep within complex natural structures, such as brain slices. Materials & methods We describe a novel nanoelectrode design that uses nanowires grown on the ends of microwire recording electrodes similar to those frequently used in vivo. Results & discussion We demonstrate that these nanowires can record intracellular action potentials in a rat brain slice preparation and in isolated leech ganglia. Conclusion Nanoelectrodes have the potential to revolutionize intracellular recording methods in complex neural tissues, to enable new multielectrode array technologies and, ultimately, to be used to record intracellular signals in vivo. PMID:22475650
Palmer, Brian C.; DeLouise, Lisa A.
2017-01-01
Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701
Chronic impedance spectroscopy of an endovascular stent-electrode array
NASA Astrophysics Data System (ADS)
Opie, Nicholas L.; John, Sam E.; Rind, Gil S.; Ronayne, Stephen M.; Grayden, David B.; Burkitt, Anthony N.; May, Clive N.; O'Brien, Terence J.; Oxley, Thomas J.
2016-08-01
Objective. Recently, we reported a minimally invasive stent-electrode array capable of recording neural signals from within a blood vessel. We now investigate the use of electrochemical impedance spectroscopy (EIS) measurements to infer changes occurring to the electrode-tissue interface from devices implanted in a cohort of sheep for up to 190 days. Approach. In a cohort of 15 sheep, endovascular stent-electrode arrays were implanted in the superior sagittal sinus overlying the motor cortex for up to 190 days. EIS was performed routinely to quantify viable electrodes for up to 91 days. An equivalent circuit model (ECM) was developed from the in vivo measurements to characterize the electrode-tissue interface changes occurring to the electrodes chronically implanted within a blood vessel. Post-mortem histological assessment of stent and electrode incorporation into the wall of the cortical vessels was compared to the electrical impedance measurements. Main results. EIS could be used to infer electrode viability and was consistent with x-ray analysis performed in vivo, and post-mortem evaluation. Viable electrodes exhibited consistent 1 kHz impedances across the 91 day measurement period, with the peak resistance frequency for the acquired data also stable over time. There was a significant change in 100 Hz phase angles, increasing from -67.8° ± 8.8° at day 0 to -43.8° ± 0.8° at day 91, which was observed to stabilize after eight days. ECM’s modeled to the data suggested this change was due to an increase in the capacitance of the electrode-tissue interface. This was supported by histological assessment with >85% of the implanted stent struts covered with neointima and incorporated into the blood vessel within two weeks. Conclusion. This work demonstrated that EIS could be used to determine the viability of electrode implanted chronically within a blood vessel. Impedance measurements alone were not observed to be a useful predictor of alterations occurring at the electrode tissue interface. However, measurement of 100 Hz phase angles was in good agreement with the capacitive changes predicted by the ECM and consistent with suggestions that this represents protein absorption on the electrode surface. 100 Hz phase angles stabilized after 8 days, consistent with histologically assessed samples. Significance. These findings demonstrate the potential application of this technology for use as a chronic neural recording system and indicate the importance of conducting EIS as a measure to identify viable electrodes and changes occurring at the electrode-tissue interface.
Integrated detector array technology for infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.
1984-01-01
The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.
Integrating Residential Photovoltaics With Power Lines
NASA Technical Reports Server (NTRS)
Borden, C. S.
1985-01-01
Report finds rooftop solar-cell arrays feed excess power to electric-utility grid for fee are potentially attractive large-scale application of photovoltaic technology. Presents assessment of breakeven costs of these arrays under variety of technological and economic assumptions.
NASA Astrophysics Data System (ADS)
Carson, John C.
1990-11-01
Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.
Leclerc, Eric; Duval, Jean-Luc; Egles, Christophe; Ihida, Satoshi; Toshiyoshi, Hiroshi; Tixier-Mita, Agnès
2017-01-01
Thin-Film-Transistors Liquid-Crystal Display has become a standard in the field of displays. However, the structure of these devices presents interest not only in that field, but also for biomedical applications. One of the key components, called here TFT substrate, is a glass substrate with a dense and large array of thousands of transparent micro-electrodes that can be considered as a large scale multi-electrode array(s). Multi-electrode array(s) are widely used for in vitro electrical investigations on neurons and brain, allowing excitation, registration, and recording of their activity. However, the range of application of conventional multi-electrode array(s) is usually limited to some tens of cells in a homogeneous cell culture, because of a small area, small number and a low density of the micro-electrodes. TFT substrates do not have these limitations and the authors are currently studying the possibility to use TFT substrates as new tools for in vitro electrical investigation on tissues and organoids. In this respect, experiments to determine the cyto-biocompatibility of TFT substrates with tissues were conducted and are presented in this study. The investigation was performed using an organotypic culture method with explants of brain and liver tissues of chick embryos. The results in term of morphology, cell migration, cell density and adhesion were compared with the results from Thermanox ® , a conventional plastic for cell culture, and with polydimethylsiloxane, a hydrophobic silicone. The results with TFT substrates showed similar results as for the Thermanox ® , despite the TFT hydrophobicity. TFT substrates have a weak cell adhesion and promote cell migration similarly to Thermanox ® . It could be concluded that the TFT substrates are cyto-biocompatible with the two studied organs.
JPRS Report, Science & Technology, China, High-Performance Computer Systems
1992-10-28
microprocessor array The microprocessor array in the AP85 system is com- posed of 16 completely identical array element micro - processors . Each array element...microprocessors and capable of host machine reading and writing. The memory capacity of the array element micro - processors as a whole can be expanded...transmission functions to carry out data transmission from array element micro - processor to array element microprocessor, from array element
Low-background detector arrays for infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.
1989-01-01
The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
NASA Technical Reports Server (NTRS)
Ando, K.
1982-01-01
A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.
Study of Power Options for Jupiter and Outer Planet Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Fincannon, James
2015-01-01
Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.
Titania nanotube arrays as potential interfaces for neurological prostheses
NASA Astrophysics Data System (ADS)
Sorkin, Jonathan Andrew
Neural prostheses can make a dramatic improvement for those suffering from visual and auditory, cognitive, and motor control disabilities, allowing them regained functionality by the use of stimulating or recording electrical signaling. However, the longevity of these devices is limited due to the neural tissue response to the implanted device. In response to the implant penetrating the blood brain barrier and causing trauma to the tissue, the body forms a to scar to isolate the implant in order to protect the nearby tissue. The scar tissue is a result of reactive gliosis and produces an insulated sheath, encapsulating the implant. The glial sheath limits the stimulating or recording capabilities of the implant, reducing its effectiveness over the long term. A favorable interaction with this tissue would be the direct adhesion of neurons onto the contacts of the implant, and the prevention of glial encapsulation. With direct neuronal adhesion the effectiveness and longevity of the device would be significantly improved. Titania nanotube arrays, fabricated using electrochemical anodization, provide a conductive architecture capable of altering cellular response. This work focuses on the fabrication of different titania nanotube array architectures to determine how their structures and properties influence the response of neural tissue, modeled using the C17.2 murine neural stem cell subclone, and if glial encapsulation can be reduced while neuronal adhesion is promoted.
Lee, GeonHui; Jun, Yesl; Jang, HeeYeong; Yoon, Junghyo; Lee, JaeSeo; Hong, MinHyung; Chung, Seok; Kim, Dong-Hwee; Lee, SangHoon
2018-01-01
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DNA ARRAYS: TECHNOLOGY, OPTIONS AND TOXOCOLOGICAL APPLICATIONS
DNA arrays: technology, options and toxicological applications.
Rockett JC, Dix DJ.
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, NC 27711, USA. rockett.john@epa.gov
The hu...
LSSA (Low-cost Silicon Solar Array) project
NASA Technical Reports Server (NTRS)
1976-01-01
Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine
2005-01-01
Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.
Analysis of mismatch and shading effects in a photovoltaic array using different technologies
NASA Astrophysics Data System (ADS)
Guerrero, J.; Muñoz, Y.; Ibáñez, F.; Ospino, A.
2014-06-01
In this paper, we analyze the performance of a photovoltaic array implemented in the Universidad Politécnica de Valencia which consists of modules of different technologies and power, connected in series, in order to quantify the energy losses due to mismatch and the effect of the shadows. To do this, the performance of the modules was measured in operation under ambient conditions with field measurement equipment (AMPROBE Solar Analyzer, Solar - 4000), which allows the extrapolation of measures to standard conditions STC. For the data validation, measures under controlled conditions were taken to some modules in the flash test laboratory of the Institute of Energy Technology ITE of Valencia in Spain. Subsequently the array curves measured were validated with a photovoltaic array model developed in MATLAB-Simulink for the same conditions and technologies. The results of this particular array are lost up to 20% of the energy supplied due to the modules mismatch. The study shows the curves and the energy loss due to shadows modules. This result opens scenarios for conceivable modifications to the PV field configurations today, chosen during the design stage and unchangeable during the operating stage; and gives greater importance to the energy loss by mismatch in the PV array.
NASA Astrophysics Data System (ADS)
Liu, Dalong; Ballard, John R.; Haritonova, Alyona; Choi, Jeungwan; Bischof, John; Ebbini, Emad S.
2012-10-01
An integrated system employing real-time ultrasound thermography and strain imaging in monitoring tissue response to phased-array heating patterns has been developed. The imaging system is implemented on a commercially available scanner (SonixRP) at frame rates > 500 fps with limited frame sizes covering the vicinity of the HIFU focal spot. These frame rates are sufficient to capture tissue motion and deformation even in the vicinity of large arteries. With the high temporal and spatial resolution of our strain imaging system, we are able to capture and separate tissue strains due to natural motion (breathing and pulsation) from HIFU induced strains (thermal and mechanical). We have collected in vivo strain imaging during sub-therapeutic and therapeutic HIFU exposure in swine and rat model. A 3.5-MHz phased array was used to generate sinusoidally-modulated pHIFU beams at different intensity levels and durations near blood vessels of different sizes (e.g. femoral in the swine and rat models). The results show that our approach is capable of characterizing the thermal and mechanical tissue response to sub-therapeutic pHIFU beam. For therapeutic pHIFU beams, the approach is still capable of localizing the therapeutic beam, but the results at the focal spot are complicated by bubble generation.
Yuan, Hong; Zhang, Lei; Frank, Jonathan E; Inscoe, Christina R; Burk, Laurel M; Hadsell, Mike; Lee, Yueh Z; Lu, Jianping; Chang, Sha; Zhou, Otto
2015-09-01
Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.
2013-04-01
liquid nitrogen cooled mercury cadmium telluride ( MCT ) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the...telluride ( MCT ) detector (InfraRed Associates, Stuart, FL), and in a second widefield imaging configuration, we employed a cooled focal plane array (FPA...experiment, a cooled focal plane array (FPA) was substituted for the bolometer. (b) A cooled single-element MCT detector is utilized with an adjustable
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Advances in diagnostic ultrasonography.
Reef, V B
1991-08-01
A wide variety of ultrasonographic equipment currently is available for use in equine practice, but no one machine is optimal for every type of imaging. Image quality is the most important factor in equipment selection once the needs of the practitioner are ascertained. The transducer frequencies available, transducer footprints, depth of field displayed, frame rate, gray scale, simultaneous electrocardiography, Doppler, and functions to modify the image are all important considerations. The ability to make measurements off of videocassette recorder playback and future upgradability should be evaluated. Linear array and sector technology are the backbone of equine ultrasonography today. Linear array technology is most useful for a high-volume broodmare practice, whereas sector technology is ideal for a more general equine practice. The curved or convex linear scanner has more applications than the standard linear array and is equipped with the linear array rectal probe, which provides the equine practitioner with a more versatile unit for equine ultrasonographic evaluations. The annular array and phased array systems have improved image quality, but each has its own limitations. The new sector scanners still provide the most versatile affordable equipment for equine general practice.
Saleh, Khaldon Y; Smith, Nadine Barrie
2005-01-01
Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements. PMID:15963237
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.
1997-01-01
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
Schuerger, A C; Brown, C S; Stryjewski, E C
1997-03-01
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays
NASA Technical Reports Server (NTRS)
Slifer, Luther W., Jr.
1991-01-01
One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.
Ultralow-Background Large-Format Bolometer Arrays
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)
2002-01-01
In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.
An update on SCARLET hardware development and flight programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.A.; Murphy, D.M.; Piszczor, M.F.
1995-10-01
Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is one of the first practical photovoltaic concentrator array technologies that offers a number of benefits for space applications (i.e. high array efficiency, protection from space radiation effects, a relatively light weight system, minimized plasma interactions, etc.) The line-focus concentrator concept, however, also offers two very important advantages: (1) low-cost mass production potential of the lens material; and (2) relaxation of precise array tracking requirements to only a single axis. These benefits offer unique capabilities to both commercial and government spacecraft users, specifically those interested in high radiation missions, such asmore » MEO orbits, and electric-powered propulsion LEO-to-GEO orbit raising applications. SCARLET is an aggressive hardware development and flight validation program sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center. Its intent is to bring technology to the level of performance and validation necessary for use by various government and commercial programs. The first phase of the SCARLET program culminated with the design, development and fabrication of a small concentrator array for flight on the METEOR satellite. This hardware will be the first in-space demonstration of concentrator technology at the `array level` and will provide valuable in-orbit performance measurements. The METEOR satellite is currently planned for a September/October 1995 launch. The next phase of the program is the development of large array for use by one of the NASA New Millenium Program missions. This hardware will incorporate a number of the significant improvements over the basic METEOR design. This presentation will address the basic SCARLET technology, examine its benefits to users, and describe the expected improvements for future missions.« less
Reiner, Jessica L; O'Connell, Steven G; Butt, Craig M; Mabury, Scott A; Small, Jeff M; De Silva, Amila O; Muir, Derek C G; Delinsky, Amy D; Strynar, Mark J; Lindstrom, Andrew B; Reagen, William K; Malinsky, Michelle; Schäfer, Sandra; Kwadijk, Christiaan J A F; Schantz, Michele M; Keller, Jennifer M
2012-11-01
Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs.
Coudry, Renata A.; Meireles, Sibele I.; Stoyanova, Radka; Cooper, Harry S.; Carpino, Alan; Wang, Xianqun; Engstrom, Paul F.; Clapper, Margie L.
2007-01-01
The establishment of a reliable method for using RNA from formalin-fixed, paraffin-embedded (FFPE) tissue would provide an opportunity to obtain novel gene expression data from the vast amounts of archived tissue. A custom-designed 22,000 oligonucleotide array was used in the present study to compare the gene expression profile of colonic epithelial cells isolated by laser capture microdissection from FFPE-archived samples with that of the same cell population from matched frozen samples, the preferred source of RNA. Total RNA was extracted from FFPE tissues, amplified, and labeled using the Paradise Reagent System. The quality of the input RNA was assessed by the Bioanalyzer profile, reverse transcriptase-polymerase chain reaction, and agarose gel electrophoresis. The results demonstrate that it is possible to obtain reliable microarray data from FFPE samples using RNA acquired by laser capture microdissection. The concordance between matched FFPE and frozen samples was evaluated and expressed as a Pearson’s correlation coefficient, with values ranging from 0.80 to 0.97. The presence of ribosomal RNA peaks in FFPE-derived RNA was reflected by a high correlation with paired frozen samples. A set of practical recommendations for evaluating the RNA integrity and quality in FFPE samples is reported. PMID:17251338
Smart Energy Cryo-refrigerator Technology for the next generation Very Large Array
NASA Astrophysics Data System (ADS)
Spagna, Stefano
2018-01-01
We describe a “smart energy” cryocooler technology architecture for the next generation Very Large Array that makes use of multiple variable frequency cold heads driven from a single variable speed air cooled compressor. Preliminary experiments indicate that the compressor variable flow control, advanced diagnostics, and the cryo-refrigerator low vibration, provide a unique energy efficient capability for the very large number of antennas that will be employed in this array.
NASA Astrophysics Data System (ADS)
Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.
2009-07-01
The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok
2011-12-01
In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.
Heikkilä, Janne; Hynynen, Kullervo
2006-04-01
Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.
We propose that gene expression changes in accessible tissues such as blood often reflect those in inaccessible tissues, thus offering a convenient biomonitoring method to provide insight into the effects of environmental toxicants on such tissues. In this pilot study, gene expre...
Crouse, Cecelia A; Yeung, Stephanie; Greenspoon, Susan; McGuckian, Amy; Sikorsky, Julie; Ban, Jeff; Mathies, Richard
2005-08-01
To present validation studies performed for the implementation of existing and new technologies to increase the efficiency in the forensic DNA Section of the Palm Beach County Sheriff's Office (PBSO) Crime Laboratory. Using federally funded grants, internal support, and an external Process Mapping Team, the PBSO collaborated with forensic vendors, universities, and other forensic laboratories to enhance DNA testing procedures, including validation of the DNA IQ magnetic bead extraction system, robotic DNA extraction using the BioMek2000, the ABI7000 Sequence Detection System, and is currently evaluating a micro Capillary Array Electrophoresis device. The PBSO successfully validated and implemented both manual and automated Promega DNA IQ magnetic bead extractions system, which have increased DNA profile results from samples with low DNA template concentrations. The Beckman BioMek2000 DNA robotic workstation has been validated for blood, tissue, bone, hair, epithelial cells (touch evidence), and mixed stains such as semen. There has been a dramatic increase in the number of samples tested per case since implementation of the robotic extraction protocols. The validation of the ABI7000 real-time quantitative polymerase chain reaction (qPCR) technology and the single multiplex short tandem repeat (STR) PowerPlex16 BIO amplification system has provided both a time and a financial benefit. In addition, the qPCR system allows more accurate DNA concentration data and the PowerPlex 16 BIO multiplex generates DNA profiles data in half the time when compared to PowerPlex1.1 and PowerPlex2.1 STR systems. The PBSO's future efficiency requirements are being addressed through collaboration with the University of California at Berkeley and the Virginia Division of Forensic Science to validate microcapillary array electrophoresis instrumentation. Initial data demonstrated the electrophoresis of 96 samples in less than twenty minutes. The PBSO demonstrated, through the validation of more efficient extraction and quantification technology, an increase in the number of evidence samples tested using robotic/DNA IQ magnetic bead DNA extraction, a decrease in the number of negative samples amplified due to qPCR and implementation of a single multiplex amplification system. In addition, initial studies show the microcapillary array electrophoresis device (microCAE) evaluation results provide greater sensitivity and faster STR analysis output than current platforms.
Huang, Hung-Chung; Jupiter, Daniel; VanBuren, Vincent
2010-01-01
Background Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers. Methodology/Principal Findings In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs) of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness) were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic), and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as ‘brain group’ and ‘non-brain group’; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes. Conclusions/Significance The methodology employed here may be used to facilitate disease-specific biomarker discovery. PMID:20140228
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
Humayun, Mouhita; Chow, Chung-Wai; Young, Edmond W K
2018-05-01
Chronic lung diseases (CLDs) are regulated by complex interactions between many different cell types residing in lung airway tissues. Specifically, interactions between airway epithelial cells (ECs) and airway smooth muscle cells (SMCs) have been shown in part to play major roles in the pathogenesis of CLDs, but the underlying molecular mechanisms are not well understood. To advance our understanding of lung pathophysiology and accelerate drug development processes, new innovative in vitro tissue models are needed that can reconstitute the complex in vivo microenvironment of human lung tissues. Organ-on-a-chip technologies have recently made significant strides in recapitulating physiological properties of in vivo lung tissue microenvironments. However, novel advancements are still needed to enable the study of airway SMC-EC communication with matrix interactions, and to provide higher throughput capabilities and manufacturability. We have developed a thermoplastic-based microfluidic lung airway-on-a-chip model that mimics the lung airway tissue microenvironment, and in particular, the interactions between SMCs, ECs, and supporting extracellular matrix (ECM). The microdevice is fabricated from acrylic using micromilling and solvent bonding techniques, and consists of three vertically stacked microfluidic compartments with a bottom media reservoir for SMC culture, a middle thin hydrogel layer, and an upper microchamber for achieving air-liquid interface (ALI) culture of the epithelium. A unique aspect of the design lies in the suspended hydrogel with upper and lower interfaces for EC and SMC culture, respectively. A mixture of type I collagen and Matrigel was found to promote EC adhesion and monolayer formation, and SMC adhesion and alignment. Optimal culturing protocols were established that enabled EC-SMC coculture for more than 31 days. Epithelial monolayers displayed common morphological markers including ZO-1 tight junctions and F-actin cell cortices, while SMCs exhibited enhanced cell alignment and expression of α-SMA. The thermoplastic device construction facilitates mass manufacturing, allows EC-SMC coculture systems to be arrayed for increased throughput, and can be disassembled to allow extraction of the suspended gel for downstream analyses. This airway-on-a-chip device has potential to significantly advance our understanding of SMC-EC-matrix interactions, and their roles in the development of CLDs.
Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling
NASA Astrophysics Data System (ADS)
Shang, Yuqin; Zeng, Yun; Zeng, Yong
2016-02-01
Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.
Novel instrumentation of multispectral imaging technology for detecting tissue abnormity
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Kong, Linghua
2012-10-01
Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.
Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling
Shang, Yuqin; Zeng, Yun; Zeng, Yong
2016-01-01
Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development. PMID:26831207
Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons
NASA Astrophysics Data System (ADS)
Flores, Thomas; Lei, Xin; Huang, Tiffany; Lorach, Henri; Dalal, Roopa; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Palanker, Daniel
2018-06-01
Objective. High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. Approach. To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. Main results. Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. Significance. 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.
Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L
2011-09-01
This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.
High-density functional-RNA arrays as a versatile platform for studying RNA-based interactions.
Phillips, Jack O; Butt, Louise E; Henderson, Charlotte A; Devonshire, Martin; Healy, Jess; Conway, Stuart J; Locker, Nicolas; Pickford, Andrew R; Vincent, Helen A; Callaghan, Anastasia J
2018-05-28
We are just beginning to unravel the myriad of interactions in which non-coding RNAs participate. The intricate RNA interactome is the foundation of many biological processes, including bacterial virulence and human disease, and represents unexploited resources for the development of potential therapeutic interventions. However, identifying specific associations of a given RNA from the multitude of possible binding partners within the cell requires robust high-throughput systems for their rapid screening. Here, we present the first demonstration of functional-RNA arrays as a novel platform technology designed for the study of such interactions using immobilized, active RNAs. We have generated high-density RNA arrays by an innovative method involving surface-capture of in vitro transcribed RNAs. This approach has significant advantages over existing technologies, particularly in its versatility in regards to binding partner character. Indeed, proof-of-principle application of RNA arrays to both RNA-small molecule and RNA-RNA pairings is demonstrated, highlighting their potential as a platform technology for mapping RNA-based networks and for pharmaceutical screening. Furthermore, the simplicity of the method supports greater user-accessibility over currently available technologies. We anticipate that functional-RNA arrays will find broad utility in the expanding field of RNA characterization.
Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.
Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall
2014-01-01
The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.
NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY
Normal Nasal Gene Expression Levels Using cDNA Array Technology.
The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...
High-density Schottky barrier IRCCD sensors for remote sensing applications
NASA Astrophysics Data System (ADS)
Elabd, H.; Tower, J. R.; McCarthy, B. M.
1983-01-01
It is pointed out that the ambitious goals envisaged for the next generation of space-borne sensors challenge the state-of-the-art in solid-state imaging technology. Studies are being conducted with the aim to provide focal plane array technology suitable for use in future Multispectral Linear Array (MLA) earth resource instruments. An important new technology for IR-image sensors involves the use of monolithic Schottky barrier infrared charge-coupled device arrays. This technology is suitable for earth sensing applications in which moderate quantum efficiency and intermediate operating temperatures are required. This IR sensor can be fabricated by using standard integrated circuit (IC) processing techniques, and it is possible to employ commercial IC grade silicon. For this reason, it is feasible to construct Schottky barrier area and line arrays with large numbers of elements and high-density designs. A Pd2Si Schottky barrier sensor for multispectral imaging in the 1 to 3.5 micron band is under development.
NASA Astrophysics Data System (ADS)
Goldberg, S. Nahum; Gazelle, G. Scott
1998-04-01
Radiofrequency (RF) tumor ablation has been demonstrated as a reliable method for creating thermally induced coagulation necrosis using either a percutaneous approach with image- guidance or direct surgical application of thin electrodes into treated tissues. Early clinical trials with this technology have studied the treatment of hepatic, cerebral, and bony malignancies. The extent of coagulation necrosis induced with conventional monopolar radiofrequency electrodes is dependent on overall energy deposition, the duration of RF application, and RF electrode tip length and gauge. This article will discuss these technical considerations with the goal of defining optimal parameters for RF ablation. Strategies to further increase induced coagulation necrosis including: multiprobe and bipolar arrays, and internally-cooled RF electrodes, with or without pulsed-RF or cluster technique will be presented. The development and laboratory results for many of these radiofrequency techniques, initial clinical results, and potential biophysical limitations to RF induced coagulation, such as perfusion mediated tissue cooling (vascular flow) will likewise be discussed.
Biomanufacturing: a US-China National Science Foundation-sponsored workshop.
Sun, Wei; Yan, Yongnian; Lin, Feng; Spector, Myron
2006-05-01
A recent US-China National Science Foundation-sponsored workshop on biomanufacturing reviewed the state-of-the-art of an array of new technologies for producing scaffolds for tissue engineering, providing precision multi-scale control of material, architecture, and cells. One broad category of such techniques has been termed solid freeform fabrication. The techniques in this category include: stereolithography, selected laser sintering, single- and multiple-nozzle deposition and fused deposition modeling, and three-dimensional printing. The precise and repetitive placement of material and cells in a three-dimensional construct at the micrometer length scale demands computer control. These novel computer-controlled scaffold production techniques, when coupled with computer-based imaging and structural modeling methods for the production of the templates for the scaffolds, define an emerging field of computer-aided tissue engineering. In formulating the questions that remain to be answered and discussing the knowledge required to further advance the field, the Workshop provided a basis for recommendations for future work.
Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay
2018-01-24
The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology
NASA Astrophysics Data System (ADS)
Péré-Laperne, Nicolas; Berthoz, Jocelyn; Taalat, Rachid; Rubaldo, Laurent; Kerlain, Alexandre; Carrère, Emmanuel; Dargent, Loïc.
2016-05-01
Sofradir recently presented Daphnis, its latest 10 μm pitch product family. Both Daphnis XGA and HD720 are 10μm pitch mid-wave infrared focal plane array. Development of small pixel pitch is opening the way to very compact products with a high spatial resolution. This new product is taking part in the HOT technology competition allowing reductions in size, weight and power of the overall package. This paper presents the recent developments achieved at Sofradir to make the 10μm pitch HgCdTe focal plane array based on the legacy technology. Electrical and electro-optical characterizations are presented to define the appropriate design of 10μm pitch diode array. The technological tradeoffs are explained to lower the dark current, to keep high quantum efficiency with a high operability above 110K, F/4. Also, Sofradir recently achieved outstanding Modulation Transfer Function (MTF) demonstration at this pixel pitch, which clearly demonstrates the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. Furthermore, the HgCdTe technology has demonstrated an increase of the operating temperature, plus 40K, moving from the legacy to the P-on-n one at a 15μm pitch in mid-wave band. The first realizations using the extrinsic P-on-n technology and the characterizations of diodes with a 10μm pitch neighborhood will be presented in both mid-wave and long-wave bands.
Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array
NASA Astrophysics Data System (ADS)
Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram
2005-03-01
The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor volume. Real-time ultrasound imaging for guidance and monitoring of HIFU treatment provides an effective method for outpatient-based procedures.
Expression profiling of microRNAs in human bone tissue from postmenopausal women.
De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia
2018-01-01
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Integrated infrared detector arrays for low-background astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.
1979-01-01
Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.
Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng
2012-07-02
The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.
Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System
Moore, Thomas L.; Fisher, Karl A.
2005-08-09
An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.
Leng, Yuankui
2017-01-01
Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602
The impact of solar cell technology on planar solar array performance
NASA Technical Reports Server (NTRS)
Mills, Michael W.; Kurland, Richard M.
1989-01-01
The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.
Gallium arsenide solar array subsystem study
NASA Technical Reports Server (NTRS)
Miller, F. Q.
1982-01-01
The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.
NASA Technical Reports Server (NTRS)
1982-01-01
Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.
SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.
1997-01-01
The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.
The DS1 Mission and the Validation of the SCARLET Advanced Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Nieraeth, Donald G.; Murphy, David M.; Eskenazi, Michael I.
2000-01-01
On October 24, 1998, the first of the NASA New Millenium Spacecraft, DS1, was successfully launched into Space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the SCARLET concentrating solar array. Although part of the advanced technology validation study, the array is also the spacecraft's power source. Funded by BMDO, the SCARLET concentrator solar array is the first application of a refractive lens concentrator designed for space applications. As part of the DS1 validation process, the amount of diagnostics data that will be acquired is more extensive than would be the norm for a more conventional solar array. These data include temperature measurements at numerous locations on the 2-wing, 4-panel per wing, solar array. For each panel, one 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance. In addition, the spacecraft power load can be varied in a number of discrete steps from a small fraction of the array total power capability, up to maximum power. For each of the power loads, array operating voltage can be measured along with the current output from each wing. Preliminary in-space measurements suggest SCARLET performance is within one (1) percent of predictions made from ground data. This paper will briefly discuss the SCARLET configuration and critical features. Emphasis will be given to the results of the in-space validation, including array performance as a function of changing solar distance and array performance compared to pre-launch predictions.
NASA Astrophysics Data System (ADS)
Wang, Li; Song, Yilin; Zhang, Yu; Xu, Shengwei; Xu, Huiren; Wang, Mixia; Wang, Yang; Cai, Xinxia
2017-11-01
Norepinephrine (NE), a common neurotransmitter released by locus coeruleus neurons, plays an essential role in the communication mechanism of the mammalian nervous system. In this work, a microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology to provide a rapid, sensitive and reliable method for the direct determination in NE dynamic secretion. To improve the electrical performance, the MEA was electrodeposited with the reduced graphene oxide and Pt nanoparticles (rGOPNps). rGOPNps-MEA was investigated using scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy, differential pulse voltammetry exhibited remarkably electrocatalytic properties towards NE. Calibration results showed a sensitivity of 1.03 nA µM-1 to NE with a detection limit of 0.08 µM. In Particular, the MEA was successfully used for measuring dynamic extracellular NE secretion from the locus coeruleus brain slice, as well as monitoring spike firing from the hippocampal brain slice. This fabricated device has potential in studies of spatially resolved delivery of trace neurochemicals and electrophysiological activities of a variety of biological tissues in vitro.
Virtual surface characteristics of a tactile display using magneto-rheological fluids.
Lee, Chul-Hee; Jang, Min-Gyu
2011-01-01
Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.
Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua
2015-01-01
To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed "multiplex ligation-dependent probe amplification-digital amplification coupled with hydrogel bead-array" (MLPA-DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA-DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA-DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC.
Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy
2014-01-01
Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935
NASA Astrophysics Data System (ADS)
Harrison, Tyler; Paproski, Robert J.; Zemp, Roger J.
2012-02-01
Tyrosinase, a key enzyme in the production of melanin, has shown promise as a reporter of genetic activity. While green fluorescent protein has been used extensively in this capacity, it is limited in its ability to provide information deep in tissue at a reasonable resolution. As melanin is a strong absorber of light, it is possible to image gene expression using tyrosinase with photoacoustic imaging technologies, resulting in excellent resolutions at multiple-centimeter depths. While our previous work has focused on creating and imaging MCF-7 cells with doxycycline-controlled tyrosinase expression, we have now established the viability of these cells in a murine model. Using an array-based photoacoustic imaging system with 5 MHz center frequency, we capture interleaved ultrasound and photoacoustic images of tyrosinase-expressing MCF-7 tumors both in a tissue mimicking phantom, and in vivo. Images of both the tyrosinase-expressing tumor and a control tumor are presented as both coregistered ultrasound-photoacoustic B-scan images and 3-dimensional photoacoustic volumes created by mechanically scanning the transducer. We find that the tyrosinase-expressing tumor is visible with a signal level 12dB greater than that of the control tumor in vivo. Phantom studies with excised tumors show that the tyrosinase-expressing tumor is visible at depths in excess of 2cm, and have suggested that our imaging system is sensitive to a transfection rate of less than 1%.
Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y
2008-01-01
Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003
Method for replicating an array of nucleic acid probes
Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi
1998-01-01
The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.
NASA Astrophysics Data System (ADS)
Saleh, Khaldon Y.; Smith, Nadine B.
2003-10-01
Focused ultrasound surgery (FUS) is a clinical method for treating benign prostatic hyperplasia (BPH) in which tissue is noninvasively necrosed by elevating the temperature at the focal point above 60
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation
NASA Technical Reports Server (NTRS)
Woo, D. S.
1980-01-01
The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.
High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT)
USDA-ARS?s Scientific Manuscript database
Implementation of molecular methods in hop breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. Diversity Arrays Technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of...
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays
Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera
2015-01-01
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345
Report of the Power Sub systems Panel. [spacecraft instrumentation technology
NASA Technical Reports Server (NTRS)
1979-01-01
Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.
Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing
NASA Astrophysics Data System (ADS)
Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael
2017-11-01
Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.
Terahertz Array Receivers with Integrated Antennas
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro;
2011-01-01
Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain
2015-10-01
Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.
ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Lipson, Jerold
2012-01-01
The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.
Superconducting Bolometer Array Architectures
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)
2002-01-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.
Arrays of probes for positional sequencing by hybridization
Cantor, Charles R [Boston, MA; Prezetakiewiczr, Marek [East Boston, MA; Smith, Cassandra L [Boston, MA; Sano, Takeshi [Waltham, MA
2008-01-15
This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.
Method for replicating an array of nucleic acid probes
Cantor, C.R.; Przetakiewicz, M.; Smith, C.L.; Sano, T.
1998-08-18
The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5{prime}- and/or 3{prime}-overhangs. 16 figs.
Flat-plate solar array progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1984-01-01
The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.
Measurement of high-voltage and radiation-damage limitations to advanced solar array performance
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.
1991-01-01
A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.
NASA Astrophysics Data System (ADS)
Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut
2018-05-01
Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.
Application of MEMS Microphone Array Technology to Airframe Noise Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby
2005-01-01
Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.
Stretched Lens Array Squarerigger (SLASR) Technology Maturation
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan;
2007-01-01
Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
The present and future of nanotechnology in human health care.
Sahoo, S K; Parveen, S; Panda, J J
2007-03-01
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. The burgeoning new field of nanotechnology, opened up by rapid advances in science and technology, creates myriad new opportunities for advancing medical science and disease treatment in human health care. Applications of nanotechnology to medicine and physiology imply materials and devices designed to interact with the body at subcellular (i.e., molecular) scales with a high degree of specificity. This can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. In this review the chief scientific and technical aspects of nanotechnology are introduced, and some of its potential clinical applications are discussed.
Development of an Influenza virus protein array using Sortagging technology
Sinisi, Antonia; Popp, Maximilian Wei-Lin; Antos, John M.; Pansegrau, Werner; Savino, Silvana; Nissum, Mikkel; Rappuoli, Rino; Ploegh, Hidde L.; Buti, Ludovico
2013-01-01
Protein array technology is an emerging tool that enables high throughput screening of protein-protein or protein-lipid interactions and identification of immunodominant antigens during the course of a bacterial or viral infection. In this work we developed an Influenza virus protein array using the sortase-mediated transpeptidation reaction known as “Sortagging”. LPETG-tagged Influenza virus proteins from bacterial and eukaryotic cellular extracts were immobilized at their carboxyl-termini onto a pre-activated amine-glass slide coated with a Gly3 linker. Immobilized proteins were revealed by specific antibodies and the newly generated Sortag-protein chip can be used as a device for antigen and/or antibody screening. The specificity of the Sortase A (SrtA) reaction avoids purification steps in array building and allows immobilization of proteins in an oriented fashion. Previously, this versatile technology has been successfully employed for protein labeling and protein conjugation. Here, the tool is implemented to covalently link proteins of a viral genome onto a solid support. The system could readily be scaled up to proteins of larger genomes in order to develop protein arrays for high throughput screening. PMID:22594688
Diversity Arrays Technology (DArT) platform for genotyping and mapping in carrot (Daucus carota L.)
USDA-ARS?s Scientific Manuscript database
Carrot is one of the most important root vegetable crops grown worldwide on more than one million hectares. Its progenitor, wild Daucus carota, is a weed commonly occurring across continents in the temperate climatic zone. Diversity Array Technology (DArT) is a microarray-based molecular marker syst...
Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.
Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song
2015-09-01
Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.
Song, Kwangsun; Kim, Juho; Cho, Sungbum; Kim, Namyun; Jung, Dongwuk; Choo, Hyuck; Lee, Jongho
2018-06-25
Implantable electronics in soft and flexible forms can reduce undesired outcomes such as irritations and chronic damages to surrounding biological tissues due to the improved mechanical compatibility with soft tissues. However, the same mechanical flexibility also makes it difficult to insert such implants through the skin because of reduced stiffness. In this paper, a flexible-device injector that enables the subcutaneous implantation of flexible medical electronics is reported. The injector consists of a customized blade at the tip and a microflap array which holds the flexible implant while the injector penetrates through soft tissues. The microflap array eliminates the need of additional materials such as adhesives that require an extended period to release a flexible medical electronic implant from an injector inside the skin. The mechanical properties of the injection system during the insertion process are experimentally characterized, and the injection of a flexible optical pulse sensor and electrocardiogram sensor is successfully demonstrated in vivo in live pig animal models to establish the practical feasibility of the concept. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gordon, R.; Zorkova, V.; Min, M.; Rätsep, I.
2010-04-01
We describe here an imaging system that uses bioimpedance spectroscopy with multi-electrode array to indicate the state of muscle flap regions under the array. The system is able to differentiate between different health states in the tissue and give early information about the location and size of ischemic sub-regions. The array will be 4*8 electrodes with the spacing of 5mm between the electrodes (the number of electrodes and the spacing may vary). The electrodes are minimally invasive short stainless steel needles, that penetrate 0.3 mm into the tissue with the goal of achieving a wet electric contact. We combine 32 configurations of 4-electrode multi-frequency impedance measurements to derive a health-state map for the transplanted flap. The imaging method is tested on a model consisting of 2 tissues and FEM software (Finite Element Method -COMSOL Multiphysics based) is used to conduct the measurements virtually. Dedicated multichannel bioimpedance measurement equipment has already been developed and tested, that cover the frequency range from 100 Hz to 1 MHz.
NASA Technical Reports Server (NTRS)
Crabtree, W. L.
1980-01-01
A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert
2012-10-01
Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.
Optimized Hyperthermia Treatment of Prostate Cancer Using a Novel Intracavitary Ultrasound Array
2005-01-01
many problems Introduction involved with transducer fabrication. Focused ultrasound surgery ( FUS ) has been shown to give promising results in treating...low frequencies are used) (Hutchinson 1997). With focused ultrasound ( FUS ), tissue is noninvasively necrosed by elevating the temperature at the focal...curved 1.5 dimensional (1.5-D) array that could, but had of a 1.75 dimensional (1.75-D) tapered ultrasound phased array restrictions to the focusing
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Miniature, Variable-Speed Control Moment Gyroscope; NBL Pistol Grip Tool for Underwater Training of Astronauts; HEXPANDO Expanding Head for Fastener-Retention Hexagonal Wrench; Diagonal-Axes Stage for Pointing an Optical Communications Transceiver; Improvements in Speed and Functionality of a 670-GHz Imaging Radar; IONAC-Lite; Large Ka-Band Slot Array for Digital Beam-Forming Applications; Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation; Coupling Between Waveguide-Fed Slot Arrays; PCB-Based Break-Out Box; Multiple-Beam Detection of Fast Transient Radio Sources; Router Agent Technology for Policy-Based Network Management; Remote Asynchronous Message Service Gateway; Automatic Tie Pointer for In-Situ Pointing Correction; Jitter Correction; MSLICE Sequencing; EOS MLS Level 2 Data Processing Software Version 3; DspaceOgre 3D Graphics Visualization Tool; Metallization for Yb14MnSb11-Based Thermoelectric Materials; Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds; Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing; Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems; Separation of Single-Walled Carbon Nanotubes with DEP-FFF; Li Anode Technology for Improved Performance; Post-Fragmentation Whole Genome Amplification-Based Method; Microwave Tissue Soldering for Immediate Wound Closure; Principles, Techniques, and Applications of Tissue Microfluidics; Robotic Scaffolds for Tissue Engineering and Organ Growth; Stress-Driven Selection of Novel Phenotypes; Method for Accurately Calibrating a Spectrometer Using Broadband Light; Catalytic Microtube Rocket Igniter; Stage Cylindrical Immersive Display; Vacuum Camera Cooler; Atomic Oxygen Fluence Monitor; Thermal Management Tools for Propulsion System Trade Studies and Analysis; Introduction to Physical Intelligence; Technique for Solving Electrically Small to Large Structures for Broadband Applications; Accelerated Adaptive MGS Phase Retrieval; Large Eddy Simulation Study for Fluid Disintegration and Mixing; Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay; Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code; Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface; Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields; Flight Simulation of ARES in the Mars Environment; Low-Outgassing Photogrammetry Targets for Use in Outer Space; Planning the FUSE Mission Using the SOVA Algorithm; Monitoring Spacecraft Telemetry Via Optical or RF Link; and Robust Thermal Control of Propulsion Lines for Space Missions.
Challenges and the state of the technology for printed sensor arrays for structural monitoring
NASA Astrophysics Data System (ADS)
Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory
2017-04-01
Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.
Neurotoxicity testing using Microelectrode Arrays (MEAs): a growing trend
Microelectrode arrays (MEAs) are groups of extracellular electrodes that are 10-30 microns in diameter and can be utilized in vivo or in vitro. For in vitro uses, an MEA typically contains up to 64 electrodes and can be utilized to measure the activity of cells and tissues that a...
Configuration study for a 30 GHz monolithic receive array: Technical assessment
NASA Technical Reports Server (NTRS)
Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.
1984-01-01
The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.
Chu, Y; Wu, D; Hou, Q F; Huo, X D; Gao, Y; Wang, T; Wang, H D; Yang, Y L; Liao, S X
2016-08-25
To investigate the value of array-based comparative genomic hybridization (array-CGH) technique for the detection of chromosomal analysis of miscarried embryo, and to provide genetic counseling for couples with spontaneous abortion. Totally 382 patients who underwent miscarriage were enrolled in this study. All aborted tissues were analyzed with conventional cytogenetic karyotyping and array-CGH, respectively. Through genetic analysis, all of the 382 specimens were successfully analyzed by array-CGH (100.0%, 382/382), and the detection rate of chromosomal aberrations was 46.6% (178/382). However, conventional karyotype analysis was successfully performed in 281 cases (73.6%, 281/382), and 113 (40.2%, 113/281) were found with chromosomal aberrations. Of these 178 samples identified by array-CGH, 163 samples (91.6%, 163/178) were aneuploidy, 15 samples (8.4%, 15/178) were segmental deletion and (or) duplication cases. Four of 10 cases with small segmental deletion and duplication were validated to be transferred from their fathers or mathers who were carriers of submicroscopic reciprocal translocation. Of these 113 abnormal karyotypes founded by conventional karyotyping, 108 cases (95.6%, 108/113) were aneuploidy and 5 cases (4.4%, 5/113) had chromosome structural aberrations. Most array-CGH results were consistent with conventional karyotyping but with 3 cases of discrepancy, which included 2 cases of triploids, 1 case of low-level mosaicism that undetcted by array-CGH. Compared with conventional karyotyping, there is an increased detection rate of chromosomal abnormalities when array-CGH is used to analyse the products of conception, primarilly because of its sucess with nonviable tissues. It could be a first-line method to determine the reason of miscarrage with higher accuracy and sensitivity.
Status of LWIR HgCdTe infrared detector technology
NASA Technical Reports Server (NTRS)
Reine, M. B.
1990-01-01
The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.
Infrared sensors for Earth observation missions
NASA Astrophysics Data System (ADS)
Ashcroft, P.; Thorne, P.; Weller, H.; Baker, I.
2007-10-01
SELEX S&AS is developing a family of infrared sensors for earth observation missions. The spectral bands cover shortwave infrared (SWIR) channels from around 1μm to long-wave infrared (LWIR) channels up to 15μm. Our mercury cadmium telluride (MCT) technology has enabled a sensor array design that can satisfy the requirements of all of the SWIR and medium-wave infrared (MWIR) bands with near-identical arrays. This is made possible by the combination of a set of existing technologies that together enable a high degree of flexibility in the pixel geometry, sensitivity, and photocurrent integration capacity. The solution employs a photodiode array under the control of a readout integrated circuit (ROIC). The ROIC allows flexible geometries and in-pixel redundancy to maximise operability and reliability, by combining the photocurrent from a number of photodiodes into a single pixel. Defective or inoperable diodes (or "sub-pixels") can be deselected with tolerable impact on the overall pixel performance. The arrays will be fabricated using the "loophole" process in MCT grown by liquid-phase epitaxy (LPE). These arrays are inherently robust, offer high quantum efficiencies and have been used in previous space programs. The use of loophole arrays also offers access to SELEX's avalanche photodiode (APD) technology, allowing low-noise, highly uniform gain at the pixel level where photon flux is very low.
Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewitson, Laura; Thissen, James B.; Gardner, Shea N.
In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less
Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination
Hewitson, Laura; Thissen, James B.; Gardner, Shea N.; ...
2014-01-01
In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less
Sakai, Yusuke; Hattori, Koji; Yanagawa, Fumiki; Sugiura, Shinji; Kanamori, Toshiyuki; Nakazawa, Kohji
2014-07-01
Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Zheng, Rui; Lou, Edmond H; Major, Paul W
2016-10-01
Intraoral ultrasonography uses high-frequency mechanical waves to study dento-periodontium. Besides the advantages of portability and cost-effectiveness, ultrasound technique has no ionizing radiation. Previous studies employed a single transducer or an array of transducer elements, and focused on enamel thickness and distance measurement. This study used a phased array system with a 128-element array transducer to image dento-periodontal tissues. We studied two porcine lower incisors from a 6-month-old piglet using 20-MHz ultrasound. The high-resolution ultrasonographs clearly showed the cross-sectional morphological images of the hard and soft tissues. The investigation used an integration of waveform analysis, travel-time calculation, and wavefield simulation to reveal the nature of the ultrasound data, which makes the study novel. With the assistance of time-distance radio-frequency records, we robustly justified the enamel-dentin interface, dentin-pulp interface, and the cemento-enamel junction. The alveolar crest level, the location of cemento-enamel junction, and the thickness of alveolar crest were measured from the images and compared favorably with those from the cone beam computed tomography with less than 10% difference. This preliminary and fundamental study has reinforced the conclusions from previous studies, that ultrasonography has great potential to become a non-invasive diagnostic imaging tool for quantitative assessment of periodontal structures and better delivery of oral care.
Breast cancer detection using time reversal
NASA Astrophysics Data System (ADS)
Sheikh Sajjadieh, Mohammad Hossein
Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.
USDA-ARS?s Scientific Manuscript database
Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...
Progress on uncooled PbSe detectors for low-cost applications
NASA Astrophysics Data System (ADS)
Vergara, German; Gomez, Luis J.; Villamayor, Victor; Alvarez, M.; Rodrigo, Maria T.; del Carmen Torquemada, Maria; Sanchez, Fernando J.; Verdu, Marina; Diezhandino, Jorge; Rodriguez, Purificacion; Catalan, Irene; Almazan, Rosa; Plaza, Julio; Montojo, Maria T.
2004-08-01
This work reports on progress on development of polycrystalline PbSe infrared detectors at the Centro de Investigacion y Desarrollo de la Armada (CIDA). Since mid nineties, the CIDA owns an innovative technology for processing uncooled MWIR detectors of polycrystalline PbSe. Based on this technology, some applications have been developed. However, future applications demand smarter, more complex, faster yet cheaper detectors. Aiming to open new perspectives to polycrystalline PbSe detectors, we are currently working on different directions: 1) Processing of 2D arrays: a) Designing and processing low density x-y addressed arrays with 16x16 and 32x32 elements, as an extension of our standard technology. b) Trying to make compatible standard CMOS and polycrystalline PbSe technologies in order to process monolithic large format arrays. 2) Adding new features to the detector such as monolithically integrated spectral discrimination.
Study of large adaptive arrays for space technology applications
NASA Technical Reports Server (NTRS)
Berkowitz, R. S.; Steinberg, B.; Powers, E.; Lim, T.
1977-01-01
The research in large adaptive antenna arrays for space technology applications is reported. Specifically two tasks were considered. The first was a system design study for accurate determination of the positions and the frequencies of sources radiating from the earth's surface that could be used for the rapid location of people or vehicles in distress. This system design study led to a nonrigid array about 8 km in size with means for locating the array element positions, receiving signals from the earth and determining the source locations and frequencies of the transmitting sources. It is concluded that this system design is feasible, and satisfies the desired objectives. The second task was an experiment to determine the largest earthbound array which could simulate a spaceborne experiment. It was determined that an 800 ft array would perform indistinguishably in both locations and it is estimated that one several times larger also would serve satisfactorily. In addition the power density spectrum of the phase difference fluctuations across a large array was measured. It was found that the spectrum falls off approximately as f to the minus 5/2 power.
High Contrast Programmable Field Masks for JWST NIRSpec
NASA Technical Reports Server (NTRS)
Kutyrev, Alexander S.
2008-01-01
Microshutter arrays are one of the novel technologies developed for the James Webb Space Telescope (JWST). It will allow Near Infrared Spectrometer (NIRSpec) to acquire spectra of hundreds of objects simultaneously therefore increasing its efficiency tremendously. We have developed these programmable arrays that are based on Micro-Electro Mechanical Structures (MEMS) technology. The arrays are 2D addressable masks that can operate in cryogenic environment of JWST. Since the primary JWST science requires acquisition of spectra of extremely faint objects, it is important to provide very high contrast of the open to closed shutters. This high contrast is necessary to eliminate any possible contamination and confusion in the acquired spectra by unwanted objects. We have developed and built a test system for the microshutter array functional and optical characterization. This system is capable of measuring the contrast of the microshutter array both in visible and infrared light of the NIRSpec wavelength range while the arrays are in their working cryogenic environment. We have measured contrast ratio of several microshutter arrays and demonstrated that they satisfy and in many cases far exceed the NIRSpec contrast requirement value of 2000.
Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna
2018-05-08
Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the biopsy was taken.
Progress and prospects of silicon-based design for optical phased array
NASA Astrophysics Data System (ADS)
Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie
2016-03-01
The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.
Earth Science Geostationary Platform Technology
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)
1989-01-01
The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.
Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications
NASA Technical Reports Server (NTRS)
Huang, John
1996-01-01
Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.
NASA Astrophysics Data System (ADS)
Duparré, Jacques; Wippermann, Frank; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Völkel, Reinhard; Scharf, Toralf
2005-09-01
Two novel objective types on the basis of artificial compound eyes are examined. Both imaging systems are well suited for fabrication using microoptics technology due to the small required lens sags. In the apposition optics a microlens array (MLA) and a photo detector array of different pitch in its focal plane are applied. The image reconstruction is based on moire magnification. Several generations of demonstrators of this objective type are manufactured by photo lithographic processes. This includes a system with opaque walls between adjacent channels and an objective which is directly applied onto a CMOS detector array. The cluster eye approach, which is based on a mixture of superposition compound eyes and the vision system of jumping spiders, produces a regular image. Here, three microlens arrays of different pitch form arrays of Keplerian microtelescopes with tilted optical axes, including a field lens. The microlens arrays of this demonstrator are also fabricated using microoptics technology, aperture arrays are applied. Subsequently the lens arrays are stacked to the overall microoptical system on wafer scale. Both fabricated types of artificial compound eye imaging systems are experimentally characterized with respect to resolution, sensitivity and cross talk between adjacent channels. Captured images are presented.
Ergün, A Sanlı
2011-10-01
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.
Two color QWIP and extended wavebands
NASA Astrophysics Data System (ADS)
Costard, Eric; Truffer, Jean P.; Huet, Odile; Dua, Lydie; Nedelcu, Alexandru; Robo, J. A.; Marcadet, Xavier; Briere de l'Isle, Nadia; Bois, Philippe; Manissadjian, A.; Gohier, D.
2007-04-01
Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at THALES Research and Technology Laboratory. The QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the long-wave infrared (LWIR) band (8-12 μm). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. The 640x512 LWIR focal plane arrays (FPAs) with 20μm pitch was the demonstration that state of the art performances can be achieved even with small pixels. This opened the field for the realization of usable and affordable megapixel FPAs. Thales Research & Technology (TRT) has been developing third generation GaAs LWIR QWIP arrays for volume manufacture of high performance low cost thermal imaging cameras. In the past, another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we present the performances of both our first 384x288, 25 μm pitch, MWIR (3-5μm) / LWIR (8-9 μm) dual-band FPAs, and the current status of QWIPs for MWIR (< 5μm) and VLWIR (>15μm) arrays.
NASA Astrophysics Data System (ADS)
Guo, Rui; Liu, Jing
2017-10-01
With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.
Recent Progress on the Stretched Lens Array (SLA)
NASA Technical Reports Server (NTRS)
O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry
2005-01-01
At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Future sensor system needs for staring arrays
NASA Astrophysics Data System (ADS)
Miller, John Lester
2011-05-01
This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.
The application of DNA microarrays in gene expression analysis.
van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J
2000-03-31
DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.
Defining Genomic Changes in Triple-Negative Breast Cancer in Women of African Descent
2012-06-01
Triple negative breast cancer • Ethnic disparities • Breast cancer amongst African Americans and Africans • Gene expression profiling • Array... negative cases seen in both African and African - American breast cancer cases. Gene Expression Array Studies The 31 triple negative Kijabe... African - American Adjacent Normal Breast Tissue PI: Pegram &
Effect of viroid infection on the dynamics of phenolic metabolites in the apoplast of tomato
USDA-ARS?s Scientific Manuscript database
Plants are capable of producing a wide array of secondary metabolites which serve many functions, due to their bioactive, redox or structural properties. Subtle changes in the external or internal environment can cause significant changes in the array of secondary metabolites presented in the tissu...
Packaging and testing of multi-wavelength DFB laser array using REC technology
NASA Astrophysics Data System (ADS)
Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia
2014-02-01
Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.
Application of Nexus copy number software for CNV detection and analysis.
Darvishi, Katayoon
2010-04-01
Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.
Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS
NASA Technical Reports Server (NTRS)
1996-01-01
Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful performance of experimental, proof-of-concept MMIC K/Ka-band arrays developed with U.S. industry in field demonstrations with ACTS indicates that high density MMIC integration at 20 and 30 GHz is indeed feasible. The successful development and demonstration of the MMIC array systems was possible only because of significant intergovernmental and Government/industry cooperation and the high level of teamwork within Lewis. The results provide a strong incentive for continuing the focused development of MMIC-array technology for satellite communications applications, with emphasis on packaging and cost issues, and for continuing the planning and conducting of other appropriate demonstrations or experiments of phased-array technology with ACTS. Given the present pressures on reducing funding for research and development in Government and industry, the extent to which this can be continued in a cooperative manner will determine whether MMIC array technology will make the transition from the proof-of-concept level to the operational system level.
Chen, Chang-Hsiao; Chuang, Shih-Chang; Su, Huan-Chieh; Hsu, Wei-Lun; Yew, Tri-Rung; Chang, Yen-Chung; Yeh, Shih-Rung; Yao, Da-Jeng
2011-05-07
We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work. © The Royal Society of Chemistry 2011
Multistage WDM access architecture employing cascaded AWGs
NASA Astrophysics Data System (ADS)
El-Nahal, F. I.; Mears, R. J.
2009-03-01
Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.
Stretched Lens Array Photovoltaic Concentrator Technology Developed
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
2004-01-01
Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.
Mission applications for advanced photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.
1990-01-01
The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.
Braicu, Ovidiu-Leonard; Budisan, Liviuta; Buiga, Rares; Jurj, Ancuta; Achimas-Cadariu, Patriciu; Pop, Laura Ancuta; Braicu, Cornelia; Irimie, Alexandru; Berindan-Neagoe, Ioana
2017-01-01
Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most of them being linked with epithelial-to-mesenchymal transition. PMID:28894379
Promoter methylation assay of SASH1 gene in hepatocellular carcinoma.
Peng, Liu; Wei, He; Liren, Li
2014-01-01
To analyse the relationship between the expression of SASH1 and its methylation level in human hepatocellular carcinoma. Expression levels of SASH1 were examined with real-time PCR (RT-PCR) in tissues and cells, and methylation analysis was performed with MassArray. The expression levels of SASH1 were strongly reduced in liver cancer tissues compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed different CpG sites in SASH1 promoter shared similar methylation pattern between liver cancer tissues and adjacent normal tissues and the CpG sites of significant difference in methylation level were found as follows: CpG_3, CpG_17, CpG_21.22, CpG_25, CpG_26.27, CpG_28, CpG_34.35.36 and CpG_51.52. Moreover, 5-aza-2'-deoxycytidine treatment of Hep-G2 cell line caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation degree in the promoter region of SASH1 gene, particularly CpG_26.27 sites, possibly repressed SASH1 expression in liver cancer.
Promoter methylation assay of SASH1 gene in breast cancer.
Sheyu, Lin; Hui, Liu; Junyu, Zhang; Jiawei, Xu; Honglian, Wang; Qing, Sang; Hengwei, Zhang; Xuhui, Guo; Qinghe, Xing; Lin, He
2013-01-01
To analyze the relationship between the expression of SASH1 and its methylation level of SASH1 gene promoter in human breast cancer. Expression levels of SASH1 were examined in breast cancer tissues and adjacent normal tissues with immunohistochemistry and with real time PCR (RT-PCR) methylation analysis was performed with MassArray. Immunohistochemistry showed that SASH1 expression was strongly reduced in breast cancer compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed that CpG sites in SASH1 promoter shared similar methylation pattern in tumor tissue and adjacent normal tissue. The CpG sites with significant difference in methylation level were CpG_26.27 and CpG_54.55. Moreover, 5-aza-2'-deoxycytidine (5-Aza-dc) treatment of tumor cell line MDA-MB-231 caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation level in the promoter region of gene SASH1, particularly CpG_26.27 or CpG_54.55 sites, possibly repressed SASH1 expression in breast cancer.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
Thin-Film Solar Cells on Metal Foil Substrates for Space Power
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.
2004-01-01
Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Once the technology has gained spaceflight certification it should find rapid acceptance in specific satellite markets.
NASA Astrophysics Data System (ADS)
Abookasis, David; Moshe, Tomer
2014-11-01
This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.
Salehi, Hassan S; Wang, Tianheng; Kumavor, Patrick D; Li, Hai; Zhu, Quing
2014-09-01
A novel lens-array based illumination design for a compact co-registered photoacoustic/ultrasound transvaginal probe has been demonstrated. The lens array consists of four cylindrical lenses that couple the laser beams into four 1-mm-core multi-mode optical fibers with optical coupling efficiency of ~87%. The feasibility of our lens array was investigated by simulating the lenses and laser beam profiles using Zemax. The laser fluence on the tissue surface was experimentally measured and was below the American National Standards Institute (ANSI) safety limit. Spatial distribution of hemoglobin oxygen saturation (sO2) of a mouse tumor was obtained in vivo using photoacoustic measurements at multiple wavelengths. Furthermore, benign and malignant ovaries were imaged ex vivo and evaluated histologically. The co-registered images clearly showed different patterns of blood vasculature. These results highlight the clinical potential of our system for noninvasive photoacoustic and ultrasound imaging of ovarian tissue and cancer detection and diagnosis.
Implementation and Performance of GaAs Digital Signal Processing ASICs
NASA Technical Reports Server (NTRS)
Whitaker, William D.; Buchanan, Jeffrey R.; Burke, Gary R.; Chow, Terrance W.; Graham, J. Scott; Kowalski, James E.; Lam, Barbara; Siavoshi, Fardad; Thompson, Matthew S.; Johnson, Robert A.
1993-01-01
The feasibility of performing high speed digital signal processing in GaAs gate array technology has been demonstrated with the successful implementation of a VLSI communications chip set for NASA's Deep Space Network. This paper describes the techniques developed to solve some of the technology and implementation problems associated with large scale integration of GaAs gate arrays.
Spacecraft level impacts of integrating concentrator solar arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Piszczor, M.F. Jr.
1994-12-31
The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less
Integrated infrared detector arrays for low-background applications
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Goebel, J. H.
1982-01-01
Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1992-01-01
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Astrophysics Data System (ADS)
Stella, Paul M.; Kurland, Richard M.
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
Stephens, Douglas N.; Truong, Uyen T.; Nikoozadeh, Amin; Oralkan, Ömer; Seo, Chi Hyung; Cannata, Jonathan; Dentinger, Aaron; Thomenius, Kai; de la Rama, Alan; Nguyen, Tho; Lin, Feng; Khuri-Yakub, Pierre; Mahajan, Aman; Shivkumar, Kalyanam; O’Donnell, Matt; Sahn, David J.
2012-01-01
Objectives The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. Methods The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. Results The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. Conclusions Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures. PMID:22298868
The use of hydrogel as an electrode-skin interface for electrode array FES applications.
Cooper, Glen; Barker, Anthony T; Heller, Ben W; Good, Tim; Kenney, Laurence P J; Howard, David
2011-10-01
Functional electrical stimulation is commonly used to restore function in post-stroke patients in upper and lower limb applications. Location of the electrodes can be a problem hence some research groups have begun to experiment with electrode arrays. Electrode arrays are interfaced with a thin continuous hydrogel sheet which is high resistivity to reduce transverse currents between electrodes in the array. Research using electrode arrays has all been conducted in a laboratory environment over short time periods but it is suspected that this approach will not be feasible over longer time periods due to changes in hydrogel resistivity. High resistivity hydrogel samples were tested by leaving them in contact with the skin over a seven day period. The samples became extremely conductive with resistivities reaching around 10-50 Ωm. The effect of these resistivity changes was studied using finite element analysis to solve for the stationary current quasi-static electric field gradient in the tissue. Electrical stimulation efficiency and focality were calculated for both a high and low resistivity electrode-skin interface layer at different tissue depths. The results showed that low resistivity hydrogel produced significant decreases in stimulation efficiency and focality compared to high resistivity hydrogel. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Progress on thermobrachytherapy surface applicator for superficial tissue disease
NASA Astrophysics Data System (ADS)
Arunachalam, Kavitha; Craciunescu, Oana I.; Maccarini, Paolo F.; Schlorff, Jaime L.; Markowitz, Edward; Stauffer, Paul R.
2009-02-01
This work reports the ongoing development of a combination applicator for simultaneous heating of superficial tissue disease using a 915 MHz DCC (dual concentric conductor) array and High Dose Rate (HDR) brachytherapy delivered via an integrated conformal catheter array. The progress includes engineering design changes in the waterbolus, DCC configurations and fabrication techniques of the conformal multilayer applicator. The dosimetric impact of the thin copper DCC array is also assessed. Steady state fluid dynamics of the new waterbolus bag indicates nearly uniform flow with less than 1°C variation across a large (19×32cm) bolus. Thermometry data of the torso phantom acquired with computer controlled movement of fiberoptic temperature probes inside thermal mapping catheters indicate feasibility of real time feedback control for the DCC array. MR (magnetic resonance) scans of a torso phantom indicate that the waterbolus thickness across the treatment area is controlled by the pressure applied by the surrounding inflatable airbladder and applicator securing straps. The attenuation coefficient of the DCC array was measured as 3+/- 0.001% and 2.95+/-0.03 % using an ion chamber and OneDose dosimeters respectively. The performance of the combination applicator on patient phantoms provides valuable feedback to optimize the applicator prior use in the patient clinic.
Koehne, Jessica E; Chen, Hua; Cassell, Alan; Liu, Gang-yu; Li, Jun; Meyyappan, M
2009-01-01
Arrays of Carbon nanofibers (CNFs) harness the advantages of individual CNF as well the collective property of assemblies, which made them promising materials in biosensing and tissue engineering or implantation. Here, we report two studies to explore the applications of vertically aligned CNFs. First, a nanoelectrode array (NEA) based on vertically aligned CNFs embedded in SiO(2) is used for ultrasensitive DNA detection. Oligonucleotide probes are selectively functionalized at the open ends of the CNFs and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)(3)(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of less than approximately 1000 molecules of PCR amplified DNA targets are detected electrochemically by combining the CNF nanoelectrode array with the Ru(bpy)(3)(2+) amplification mechanism. Second, the SiO(2) matrix was etched back to produce needle-like protruding nanoelectrode arrays to be used as cell interfacing fibers for investigating gene transfection, electrical stimulation and detection of cellular processes. Our goal is to take advantage of the nanostructure of CNFs for unconventional biomolecular studies requiring ultrahigh sensitivity, high-degree of miniaturization and selective biofunctionalization.
Jing, Bowen; Chigan, Pengju; Ge, Zhengtong; Wu, Liang; Wang, Supin; Wan, Mingxi
2017-01-01
For the purpose of noninvasively visualizing the dynamics of the contact between vibrating vocal fold medial surfaces, an ultrasonic imaging method which is referred to as array-based transmission ultrasonic glottography is proposed. An array of ultrasound transducers is used to detect the ultrasound wave transmitted from one side of the vocal folds to the other side through the small-sized contact between the vocal folds. A passive acoustic mapping method is employed to visualize and locate the contact. The results of the investigation using tissue-mimicking phantoms indicate that it is feasible to use the proposed method to visualize and locate the contact between soft tissues. Furthermore, the proposed method was used for investigating the movement of the contact between the vibrating vocal folds of excised canine larynges. The results indicate that the vertical movement of the contact can be visualized as a vertical movement of a high-intensity stripe in a series of images obtained by using the proposed method. Moreover, a visualization and analysis method, which is referred to as array-based ultrasonic kymography, is presented. The velocity of the vertical movement of the contact, which is estimated from the array-based ultrasonic kymogram, could reach 0.8 m/s during the vocal fold vibration. PMID:28599522
Biocompatibility: meeting a key functional requirement of next-generation medical devices.
Helmus, Michael N; Gibbons, Donald F; Cebon, David
2008-01-01
The array of polymeric, biologic, metallic, and ceramic biomaterials will be reviewed with respect to their biocompatibility, which has traditionally been viewed as a requirement to develop a safe medical device. With the emergence of combination products, a paradigm shift is occurring that now requires biocompatibility to be designed into the device. In fact, next-generation medical devices will require enhanced biocompatibility by using, for example, pharmacological agents, bioactive coatings, nano-textures, or hybrid systems containing cells that control biologic interactions to have desirable biologic outcomes. The concept of biocompatibility is moving from a "do no harm" mission (i.e., nontoxic, nonantigenic, nonmutagenic, etc.) to one of doing "good," that is, encouraging positive healing responses. These new devices will promote the formation of normal healthy tissue as well as the integration of the device into adjacent tissue. In some contexts, biocompatibility can become a disruptive technology that can change therapeutic paradigms (e.g., drug-coated stents). New database tools to access biocompatibility data of the materials of construction in existing medical devices will facilitate the use of existing and new biomaterials for new medical device designs.
NASA Astrophysics Data System (ADS)
O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.
2017-10-01
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging
Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.
2009-01-01
The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive detector modules, are shown. PMID:19920884
Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.
Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C
2009-01-01
The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive detector modules, are shown.
Construction of an array of LEDs coupled to a concentrator for phototherapy
NASA Astrophysics Data System (ADS)
Almeida, Joana; Liang, Dawei
2011-07-01
The use of LED devices for phototherapy has been expanding in the last decade. This technology provides a safer emission spectrum in large target tissue areas when compared to laser emissions. For enhancing the phototherapeutic effects of red light emitted by LEDs, a simple optical concentrator capable of efficient light concentration and homogenization was developed. The LEDs wavelength of 660 nm is coincident with an absorption peak of the mitochondrial photoreceptor molecule cytochrome c oxidase. The prototype was optimized by non-sequential ray-tracing software ZEMAX, attaining both excellent light uniformity and 50mW/cm2 irradiance at the concentrator output end. Heat emanated from the LEDs source is effectively dissipated by the side walls of the concentrator, ensuring a nearly constant temperature environment for tissue treatment. The prototype was tested on cutaneous hyperpigmented marks caused by cupping in two healthy volunteers. Marks were irradiated by LEDs radiations with or without the use of concentrator respectively. Equal exposure durations and light fluences were tested. The use of the concentrator-coupled LEDs source revealed an activation of blood movement immediately after LEDs exposure, an effect not attainable by the LEDs source without the concentrator even at extended exposure time. Promising futures for the treatment of inflammation, tissue repair and skin rejuvenation could be expected by adopting this simple technique.
Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties
Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.
2016-01-01
Abstract. Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681
Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu
2017-06-29
Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.
Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.
Ong, Chin Siang; Fukunishi, Takuma; Nashed, Andrew; Blazeski, Adriana; Zhang, Huaitao; Hardy, Samantha; DiSilvestre, Deborah; Vricella, Luca; Conte, John; Tung, Leslie; Tomaselli, Gordon; Hibino, Narutoshi
2017-07-02
This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.
Study of multi-megawatt technology needs for photovoltaic space power systems, volume 2
NASA Technical Reports Server (NTRS)
Peterson, D. M.; Pleasant, R. L.
1981-01-01
Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and power system technology needs associated with these missions are examined. Four specific task areas were considered: (1) missions requiring power in the 1-10 megawatt average power region; (2) alternative power systems and component technologies; (3) technology goals and sensitivity trades and analyses; and (4) technology recommendations. Specific concepts for photovoltaic power approaches considered were: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic approaches; all with various photovoltaic cell component technologies. Various AC/DC power management approaches, and battery, fuel cell, and flywheel energy storage concepts are evaluated. Interactions with the electrical ion engine injection and stationkeeping system are also considered.
2017-01-01
Ribosomal RNAs (rRNAs) are transcribed from two multicopy DNA arrays: the 5S ribosomal DNA (rDNA) array residing in a single human autosome and the 45S rDNA array residing in five human autosomes. The arrays are among the most variable segments of the genome, exhibit concerted copy number variation (cCNV), encode essential components of the ribosome, and modulate global gene expression. Here we combined whole genome data from >700 tumors and paired normal tissues to provide a portrait of rDNA variation in human tissues and cancers of diverse mutational signatures, including stomach and lung adenocarcinomas, ovarian cancers, and others of the TCGA panel. We show that cancers undergo coupled 5S rDNA array expansion and 45S rDNA loss that is accompanied by increased estimates of proliferation rate and nucleolar activity. These somatic changes in rDNA CN occur in a background of over 10-fold naturally occurring rDNA CN variation across individuals and cCNV of 5S-45S arrays in some but not all tissues. Analysis of genetic context revealed associations between cancer rDNA CN amplification or loss and the presence of specific somatic alterations, including somatic SNPs and copy number gain/losses in protein coding genes across the cancer genome. For instance, somatic inactivation of the tumor suppressor gene TP53 emerged with a strong association with coupled 5S expansion / 45S loss in several cancers. Our results uncover frequent and contrasting changes in the 5S and 45S rDNA along rapidly proliferating cell lineages with high nucleolar activity. We suggest that 5S rDNA amplification facilitates increased proliferation, nucleolar activity, and ribosomal synthesis in cancer, whereas 45S rDNA loss emerges as a byproduct of transcription-replication conflict in rapidly replicating tumor cells. The observations raise the prospects of using the rDNA arrays as re-emerging targets for the design of novel strategies in cancer therapy. PMID:28880866
Handheld ultrasound array imaging device
NASA Astrophysics Data System (ADS)
Hwang, Juin-Jet; Quistgaard, Jens
1999-06-01
A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.
Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep
NASA Astrophysics Data System (ADS)
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickael; Boch, Anne Laure; Kujas, Michelle; Fink, Mathias
2005-03-01
A high power prototype dedicated to trans-skull therapy has been tested in vivo on 22 sheep. The array is made of 300 high power transducers working at 1MHz central frequency and is able to achieve 400 bars at focus in water during five seconds with a 50% percent duty cycle. In the first series of experiments, 10 sheep were treated and sacrificed immediately after treatment. A complete craniotomy was performed on half of the treated animal models in order to get a reference model. On the other half, minimally invasive surgery has been performed: a hydrophone was inserted at a given target location inside the brain through a craniotomy of a few mm2. A time reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. Thanks to the high power technology of the prototype, trans-skull adaptive treatment could be achieved. In a second series of experiments, 12 animals were divided into three groups and sacrificed respectively one, two or three weeks after treatment. Finally, Magnetic Resonance Imaging and histological examination were performed to confirm tissue damage.
Microstructured Surface Arrays for Injection of Zebrafish Larvae
Irimia, Daniel
2017-01-01
Abstract Microinjection of zebrafish larvae is an essential technique for delivery of treatments, dyes, microbes, and xenotransplantation into various tissues. Although a number of casts are available to orient embryos at the single-cell stage, no device has been specifically designed to position hatching-stage larvae for microinjection of different tissues. In this study, we present a reusable silicone device consisting of arrayed microstructures, designed to immobilize 2 days postfertilization larvae in lateral, ventral, and dorsal orientations, while providing maximal access to target sites for microinjection. Injection of rhodamine dextran was used to demonstrate the utility of this device for precise microinjection of multiple anatomical targets. PMID:28151697
Fiber-array based optogenetic prosthetic system for stimulation therapy
NASA Astrophysics Data System (ADS)
Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra
2012-02-01
Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.
Genome-scale approaches to the epigenetics of common human disease
2011-01-01
Traditionally, the pathology of human disease has been focused on microscopic examination of affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order to classify disease and illuminate its mechanistic basis. The molecular age has complemented this armamentarium with gene expression arrays and selective analysis of individual genes. However, we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable measurements of cellular state and to biobanked material for large-scale epidemiological studies. Some of these genome-scale technologies are beginning to be applied to create the new field of epigenetic epidemiology. PMID:19844740
Cancer of the rectum--sphincter-saving operation. Stapling techniques.
Fazio, V W
1988-12-01
The techniques of restoring intestinal continuity after rectal resection for cancer have evolved throughout this century. For the most part, circular staplers have displaced the other pioneering and innovative techniques that our mentors and predecessors devised to improve the quality of life for our patients. With new technology, so also emerge new problems. Although the future likely will render many of our present techniques obsolete, for example, with refining of tissue adhesives, it is incumbent on us to recognize the limits of our present array of weapons and the limits placed on us by the biology of the tumor. About the latter, this means maintaining intellectual honesty in conducting a good cancer operation; about the former, we have to recognize that most of the pitfalls of stapling are preventable or correctable.
NASA Astrophysics Data System (ADS)
Susanti, Hesty; Suprijanto, Kurniadi, Deddy
2018-02-01
Needle visibility in ultrasound-guided technique has been a crucial factor for successful interventional procedure. It has been affected by several factors, i.e. puncture depth, insertion angle, needle size and material, and imaging technology. The influences of those factors made the needle not always well visible. 20 G needles of 15 cm length (Nano Line, facet) were inserted into water bath with variation of insertion angles and depths. Ultrasound measurements are performed with BK-Medical Flex Focus 800 using 12 MHz linear array and 5 MHz curved array in Ultrasound Guided Regional Anesthesia mode. We propose 3 criteria to evaluate needle visibility, i.e. maximum intensity, mean intensity, and the ratio between minimum and maximum intensity. Those criteria were then depicted into representative maps for practical purpose. The best criterion candidate for representing the needle visibility was criterion 1. Generally, the appearance pattern of the needle from this criterion was relatively consistent, i.e. for linear array, it was relatively poor visibility in the middle part of the shaft, while for curved array, it is relatively better visible toward the end of the shaft. With further investigations, for example with the use of tissue-mimicking phantom, the representative maps can be built for future practical purpose, i.e. as a tool for clinicians to ensure better needle placement in clinical application. It will help them to avoid the "dead" area where the needle is not well visible, so it can reduce the risks of vital structures traversing and the number of required insertion, resulting in less patient morbidity. Those simple criteria and representative maps can be utilized to evaluate general visibility patterns of the needle in vast range of needle types and sizes in different insertion media. This information is also important as an early investigation for future research of needle visibility improvement, i.e. the development of beamforming strategies and ultrasound enhanced (echogenic) needle.
GaAs QWIP Array Containing More Than a Million Pixels
NASA Technical Reports Server (NTRS)
Jhabvala, Murzy; Choi, K. K.; Gunapala, Sarath
2005-01-01
A 1,024 x 1,024-pixel array of quantum-well infrared photodetectors (QWIPs) has been built on a 1.8 x 1.8- cm GaAs chip. In tests, the array was found to perform well in detecting images at wavelengths from 8 to 9 m in operation at temperatures between 60 and 70 K. The largest-format QWIP prior array that performed successfully in tests contained 512 x 640 pixels. There is continuing development effort directed toward satisfying actual and anticipated demands to increase numbers of pixels and pixel sizes in order to increase the imaging resolution of infrared photodetector arrays. A 1,024 x 1,024-pixel and even larger formats have been achieved in the InSb and HgCdTe material systems, but photodetector arrays in these material systems are very expensive and manufactured by fewer than half a dozen large companies. In contrast, GaAs-photodetector-array technology is very mature, and photodetectors in the GaAs material system can be readily manufactured by a wide range of industrial technologists, by universities, and government laboratories. There is much similarity between processing in the GaAs industry and processing in the pervasive silicon industry. With respect to yield and cost, the performance of GaAs technology substantially exceeds that of InSb and HgCdTe technologies. In addition, GaAs detectors can be designed to respond to any portion of the wavelength range from 3 to about 16 micrometers - a feature that is very desirable for infrared imaging. GaAs QWIP arrays, like the present one, have potential for use as imaging sensors in infrared measuring instruments, infrared medical imaging systems, and infrared cameras.
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Costen, Nick; Allen, Christine
2007-01-01
The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.
NASA Technical Reports Server (NTRS)
Jones, B.
1985-01-01
This program was directed towards a better understanding of some of the important factors in the performance of infrared detector arrays at low background conditions appropriate for space astronomy. The arrays were manufactured by Aerojet Electrosystems Corporation, Azusa. Two arrays, both bismuth doped silicon, were investigated: an AMCID 32x32 Engineering mosiac Si:Bi accumulation mode charge injection device detector array and a metal oxide semiconductor/field effect transistor (MOS-FET) switched array of 16x32 pixels.
Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues.
Chen, Jing; Guo, Liping; Peiffer, Daniel A; Zhou, Lixin; Chan, Owen Tsan Mo; Bibikova, Marina; Wickham-Garcia, Eliza; Lu, Shih-Hsin; Zhan, Qimin; Wang-Rodriguez, Jessica; Jiang, Wei; Fan, Jian-Bing
2008-05-15
We employed the BeadArraytrade mark technology to perform a genetic analysis in 33 formalin-fixed, paraffin-embedded (FFPE) human esophageal carcinomas, mostly squamous-cell-carcinoma (ESCC), and their adjacent normal tissues. A total of 1,432 single nucleotide polymorphisms (SNPs) derived from 766 cancer-related genes were genotyped with partially degraded genomic DNAs isolated from these samples. This directly targeted genomic profiling identified not only previously reported somatic gene amplifications (e.g., CCND1) and deletions (e.g., CDKN2A and CDKN2B) but also novel genomic aberrations. Among these novel targets, the most frequently deleted genomic regions were chromosome 3p (including tumor suppressor genes FANCD2 and CTNNB1) and chromosome 5 (including tumor suppressor gene APC). The most frequently amplified genomic region was chromosome 3q (containing DVL3, MLF1, ABCC5, BCL6, AGTR1 and known oncogenes TNK2, TNFSF10, FGF12). The chromosome 3p deletion and 3q amplification occurred coincidently in nearly all of the affected cases, suggesting a molecular mechanism for the generation of somatic chromosomal aberrations. We also detected significant differences in germline allele frequency between the esophageal cohort of our study and normal control samples from the International HapMap Project for 10 genes (CSF1, KIAA1804, IL2, PMS2, IRF7, FLT3, NTRK2, MAP3K9, ERBB2 and PRKAR1A), suggesting that they might play roles in esophageal cancer susceptibility and/or development. Taken together, our results demonstrated the utility of the BeadArray technology for high-throughput genetic analysis in FFPE tumor tissues and provided a detailed genetic profiling of cancer-related genes in human esophageal cancer. (c) 2008 Wiley-Liss, Inc.
CMOS-micromachined, two-dimenisional transistor arrays for neural recording and stimulation.
Lin, J S; Chang, S R; Chang, C H; Lu, S C; Chen, H
2007-01-01
In-plane microelectrode arrays have proven to be useful tools for studying the connectivities and the functions of neural tissues. However, seldom microelectrode arrays are monolithically-integrated with signal-processing circuits, without which the maximum number of electrodes is limited by the compromise with routing complexity and interferences. This paper proposes a CMOS-compatible, two-dimensional array of oxide-semiconductor field-effect transistors(OSFETs), capable of both recording and stimulating neuronal activities. The fabrication of the OSFETs not only requires simply die-level, post-CMOS micromachining process, but also retains metal layers for monolithic integration with signal-processing circuits. A CMOS microsystem containing the OSFET arrays and gain-programmable recording circuits has been fabricated and tested. The preliminary testing results are presented and discussed.
Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C
1995-03-01
The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.
Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.
2002-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma
2015-09-01
Mesothelioma; Glycan Array; Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a...PROJECT SUMMARY: General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass...include 386 glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of
Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications
NASA Astrophysics Data System (ADS)
Schendel, Amelia Ann
Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided the transparency necessary to image tissues directly below the micro-ECoG electrode sites, and to transmit light through the electrode sites to underlying neural tissue, for optical stimulation of neural cells. The flexibility and broad-spectrum transparency of graphene make it an ideal choice for thin-film, flexible electronic devices.
NASA Astrophysics Data System (ADS)
Samson, Philippe
2005-05-01
The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge.This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough.To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing!Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight.Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering.CISG was selected cell and their strategy of design, contributions and results will be presented.Trade-off results and Design to Cost solutions will discussed.Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.
Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2005-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Enhanced focus steering abilities of multi-element therapeutic arrays operating in nonlinear regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Ilyin, S.; Gavrilov, L.
2015-10-28
Steering abilities of a typical HIFU therapeutic array operated in linear and nonlinear regimes were compared using numerical simulation with the 3D Westervelt equation. The array included 256 elements of 1.2 MHz frequency and 6.6 mm diameter distributed in a quasi-random pattern over a spherical shell with a 130 mm aperture and a focal length of 120 mm. In the case of linear focusing, thermal effects are proportional to the intensity level and the criterion for safe array operation is that the intensity in the grating lobes should be less than 10% of the intensity in the main focus. Inmore » the case of nonlinear focusing, the heating effect is no longer proportional to intensity; therefore the heat deposition rate was chosen as the relevant metric, using the same 10% threshold for the secondary lobe in comparison with the focal maximum. When steering the focus, the same linearly predicted intensity level at the main focus was maintained by increasing the array power. Numerical simulations of the acoustic field were performed for nonlinear propagation both in water and in tissue. It was shown that for shock-forming conditions in the main focus, the steering range of safe electronic focusing is larger than that for linear propagation conditions. Nonlinear sonication regimes therefore can be used to enlarge tissue volumes that can be sonicated using electronic steering of the focus of HIFU arrays.« less
NASA Astrophysics Data System (ADS)
Zhang, Jennifer; Wang, Yan; Jin, Jane Y.; Degan, Simone; Hall, Russell P.; Boehm, Ryan D.; Jaipan, Panupong; Narayan, Roger J.
2016-04-01
Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642- μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800- μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Du, Zhanhong Jeff; Kolarcik, Christi L; Kozai, Takashi D Y; Luebben, Silvia D; Sapp, Shawn A; Zheng, Xin Sally; Nabity, James A; Cui, X Tracy
2017-04-15
Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. One critical challenge to the translation of neural recording/stimulation electrode technology to clinically viable devices for brain computer interface (BCI) or deep brain stimulation (DBS) applications is the chronic degradation of device performance due to the inflammatory tissue reaction. While many hypothesize that soft and flexible devices elicit reduced inflammatory tissue responses, there has yet to be a rigorous comparison between soft and stiff implants. We have developed an ultra-soft microelectrode with Young's modulus lower than 1MPa, closely mimicking the brain tissue modulus. Here, we present a rigorous histological comparison of this novel ultrasoft electrode and conventional stiff electrode with the same size, shape and surface chemistry, implanted in rat brains for 1-week and 8-weeks. Significant improvement was observed for ultrasoft electrodes, including inflammatory tissue reaction, electrode-tissue integration as well as mechanical disturbance to nearby neurons. A full spectrum of new techniques were developed in this study, from insertion shuttle to in situ sectioning of the microelectrode to automated cell shape analysis, all of which should contribute new methods to the field. Finally, we showed the electrical functionality of the ultrasoft electrode, demonstrating the potential of flexible neural implant devices for future research and clinical use. Copyright © 2017. Published by Elsevier Ltd.
Multispectral Linear Array detector technology
NASA Astrophysics Data System (ADS)
Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.
1984-01-01
The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.
Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics.
Morais, Sergi; Tortajada-Genaro, Luis; Maquieira, Angel
2014-09-01
This editorial comments on the balance and perspectives of compact disk technology applied to molecular diagnostics. The development of sensitive, rapid and multiplex assays using Blu-ray technology for the determination of biomarkers, drug allergens, pathogens and detection of infections would have a direct impact on diagnostics. Effective tests for use in clinical, environmental and food applications require versatile and low-cost platforms as well as cost-effective detectors. Blu-ray technology accomplishes those requirements and advances on the concept of high density arrays for massive screening to achieve the demands of point of care or in situ analysis.
Microstrip technology and its application to phased array compensation
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.; Daniels, W. D.
1972-01-01
A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.
Multi-kW solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
1985-01-01
The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.
On-line monitoring system of PV array based on internet of things technology
NASA Astrophysics Data System (ADS)
Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.
2017-11-01
The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.
Detector arrays for low-background space infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.
1986-01-01
The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.
Detector arrays for low-background space infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.
1986-01-01
The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.
Phased array-fed antenna configuration study: Technology assessment
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.
A passive optical fibre hydrophone array utilising fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.
2018-02-01
Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.
The Stretched Lens Array SquareRigger (SLASR) for Space Power
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; O'Neill, Mark J.; Eskenazi, Michael I.; Brandhorst, Henry W.
2006-01-01
For the past three years, our team has been developing, refining, and maturing a unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of state-of-the-art performance metrics, including areal power density, specific power, stowed power density, high-voltage capability, radiation hardness, modularity, scalability, mass-producibility, and cost-effectiveness. SLASR is particularly well suited to high-power space missions, including solar electric propulsion (SEP) space tugs, major exploration missions to the Moon and Mars, and power-intensive military spacecraft. SLASR is also very well suited to high-radiation missions, since the cell shielding mass penalty is 85% less for the SLASR concentrator array than for one-sun planar arrays. The paper describes SLASR technology and presents significant results of developments to date in a number of key areas, from advances in the key components to full-scale array hardware fabrication and evaluation. A summary of SLASR s unprecedented performance metrics, both near-term and longer term, will be presented. Plans for future SLASR developments and near-term space applications will also be outlined.
Elad, Tal; Lee, Jin Hyung; Belkin, Shimshon; Gu, Man Bock
2008-01-01
Summary The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips. PMID:21261831
Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array
NASA Astrophysics Data System (ADS)
Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.
2002-11-01
A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.
2011-01-01
Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities including formation of nacre, periostracum and calcitic prismatic microstructure. A number of novel and known transcripts have been identified from these clusters. The development of PmaxArray 1.0, and the spatial map of its ESTs expression in the mantle has begun characterizing the molecular mechanisms linking the organics and inorganics of the molluscan shell. PMID:21936921
Eclipse SteerTech liquid lenslet beam steering technology
NASA Astrophysics Data System (ADS)
Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III
2007-09-01
Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.
NASA Astrophysics Data System (ADS)
Hughes, R. C.; Drebing, C. G.
1990-04-01
The technology that led to very large scale integrated circuits on silicon chips also provides a basis for new microsensors that are small, inexpensive, low power, rugged, and reliable. Two examples of microsensors Sandia is developing that take advantage of this technology are the microelectronic chemical sensor array and the radiation sensing field effect transistor (RADFET). Increasingly, the technology of chemical sensing needs new microsensor concepts. Applications in this area include environmental monitoring, criminal investigations, and state-of-health monitoring, both for equipment and living things. Chemical microsensors can satisfy sensing needs in the industrial, consumer, aerospace, and defense sectors. The microelectronic chemical-sensor array may address some of these applications. We have fabricated six separate chemical gas sensing areas on the microelectronic chemical sensor array. By using different catalytic metals on the gate areas of the diodes, we can selectively sense several gases.
Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology
NASA Astrophysics Data System (ADS)
Riahi, Mohammadreza
2016-06-01
In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.
Biomimetic Cross-Reactive Sensor Arrays: Prospects in Biodiagnostics
Fitzgerald, J. E.
2016-01-01
Biomimetic cross-reactive sensor arrays have been used to detect and analyze a wide variety of vapour and liquid components in applications such as food science, public health and safety, and diagnostics. As technology has advanced over the past three decades, these systems have become selective, sensitive, and affordable. Currently, the need for non-invasive and accurate devices for early disease diagnosis remains a challenge. This review provides an overview of the various types of Biomimetic cross-reactive sensor arrays (also referred to as electronic noses and tongues in the literature), their current use and future directions, and an outlook for future technological development. PMID:28217300
Interstitial ablation and imaging of soft tissue using miniaturized ultrasound arrays
NASA Astrophysics Data System (ADS)
Makin, Inder R. S.; Gallagher, Laura A.; Mast, T. Douglas; Runk, Megan M.; Faidi, Waseem; Barthe, Peter G.; Slayton, Michael H.
2004-05-01
A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive, interstitial ultrasound ablation that can be performed laparoscopically or percutaneously. Research in this area at Guided Therapy Systems and Ethicon Endo-Surgery has included development of miniaturized (~3 mm diameter) linear ultrasound arrays capable of high power for bulk tissue ablation as well as broad bandwidth for imaging. An integrated control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast. Simulations of ultrasonic heat deposition, bio-heat transfer, and tissue modification provide understanding and guidance for development of treatment strategies. Results from in vitro and in vivo ablation experiments, together with corresponding simulations, will be described. Using methods of rotational scanning, this approach is shown to be capable of clinically relevant ablation rates and volumes.
NeuroSeek dual-color image processing infrared focal plane array
NASA Astrophysics Data System (ADS)
McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.
1998-09-01
Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.
NASA Technical Reports Server (NTRS)
2002-01-01
Glenn Research Center sponsored an SBIR contract with ENTECH, in which the company worked to mold its successful terrestrial concentrator technology into applications that would generate solar power for space missions. ENTECH's first application made use of small, dome-shaped Fresnel lenses to direct sunlight onto high- efficiency photovoltaic cells. After some key adjustments, the mini- dome lens array was flown as part of the U.S. Air Force/NASA Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment in 1994. Due to their three-dimensional shape, the mini- dome lenses entailed construction by a batch molding process, which is naturally more costly than a continuous process. To overcome this disadvantage and meet the requirement for precise solar pointing in two axes, ENTECH started developing solar concentrator arrays for space using a line-focus lens that can be mass-produced by a continuous process. This new technology, named Solar Concentrator Array with Refractive Linear Element Technology (SCARLET), was created with support from Glenn and the Ballistic Missile Defense Organization, and was used to power the NASA/Jet Propulsion Laboratory Deep Space 1 spacecraft.
Multilevel photonic modules for millimeter-wave phased-array antennas
NASA Astrophysics Data System (ADS)
Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
2000-09-01
Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.
Phase 1 of the automated array assembly task of the low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.
1977-01-01
The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.
NASA Astrophysics Data System (ADS)
Gribble, Adam; Alali, Sanaz; Vitkin, Alex
2016-03-01
Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its composition, both structural and functional. For example, the polarimetry-derived metric of linear retardance (birefringence) is dependent on tissue structural organization (anisotropy) and can be used to diagnose myocardial infarct; circular birefringence (optical rotation) can measure glucose concentrations. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. To derive this 4x4 matrix it is necessary to observe how a tissue interacts with different polarizations. A well-suited approach for tissue polarimetry is to use photoelastic modulators (PEMs), which dynamically modulate the polarization of light. Previously, we have demonstrated a rapid time-gated Stokes imaging system that is capable of characterizing the state of polarized light (the Stokes vector) over a large field, after interacting with any turbid media. This was accomplished by synchronizing CCD camera acquisition times relative to two PEMs using a field-programmable gate array (FPGA). Here, we extend this technology to four PEMs, yielding a polarimetry system that is capable of rapidly measuring the complete sample Mueller matrix over a large field of view, with no moving parts and no beam steering. We describe the calibration procedure and evaluate the accuracy of the measurements. Results are shown for tissue-mimicking phantoms, as well as initial biological samples.
Gowrisankar, Sivakumar; Lerner-Ellis, Jordan P; Cox, Stephanie; White, Emily T; Manion, Megan; LeVan, Kevin; Liu, Jonathan; Farwell, Lisa M; Iartchouk, Oleg; Rehm, Heidi L; Funke, Birgit H
2010-11-01
Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.
Design and Development of the Space Technology 5 (ST5) Solar Arrays
NASA Technical Reports Server (NTRS)
Lyons, John; Fatemi, Navid; Gamica, Robert; Sharma, Surya; Senft, Donna; Maybery, Clay
2005-01-01
The National Aeronautics and Space Administration's (NASA's) Space Technology 5 (ST5) is designed to flight-test the concept of miniaturized 'small size" satellites and innovative technologies in Earth's magnetosphere. Three satellites will map the intensity and direction of the magnetic fields within the inner magnetosphere. Due to the small area available for the solar arrays, and to meet the mission power requirements, very high-efficiency multijunction solar cells were selected to power the spacecraft built by NASA Goddard Space Flight Center (GSFC). This was done in partnership with the Air Force Research Lab (AFRL) through the Dual-Use Science and Technology (DUS&T) program. Emcore's InGaP/lnGaAs/Ge Advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of 28.0% (one-sun, 28 C), were used to populate the arrays. Each spacecraft employs 8 identical solar panels (total area of about 0.3 square meters), with 15 large-area solar cells per panel. The requirement for power is to support on-orbit average load of 13.5 W at 8.4 V, with plus or minus 5% off pointing. The details of the solar array design, development and qualification considerations, as well as ground electrical performance & shadowing analysis results are presented.
Limits in point to point resolution of MOS based pixels detector arrays
NASA Astrophysics Data System (ADS)
Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.
2018-01-01
In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.
Passive Bottom Loss Estimation Using Compact Arrays and Autonomous Underwater Vehicles
2015-09-30
advances in the technology of autonomous underwater vehicles ( AUV ), make it now possible to envision an efficient, cost effective survey tool for seabed...characterization composed of a short array mounted on an AUV . While AUV mounting would require arrays of length presumably below 2m, the passive...frequency range indicated above, the poor angular resolution of the short arrays required in AUV deployment causes an underestimation of the loss
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-01-01
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-12-13
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.
Nonimaging applications for microbolometer arrays
NASA Astrophysics Data System (ADS)
Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon
2001-10-01
In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.
Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin
2017-04-25
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Signal Processing for a Lunar Array: Minimizing Power Consumption
NASA Technical Reports Server (NTRS)
D'Addario, Larry; Simmons, Samuel
2011-01-01
Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)
Application of HLA-DRB1 genotyping by oligonucleotide micro-array technology in forensic medicine.
Jiang, Bin; Li, Yao; Wu, Hai; He, Xianmin; Li, Chengtao; Li, Li; Tang, Rong; Xie, Yi; Mao, Yumin
2006-10-16
The human leukocyte antigen (HLA) system is known to be the most complex polymorphic system in the human genome. Among all of the HLA loci, HLA-DRB1 has the second largest number of alleles. The purpose of this study is to develop an oligonucleotide micro-array based HLA-DRB1 typing system for use in forensic identification, anthropology, tissue transplantation, and other genetic research fields. The system was developed by analyzing the HLA-DRB1 (DRB1) genotypes in 1198 unrelated healthy Chinese Han individuals originating from various parts of China and residing in Shanghai, China. Polymerase chain reaction (PCR) coupled with the oligonucleotide micro-array technology was used to detect and type HLA-DRB1 alleles of the sample individuals. The reliability, sensitivity, consistency and specificity were evaluated for use in forensic identification. Furthermore, a meta-analysis was carried out by comparing the allele frequencies of the HLA-DRB1 locus with those of other Chinese Han groups, Chinese minorities and other ethnic populations. All the DNA samples yielded a 273 bp amplification product, with no other amplification products in this length range. The minimum quantity of DNA detected by this method is 15 ng in a PCR reaction system of 25 microl. The population studied appeared to be not in Hardy-Weinberg equilibrium. Observed heterozygosity (Ho), expected heterozygosity (He), expected probability of exclusion (PE), polymorphic information content (PIC), and discrimination power (DP) of the HLA-DRB1 locus from the Shanghai Han ethnic group were evaluated to be 0.8022, 0.8870, 0.7741, 0.8771, 0.9750, respectively. A total of 25 HLA-DRB1 alleles were identified. HLA-DRB1*09XX, *04XX, *12XX and *15XX were the most frequent DRB1 alleles, which were observed in 58.76% of the sample. One hundred and sixteen genotypes were found. The five most frequent genotypes were: *04XX/*04XX (0.0626), *09XX/*09XX (0.0593), *04XX/*09XX (0.0551), *09XX/*15XX (0.0384) and *08XX/*12XX (0.0351). The meta-analysis showed that there were uniquely distributed features of DRB1 alleles among various ethnic populations and among the studied population groups from various regions with the same ethnic origin. An HLA-DRB1 genotyping system has been developed and established based on the oligonucleotide micro-array technology. The HLA-DRB1 typing of the Han population in Shanghai has revealed a relatively high heterogeneity. Information obtained in this study will be useful for medical and forensic applications as well as in anthropology research. Large-scale micro-array detection is highly accurate and reliable for DNA-based HLA-DRB1 genotyping. These results suggest that HLA-DRB1 DNA polymorphisms and the database of the Shanghai Han group have useful applications in processing forensic casework (as personal identification, paternity test), tracing population migration and genetic diagnosis.
Innovations in shock wave lithotripsy technology: updates in experimental studies.
Zhou, Yufeng; Cocks, Franklin H; Preminger, Glenn M; Zhong, Pei
2004-11-01
We developed innovations in shock wave lithotripsy (SWL) technology. Two technical upgrades were implemented in an original unmodified HM-3 lithotriptor (Dornier Medical Systems, Inc., Kennesaw, Georgia). First, a single unit ellipsoidal reflector insert was used to modify the profile of lithotriptor shock wave (LSW) to decrease the propensity of tissue injury in SWL. Second, a piezoelectric annular array (PEAA) generator (f = 230 kHz and F = 150 mm) was used to produce an auxiliary shock wave of approximately 13 MPa in peak pressure (at 4 kV output voltage) to intensify the collapse of LSW induced bubbles near the target stone for improved comminution efficiency. Consistent rupture of a vessel phantom made of single cellulose hollow fiber (i.d. = 0.2 mm) was produced after 30 shocks by the original HM-3 reflector at 20 kV. In comparison no vessel rupture could be produced after 200 shocks using the upgraded reflector at 22 kV or the PEAA generator at 4 kV. Using cylindrical BegoStone phantoms (Bego USA, Smithfield, Rhode Island) stone comminution efficiencies (mean +/- sd) after 1,500 shocks produced by the original and upgraded HM-3 reflectors, and the combined PEAA/upgraded HM-3 system, were 81.3% +/- 3.5%, 90.1% +/- 4.3% and 95.2% +/- 3.3%, respectively (p<0.05). Optimization of the pulse profile and sequence of LSW can significantly improve stone comminution while simultaneously decreasing the propensity of tissue injury during in vitro SWL. This novel concept and associated technologies may be used to upgrade other existing lithotriptors and to design new shock wave lithotriptors for improved performance and safety.
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Overview on Techniques to Construct Tissue Arrays with Special Emphasis on Tissue Microarrays
Vogel, Ulrich
2014-01-01
With the advent of new histopathological staining techniques (histochemistry, immunohistochemistry, in situ hybridization) and the discovery of thousands of new genes, mRNA, and proteins by molecular biology, the need grew for a technique to compare many different cells or tissues on one slide in a cost effective manner and with the possibility to easily track the identity of each specimen: the tissue array (TA). Basically, a TA consists of at least two different specimens per slide. TAs differ in the kind of specimens, the number of specimens installed, the dimension of the specimens, the arrangement of the specimens, the embedding medium, the technique to prepare the specimens to be installed, and the technique to construct the TA itself. A TA can be constructed by arranging the tissue specimens in a mold and subsequently pouring the mold with the embedding medium of choice. In contrast, preformed so-called recipient blocks consisting of the embedding medium of choice have punched, drilled, or poured holes of different diameters and distances in which the cells or tissue biopsies will be deployed manually, semi-automatically, or automatically. The costs of constructing a TA differ from a few to thousands of Euros depending on the technique/equipment used. Remarkably high quality TAs can be also achieved by low cost techniques. PMID:27600339
Köhler, Per; Granmo, Marcus; Schouenborg, Jens; Bengtsson, Martin; Wallman, Lars
2014-01-01
We have developed a multichannel electrode array—termed \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}\\(\\mu \\) \\end{document}-foil—that comprises ultrathin and flexible electrodes protruding from a thin foil at fixed distances. In addition to allowing some of the active sites to reach less compromised tissue, the barb-like protrusions that also serves the purpose of anchoring the electrode array into the tissue. This paper is an early evaluation of technical aspects and performance of this electrode array in acute in vitro/in vivo experiments. The interface impedance was reduced by up to two decades by electroplating the active sites with platinum black. The platinum black also allowed for a reduced phase lag for higher frequency components. The distance between the protrusions of the electrode array was tailored to match the architecture of the rat cerebral cortex. In vivo acute measurements confirmed a high signal-to-noise ratio for the neural recordings, and no significant crosstalk between recording channels. PMID:27170864
Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing
NASA Astrophysics Data System (ADS)
Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu
2016-09-01
Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.
Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
Stauffer, P R; Rossetto, F; Leoncini, M; Gentilli, G B
1998-05-01
The finite difference time domain (FDTD) method has been used to calculate electromagnetic radiation patterns from 915-MHz dual concentric conductor (DCC) microwave antennas that are constructed from thin and flexible printed circuit board (PCB) materials. Radiated field distributions are calculated in homogeneous lossy muscle tissue loads located under variable thickness coupling bolus layers. This effort extends the results of previous investigations to consider more realistic applicator configurations with smaller 2-cm-square apertures and different coupling bolus materials and thicknesses, as well as various spacings of multiple-element arrays. Results are given for practical applicator designs with microstrip feedlines etched on the backside of the PCB antenna array instead of previously tested bulky coaxial-cable feedline connections to each radiating aperture. The results demonstrate that for an optimum coupling bolus thickness of 2.5-5 mm, the thin, flexible, and lightweight DCC antennas produce effective heating to the periphery of each aperture to a depth of approximately 1 cm, and may be combined into arrays for uniform heating of large area superficial tissue regions with the 50% power deposition contour conforming closely to the outer perimeter of the array.
NASA Astrophysics Data System (ADS)
Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward
2017-10-01
This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.
Tissue engineering: confronting the transplantation crisis.
Nerem, R M
2000-01-01
Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.
Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang
2010-01-01
The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268
Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy
NASA Astrophysics Data System (ADS)
Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk
2017-03-01
A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.
Zhang, Xiao; Chen, Jiamin; Radcliffe, Tom; LeBrun, Dave P.; Tron, Victor A.; Feilotter, Harriet
2008-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis. In this study, miRNAs extracted from matched snap-frozen and FFPE samples were profiled using the Agilent miRNA array platform (Agilent, Santa Clara, CA). Each miRNA sample was hybridized to arrays containing probes interrogating 470 human miRNAs. Seven cases were compared in either duplicate or triplicate. Intrachip and interchip analyses demonstrated that the processes of miRNA extraction, labeling, and hybridization from both frozen and FFPE samples are highly reproducible and add little variation to the results; technical replicates showed high correlations with one another (Kendall tau, 0.722 to 0.853; Spearman rank correlation coefficient, 0.891 to 0.954). Our results showed consistent high correlations between matched frozen and FFPE samples (Kendall tau, 0.669 to 0.815; Spearman rank correlation coefficient, 0.847 to 0.948), supporting the use of FFPE-derived miRNAs for array-based, gene expression profiling. PMID:18832457
NASA Astrophysics Data System (ADS)
Rosnitskiy, P. B.; Gavrilov, L. R.; Yuldashev, P. V.; Sapozhnikov, O. A.; Khokhlova, V. A.
2017-09-01
A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient's head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.
Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S
2015-12-28
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.
Dixit, Chandra K.; Kadimisetty, Karteek; Otieno, Brunah A.; Tang, Chi; Malla, Spundana; Krause, Colleen E.; Rusling, James F.
2015-01-01
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. Simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that doesn’t require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for highly sensitive detection of the panel of cancer-specific biomarkers with high specificity and at the same time have the potential to be translated into a POC. PMID:26525998
Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F
2016-01-21
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.
Berman, Jules J; Edgerton, Mary E; Friedman, Bruce A
2003-01-01
Background Tissue Microarrays (TMAs) allow researchers to examine hundreds of small tissue samples on a single glass slide. The information held in a single TMA slide may easily involve Gigabytes of data. To benefit from TMA technology, the scientific community needs an open source TMA data exchange specification that will convey all of the data in a TMA experiment in a format that is understandable to both humans and computers. A data exchange specification for TMAs allows researchers to submit their data to journals and to public data repositories and to share or merge data from different laboratories. In May 2001, the Association of Pathology Informatics (API) hosted the first in a series of four workshops, co-sponsored by the National Cancer Institute, to develop an open, community-supported TMA data exchange specification. Methods A draft tissue microarray data exchange specification was developed through workshop meetings. The first workshop confirmed community support for the effort and urged the creation of an open XML-based specification. This was to evolve in steps with approval for each step coming from the stakeholders in the user community during open workshops. By the fourth workshop, held October, 2002, a set of Common Data Elements (CDEs) was established as well as a basic strategy for organizing TMA data in self-describing XML documents. Results The TMA data exchange specification is a well-formed XML document with four required sections: 1) Header, containing the specification Dublin Core identifiers, 2) Block, describing the paraffin-embedded array of tissues, 3)Slide, describing the glass slides produced from the Block, and 4) Core, containing all data related to the individual tissue samples contained in the array. Eighty CDEs, conforming to the ISO-11179 specification for data elements constitute XML tags used in the TMA data exchange specification. A set of six simple semantic rules describe the complete data exchange specification. Anyone using the data exchange specification can validate their TMA files using a software implementation written in Perl and distributed as a supplemental file with this publication. Conclusion The TMA data exchange specification is now available in a draft form with community-approved Common Data Elements and a community-approved general file format and data structure. The specification can be freely used by the scientific community. Efforts sponsored by the Association for Pathology Informatics to refine the draft TMA data exchange specification are expected to continue for at least two more years. The interested public is invited to participate in these open efforts. Information on future workshops will be posted at (API we site). PMID:12769826
Technology Developments in Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Howell, Joe T.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.
LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER
2016-09-23
JOHN CARR, RIGHT, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, TALKS WITH GREG LAUE, DIRECTOR OF AEROSPACE PRODUCTS FOR NEXOLVE, MANUFACTURER OF THE THIN-FILM TECHNOLOGY AND A PARTNER IN THE PROJECT.
Proceedings of the Low-Cost Solar Array Wafering Workshop
NASA Technical Reports Server (NTRS)
Morrison, A. D.
1982-01-01
The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered.
Salehi, Hassan S.; Wang, Tianheng; Kumavor, Patrick D.; Li, Hai; Zhu, Quing
2014-01-01
A novel lens-array based illumination design for a compact co-registered photoacoustic/ultrasound transvaginal probe has been demonstrated. The lens array consists of four cylindrical lenses that couple the laser beams into four 1-mm-core multi-mode optical fibers with optical coupling efficiency of ~87%. The feasibility of our lens array was investigated by simulating the lenses and laser beam profiles using Zemax. The laser fluence on the tissue surface was experimentally measured and was below the American National Standards Institute (ANSI) safety limit. Spatial distribution of hemoglobin oxygen saturation (sO2) of a mouse tumor was obtained in vivo using photoacoustic measurements at multiple wavelengths. Furthermore, benign and malignant ovaries were imaged ex vivo and evaluated histologically. The co-registered images clearly showed different patterns of blood vasculature. These results highlight the clinical potential of our system for noninvasive photoacoustic and ultrasound imaging of ovarian tissue and cancer detection and diagnosis. PMID:25401021
Correlation processing for correction of phase distortions in subaperture imaging.
Tavh, B; Karaman, M
1999-01-01
Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.
Navy Collaborative Integrated Information Technology Initiative (NAVCIITI)
2004-09-01
We investigated a new type of antenna array consisting of sub- elements that are excited together to form the primary element. All of the sub...elements of the array are excited for the highest operating band. Only the primary elements are excited for the low frequency band. This fractal geometry has...fully active array. The fully active input impedance is the input impedance of an element in an array when all elements are excited . It is a function
Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck
2015-04-22
The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael
2011-01-01
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474
NASA Technical Reports Server (NTRS)
Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)
1991-01-01
Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.
NASA Astrophysics Data System (ADS)
Zhou, Yuan-Qi; Zhan, Li-Hua
2016-05-01
Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.
I-ImaS: intelligent imaging sensors
NASA Astrophysics Data System (ADS)
Griffiths, J.; Royle, G.; Esbrand, C.; Hall, G.; Turchetta, R.; Speller, R.
2010-08-01
Conventional x-radiography uniformly irradiates the relevant region of the patient. Across that region, however, there is likely to be significant variation in both the thickness and pathological composition of the tissues present, which means that the x-ray exposure conditions selected, and consequently the image quality achieved, are a compromise. The I-ImaS concept eliminates this compromise by intelligently scanning the patient to identify the important diagnostic features, which are then used to adaptively control the x-ray exposure conditions at each point in the patient. In this way optimal image quality is achieved throughout the region of interest whilst maintaining or reducing the dose. An I-ImaS system has been built under an EU Framework 6 project and has undergone pre-clinical testing. The system is based upon two rows of sensors controlled via an FPGA based DAQ board. Each row consists of a 160 mm × 1 mm linear array of ten scintillator coated 3T CMOS APS devices with 32 μm pixels and a readable array of 520 × 40 pixels. The first sensor row scans the patient using a fraction of the total radiation dose to produce a preview image, which is then interrogated to identify the optimal exposure conditions at each point in the image. A signal is then sent to control a beam filter mechanism to appropriately moderate x-ray beam intensity at the patient as the second row of sensors follows behind. Tests performed on breast tissue sections found that the contrast-to-noise ratio in over 70% of the images was increased by an average of 15% at an average dose reduction of 9%. The same technology is currently also being applied to baggage scanning for airport security.
Fast Infrared Chemical Imaging with a Quantum Cascade Laser
2015-01-01
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546
Fast infrared chemical imaging with a quantum cascade laser.
Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit
2015-01-06
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.
NASA Astrophysics Data System (ADS)
Birkbeck, Aaron L.
A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.
Chirp-coded excitation imaging with a high-frequency ultrasound annular array.
Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H
2008-02-01
High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.
Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua
2015-01-01
To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed “multiplex ligation-dependent probe amplification–digital amplification coupled with hydrogel bead-array” (MLPA–DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA–DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA–DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC. PMID:25880764
Defining Genomic Changes in Triple-Negative Breast Cancer in Women of African Descent
2012-06-01
African and African - American breast cancer cases. Gene Expression Array Studies The 31 triple negative Kijabe samples were... American Adjacent Normal Breast Tissue PI: Pegram & Baumbach Defining Genomic Changes in Triple Negative Breast Cancer in Women of African ...Tissues from African - American and East African Patients with Triple Negative Breast
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
Required technologies for a lunar optical UV-IR synthesis array
NASA Technical Reports Server (NTRS)
Johnson, Stewart W.; Wetzel, John P.
1992-01-01
A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.
Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.
2012-01-01
The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.
Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries
Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans
2000-01-01
We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641
3D Bioprinting Technologies for Hard Tissue and Organ Engineering
Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling
2016-01-01
Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924
3D Bioprinting Technologies for Hard Tissue and Organ Engineering.
Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling
2016-09-27
Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.
NASA Technical Reports Server (NTRS)
ONeill, Mark; Piszczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing.
Boyd, Matthew T
2017-06-01
Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.
Boyd, Matthew T.
2017-01-01
Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation. PMID:28670044
NASA Astrophysics Data System (ADS)
Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William
2016-03-01
There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.
Interfacing with the nervous system: a review of current bioelectric technologies.
Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W
2017-10-23
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Current progress on aptamer-targeted oligonucleotide therapeutics
Dassie, Justin P; Giangrande, Paloma H
2014-01-01
Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250
Eye safety related to near infrared radiation exposure to biometric devices.
Kourkoumelis, Nikolaos; Tzaphlidou, Margaret
2011-03-01
Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.
Li, Chengzhe; Ai, Rizi; Wang, Mengchi; Firestein, Gary S.; Wang, Wei
2016-01-01
Motivation: DNA methylation signatures in rheumatoid arthritis (RA) have been identified in fibroblast-like synoviocytes (FLS) with Illumina HumanMethylation450 array. Since <2% of CpG sites are covered by the Illumina 450K array and whole genome bisulfite sequencing is still too expensive for many samples, computationally predicting DNA methylation levels based on 450K data would be valuable to discover more RA-related genes. Results: We developed a computational model that is trained on 14 tissues with both whole genome bisulfite sequencing and 450K array data. This model integrates information derived from the similarity of local methylation pattern between tissues, the methylation information of flanking CpG sites and the methylation tendency of flanking DNA sequences. The predicted and measured methylation values were highly correlated with a Pearson correlation coefficient of 0.9 in leave-one-tissue-out cross-validations. Importantly, the majority (76%) of the top 10% differentially methylated loci among the 14 tissues was correctly detected using the predicted methylation values. Applying this model to 450K data of RA, osteoarthritis and normal FLS, we successfully expanded the coverage of CpG sites 18.5-fold and accounts for about 30% of all the CpGs in the human genome. By integrative omics study, we identified genes and pathways tightly related to RA pathogenesis, among which 12 genes were supported by triple evidences, including 6 genes already known to perform specific roles in RA and 6 genes as new potential therapeutic targets. Availability and implementation: The source code, required data for prediction, and demo data for test are freely available at: http://wanglab.ucsd.edu/star/LR450K/. Contact: wei-wang@ucsd.edu or gfirestein@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26883487
Characterization of bone tissue using microstrip antennas.
Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G
2010-01-01
The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.
Liu, Haijiao; Usprech, Jenna; Sun, Yu; Simmons, Craig A
2016-04-01
Cellular microenvironments present cells with multiple stimuli, including not only soluble biochemical and insoluble matrix cues but also mechanical factors. Biomaterial array platforms have been used to combinatorially and efficiently probe and define two-dimensional (2D) and 3D microenvironmental cues to guide cell functions for tissue engineering applications. However, there are few examples of array platforms that include dynamic mechanical forces, particularly to enable stretching of 3D cell-seeded biomaterials, which is relevant to engineering connective and cardiovascular tissues. Here we present a deformable membrane platform that enables 3D dynamic mechanical stretch of arrayed biomaterial constructs. Cell-seeded polyethylene glycol norbornene (PEG-NB) hydrogels were bound to miniaturized deformable membranes via a thiol-ene reaction with off-stoichiometry thiol-ene based polydimethylsiloxane (OSTE-PDMS) as the membrane material. Bonding to OSTE-PDMS enabled the 3D hydrogel microconstructs to be cyclically deformed and stretched by the membrane. As a first demonstration, human mesenchymal stromal cells (MSCs) embedded in PEG-NB were stretched for several days. They were found to be viable, spread in the 3D hydrogels, and exhibited a contractile myofibroblast phenotype when exposed to dynamic 3D mechanical deformation. This platform, which is readily scalable to larger arrays, enables systematic interrogation of the relationships between combinations of 3D mechanobiological cues and cellular responses, and thus has the potential to identify strategies to predictably control the construction of functional engineered tissues. Current high-throughput biomaterial screening approaches fail to consider the effects of dynamic mechanical stimulation, despite its importance in a wide variety of regenerative medicine applications. To meet this need, we developed a deformable membrane platform that enables 3D dynamic stretch of arrayed biomaterial constructs. Our approach combines microtechnologies fabricated with off-stoichiometry thiol-ene based polydimethylsiloxane membranes that can covalently bond cell-seeded polyethylene glycol norbornene 3D hydrogels, a model biomaterial with tunable adhesive, elastic and degradation characteristics. As a first demonstration, we show that human mesenchymal stromal cells embedded in hydrogels and subjected to dynamic mechanical stimulation undergo myofibroblast differentiation. This system is readily scaled up to larger arrays, and will enable systematic and efficient screening of combinations of 3D mechanobiological and biomaterial cues on cell fate and function. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The Photovoltaic Array Space Power plus Diagnostics (PASP Plus) Flight Experiment
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Curtis, Henry B.; Guidice, Donald A.; Severance, Paul S.
1992-01-01
An overview of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment is presented in outline and graphic form. The goal of the experiment is to test a variety of photovoltaic cell and array technologies under various space environmental conditions. Experiment objectives, flight hardware, experiment control and diagnostic instrumentation, and illuminated thermal vacuum testing are addressed.
Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori
2009-07-01
We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.
MTF measurements with high-resolution a-Si:H imaging arrays
NASA Astrophysics Data System (ADS)
Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef
1995-05-01
Recent advances in a-Si:H fabrication technology have opened the way for the application of flat panel imaging arrays in a number of areas in medical imaging. Their large area (up to approximately 26 X 26 cm), thin profile (< 1 mm) and real time readout capability make them strong candidates for the replacement of more traditional x-ray imaging technologies such as film and image intensifier systems. As a first step towards a device suitable for clinical use we have created a 24.4 X 19.4 cm array with 127 micrometers pitch pixels. This device serves as a testbed for investigating the effects of design changes on array imaging performance. This paper reports on initial measurements of the spatial resolution of this device used in conjunction with an overlaying Lanex Regular screen and 90 kVp x rays. The measured pre-sampled modulation transfer function (p.s. MTF) is found to fall below the predicted value by up to approximately 8%. At least part of this reduction seems to be due to scattering of light photons between the array and the surface of the phosphor screen contacting the array.
Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin
2012-07-01
Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.
NASA Technical Reports Server (NTRS)
1986-01-01
Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.
Development of FIR arrays with integrating amplifiers
NASA Technical Reports Server (NTRS)
Young, Erick T.
1988-01-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Development of FIR arrays with integrating amplifiers
NASA Astrophysics Data System (ADS)
Young, Erick T.
1988-08-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1977-01-01
A general technology assessment and manufacturing cost analysis was presented. A near-term (1982) factory design is described, and the results of an experimental production study for the large-scale production of flat-panel silicon and solar-cell arrays are detailed.
An Active K-Band Receive Slot Array for Mobile Satellite Communications
NASA Technical Reports Server (NTRS)
Tulintseff, A. N.; Lee, K. A.; Sukamto, L. M.; Chew, W.
1994-01-01
An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project.
High quality tissue miniarray technique using a conventional TV/radio telescopic antenna.
Elkablawy, Mohamed A; Albasri, Abdulkader M
2015-01-01
The tissue microarray (TMA) is widely accepted as a fast and cost-effective research tool for in situ tissue analysis in modern pathology. However, the current automated and manual TMA techniques have some drawbacks restricting their productivity. Our study aimed to introduce an improved manual tissue miniarray (TmA) technique that is simple and readily applicable to a broad range of tissue samples. In this study, a conventional TV/radio telescopic antenna was used to punch tissue cores manually from donor paraffin embedded tissue blocks which were pre-incubated at 40oC. The cores were manually transferred, organized and attached to a standard block mould, and filled with liquid paraffin to construct TmA blocks without any use of recipient paraffin blocks. By using a conventional TV/radio antenna, it was possible to construct TmA paraffin blocks with variable formats of array size and number (2-mm x 42, 2.5-mm x 30, 3-mm x 24, 4-mm x 20 and 5-mm x 12 cores). Up to 2-mm x 84 cores could be mounted and stained on a standard microscopic slide by cutting two sections from two different blocks and mounting them beside each other. The technique was simple and caused minimal damage to the donor blocks. H and E and immunostained slides showed well-defined tissue morphology and array configuration. This technique is easy to reproduce, quick, inexpensive and creates uniform blocks with abundant tissues without specialized equipment. It was found to improve the stability of the cores within the paraffin block and facilitated no losses during cutting and immunostaining.
Flat-plate solar array project. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Callaghan, W.; Mcdonald, R.
1986-01-01
In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.
SCARLET development, fabrication and testing for the Deep Space 1 spacecraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, D.M.; Allen, D.M.
1997-12-31
An advanced version of ``Solar Concentrator Arrays with Refractive Linear Element Technology`` (SCARLET) is being assembled for use on the first NASA/JPL New Millennium spacecraft: Deep Space 1 (DS1). The array is scaled up from the first SCARLET array that was built for the METEOR satellite in 1995 and incorporates advanced technologies such as dual-junction solar cells and an improved structural design. Due to the failure of the Conestoga launch vehicle, this will be the first flight of a modular concentrator array. SCARLET will provide 2.6 kW to the DS1 spacecraft to be launched in July 1998 for a missionmore » that includes fly-bys of the asteroid McAuliffe, Mars, and the comet West-Kohoutek-Ikemura. This paper describes the SCARLET design, fabrication/assembly, and testing program for the flight system.« less
Technology Development for AGIS (Advanced Gamma-ray Imaging System).
NASA Astrophysics Data System (ADS)
Krennrich, Frank
2008-04-01
Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.
System design of ELITE power processing unit
NASA Astrophysics Data System (ADS)
Caldwell, David J.
The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.
The SCARLET{trademark} array for high power GEO satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, B.R.; Jones, P.A.; Eskenazi, M.I.
1997-12-31
The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...
Fujiwara, Mikio; Hirao, Takanori; Kawada, Mitsunobu; Shibai, Hiroshi; Matsuura, Shuji; Kaneda, Hidehiro; Patrashin, Mikhail; Nakagawa, Takao
2003-04-20
To our knowledge, we are the first to successfully report a direct hybrid two-dimensional (2D) detector array in the far-infrared region. Gallium-doped germanium (Ge:Ga) has been used extensively to produce sensitive far-infrared detectors with a cutoff wavelength of approximately equal to 110 microm (2.7 THz). It is widely used in the fields of astronomy and molecular and solid spectroscopy. However, Ge:Ga photoconductors must be cooled below 4.2 K to reduce thermal noise, and this operating condition makes it difficult to develop a large format array because of the need for a warm amplifier. Development of Ge:Ga photoconductor arrays to take 2D terahertz images is now an important target in such research fields as space astronomy. We present the design of a 20 x 3 Ge:Ga far-infrared photoconductor array directly hybridized to a Si p-type metal-oxide-semiconductor readout integrated circuit using indium-bump technology. The main obstacles in creating this 2D array were (1) fabricating a monolithic Ge:Ga 2D array with a longitudinal configuration, (2) developing a cryogenic capacitive transimpedance amplifer, and (3) developing a technology for connecting the detector to the electronics. With this technology, a prototype Ge:Ga photoconductor with a direct hybrid structure has shown a responsivity as high as 14.6 A/W and a minimum detectable power of 5.6 x 10(-17) W for an integration time of 0.14 s when it was cooled to 2.1 K. Its noise is limited by the readout circuit with 20 microV/Hz(1/2) at 1 Hz. Vibration and cooling tests demonstrated that this direct hybrid structure is strong enough for spaceborne instruments. This detector array will be installed on the Japanese infrared satellite ASTRO-F.
Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.
2016-01-01
Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment.
Tedford, Clark E; DeLapp, Scott; Jacques, Steven; Anders, Juanita
2015-04-01
Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain to a depth of approximately 40 mm with an effective attenuation coefficient for the system of 2.22 cm(-1) . No differences were observed in the results between the PW and CW laser light. The intraparenchymal studies demonstrated less absorption and scattering for the 808 nm wavelength light compared to the 660 or 940 nm wavelengths. Transcranial light measurements of unfixed human cadaver brains allowed for determinations of light penetration variables. While unfixed human cadaver studies do not reflect all the conditions seen in the living condition, comparisons of light scatter and penetration and estimates of fluence levels can be used to establish further clinical dosing. The 808 nm wavelength light demonstrated superior CNS tissue penetration. © 2015 Wiley Periodicals, Inc.
Achieving ultra-high temperatures with a resistive emitter array
NASA Astrophysics Data System (ADS)
Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott
2016-05-01
The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.
LSA Low-cost Solar Array project
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.
Low-cost Solar Array (LSA) project
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.
The evolution and exploitation of the fiber-optic hydrophone
NASA Astrophysics Data System (ADS)
Hill, David J.
2007-07-01
In the late 1970s one of the first applications identified for fibre-optic sensing was the fibre-optic hydrophone. It was recognised that the technology had the potential to provide a cost effective solution for large-scale arrays of highly sensitive hydrophones which could be interrogated over large distances. Consequently both the United Kingdom and United States navies funded the development of this sonar technology to the point that it is now deployed on submarines and as seabed arrays. The basic design of a fibre-optic hydrophone has changed little; comprising a coil of optical fibre wound on a compliant mandrel, interrogated using interferometric techniques. Although other approaches are being investigated, including the development of fibre-laser hydrophones, the interferometric approach remains the most efficient way to create highly multiplexed arrays of acoustic sensors. So much so, that the underlying technology is now being exploited in civil applications. Recently the exploration and production sector of the oil and gas industry has begun funding the development of fibre-optic seismic sensing using seabed mounted, very large-scale arrays of four component (three accelerometers and a hydrophone) packages based upon the original technology developed for sonar systems. This has given new impetus to the development of the sensors and the associated interrogation systems which has led to the technology being adopted for other commercial uses. These include the development of networked in-road fibre-optic Weigh-in-Motion sensors and of intruder detection systems which are able to acoustically monitor long lengths of border, on both land and at sea. After two decades, the fibre-optic hydrophone and associated technology has matured and evolved into a number of highly capable sensing solutions used by a range of industries.
Cerebriform connective tissue nevus of lumbar.
Chen, Jinbo; Chen, Liuqing; Duan, Yiqun; Li, Dongsheng; Dong, Bilin
2015-02-01
Connective tissue nevi represents a kind of hamartoma, and coalescence of the lesions in a cerebriform mode in the lumbar region without Proteus syndrome is rarely seen. Here, we report a 26-year-old woman presenting with nodules and plaques in her left lumbar region of 26 years in duration. Histopathological examination and Masson-trichrome stain showed increased dermal collagen bundles in a haphazard array. The diagnosis of connective tissue nevi was made. This is the first case report on cerebriform connective tissue nevi without Proteus syndrome in the lumbar region. © 2014 Japanese Dermatological Association.
In situ synthesis of protein arrays.
He, Mingyue; Stoevesandt, Oda; Taussig, Michael J
2008-02-01
In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
NASA Astrophysics Data System (ADS)
Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki
2011-03-01
In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens
Loureiro, Liliana R.; Carrascal, Mylène A.; Barbas, Ana; Ramalho, José S.; Novo, Carlos; Delannoy, Philippe; Videira, Paula A.
2015-01-01
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment. PMID:26270678
Advances in lenticular lens arrays for visual display
NASA Astrophysics Data System (ADS)
Johnson, R. Barry; Jacobsen, Gary A.
2005-08-01
Lenticular lens arrays are widely used in the printed display industry and in specialized applications of electronic displays. In general, lenticular arrays can create from interlaced printed images such visual effects as 3-D, animation, flips, morph, zoom, or various combinations. The use of these typically cylindrical lens arrays for this purpose began in the late 1920's. The lenses comprise a front surface having a spherical crosssection and a flat rear surface upon where the material to be displayed is proximately located. The principal limitation to the resultant image quality for current technology lenticular lenses is spherical aberration. This limitation causes the lenticular lens arrays to be generally thick (0.5 mm) and not easily wrapped around such items as cans or bottles. The objectives of this research effort were to develop a realistic analytical model, to significantly improve the image quality, to develop the tooling necessary to fabricate lenticular lens array extrusion cylinders, and to develop enhanced fabrication technology for the extrusion cylinder. It was determined that the most viable cross-sectional shape for the lenticular lenses is elliptical. This shape dramatically improves the image quality. The relationship between the lens radius, conic constant, material refractive index, and thickness will be discussed. A significant challenge was to fabricate a diamond-cutting tool having the proper elliptical shape. Both true elliptical and pseudo-elliptical diamond tools were designed and fabricated. The plastic sheets extruded can be quite thin (< 0.25 mm) and, consequently, can be wrapped around cans and the like. Fabrication of the lenticular engraved extrusion cylinder required remarkable development considering the large physical size and weight of the cylinder, and the tight mechanical tolerances associated with the lenticular lens molds cut into the cylinder's surface. The development of the cutting tool and the lenticular engraved extrusion cylinder will be presented in addition to an illustrative comparison of current lenticular technology and the new technology. Three U.S. patents have been issued as a consequence of this research effort.
DNA Array-Based Gene Profiling
Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario
2005-01-01
Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
The Sequencing Bead Array (SBA), a Next-Generation Digital Suspension Array
Akhras, Michael S.; Pettersson, Erik; Diamond, Lisa; Unemo, Magnus; Okamoto, Jennifer; Davis, Ronald W.; Pourmand, Nader
2013-01-01
Here we describe the novel Sequencing Bead Array (SBA), a complete assay for molecular diagnostics and typing applications. SBA is a digital suspension array using Next-Generation Sequencing (NGS), to replace conventional optical readout platforms. The technology allows for reducing the number of instruments required in a laboratory setting, where the same NGS instrument could be employed from whole-genome and targeted sequencing to SBA broad-range biomarker detection and genotyping. As proof-of-concept, a model assay was designed that could distinguish ten Human Papillomavirus (HPV) genotypes associated with cervical cancer progression. SBA was used to genotype 20 cervical tumor samples and, when compared with amplicon pyrosequencing, was able to detect two additional co-infections due to increased sensitivity. We also introduce in-house software Sphix, enabling easy accessibility and interpretation of results. The technology offers a multi-parallel, rapid, robust, and scalable system that is readily adaptable for a multitude of microarray diagnostic and typing applications, e.g. genetic signatures, single nucleotide polymorphisms (SNPs), structural variations, and immunoassays. SBA has the potential to dramatically change the way we perform probe-based applications, and allow for a smooth transition towards the technology offered by genomic sequencing. PMID:24116138
NASA Astrophysics Data System (ADS)
Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano
2016-05-01
Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.