Sample records for tissue engineered lung

  1. Advances in pulmonary therapy and drug development: Lung tissue engineering to lung-on-a-chip.

    PubMed

    Doryab, Ali; Amoabediny, Ghassem; Salehi-Najafabadi, Amir

    2016-01-01

    Lung disease is one of the major causes of death, and the rate of pulmonary diseases has been increasing for decades. Although lung transplantation is the only treatment for majority of patients, this method has been limited due to lack of donors. Therefore, recently, attentions have increased to some new strategies with the aid of tissue engineering and microfluidics techniques not only for the functional analysis, but also for drug screening. In fact, in tissue engineering, the engineered tissue is able to grow by using the patient's own cells without intervention in the immune system. On the other hand, microfluidics devices are applied in order to evaluate drug screenings, function analysis and toxicity. This article reviews new advances in lung tissue engineering and lung-on-a-chip. Furthermore, future directions, difficulties and drawbacks of pulmonary therapy in these areas are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering

    PubMed Central

    Tebyanian, Hamid; Karami, Ali; Motavallian, Ebrahim; Aslani, Jafar; Samadikuchaksaraei, Ali; Arjmand, Babak; Nourani, Mohammad Reza

    2017-01-01

    BACKGROUND: Lung disease is the most common cause of death in the world. The last stage of pulmonary diseases is lung transplantation. Limitation and shortage of donor organs cause to appear tissue engineering field. Decellularization is a hope for producing intact ECM in the development of engineered organs. AIM: The goal of the decellularization process is to remove cellular and nuclear material while retaining lung three-dimensional and molecular proteins. Different concentration of detergents was used for finding the best approach in lung decellularization. MATERIAL AND METHODS: In this study, three-time approaches (24, 48 and 96 h) with four detergents (CHAPS, SDS, SDC and Triton X-100) were used for decellularizing rat lungs for maintaining of three-dimensional lung architecture and ECM protein composition which have significant roles in differentiation and migration of stem cells. This comparative study determined that variable decellularization approaches can cause significantly different effects on decellularized lungs. RESULTS: Results showed that destruction was increased with increasing the detergent concentration. Single detergent showed a significant reduction in maintaining of three-dimensional of lung and ECM proteins (Collagen and Elastin). But, the best methods were mixed detergents of SDC and CHAPS in low concentration in 48 and 96 h decellularization. CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue. PMID:29362610

  3. Sterilization of Lung Matrices by Supercritical Carbon Dioxide

    PubMed Central

    Balestrini, Jenna L.; Liu, Angela; Gard, Ashley L.; Huie, Janet; Blatt, Kelly M.S.; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J.; Mecham, Robert P.; Wilcox, Elise C.

    2016-01-01

    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10−6 in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes. PMID:26697757

  4. No adverse lung effects of 7- and 28-day inhalation exposure of rats to emissions from petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without particulate filter - the FuelHealth project.

    PubMed

    Magnusson, Pål; Oczkowski, Michał; Øvrevik, Johan; Gajewska, Malgorzata; Wilczak, Jacek; Biedrzycki, Jacek; Dziendzikowska, Katarzyna; Kamola, Dariusz; Królikowski, Tomasz; Kruszewski, Marcin; Lankoff, Anna; Mruk, Remigiusz; Brunborg, Gunnar; Instanes, Christine; Gromadzka-Ostrowska, Joanna; Myhre, Oddvar

    2017-04-01

    Increased use of biofuels raises concerns about health effects of new emissions. We analyzed relative lung health effects, on Fisher 344 rats, of diesel engine exhausts emissions (DEE) from a Euro 5-classified diesel engine running on petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without diesel particulate filter (DPF). One group of animals was exposed to DEE for 7 days (6 h/day), and another group for 28 days (6 h/day, 5 days/week), both with and without DPF. The animals (n = 7/treatment) were exposed in whole body exposure chambers. Animals breathing clean air were used as controls. Genotoxic effects of the lungs by the Comet assay, histological examination of lung tissue, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury, and mRNA markers of inflammation and oxidative stress were analyzed. Our results showed that a minor number of genes related to inflammation were slightly differently expressed in the exposed animals compared to control. Histological analysis also revealed only minor effects on inflammatory tissue markers in the lungs, and this was supported by flow cytometry and ELISA analysis of cytokines in BALF. No exposure-related indications of genotoxicity were observed. Overall, exposure to DEE with or without DPF technology produced no adverse effects in the endpoints analyzed in the rat lung tissue or the BALF. Overall, exposure to DEE from a modern Euro 5 light vehicle engine run on B20 fuel with or without DPF technology produced no adverse effects in the endpoints analyzed in the rat lung tissue or the BALF.

  5. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  6. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer.

    PubMed

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T C

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.

    PubMed

    Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin

    2014-09-01

    Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.

  8. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    PubMed

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  9. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  10. Tissue engineering for clinical applications.

    PubMed

    Bhatia, Sujata K

    2010-12-01

    Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Medical waste tissues - breathing life back into respiratory research.

    PubMed

    BéruBé, Kelly A

    2013-12-01

    With the advent of biobanks to store human lung cells and tissues from patient donations and from the procurement of medical waste tissues, it is now possible to integrate (both spatially and temporally) cells into anatomically-correct and physiologically-functional tissues. Modern inhalation toxicology relies on human data on exposure and adverse effects, to determine the most appropriate risk assessments and mitigations for beneficial respiratory health. A point in case is the recapitulation of airway tissue, such as the bronchial epithelium, to investigate the impact of air pollution on human respiratory health. The bronchi are the first point of contact for inhaled substances that bypass defences in the upper respiratory tract. Animal models have been used to resolve such inhalation toxicology hazards. However, the access to medical waste tissues has enabled the Lung Particle Research Group to tissue-engineer the Micro-Lung (TM) and Metabo-Lung(TM) cell culture models, as alternatives to animals in basic research and in the safety testing of aerosolised consumer goods. The former model favours investigations focused on lung injury and repair mechanisms, and the latter model provides the element of metabolism, through the co-culturing of lung and liver (hepatocyte) cells. These innovations represent examples of the animal-free alternatives advocated by the 21st century toxicology paradigm, whereby human-derived cell/tissue data will lead to more-accurate and more-reliable public health risk assessments and therapeutic mitigations (e.g. exposure to ambient air pollutants and adverse drug reactions) for lung disease. 2013 FRAME.

  12. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.

    PubMed

    Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P

    2011-02-21

    There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.

  13. Optimal flow conditions of a tracheobronchial model to reengineer lung structures

    NASA Astrophysics Data System (ADS)

    Casarin, Stefano; Aletti, Federico; Baselli, Giuseppe; Garbey, Marc

    2017-04-01

    The high demand for lung transplants cannot be matched by an adequate number of lungs from donors. Since fully ex-novo lungs are far from being feasible, tissue engineering is actively considering implantation of engineered lungs where the devitalized structure of a donor is used as scaffold to be repopulated by stem cells of the receiving patient. A decellularized donated lung is treated inside a bioreactor where transport through the tracheobronchial tree (TBT) will allow for both deposition of stem cells and nourishment for their subsequent growth, thus developing new lung tissue. The key concern is to set optimally the boundary conditions to utilize in the bioreactor. We propose a predictive model of slow liquid ventilation, which combines a one-dimensional (1-D) mathematical model of the TBT and a solute deposition model strongly dependent on fluid velocity across the tree. With it, we were able to track and drive the concentration of a generic solute across the airways, looking for its optimal distribution. This was given by properly adjusting the pumps' regime serving the bioreactor. A feedback system, created by coupling the two models, allowed us to derive the optimal pattern. The TBT model can be easily invertible, thus yielding a straightforward flow/pressure law at the inlet to optimize the efficiency of the bioreactor.

  14. Comparative Biology of Decellularized Lung Matrix: Implications of Species Mismatch in Regenerative Medicine

    PubMed Central

    Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.

    2016-01-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365

  15. Coming to terms with tissue engineering and regenerative medicine in the lung

    PubMed Central

    Tschumperlin, Daniel J.; Stenmark, Kurt R.

    2015-01-01

    Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424

  16. Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease

    PubMed Central

    Oakland, Mayumi; Sinn, Patrick L; McCray Jr, Paul B

    2012-01-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  17. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer

    NASA Astrophysics Data System (ADS)

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.

  18. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    PubMed

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  19. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer.

    PubMed

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin; Xue, Christine; LeBlanc, Justin; Glenn, Shonna; Shukla, Gaurav; Yu, Yan; Dicker, Adam P; Leeper, Dennis B; Lu, You; Lu, Bo

    2016-11-01

    To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics. Copyright © 2016. Published by Elsevier Inc.

  20. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.

    PubMed

    Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J

    2014-10-01

    In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Automated Decellularization of Intact, Human-Sized Lungs for Tissue Engineering

    PubMed Central

    Price, Andrew P.; Godin, Lindsay M.; Domek, Alex; Cotter, Trevor; D'Cunha, Jonathan; Taylor, Doris A.

    2015-01-01

    We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature. This system was interfaced with a prototypic bioreactor chamber that was connected to another program, from a commercial source, which controlled the volume and flow pressure of fluids. Lung matrix that was decellularized by the automated method was compared to a manual method previously used by us and others. Automation resulted in more consistent acellular matrix preparations as demonstrated by measuring levels of DNA, hydroxyproline (collagen), elastin, laminin, and glycosaminoglycans. It also proved highly beneficial in saving time as the decellularization procedure was reduced from days down to just 24 h. Developing a rapid, controllable, automated system for production of reproducible matrices in a closed system is a major step forward in whole-organ tissue engineering. PMID:24826875

  3. 77 FR 75169 - Silver Nanoparticles (AgNPs); Information and Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... control measures (e.g., engineering controls, work practices, PPE) that are being used in workplaces where... and tissues, (2) decrements in lung function and induction of inflammatory responses, and (3... and tissues when administered via gavage to Sprague-Dawley and F344 rats for 28 and 90 days [Kim et al...

  4. Engineered human broncho-epithelial tissue-like assemblies

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  5. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    PubMed

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Can Stem Cells be Used to Generate New Lungs? Ex Vivo Lung Bioengineering with Decellularized Whole Lung Scaffolds

    PubMed Central

    Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.

    2013-01-01

    For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471

  7. Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament.

    PubMed

    Chen, Huan; Zhao, Xuefeng; Berwick, Zachary C; Krieger, Joshua F; Chambers, Sean; Kassab, Ghassan S

    2016-06-01

    There is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue. The MPM imaging revealed that there are generally two families of collagen fibers distributed in two distinct layers: The first family largely aligns along the longitudinal direction with a mean angle of θ = 10.7 ± 9.3 deg, while the second one exhibits a random distribution with a mean θ = 36.6 ± 27.4. Elastin fibers appear in some intermediate sublayers with a random orientation distribution with a mean θ = 39.6 ± 23 deg. Based on the microstructural observation, a microstructure-based constitutive law was proposed to model the elastic property of the tissue. The material parameters were identified by fitting the model to the biaxial stress-strain data of specimens, and good fitting quality was achieved. The parameter e0 (which denotes the strain beyond which the collagen can withstand tension) of glutaraldehyde-treated tissues demonstrated low variability implying a relatively consistent collagen undulation in different samples, while the stiffness parameters for elastin and collagen fibers showed relatively greater variability. The fixed tissues presented a smaller e0 than that of fresh specimen, confirming that glutaraldehyde crosslinking increases the mechanical strength of collagen-based biomaterials. The present study sheds light on the biomechanics of glutaraldehyde-treated porcine pulmonary ligament that may be a candidate for tissue engineering.

  8. Biomechanical analysis of pulmonary contusion in motor vehicle crash victims: a crash injury research and engineering network (ciren) study - biomed 2009.

    PubMed

    Weaver, Ashley A; Gayzik, F Scott; Stitzel, Joel D

    2009-01-01

    Pulmonary contusion is the most common thoracic soft tissue injury encountered in motor vehicle crashes and is seen in 10-17% of all trauma admissions. This study presents a biomechanical and radiological analysis with the goal of quantifying pulmonary contusion resulting from motor vehicle crashes in order to illustrate the relationships between crash characteristics, contusion severity, and patient outcome. The 20 patients selected for this study were involved in motor vehicle crashes and subsequently enrolled in the Crash Injury and Research Engineering Network (CIREN) program at Wake Forest University Baptist Medical Center. Demographic data, sustained injuries, and crash characteristics were obtained through medical records and the CIREN database for all patients in the study. For each patient, the first chest computed tomography (CT) scan following the crash was segmented using a semi-automated approach to obtain volumes of trapped air, total lung, healthy lung, and high attenuation lung representing contused tissue. Three-dimensional models of the healthy and contused lung tissue were created for each patient. Rib fractures were present in 75% of patients and a substantial proportion of patients with pulmonary contusion injuries were involved in near side collisions. The near side door was identified as the most commonly involved component in pulmonary contusion injuries. The methodology and analysis presented in this study between crash characteristics, pulmonary contusion severity, and patient outcome are data that may contribute to future improvements in motor vehicle safety.

  9. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.

  10. Tiny Device Mimics Human Lung Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Rebecca; Harris, Jennifer; Nath, Pulak

    Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamedmore » “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.« less

  11. Tiny Device Mimics Human Lung Function

    ScienceCinema

    McDonald, Rebecca; Harris, Jennifer; Nath, Pulak

    2018-01-16

    Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, David K.; White, Collin C.; Botta, Dianne

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains)more » were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. - Highlights: • Quantum dot acute lung inflammation was evaluated in a multi-strain mouse model. • QD disposition differed across 8 Collaborative Cross (CC) founder strains. • Neutrophil and cytokine levels in BALF were also mouse strain dependent. • NOD/ShiLtJ, NZO/HlLtJ, and A/J were more sensitive to QDs than C57BL/6J mice. • The cytokines KC and Mip1α were strongly correlated with Cd and BALF neutrophils.« less

  13. A Review of Cellularization Strategies for Tissue Engineering of Whole Organs

    PubMed Central

    Scarritt, Michelle E.; Pashos, Nicholas C.; Bunnell, Bruce A.

    2015-01-01

    With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented. The cell types, delivery methods, and bioreactors employed for recellularization are discussed along with commercial and clinical considerations, such as immunogenicity, biocompatibility, and Food and Drug Administartion regulation. PMID:25870857

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin

    Purpose: To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials: A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOGmore » protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results: The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions: It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics.« less

  15. Bioengineered Lungs: A Challenge and An Opportunity.

    PubMed

    Farré, Ramon; Otero, Jordi; Almendros, Isaac; Navajas, Daniel

    2018-01-01

    Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    PubMed

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  17. Recommendations of the National Heart, Lung, and Blood Institute Heart and Lung Xenotransplantation Working Group.

    PubMed

    Platt, Jeffrey; DiSesa, Verdi; Gail, Dorothy; Massicot-Fisher, Judith

    2002-08-27

    The National Heart, Lung, and Blood Institute (NHLBI) recently convened the Heart and Lung Xenotransplantation Working Group to identify hurdles to the clinical application of xenotransplantation, defined as the use of animal organs or tissue for transplantation, and to recommend possible solutions to these problems. The group consisted of experts in xenotransplantation from academia, industry, and federal agencies, and the discussions focused on those areas within the mission of the NHLBI. The areas covered included immunologic and physiological barriers to xenotransplantation, the limitations of the current animal models, the need for collaboration among groups, the high costs of studies using nonhuman primates and genetic engineering of pigs, and the unique problems of lung xenotransplantation. This report is a summary of those discussions.

  18. A 3D human tissue-engineered lung model to study influenza A infection.

    PubMed

    Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather

    2018-05-05

    Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

  19. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes

    PubMed Central

    Chen, Zhaowei; Wang, Qixin; Asmani, Mohammadnabi; Li, Yan; Liu, Chang; Li, Changning; Lippmann, Julian M.; Wu, Yun; Zhao, Ruogang

    2016-01-01

    Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment. PMID:27510174

  20. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  1. Matrix composition and mechanics of decellularized lung scaffolds.

    PubMed

    Petersen, Thomas H; Calle, Elizabeth A; Colehour, Maegen B; Niklason, Laura E

    2012-01-01

    The utility of decellularized native tissues for tissue engineering has been widely demonstrated. Here, we examine the production of decellularized lung scaffolds from native rodent lung using two different techniques, principally defined by use of either the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or sodium dodecyl sulfate (SDS). All viable cellular material is removed, including at least 99% of DNA. Histochemical staining and mechanical testing indicate that collagen and elastin are retained in the decellularized matrices with CHAPS-based decellularization, while SDS-based decellularization leads to loss of collagen and decline in mechanical strength. Quantitative assays confirm that most collagen is retained with CHAPS treatment but that about 80% of collagen is lost with SDS treatment. In contrast, for both detergent methods, at least 60% of elastin content is lost along with about 95% of native proteoglycan content. Mechanical testing of the decellularized scaffolds indicates that they are mechanically similar to native lung using CHAPS decellularization, including retained tensile strength and elastic behavior, demonstrating the importance of collagen and elastin in lung mechanics. With SDS decellularization, the mechanical integrity of scaffolds is significantly diminished with some loss of elastic function as well. Finally, a simple theoretical model of peripheral lung matrix mechanics is consonant with our experimental findings. This work demonstrates the feasibility of producing a decellularized lung scaffold that can be used to study lung matrix biology and mechanics, independent of the effects of cellular components. Copyright © 2011 S. Karger AG, Basel.

  2. In Situ Tissue Engineering Using Magnetically Guided Three-Dimensional Cell Patterning

    PubMed Central

    Grogan, Shawn P.; Pauli, Chantal; Chen, Peter; Du, Jiang; Chung, Christine B.; Kong, Seong Deok; Colwell, Clifford W.; Lotz, Martin K.; Jin, Sungho

    2012-01-01

    Manipulation of cell patterns in three dimensions in a manner that mimics natural tissue organization and function is critical for cell biological studies and likely essential for successfully regenerating tissues—especially cells with high physiological demands, such as those of the heart, liver, lungs, and articular cartilage.1,2 In the present study, we report on the feasibility of arranging iron oxide-labeled cells in three-dimensional hydrogels using magnetic fields. By manipulating the strength, shape, and orientation of the magnetic field and using crosslinking gradients in hydrogels, multi-directional cell arrangements can be produced in vitro and even directly in situ. We show that these ferromagnetic particles are nontoxic between 0.1 and 10 mg/mL; certain species of particles can permit or even enhance tissue formation, and these particles can be tracked using magnetic resonance imaging. Taken together, this approach can be adapted for studying basic biological processes in vitro, for general tissue engineering approaches, and for producing organized repair tissues directly in situ. PMID:22224660

  3. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    PubMed

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-01-12

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.

  4. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Battista, Jerry J.

    2012-03-01

    Modern radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use tightly conformed megavoltage x-ray fields to irradiate a tumour within lung tissue. For these conditions, lateral electron disequilibrium (LED) may occur, which systematically perturbs the dose distribution within tumour and nearby lung tissues. The goal of this work is to determine the combination of beam and lung density parameters that cause significant LED within and near the tumour. The Monte Carlo code DOSXYZnrc (National Research Council of Canada, Ottawa, ON) was used to simulate four 20 × 20 × 25 cm3 water-lung-water slab phantoms, which contained lung tissue only, or one of three different centrally located small tumours (sizes: 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5 cm3). Dose calculations were performed using combinations of six beam energies (Co-60 up to 18 MV), five field sizes (1 × 1 cm2 up to 15 × 15 cm2), and 12 lung densities (0.001 g cm-3 up to 1 g cm-3) for a total of 1440 simulations. We developed the relative depth-dose factor (RDDF), which can be used to characterize the extent of LED (RDDF <1.0). For RDDF <0.7 severe LED occurred, and both lung and tumour dose were drastically reduced. For example, a 6 MV (3 × 3 cm2) field was used to irradiate a 1 cm3 tumour embedded in lung with ultra-low density of 0.001 g cm-3 (RDDF = 0.2). Dose in up-stream lung and tumour centre were reduced by as much as 80% with respect to the water density calculation. These reductions were worse for smaller tumours irradiated with high energy beams, small field sizes, and low lung density. In conclusion, SBRT trials based on dose calculations in homogeneous tissue are misleading as they do not reflect the actual dosimetric effects due to LED. Future clinical trials should only use dose calculation engines that can account for electron scatter, with special attention given to patients with low lung density (i.e. emphysema). In cases where tissue inhomogeneity corrections are applied, the nature of the correction used may be inadequate in predicting the correct level of LED. In either case, the dose to the tumour is not the prescribed dose and clinical response data are uncertain. The new information from this study can be used by radiation oncologists who wish to perform advanced radiation therapy techniques while avoiding the deleterious predictable dosimetric effects of LED.

  5. Response of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, R.F.; Pickrell, J.A.; Jones, R.K.

    1988-10-01

    The effect of long-term (24 months) inhalation of diesel exhaust on the bronchoalveolar region of the respiratory tract of rodents was assessed by serial (every 6 months) analysis of bronchoalveolar lavage fluid (BALF) and of lung tissue from F344/Crl rats and CD-1 mice (both sexes) exposed to diesel exhaust diluted to contain 0, 0.35, 3.5, or 7.0 mg soot/m3. The purpose of the study was twofold. One was to assess the potential health effects of inhaling diluted exhaust from light-duty diesel engines. The second was to determine the usefulness of BALF analysis in detecting the early stages in the developmentmore » of nononcogenic lung disease and differentiating them from the normal repair processes. No biochemical or cytological changes in BALF or in lung tissue were noted in either species exposed to the lowest, and most environmentally relevant, concentration of diesel exhaust. In the two higher levels of exposure, a chronic inflammatory response was measured in both species by dose-dependent increases in inflammatory cells, cytoplasmic and lysosomal enzymes, and protein in BALF. Histologically, after 1 year of exposure, the rats had developed focal areas of fibrosis associated with the deposits of soot, while the mice, despite a higher lung burden of soot than the rats, had only a fine fibrillar thickening of an occasional alveolar septa in the high-level exposure group. Higher increases in BALF beta-glucuronidase activity and in hydroxyproline content accompanied the greater degree of fibrosis in the rat. BALF levels of glutathione (GSH) and glutathione reductase activity increased in a dose-dependent fashion and were higher in mice than in rats. Lung tissue GSH was depleted in a dose-dependent fashion in rats but was slightly increased in mice.« less

  6. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles

    PubMed Central

    Lu, Xiaoyan; Miousse, Isabelle R.; Pirela, Sandra V.; Moore, Jodene K.; Melnyk, Stepan; Koturbash, Igor; Demokritou, Philip

    2016-01-01

    Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is twofold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo; and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages, and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs. PMID:26559097

  7. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  8. The First Korean Case of Cutaneous Lung Tissue Heterotopia

    PubMed Central

    Jeon, Ga Won; Han, Seong Woo; Jung, Ji Mi; Kang, Mi Seon

    2010-01-01

    Cutaneous lung tissue heterotopia is a very rare disorder where mature lung tissues develop in the skin. This is only the second known report of cutaneous lung tissue heterotopia, with the first by Singer et al. in 1998. A newborn infant had a hemangioma-like, freely movable mass connected to the anterior aspect of the sternal manubrium. Pathologic findings showed mature lung tissues with bronchi, bronchioles, and alveoli through the dermis and subcutis, and it was diagnosed as cutaneous lung tissue heterotopia. Cutaneous lung tissue heterotopia is hypervascular, so grossly it looks like a hemangioma. It can be differentiated from pulmonary sequestration, teratoma, bronchogenic cyst, and branchial cleft cyst by histology and the location of the mass. We describe the clinical, radiologic, and pathologic findings of a cutaneous lung tissue heterotopia, the first reported in Korea. PMID:20808688

  9. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  10. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?

    PubMed

    Nigam, Sanjay K

    2013-12-01

    Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.

  11. Engineering extracellular matrix through nanotechnology.

    PubMed

    Kelleher, Cassandra M; Vacanti, Joseph P

    2010-12-06

    The goal of tissue engineering is the creation of a living device that can restore, maintain or improve tissue function. Behind this goal is a new idea that has emerged from twentieth century medicine, science and engineering. It is preceded by centuries of human repair and replacement with non-living materials adapted to restore function and cosmetic appearance to patients whose tissues have been destroyed by disease, trauma or congenital abnormality. The nineteenth century advanced replacement and repair strategies based on moving living structures from a site of normal tissue into a site of defects created by the same processes. Donor skin into burn wounds, tendon transfers, intestinal replacements into the urinary tract, toes to replace fingers are all examples. The most radical application is that of vital organ transplantation in which a vital part such as heart, lung or liver is removed from one donor, preserved for transfer and implanted into a patient dying of end-stage organ failure. Tissue engineering and regenerative medicine have advanced a general strategy combining the cellular elements of living tissue with sophisticated biomaterials to produce living structures of sufficient size and function to improve patients' lives. Multiple strategies have evolved and the application of nanotechnology can only improve the field. In our era, by necessity, any medical advance must be successfully commercialized to allow widespread application to help the greatest number of patients. It follows that business models and regulatory agencies must adapt and change to enable these new technologies to emerge. This brief review will discuss the science of nanotechnology and how it has been applied to this evolving field. We will then briefly summarize the history of commercialization of tissue engineering and suggest that nanotechnology may be of use in breeching the barriers to commercialization although its primary mission is to improve the technology by solving some remaining and vexing problems in its science and engineering aspects.

  12. Engineered cell and tissue models of pulmonary fibrosis.

    PubMed

    Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L

    2018-04-01

    Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.

  13. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  14. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    PubMed

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that aspiration is a source of the COPD lung microbiota.

  15. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  16. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    PubMed

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.

  17. Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?

    PubMed

    Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H

    2013-03-01

    Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.

  18. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies.

    PubMed

    Morin, Jean-Paul; Baste, Jean-Marc; Gay, Arnaud; Crochemore, Clément; Corbière, Cécile; Monteil, Christelle

    2013-01-01

    1.We review the specific approaches for lung tissue slices preparation and incubation systems and the research application fields in which lung slices proved to be a very efficient alternative to animal experimentation for biomechanical, physiological, pharmacological and toxicological approaches. 2.Focus is made on air-liquid interface dynamic organ culture systems that allow direct tissue exposure to complex aerosol and that best mimic in vivo lung tissue physiology. 3.A compilation of research applications in the fields of vascular and airway reactivity, mucociliary transport, polyamine transport, xenobiotic biotransformation, chemicals toxicology and complex aerosols supports the concept that precision cut lung slices are a very efficient tool maintaining highly differentiated functions similar to in vivo lung organ when kept under dynamic organ culture. They also have been successfully used for lung gene transfer efficiency assessment, for lung viral infection efficiency assessment, for studies of tissue preservation media and tissue post-conditioning to optimize lung tissue viability before grafting. 4.Taken all together, the reviewed studies point to a great interest for precision cut lung slices as an efficient and valuable alternative to in vivo lung organ experimentation.

  19. Comparison of two methods used to prepare smears of mouse lung tissue for detection of Pneumocystis carinii.

    PubMed Central

    Thomson, R B; Smith, T F; Wilson, W R

    1982-01-01

    The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088

  20. The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis

    PubMed Central

    Li, Hefei; Sun, Zhenqing; Guo, Qiang; Shi, Hongyun; Jia, Youchao

    2017-01-01

    Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients. PMID:28724602

  1. Neonatal lungs--can absolute lung resistivity be determined non-invasively?

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-07-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Conditions such as pulmonary oedema and emphysema have been shown to change lung resistivity. However, direct access to the lungs to enable resistivity to be measured is very difficult. We have developed a new method of using electrical impedance tomographic (EIT) measurements on a group of 142 normal neonates to determine the absolute resistivity of lung tissue. The methodology involves comparing the measured EIT data with that from a finite difference model of the thorax in which lung tissue resistivity can be changed. A mean value of 5.7 +/- 1.7 omega(m) was found over the frequency range 4 kHz to 813 kHz. This value is lower than that usually given for adult lung tissue but consistent with the literature on the composition of the neonatal lung and with structural modelling.

  2. Increased lipoprotein lipase activity in non-small cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Trost, Zoran; Sok, Miha; Marc, Janja; Cerne, Darko

    2009-07-01

    Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.

  3. Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers

    PubMed Central

    Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer

    2014-01-01

    Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329

  4. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jane

    The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg)more » exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII cell hypertrophy and hyperplasia and altered fibroblast function. • Increased α-SMA in CeO{sub 2}-exposed lung fibroblasts indicating myofibroblast formation. • CeO{sub 2} induced EMT in ATII cells demonstrated as increased α-SMA expression.« less

  5. Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Weiss, Daniel J.

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715

  6. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    PubMed

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.

  7. Hydroxysafflor yellow A of Carthamus tinctorius attenuates lung injury of aged rats exposed to gasoline engine exhaust by down-regulating platelet activation.

    PubMed

    Wang, Chaoyun; Wang, Chunhua; Ma, Chunlei; Huang, Qingxian; Sun, Hongliu; Zhang, Xiaomin; Bai, Xianyong

    2014-02-15

    Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Fusion of approaches to the treatment of organ failure.

    PubMed

    Ogle, Brenda; Cascalho, Marilia; Platt, Jeffrey L

    2004-01-01

    Because organ transplantation is the preferred treatment for organ failure, the demand for human organs for transplantation is large and growing. From this demand, several fields based on new technologies for the replacement or repair of damaged tissues and organs have emerged. These fields include stem cell biology, cloning, tissue engineering and xenotransplantation. Here we evaluate the potential contribution of these to the devising of alternative approaches to organ replacement. We present our vision for the development of two structurally complex organs - the lung and the kidney - based on a 'fusion' of new and established technologies.

  9. Engineering an in vitro air-blood barrier by 3D bioprinting

    PubMed Central

    Horváth, Lenke; Umehara, Yuki; Jud, Corinne; Blank, Fabian; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing. PMID:25609567

  10. Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment.

    PubMed

    Maghsoudlou, Panagiotis; Georgiades, Fanourios; Tyraskis, Athanasios; Totonelli, Giorgia; Loukogeorgakis, Stavros P; Orlando, Giuseppe; Shangaris, Panicos; Lange, Peggy; Delalande, Jean-Marie; Burns, Alan J; Cenedese, Angelo; Sebire, Neil J; Turmaine, Mark; Guest, Brogan N; Alcorn, John F; Atala, Anthony; Birchall, Martin A; Elliott, Martin J; Eaton, Simon; Pierro, Agostino; Gilbert, Thomas W; De Coppi, Paolo

    2013-09-01

    Tissue engineering of autologous lung tissue aims to become a therapeutic alternative to transplantation. Efforts published so far in creating scaffolds have used harsh decellularization techniques that damage the extracellular matrix (ECM), deplete its components and take up to 5 weeks to perform. The aim of this study was to create a lung natural acellular scaffold using a method that will reduce the time of production and better preserve scaffold architecture and ECM components. Decellularization of rat lungs via the intratracheal route removed most of the nuclear material when compared to the other entry points. An intermittent inflation approach that mimics lung respiration yielded an acellular scaffold in a shorter time with an improved preservation of pulmonary micro-architecture. Electron microscopy demonstrated the maintenance of an intact alveolar network, with no evidence of collapse or tearing. Pulsatile dye injection via the vasculature indicated an intact capillary network in the scaffold. Morphometry analysis demonstrated a significant increase in alveolar fractional volume, with alveolar size analysis confirming that alveolar dimensions were maintained. Biomechanical testing of the scaffolds indicated an increase in resistance and elastance when compared to fresh lungs. Staining and quantification for ECM components showed a presence of collagen, elastin, GAG and laminin. The intratracheal intermittent decellularization methodology could be translated to sheep lungs, demonstrating a preservation of ECM components, alveolar and vascular architecture. Decellularization treatment and methodology preserves lung architecture and ECM whilst reducing the production time to 3 h. Cell seeding and in vivo experiments are necessary to proceed towards clinical translation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer.

    PubMed

    Jin, Hyo-Eon; Farr, Rebecca; Lee, Seung-Wuk

    2014-11-01

    Collagens are over-expressed in various human cancers and subsequently degraded and denatured by proteolytic enzymes, thus making them a target for diagnostics and therapeutics. Genetically engineered bacteriophage (phage) is a promising candidate for the development of imaging or therapeutic materials for cancer collagen targeting due to its promising structural features. We genetically engineered M13 phages with two functional peptides, collagen mimetic peptide and streptavidin binding peptide, on their minor and major coat proteins, respectively. The resulting engineered phage functions as a therapeutic or imaging material to target degraded and denatured collagens in cancerous tissues. We demonstrated that the engineered phages are able to target and label abnormal collagens expressed on A549 human lung adenocarcinoma cells after the conjugation with streptavidin-linked fluorescent agents. Our engineered collagen binding phage could be a useful platform for abnormal collagen imaging and drug delivery in various collagen-related diseases. Published by Elsevier Ltd.

  12. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches.

    PubMed

    Kim, Yong Ho; Boykin, Elizabeth; Stevens, Tina; Lavrich, Katelyn; Gilmour, M Ian

    2014-11-26

    Although engineered nanomaterials (ENM) are currently regulated either in the context of a new chemical, or as a new use of an existing chemical, hazard assessment is still to a large extent reliant on information from historical toxicity studies of the parent compound, and may not take into account special properties related to the small size and high surface area of ENM. While it is important to properly screen and predict the potential toxicity of ENM, there is also concern that current toxicity tests will require even heavier use of experimental animals, and reliable alternatives should be developed and validated. Here we assessed the comparative respiratory toxicity of ENM in three different methods which employed in vivo, in vitro and ex vivo toxicity testing approaches. Toxicity of five ENM (SiO2 (10), CeO2 (23), CeO2 (88), TiO2 (10), and TiO2 (200); parentheses indicate average ENM diameter in nm) were tested in this study. CD-1 mice were exposed to the ENM by oropharyngeal aspiration at a dose of 100 μg. Mouse lung tissue slices and alveolar macrophages were also exposed to the ENM at concentrations of 22-132 and 3.1-100 μg/mL, respectively. Biomarkers of lung injury and inflammation were assessed at 4 and/or 24 hr post-exposure. Small-sized ENM (SiO2 (10), CeO2 (23), but not TiO2 (10)) significantly elicited pro-inflammatory responses in mice (in vivo), suggesting that the observed toxicity in the lungs was dependent on size and chemical composition. Similarly, SiO2 (10) and/or CeO2 (23) were also more toxic in the lung tissue slices (ex vivo) and alveolar macrophages (in vitro) compared to other ENM. A similar pattern of inflammatory response (e.g., interleukin-6) was observed in both ex vivo and in vitro when a dose metric based on cell surface area (μg/cm(2)), but not culture medium volume (μg/mL) was employed. Exposure to ENM induced acute lung inflammatory effects in a size- and chemical composition-dependent manner. The cell culture and lung slice techniques provided similar profiles of effect and help bridge the gap in our understanding of in vivo, ex vivo, and in vitro toxicity outcomes.

  13. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    PubMed Central

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said

    2012-01-01

    Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688

  14. Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J.D.; Wolff, R.K.; Kanapilly, G.M.

    The effect of ultrafine, insoluble, carrier particles on the lung retention and metabolic fate of inhaled PAHs was investigated with a radiolabeled model PAH, (/sup 3/H)benzo(a)pyrene (/sup 3/H-BaP). Fischer-344 rats were exposed (30 min) by nose-only inhalation to /sup 3/H-BaP adsorbed (approximately 0.1% by mass) onto diesel engine exhaust particles. The total mass concentration of these aerosols was 4-6 micrograms/liter of air with a mass median diameter of 0.14 micron. Lung clearance of the inhaled particle-associated /sup 3/H radioactivity occurred in two phases. The initially rapid clearance of this inhaled radiolabel had a half-time of less than 1 hr. Themore » second, long-term component of lung clearance had a half-time of 18 +/- 2 days and represented 50 +/- 2% of the /sup 3/H radioactivity that had initially deposited in lungs. In contrast, previous inhalation studies with a pure /sup 3/H-BaP aerosol showed that greater than 99% of the /sup 3/H radioactivity deposited in lungs was cleared within 2 hr after exposure. By HPLC analysis, the majority of diesel soot-associated /sup 3/H radioactivity retained in lungs was BaP (65-76%) with smaller amounts of BaP-phenol (13-17%) and BaP-quinone (5-18%) metabolites also being detected. No other metabolites of BaP were detected in lungs of exposed rats. Tissue distribution and excretion patterns of /sup 3/H radioactivity were qualitatively similar to previous inhalation studies with /sup 3/H-BaP coated Ga2O3 aerosols. These findings suggest that inhaled PAHs may be retained in lungs for a greater period of time when these compounds are associated with diesel engine exhaust particles. These results may have significant implications for the health risks that may be involved with human exposure to particle-associated organic pollutants.« less

  15. Development of decellularized scaffolds for stem cell-driven tissue engineering.

    PubMed

    Rana, Deepti; Zreiqat, Hala; Benkirane-Jessel, Nadia; Ramakrishna, Seeram; Ramalingam, Murugan

    2017-04-01

    Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Differential N-Glycosylation Patterns in Lung Adenocarcinoma Tissue

    PubMed Central

    Ruhaak, L. Renee; Taylor, Sandra L.; Stroble, Carol; Nguyen, Uyen Thao; Parker, Evan A.; Song, Ting; Lebrilla, Carlito B.; Rom, William N.; Pass, Harvey; Kim, Kyoungmi; Kelly, Karen; Miyamoto, Suzanne

    2015-01-01

    To decrease the mortality of lung cancer, better screening and diagnostic tools as well as treatment options are needed. Protein glycosylation is one of the major post-translational modifications that is altered in cancer, but it is not exactly clear which glycan structures are affected. A better understanding of the glycan structures that are differentially regulated in lung tumor tissue is highly desirable and will allow us to gain greater insight into the underlying biological mechanisms of aberrant glycosylation in lung cancer. Here, we assess differential glycosylation patterns of lung tumor tissue and nonmalignant tissue at the level of individual glycan structures using nLC–chip–TOF–MS. Using tissue samples from 42 lung adenocarcinoma patients, 29 differentially expressed (FDR < 0.05) glycan structures were identified. The levels of several oligomannose type glycans were upregulated in tumor tissue. Furthermore, levels of fully galactosylated glycans, some of which were of the hybrid type and mostly without fucose, were decreased in cancerous tissue, whereas levels of non- or low-galactosylated glycans mostly with fucose were increased. To further assess the regulation of the altered glycosylation, the glycomics data was compared to publicly available gene expression data from lung adenocarcinoma tissue compared to nonmalignant lung tissue. The results are consistent with the possibility that the observed N-glycan changes have their origin in differentially expressed glycosyltransferases. These results will be used as a starting point for the further development of clinical glycan applications in the fields of imaging, drug targeting, and biomarkers for lung cancer. PMID:26322380

  17. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  18. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jane Y., E-mail: jym1@cdc.gov; Mercer, Robert R.; Barger, Mark

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophagesmore » (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis. ► Cerium oxide particles were detected in lung tissue and AM. ► Cerium oxide caused lung fibrosis in a dose- and time-dependent manner.« less

  19. Detection of reactive oxygen metabolites in malignant and adjacent normal tissues of patients with lung cancer.

    PubMed

    Okur, Hacer Kuzu; Yuksel, Meral; Lacin, Tunc; Baysungur, Volkan; Okur, Erdal

    2013-01-17

    Different types of reactive oxygen metabolites (ROMs) are known to be involved in carcinogenesis. Several studies have emphasized the formation of ROMs in ischemic tissues and in cases of inflammation. The increased amounts of ROMs in tumor tissues can either be because of their causative effects or because they are produced by the tumor itself. Our study aimed to investigate and compare the levels of ROMs in tumor tissue and adjacent lung parenchyma obtained from patients with lung cancer. Fifteen patients (all male, mean age 63.6 ± 9 years) with non-small cell lung cancer were enrolled in the study. All patients were smokers. Of the patients with lung cancer, twelve had epidermoid carcinoma and three had adenocarcinoma. During anatomical resection of the lung, tumor tissue and macroscopically adjacent healthy lung parenchyma (control) that was 5 cm away from the tumor were obtained. The tissues were freshly frozen and stored at -20°C. The generation of ROMs was monitored using luminol- and lucigenin-enhanced chemiluminescence (CL) techniques. Both luminol (specific for (.)OH, H(2)O(2), and HOCl(-)) and lucigenin (selective for O(2)(.)(-)) CL measurements were significantly higher in tumor tissues than in control tissues (P <0.001). Luminol and lucigenin CL measurements were 1.93 ± 0.71 and 2.5 ± 0.84 times brighter, respectively, in tumor tissues than in the adjacent parenchyma (P = 0.07). In patients with lung cancer, all ROM levels were increased in tumor tissues when compared with the adjacent lung tissue. Because the increase in lucigenin concentration, which is due to tissue ischemia, is higher than the increase in luminol, which is directly related to the presence and severity of inflammation, ischemia may be more important than inflammation for tumor development in patients with lung cancer.

  20. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.

    PubMed

    Evans, R M; Scholz, R W

    1977-04-01

    Incorporation of tritiated water into fatty acids by rat adipose tissue and lung tissue slices incubated with 5 mM glucose indicated a level of fatty acid synthesis in rat lung approximately 15% that observed in adipose tissue in vitro. (-)-Hydroxycitrate, and inhibitor of ATP citrate lyase, markedly reduced tritiated water incorporation into fatty acids by lung tissue slices. The effects of (-)-hydroxycitrate and n-butymalonate on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate suggested that citrate is a major acetyl carrier for de novo fatty acid synthesis in lung tissue. Alternative mechanisms to citrate as an acetyl carrier were also considered. Lung mitochondrial preparations formed significant levels of acetylcarnitine in the presence of pyruvate and carnitine. However, the effect of carnitine on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate into fatty acids by lung tissue slices indicated that acetylcarnitine may not be a significant acetyl carrier for fatty acid synthesis but may serve as an acetyl "buffer" in the control of mitochondrial acetyl-CoA levels. Additionally, it appears unlikely that either acetylaspartate or acetoacetate are of major importance in acetyl transfer in lung tissue.

  1. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.

    2011-09-01

    We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.

  2. Noninvasive Tissue Characterization of Lung Tumors Using Integrated Backscatter Intravascular Ultrasound: An Ex Vivo Comparative Study With Pathological Diagnosis.

    PubMed

    Ito, Fumitaka; Kawasaki, Masanori; Ohno, Yasushi; Toyoshi, Sayaka; Morishita, Megumi; Kaito, Daizo; Yanase, Komei; Funaguchi, Norihiko; Asano, Masahiro; Endo, Junki; Mori, Hidenori; Kobayashi, Kazuhiro; Nishigaki, Kazuhiko; Miyazaki, Tatsuhiko; Takemura, Genzou; Minatoguchi, Shinya

    2016-05-01

    Endobronchial ultrasonography (EBUS) facilitates a lung cancer diagnosis. However, qualitative tissue characterization of lung tumors is difficult using EBUS. Integrated backscatter (IBS) is an ultrasound technique that calculates the power of the ultrasound signal to characterize tissue components in coronary arteries. We hypothesized that qualitative diagnosis of lung tumors is possible using the IBS technique. The aim of the present study was to elucidate whether the IBS technique can be used in lung tissue diagnoses. Thirty-five consecutive patients who underwent surgery for lung cancer were prospectively enrolled. Surgical specimens of the lung and the tumor tissue were obtained, and the IBS values were measured within 48 h after surgery. Histologic images of lung and tumor tissues were compared with IBS values, and the relative interstitial area according to results of Masson's trichrome staining were determined by using an imaging processor. The IBS values in tumor tissue were significantly lower than those in normal lung tissue (-50.9 ± 2.6 dB and -47.6 ± 2.6 dB, respectively; P < .001). The IBS values of adenocarcinomas associated with a good 5-year survival rate were higher than those of non-adenocarcinomas (-48.1 ± 1.6 dB and -52.6 ± 1.4 dB; P < .001). There were significant correlations between the IBS values and the relative interstitial area or micro air area in tumor (r = 0.53 and r = 0.67; P < .01). After combining normal lung tissue and adenocarcinomas with a good prognosis, the sensitivity and specificity for establishing the presence of lung tumors were 84% and 85%. Qualitative diagnosis of lung tumors was possible, with a sensitivity of 84% and a specificity of 85%, using the ultrasound IBS technique. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  4. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    PubMed

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  5. PIXE analysis of mineral matter in thin sections of human lung

    NASA Astrophysics Data System (ADS)

    Annegarn, H. J.; Pillay, A. E.; Da Vies, J. C. A.; Faure, D.; Sellschop, J. P. F.

    1988-12-01

    It is postulated that insoluble mineral residues in the lungs of deceased miners may provide a quantitative measure of the integrated lifetime dust exposure. For epidemiological surveys rapid instrumental techniques are required to analyse representative samples of lung tissue. Particle-induced X-ray emission (PIXE) has been evaluated for analysis of microtomed slices of wax-embedded lung and lymph node (Hilar gland) tissue from deceased miners. The 50 μm slices, mounted on Mylar backings and placed in a He atmosphere, were irradiated using 3.2 MeV protons. PIXE analysis provided adequate sensitivity for key mineral elements including Si, Cr and Ti. The porous, nonuniform nature of lung tissue made it impossible to measure the tissue mass in the irradiated area, preventing the calculation of mass concentrations. Instead, biological sulphur was used as an internal standard, assuming that the fraction of S in soft, fat-free tissue is constant. Results are presented for lung and lymph node tissue from gold, chrome, copper, platinum and asbestos miners. Si mineral residues in lymph node tissue were found to be concentrated by a factor 50 relative to lung. Cr residues were clearly observed in the chrome miner's lung, but no excess of Cu was present in the copper miner's lung. There is evidence of preferential Si removal relative to Ti. Results warrant further development of PIXE for scanning of large numbers of lung samples prepared in the above manner.

  6. Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies.

    PubMed

    Love, Ryan J; Jones, Kim S

    2009-01-01

    All biomaterials, when implanted into the body, elicit an inflammatory response that evolves into fibrovascular tissue formation on and around the material. As a result, material scientists and tissue engineers should be concerned about host response to tissue-engineered constructs that have a biomaterial component, because the host response to this component will interfere with device function and reduce the lifespan of tissue engineering devices in vivo. The fibrotic response to biomaterials is not unlike pathological fibrosis of the liver, lung, kidney, and peritoneum in many ways: i) the presence of mononuclear leukocytes are common in the local environment of both pathological fibrosis and biomaterial-induced fibrosis even though cells of mesenchymal origin are responsible for laying the majority of the extracellular matrix; ii) paracrine-signaling molecules, such as transforming growth factor beta;1, are essential mediators of fibrosis, whether it is pathological or biomaterial induced; and iii) injury and/or the presence of foreign materials (including bacterial components, toxins, or man-made objects) are essential initiators for the development of the fibrotic response. This review discusses mechanisms and research methodology related to pathological fibrosis that is of interest to researchers focused on biomaterials. Potential research models for the study of fibrosis from the fields of biomaterials and drug delivery are also discussed, which may be of interest to scientists working on the pathology of fibrotic disease.

  7. Alternative Splicing and Tissue-specific Elastin Misassembly Act as Biological Modifiers of Human Elastin Gene Frameshift Mutations Associated with Dominant Cutis Laxa*

    PubMed Central

    Sugitani, Hideki; Hirano, Eiichi; Knutsen, Russell H.; Shifren, Adrian; Wagenseil, Jessica E.; Ciliberto, Christopher; Kozel, Beth A.; Urban, Zsolt; Davis, Elaine C.; Broekelmann, Thomas J.; Mecham, Robert P.

    2012-01-01

    Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway. PMID:22573328

  8. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    PubMed Central

    Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T

    2017-01-01

    Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715

  9. [Changes and role evaluation of TNF-α and IL-1β in lung tissues of ARDS mice].

    PubMed

    Liang, Jianing; Zhou, Qianqian; Zhang, Tianxiang; Wang, Xiaosu; Song, Liqiang

    2017-02-01

    Objective To study the expression levels of TNF-α and IL-1β in the lung tissues of acute respiratory distress syndrome (ARDS) mice and their relationships with the severity of lung injury in the mice. Methods A mouse model of ARDS was induced by lipopolysaccharide (LPS). The morphological changes of lung tissue was observed by HE staining, and the lung injury score was calculated. Quantitative real-time PCR was employed to detect the mRNA expression levels of TNF-α and IL-1β in lung tissues and ELISA was performed to test the protein levels of TNF-α and IL-1β in bronchoalveolar lavage fluid (BALF). Results Compared with the control group, the alveolar and interstitial tissue structure of ARDS model mice was impaired and filled with inflammatory cells. The lung injury score of ARDS model mice reached the peak at the third day. The mRNA levels of TNF-α and IL-1β in lung tissues of ARDS mice significantly increased, and respectively peaked at 30 minutes and 6 hours after LPS instillation. Simultaneously, the levels of TNF-α and IL-1β in BALF of ARDS mice significantly increased, and the tendency was consistent with mRNA levels in lung tissues. Conclusion LPS-induced lung injury and the expression levels of TNF-α and IL-1β in ARDS mice showed a similar "hump-like" increase over time. The high values of inflammatory mediators appeared before the peak of lung injury, which indicated that these inflammatory cytokines played an important role in the development of ARDS-caused inflammatory injury.

  10. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span

    PubMed Central

    Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali

    2017-01-01

    Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385

  11. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids.

    PubMed

    Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R

    2016-09-28

    Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.

  12. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  13. Combined enzyme/prodrug treatment by genetically engineered AT-MSC exerts synergy and inhibits growth of MDA-MB-231 induced lung metastases.

    PubMed

    Matuskova, Miroslava; Kozovska, Zuzana; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Cierna, Zuzana; Bohovic, Roman; Kucerova, Lucia

    2015-04-09

    Metastatic spread of tumor cells remains a serious problem in cancer treatment. Gene-directed enzyme/prodrug therapy mediated by tumor-homing genetically engineered mesenchymal stromal cells (MSC) represents a promising therapeutic modality for elimination of disseminated cells. Efficacy of gene-directed enzyme/prodrug therapy can be improved by combination of individual systems. We aimed to define the combination effect of two systems of gene therapy mediated by MSC, and evaluate the ability of systemically administered genetically engineered mesenchymal stromal cells to inhibit the growth of experimental metastases derived from human breast adenocarcinoma cells MDA-MB-231/EGFP. Human adipose tissue-derived mesenchymal stromal cells (AT-MSC) were retrovirally transduced with fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT) or with Herpes simplex virus thymidine kinase (HSVtk). Engineered MSC were cocultured with tumor cells in the presence of prodrugs 5-fluorocytosin (5-FC) and ganciclovir (GCV). Combination effect of these enzyme/prodrug approaches was calculated. SCID/bg mice bearing experimental lung metastases were treated with CD::UPRT-MSC, HSVtk-MSC or both in combination in the presence of respective prodrug(s). Treatment efficiency was evaluated by EGFP-positive cell detection by flow cytometry combined with real-time PCR quantification of human cells in mouse organs. Results were confirmed by histological and immunohistochemical examination. We demonstrated various extent of synergy depending on tested cell line and experimental setup. The strongest synergism was observed on breast cancer-derived cell line MDA-MB-231/EGFP. Systemic administration of CD::UPRT-MSC and HSVtk-MSC in combination with 5-FC and GCV inhibited growth of MDA-MB-231 induced lung metastases. Combined gene-directed enzyme/prodrug therapy mediated by MSC exerted synergic cytotoxic effect and resulted in high therapeutic efficacy in vivo.

  14. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  15. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    PubMed

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  16. EFFECTS OF PERTUSSIS SENSITIZATION AND ROENTGEN IRRADIATION ON THE ADRENAL GLANDS OF RATS AND MICE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.

    1962-10-01

    Histaminase activity was estimated by the coupled oxidation and deamination method in lung tissue from rats and mice followrng adrenal gland x irradiation, sensitization with B. pertussis, or pertussis sensitization followed by adrenal gland irradiation. Histamine activity was greatly reduced in lung tissue from animals sensitized with pertussis followed by adrenal irradiation, moderately reduced in lung tissue from pertussis sensitized animals, and slightly decreased in lung tissue from the adrenal irradiated group. The activity of succinoxidose and monoamine oxidose in lung tissue was not affected by either adrenal irradiation or pertussis sensitization. The possibility that steroid hormone balance may bemore » affected by disturbance of the adrenal glands in animals sensitized with pertussis is discussed. (C.H.)« less

  17. Dynamic OCT monitoring and quantification of light penetration enhancement for normal, benign and cancerous human lung tissues at different concentrations of glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu-wen Tan; Ying Jin; Hui Yu

    2013-10-31

    We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less

  18. Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.

    PubMed

    Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K

    2015-05-20

    In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.

  19. Protective effects of aerobic exercise on acute lung injury induced by LPS in mice

    PubMed Central

    2012-01-01

    Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI. PMID:23078757

  20. Infrared Spectroscopy in Cancer Diagnosis and Chemotherapy Monitoring

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Bel'kov, M. V.; Skornyakov, I. V.; Butra, V. A.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, N. I.; Kutsenko, I. P.; Sharykina, N. I.

    2014-07-01

    We demonstrate that IR spectroscopic analysis can be used in diagnosis and chemotherapy monitoring for cancers of various organs at the molecular level. We used Fourier transform IR spectroscopy to study human breast and thyroid tumor tissues which were removed during surgery. The characteristic frequencies of C = O stretching vibrations in the IR spectra of tissues of pathological foci were compared with data from histological examination. In the IR spectra of healthy tissues or for benign tumors, the most intense absorption bands ν(C = O) are located in the interval 1675-1650 cm-1. When malignant neoplasms are present in the organs, the intensity of the bands in this range of the spectrum is reduced, while the intensities of the absorption bands in the 1710-1680 cm-1 interval increase. We also studied lung tissue for mice of the C57B1/6 line for healthy tissue and after implantation of B-16 melanoma tumor. The IR spectra of healthy mouse lung tissue and mouse lung tissue with B-16 melanoma metastases in the region of the C = O stretching vibrations display the same differences. We found that when lung malignancy was treated with the optimal dose of a synthesized drug based on palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lungs disappear, and the IR spectrum of the lung tissue after treatment practically coincides with the spectrum of healthy lung tissue.

  1. Solid organ fabrication: comparison of decellularization to 3D bioprinting.

    PubMed

    Jung, Jangwook P; Bhuiyan, Didarul B; Ogle, Brenda M

    2016-01-01

    Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.

  2. Mapping cardiogenic oscillations using synchrotron-based phase contrast CT imaging

    NASA Astrophysics Data System (ADS)

    Thurgood, Jordan; Dubsky, Stephen; Siu, Karen K. W.; Wallace, Megan; Siew, Melissa; Hooper, Stuart; Fouras, Andreas

    2012-10-01

    In many animals, including humans, the lungs encase the majority of the heart thus the motion of each organ affects the other. The effects of the motion of the heart on the lungs potentially provides information with regards to both lung and heart health. We present a novel technique that is capable of measuring the effect of the heart on the surrounding lung tissue through the use of advanced synchrotron imaging techniques and recently developed X-ray velocimetry methods. This technique generates 2D frequency response maps of the lung tissue motion at multiple projection angles from projection X-ray images. These frequency response maps are subsequently used to generate 3D reconstructions of the lung tissue exhibiting motion at the frequency of ventilation and the lung tissue exhibiting motion at the frequency of the heart. This technique has a combined spatial and temporal resolution sufficient to observe the dynamic and complex 3D nature of lung-heart interactions.

  3. Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.

    2012-07-01

    We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.

  4. WE-FG-206-07: Assessing the Lung Function of Patients with Non-Small Cell Lung Cancer Using Hyperpolarized Xenon-129 Dissolved-Phase MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qing, K; Mugler, J; Chen, Q

    Purpose: Hyperpolarized xenon-129 dissolved-phase MRI is the first imaging technique that allows 3-dimensional regional mapping of ventilation and gas uptake by tissue and blood the in human lung. Multiple outcome measures can be produced from this method. Existing studies in subjects with major lung diseases compared to healthy controls demonstrated high sensitivities of this method to pulmonary physiological factors including ventilation, alveolar tissue density, surface-to-volume ratio, pulmonary perfusion and gas-blood barrier thickness. The purpose of this study is to evaluate the utility of this new imaging tool to assess the lung function in patients with non-small cell lung cancer (NSCLC).more » Methods: Ten healthy controls (age: 63±10) and five patients (age: 62±13) with NSCLC underwent the xenon-129 dissolved-phase MRI, pulmonary function test (PFT) and CT for clinical purpose. Three outcome measures were produced from xenon-129 dissolved-phase MRI, including ventilation defect fraction (Vdef%) reflecting the airflow obstruction, tissue-to-gas ratio reflecting lung tissue density, and RBC-to-tissue ratio reflecting pulmonary perfusion and gas exchange. Results: Compared to healthy controls, patients with NSCLC showed more ventilation defects (NSCLC: 22±6%; control: 40±18%; P=0.01), lower tissue-to-gas (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.05) and RBC-to-tissue ratios (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.01). Maps for ventilation and gas uptake by tissue and blood were highly heterogeneous in the lungs of patients. Vdef% and RBC-to-tissue ratios in all 15 subjects correlated with corresponding global lung functional measures from PFT: FEV1/FVC (R=−0.91, P<0.001) and DLCO % predicted (R=0.54, P=0.03), respectively. The tissue-to-gas ratios correlated with tissue density (HU) measured by CT (R=0.88, P<0.001). Conclusion: With the unique ability to provide detailed information about lung function including ventilation, tissue density, perfusion and gas exchange with 3D resolution, hyperpolarized xenon-129 dissolved-phase MRI has high potential to be used as an important reference for radiotherapy treatment planning and for evaluating the side effects of the treatment. Receive research support and funding from Siemens.« less

  5. [Effects of sodium aescinate on the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion in rats].

    PubMed

    Wang, Yan-Lei; Jing, You-Ling; Cai, Qing-Yan; Cui, Guo-Jin; Zhang, Yi-Bing; Zhang, Feng-Yu

    2012-03-01

    To investigate the relationship between apoptosis-related genes and lung injury induced by intestinal ischemia reperfusion and to explore the effects and its possible mechanism of sodium aescinate. Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: sham group, intestinal ischemia/reperfusion group (I/R group) and sodium aescinate group (SA + I/R group). Lung wet/dry weight ratio, lung coefficient and Superoxide dismutase (SOD), malondialdehyde (MDA) in plasma and lung tissue were measured, as well as the expression levels of Bcl-2 and Bax proteins in lung tissue were examined using immunohistochemical method. Compared with sham group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly increased, and while the activity of SOD in plasma and lung tissue were decreased significantly in I/R group. At the same time, the protein expression level of Bcl-2 and Bax were significantly increased. But Bax protein expression was much greater than that of Bcl-2, the ratio of Bcl-2 to Bax was decreased significantly in I/R group than that in sham group. Compared with I/R group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly decreased, and while the activity of SOD in serum and lung tissue were significantly increased in SA + I/R group. At the same time, Bax protein expression was significantly decreased, both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SA + I/R group than that in I/R group. Lung injury induced by intestinal ischemia reperfusion is correlated with abnormal expression levels of Bcl-2 and Bax protein which is caused by oxidative injury. Sodium aescinate can protect the lung injury induced by intestinal ischemia/reperfusion (I/R), which may be mediated by inhibiting lipid peroxidation, upregulating Bcl-2 gene protein expression, improving the ratio of Bcl-2/ Bax to inhibit lung apoptosis.

  6. Histopathology of lung disease in the connective tissue diseases.

    PubMed

    Vivero, Marina; Padera, Robert F

    2015-05-01

    The pathologic correlates of interstitial lung disease (ILD) secondary to connective tissue disease (CTD) comprise a diverse group of histologic patterns. Lung biopsies in patients with CTD-associated ILD tend to demonstrate simultaneous involvement of multiple anatomic compartments of the lung. Certain histologic patterns tend to predominate in each defined CTD, and it is possible in many cases to confirm connective tissue-associated lung disease and guide patient management using surgical lung biopsy. This article will cover the pulmonary pathologies seen in rheumatoid arthritis, systemic sclerosis, myositis, systemic lupus erythematosus, Sjögren syndrome, and mixed CTD. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Contralateral pulmonary metastases in lung cancer

    PubMed Central

    Onuigbo, Wilson I. B.

    1974-01-01

    Onuigbo, W. I. B. (1974).Thorax, 29, 132-133. Contralateral pulmonary metastases in lung cancer. It has long been known that lung cancer may attack many organs and yet spare the opposite lung. In 100 cases of this tumour studied at necropsy, only 22 showed contralateral pulmonary spread. Contralateral deposits are generally small and may be related to damaged tissues. Although tissue unsuitability is supposed to underlie the limitation of metastases in recipient organs, this does not apply to the contralateral lung. Since lung tissue is readily accessible to bloodborne cancer cells, research should be directed towards explaining the paradoxical paucity of the metastases. PMID:4825544

  8. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.

    PubMed

    Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W

    1997-05-01

    We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.

  9. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids

    PubMed Central

    Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R

    2016-01-01

    Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847

  10. Decay-Accelerating Factor Mitigates Controlled Hemorrhage-Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine

    DTIC Science & Technology

    2011-07-01

    Decay-Accelerating Factor Mitigates Controlled Hemorrhage- Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine Jurandir J. Dalle...DAF treatment improved hemorrhage- induced hyperkalemia . The protective effects of DAF appear to be related to its ability to reduce tissue complement...Decay-accelerating factor mitigates controlled hemorrhage-instigated intestinal and lung tissue damage and hyperkalemia in swine 5a. CONTRACT NUMBER

  11. Usage of density analysis based on micro-CT for studying lung injury associated with burn-blast combined injury.

    PubMed

    Chang, Yang; Zhang, Dong-Hai; Hu, Quan; Liu, Ling-Ying; Yu, Yong-Hui; Chai, Jia-Ke

    2018-02-12

    Burn-blast combined injury is a kind of injury caused by heat and blast at the same time. The lung injury after burn-blast combined injuries is of primary importance, and investigation of lung injury is needed in the clinical care of patients. Computed tomography (CT) is one of the standard tools used to observe the anatomical basis and pathophysiology of acute lung injury. We applied a method of fast 3D (three-dimensional) reconstruction to calculate the density value of the lung injury by CT analysis. Blast-injury group (BL group), burn-injury group (B group), burn-blast combined injury group (BBL group), and sham control group (C group) were established. Each group had 16 rats. The three-dimensional images of the lung tissue were obtained at 6h, 24h, and 48h according to the CT value. The average density of the whole lung, left lung, and right lung were measured. The lung tissues were paraffin-embedded and HE stained. Smith scoring was performed according to the pathological findings. In the BBL group, the density of the lung tissue was higher than those of the BL group and B group (P<0.01). The lung tissue density values at 24h after injury were higher than those at 6h and 48h after injury (P<0.01). Pathological results confirmed the changes of density analysis of the lung tissue. The results have indicated that density analysis through a CT scan can be used as a way to evaluate lung injury in a burn-blast injury. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  12. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology

    PubMed Central

    Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias

    2013-01-01

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542

  13. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  14. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less

  15. Revascularization of decellularized lung scaffolds: principles and progress

    PubMed Central

    Stabler, Collin T.; Lecht, Shimon; Mondrinos, Mark J.; Goulart, Ernesto; Lazarovici, Philip

    2015-01-01

    There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs. PMID:26408553

  16. 3D Printing of Human Tissue Mimics via Layer-by-Layer Assembly of Polymer/Hydrogel Biopapers

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2015-03-01

    The foundations of tissue engineering were built on two fundamental areas of research: cells and scaffolds. Multipotent cells and their derivatives are traditionally randomly seeded into sophisticated polymer or hydrogel scaffolds, ultimately with the goal of forming a tissue-like material through cell differentiation and cell-material interactions. One problem with this approach is that no matter how complex or biomimetic the scaffold is, the cells are still homogeneously distributed throughout this three dimensional (3D) material. Natural tissue is inherently heterogeneous on both a microscopic and macroscopic level. It also contains different types of cells in close proximity, extracellular matrix, voids, and a complex vascularized network. Recently developed 3D cell and organ printers may be able to enhance traditional tissue engineering experiments by building scaffolds layer-by-layer that are crafted to mimic the microscopic and macroscopic structure of natural tissue or organs. Over the past decade, my laboratory has developed a capillary-free, live cell printer termed biological laser printing, or BioLP. We find that printed cells do not express heat shock protein and retain >99% viability. Printed cells also incur no DNA strand fracture and preserve their ability to differentiate. Recent work has used a layer-by-layer approach, stacking sheets of hybrid polymer/hydrogel biopapers in conjunction with live cell printing to create 3D tissue structures. Our specific work is now focused on the blood-brain-barrier and air-lung interface and will be described during the presentation.

  17. Metabolism of phenylethylamine in rat isolated perfused lung: evidence for monoamine oxidase 'type B' in lung.

    PubMed Central

    Bakhle, Y S; Youdim, M B

    1976-01-01

    Phenylethylamine is inactivated in a single passage through rat lung tissue by a process of uptake and deamination by a monoamine oxidase 'type B'. This enzyme is particularly susceptible to inhibition by deprenil and less sensitive to clorgyline. The monoamine oxidase of the lung, like that of other rat tissues, can be differentiated into 'type A' and 'type B' which appear to operate independently in the organized tissue. PMID:1252659

  18. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Role of Mitochondria in Prostate Cancer

    DTIC Science & Technology

    2006-12-01

    any tissue other than liver and those having some form of hepatocellular carcinoma (see Table 1). In all cases liver tissues obtained were extracted... carcinoma , lung carcinoma 51 Nodules in the spleen, liver and lungs; lymphoma 52 Hepatocellular carcinoma 54 Wild type 56 Dysplasia, early... hepatocellular carcinoma 58 Wild type 60 Enlarged spleen, lung tumor, lymphoma 61 Lung tumor, lymphoma, carcinoid 66 Enlarged spleen, lung tumors

  20. Preanalytics in lung cancer.

    PubMed

    Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko

    2015-01-01

    Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.

  1. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  2. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    NASA Astrophysics Data System (ADS)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  3. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  4. Circular RNA profiles in mouse lung tissue induced by radon.

    PubMed

    Pei, Weiwei; Tao, Lijing; Zhang, Leshuai W; Zhang, Shuyu; Cao, Jianping; Jiao, Yang; Tong, Jian; Nie, Jihua

    2017-04-07

    Radon is a known human lung carcinogen, whose underlying carcinogenic mechanism remains unclear. Recently, circular RNA (circRNA), a class of endogenous non-protein coding RNAs that contain a circular loop, was found to exhibit multiple biological effects. In this study, circRNA profiles in mouse lung tissues between control and radon exposure were analyzed. Six mice were exposed to radon at concentration of 100,000 Bq/m 3 , 12 h/d, for up to cumulative doses of 60 working level months (WLM). H&E staining and immunohistochemistry of caspase-3 were used to detect the damages in lung tissue. The lung tissue of control and exposed group were selected for circRNA microarray study. The circRNA/microRNA interaction was analyzed by starBase prediction software. 5 highest expressing circRNAs were selected by real-time PCR to validate the consistency in mouse lung tissue exposed to radon. Inflammatory reaction was found in mouse lung tissue exposed to radon, and caspase-3 expression was significantly increased. Microarray screening revealed 107 up-regulated and 83 down-regulated circRNAs, among which top 30 circRNAs with the highest fold changes were chosen for further analysis, with 5 microRNAs binding sites listed for each circRNA. Consistency of the top 5 circRNAs with the highest expressions were confirmed in mice exposed with 60WLM of radon. Mouse lung tissue was severely injured when exposed to radon through pathological diagnosis and immunohistochemical analysis. A series of differentially expressed circRNAs demonstrated that they may play an important role in pulmonary toxicity induced by radon.

  5. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    PubMed

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  6. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats

    PubMed Central

    YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG

    2016-01-01

    Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989

  7. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    PubMed Central

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-01-01

    ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of α-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia. PMID:26398950

  8. Molecular mechanisms underlying variations in lung function: a systems genetics analysis

    PubMed Central

    Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D

    2016-01-01

    Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118

  9. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751; Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissuesmore » that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron increased the levels of IL-1β, IL-6 and TNF-α in lung tissues at high altitudes. • Trolox alleviated the iron-induced histological and biochemical changes to the lungs.« less

  10. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome

    PubMed Central

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D.

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aorta wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1mgR/mgR mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy (AFM) was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1mgR/mgR tissues, whereas the media layer of mutant aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, mutant mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS. PMID:27090893

  11. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    PubMed

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  12. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  13. Effects of HIFU induced cavitation on flooded lung parenchyma.

    PubMed

    Wolfram, Frank; Dietrich, Georg; Boltze, Carsten; Jenderka, Klaus Vitold; Lesser, Thomas Günther

    2017-01-01

    High intensity focused ultrasound (HIFU) has gained clinical interest as a non-invasive local tumour therapy in many organs. In addition, it has been shown that lung cancer can be targeted by HIFU using One-Lung Flooding (OLF). OLF generates a gas free saline-lung compound in one lung wing and therefore acoustic access to central lung tumours. It can be assumed that lung parenchyma is exposed to ultrasound intensities in the pre-focal path and in cases of misguiding. If so, cavitation might be induced in the saline fraction of flooded lung and cause tissue damage. Therefore this study was aimed to determine the thresholds of HIFU induced cavitation and tissue erosion in flooded lung. Resected human lung lobes were flooded ex-vivo. HIFU (1,1 MHz) was targeted under sonographic guidance into flooded lung parenchyma. Cavitation events were counted using subharmonic passive cavitation detection (PCD). B-Mode imaging was used to detect cavitation and erosion sonographically. Tissue samples out of the focal zone were analysed histologically. In flooded lung, a PCD and a sonographic cavitation detection threshold of 625  Wcm - 2 ( p r  = 4, 3  MPa ) and 3.600  Wcm - 2 ( p r  = 8, 3  MPa ) was found. Cavitation in flooded lung appears as blurred hyperechoic focal region, which enhances echogenity with insonation time. Lung parenchyma erosion was detected at intensities above 7.200  Wcm - 2 ( p r  = 10, 9  MPa ). Cavitation occurs in flooded lung parenchyma, which can be detected passively and by B-Mode imaging. Focal intensities required for lung tumour ablation are below levels where erosive events occur. Therefore focal cavitation events can be monitored and potential risk from tissue erosion in flooded lung avoided.

  14. Essential tactics of tissue preparation and matrix nano-spotting for successful compound imaging mass spectrometry.

    PubMed

    Végvári, Akos; Fehniger, Thomas E; Gustavsson, Lena; Nilsson, Anna; Andrén, Per E; Kenne, Kerstin; Nilsson, Johan; Laurell, Thomas; Marko-Varga, György

    2010-04-18

    The ultimate goal of MALDI-Imaging Mass Spectrometry (MALDI-IMS) is to achieve spatial localization of analytes in tissue sections down to individual tissue compartments or even at the level of a few cells. With compound tissue imaging, it is possible to track the transportation of an unlabelled, inhaled reference compound within lung tissue, through the application of MALDI-IMS. The procedure for isolation and preparation of lung tissues is found to be crucial in order to preserve the anatomy and structure of the pulmonary compartments. To avoid delocalization of analytes within lung tissue compartments we have applied an in-house designed nano-spotter, based on a microdispenser mounted on an XY table, of which movement and spotting functionality were fully computer controlled. We demonstrate the usefulness of this platform in lung tissue sections isolated from rodent in vivo model, applied to compound tissue imaging as exemplified with the determination of the spatial distribution of (1alpha,2beta,4beta,7beta)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0(2,4)]nonane, also known as tiotropium. We provide details on tissue preparation protocols and sample spotting technology for successful identification of drug in mouse lung tissue by using MALDI-Orbitrap instrumentation. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Diesel engine exhaust and lung cancer: an unproven association.

    PubMed Central

    Muscat, J E; Wynder, E L

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093

  16. Technical Advance: Live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung

    PubMed Central

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-01-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587

  17. Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung

    PubMed Central

    Numata, Mari; Grinkova, Yelena V; Mitchell, James R; Chu, Hong Wei; Sligar, Stephen G; Voelker, Dennis R

    2013-01-01

    There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV) infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG). Preparations of nanodiscs containing POPG (nPOPG) antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 μg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a halftime of 60–120 minutes (m), based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo. PMID:23717040

  18. Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs.

    PubMed

    Jin, Yun; Ai, Junhua; Shi, Jun

    2015-01-01

    Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.

  19. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer.

    PubMed

    Son, Yeonghoon; Lee, Hae June; Rho, Jin Kyung; Chung, Soo Young; Lee, Chang Geun; Yang, Kwangmo; Kim, Sung Ho; Lee, Minyoung; Shin, In Sik; Kim, Joong Sun

    2015-07-05

    Silibinin has been known for its role in anti-cancer and radio-protective effect. Radiation therapy for treating lung cancer might lead to late-phase pulmonary inflammation and fibrosis. Thus, this study aimed to investigate the effects of silibinin in radiation-induced lung injury with a mouse model. In this study, we examined the ability of silibinin to mitigate lung injury in, and improve survival of, C57BL/6 mice given 13 Gy thoracic irradiation and silibinin treatments orally at 100 mg/kg/day for seven days after irradiation. In addition, Lewis lung cancer (LLC) cells were injected intravenously in C57BL/6 mice to generate lung tumor nodules. Lung tumor-bearing mice were treated with lung radiation therapy at 13 Gy and with silibinin at a dose of 100 mg/day for seven days after irradiation. Silibinin was shown to increase mouse survival, to ameliorate radiation-induced hemorrhage, inflammation and fibrosis in lung tissue, to reduce the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and to reduce inflammatory cell infiltration in the respiratory tract. In LLC tumor injected mice, lung tissue from mice treated with both radiation and silibinin showed no differences compared to lung tissue from mice treated with radiation alone. Silibinin treatment mitigated the radiation-induced lung injury possibly by reducing inflammation and fibrosis, which might be related with the improved survival rate. Silibinin might be a useful agent for lung cancer patients as a non-toxic complementary approach to alleviate the side effects by thorax irradiation.

  20. [Association of Inorganics Accumulation with the Activation of NF-κB Signaling Pathway and the iNOS Expression of Lung Tissue in Xuanwei Lung Cancer Patients].

    PubMed

    Yang, Jiapeng; Li, Guangjian; Huang, Yunchao; Ye, Lianhua; Zhou, Yongchun; Zhao, Guangqiang; Lei, Yujie; Chen, Xiaobo; Wang, Kun; Chen, Ying; Dai, Chun; Zhang, Yanjun

    2016-01-01

    Indoor air pollution induces asthma, leads to chronic obstructive pulmonary disease, and may promote lung cancer. Our previous studies found that the accumulation of inorganic particulate matter that is due to indoor air pollution can lead to damage to alveolar cells and activation of signaling pathway, and ultimately provoke tumorigenesis. The aim of this study is to explore the accumulation of inorganics and activation of nuclear factor κB (NF-κB)-inducible nitric oxide synthase (iNOS) signaling pathway of lung tissue in Xuanwei lung cancer patients. From December 2013 to November 2014, 48 cases Xuanwei patients with lung cancer who underwent surgical treatment from the Third Affiliated Hospital of Kunming Medical University were enrolled in this study and compared with lung cancer patients from other regions. The ultrastructure of postoperative specimens was observed by transmission electron microscopy (TEM) to explore the occurrence of inorganic particles. Serum cytokines were analyzed. Then, the expression levels of NF-κB-p65 protein and iNOS protein in postoperative specimens was explored by immunohistochemistry and Western blot. Finally, 8-OHdG accumulation in lung cancer tissues and urine was measured. A large number of nanoscale inorganics were observed in alveolar type II cells and macrophages located in adjacent tissues of lung cancer with Xuanwei patients. Silicon (Si) content was found in inorganic elemental analysis. The serum interleukin (IL)-1β levels (31.50 ± 19.16) pg/mL of Xuanwei lung-cancer patients were remarkably higher than those from other regions (11.33 ± 6.94) pg/mL (P<0.01), with statistically significant difference. The pathological tissues of Xuanwei lung-cancer patients express NF-κB-p65, and iNOS expression were significantly higher than those of patients from non-Xuanwei regions. No significant difference was found between cancerous and normal adjacent tissues. Xuanwei lung-cancer tissues and urine 8-OHdG level (40.124 ± 8.597) ng/mgCr were significantly higher than those of patients from other regions (25.673 ± 7.986) ng/mg Cr (P<0.05), with statistically significant difference. The accumulation of inorganics and the activation of NF-κB-iNOS signaling pathway may contribute to Xuanwei lung cancer.
.

  1. Evidence for age-dependent air-space enlargement contributing to loss of lung tissue elastic recoil pressure and increased shear modulus in older age.

    PubMed

    Subramaniam, K; Kumar, H; Tawhai, M H

    2017-07-01

    As a normal part of mature aging, lung tissue undergoes microstructural changes such as alveolar air-space enlargement and redistribution of collagen and elastin away from the alveolar duct. The older lung also experiences an associated decrease in elastic recoil pressure and an increase in specific tissue elastic moduli, but how this relates mechanistically to microstructural remodeling is not well-understood. In this study, we use a structure-based mechanics analysis to elucidate the contributions of age-related air-space enlargement and redistribution of elastin and collagen to loss of lung elastic recoil pressure and increase in tissue elastic moduli. Our results show that age-related geometric changes can result in reduction of elastic recoil pressure and increase in shear and bulk moduli, which is consistent with published experimental data. All elastic moduli were sensitive to the distribution of stiffness (representing elastic fiber density) in the alveolar wall, with homogenous stiffness near the duct and through the septae resulting in a more compliant tissue. The preferential distribution of elastic proteins around the alveolar duct in the healthy young adult lung therefore provides for a more elastic tissue. NEW & NOTEWORTHY We use a structure-based mechanics analysis to correlate air-space enlargement and redistribution of elastin and collagen to age-related changes in the mechanical behavior of lung parenchyma. Our study highlights that both the cause (redistribution of elastin and collagen) and the structural effect (alveolar air-space enlargement) contribute to decline in lung tissue elastic recoil with age; these results are consistent with published data and provide a new avenue for understanding the mechanics of the older lung. Copyright © 2017 the American Physiological Society.

  2. Evaluation of normal lung tissue complication probability in gated and conventional radiotherapy using the 4D XCAT digital phantom.

    PubMed

    Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz

    2018-06-01

    The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Pharmacokinetic evaluation of tissue distribution of pirfenidone and its metabolites for idiopathic pulmonary fibrosis therapy.

    PubMed

    Togami, Kohei; Kanehira, Yukimune; Tada, Hitoshi

    2015-05-01

    Pirfenidone is the first and only clinically used anti-fibrotic drug for the treatment of idiopathic pulmonary fibrosis (IPF). It was reported previously that pirfenidone metabolites (5-hydroxypirfenidone and 5-carboxypirfenidone) also have anti-fibrotic effects. The present study evaluated the distribution of pirfenidone and its metabolites in the lung, liver and kidney tissues in rats. The time course for the different concentrations of pirfenidone, 5-hydroxypirfenidone and 5-carboxypirfenidone in the lung tissue following oral administration (30 mg/kg) to rats was lower than that in plasma, and the area under the drug concentration-time curve (AUC) ratios of lung/plasma for pirfenidone, 5-hydroxypirfenidone and 5-carboxypirfenidone were 0.52, 0.40 and 0.61, respectively. In in vitro transport experiments, the basolateral-to-apical transport of pirfenidone and its metabolites through the model of lung epithelial cell (Calu-3) monolayers was not significantly different from their apical-to-basolateral transport. In binding experiments, the binding rate of these drugs to the lung tissue was lower than that to the plasma protein. These findings suggest that the low distribution of pirfenidone and its metabolites in the lungs was based on their low affinities with lung tissue and not the transport characteristics of lung epithelial cells. On the other hand, the AUC ratios of liver/plasma for pirfenidone and 5-carboxypirfenidone were 2.3 and 6.5 and the AUC ratios of kidney/plasma were 1.5 and 20, respectively. The binding rates to the liver and kidney tissues were higher than those to the plasma protein. These results suggest that high concentrations of these drugs were found in the liver and kidney tissues. Copyright © 2014 John Wiley & Sons, Ltd.

  4. [Effects of hydrogen on the lung damage of mice at early stage of severe burn].

    PubMed

    Qin, C; Bian, Y X; Feng, T T; Zhang, J H; Yu, Y H

    2017-11-20

    Objective: To investigate the effects of hydrogen on the lung damage of mice at early stage of severe burn. Methods: One hundred and sixty ICR mice were divided into sham injury, hydrogen, pure burn, and burn+ hydrogen groups according to the random number table, with 40 mice in each group. Mice in pure burn group and burn+ hydrogen group were inflicted with 40% total body surface area full-thickness scald (hereafter referred to as burn) on the back, while mice in sham injury group and hydrogen group were sham injured. Mice in hydrogen group and burn+ hydrogen group inhaled 2% hydrogen for 1 h at post injury hour (PIH) 1 and 6, respectively, while mice in sham injury group and pure burn group inhaled air for 1 h. At PIH 24, lung tissue of six mice in each group was harvested, and then pathological changes of lung tissue were observed by HE staining and the lung tissue injury pathological score was calculated. Inferior vena cava blood and lung tissue of other eight mice in each group were obtained, and then content of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) in serum and lung tissue was determined by enzyme-linked immunosorbent assay. Activity of superoxide dismutase (SOD) in serum and lung tissue was detected by spectrophotometry. After arterial blood of other six mice in each group was collected for detection of arterial partial pressure of oxygen (PaO(2)), the wet and dry weight of lung tissue were weighted to calculate lung wet to dry weight ratio. The survival rates of the other twenty mice in each group during post injury days 7 were calculated. Data were processed with one-way analysis of variance, LSD test and log-rank test. Results: (1) At PIH 24, lung tissue of mice in sham injury group and hydrogen group showed no abnormality. Mice in pure burn group were with pulmonary interstitial edema, serious rupture of alveolar capillary wall, and infiltration of a large number of inflammatory cells. Mice in burn+ hydrogen group were with mild pulmonary interstitial edema, alveolar capillary congestion accompanied by slight rupture and bleeding, and the number of infiltration of inflammatory cells was smaller than that in pure burn group. The lung tissue injury pathological scores of mice in sham injury group, hydrogen group, pure burn group, and burn+ hydrogen group were (0.7±0.5), (0.8±0.5), (6.1±1.0), and (2.8±0.8) points, respectively. The lung tissue injury pathological score of mice in pure burn group was significantly higher than that in sham injury group ( P <0.001). The lung tissue injury pathological score of mice in burn+ hydrogen group was significantly lower than that in pure burn group ( P <0.001). (2) At PIH 24, the content of HMGB1 and IL-6 in serum and lung tissue of mice in hydrogen group was close to that in sham injury group (with P values above 0.05). The content of HMGB1 and IL-6 in serum and lung tissue of mice in pure burn group was significantly higher than that in sham injury group (with P values below 0.001). The content of HMGB1 and IL-6 in serum and lung tissue of mice in burn+ hydrogen group was significantly lower than that in pure burn group (with P values below 0.001). (3) At PIH 24, the activity of SOD in serum and lung tissue of mice in hydrogen group was close to that in sham injury group (with P values above 0.05). The activity of SOD in serum and lung tissue of mice in pure burn group was significantly lower than that in sham injury group (with P values below 0.001). The activity of SOD in serum and lung tissue of mice in burn+ hydrogen group was significantly higher than that in pure burn group (with P values below 0.001). (4) At PIH 24, there was no statistically significant difference in PaO(2) among the mice in four groups ( F =0.04, P >0.05). (5) At PIH 24, the ratios of lung wet to dry weight of mice in sham injury, hydrogen, pure burn, and burn+ hydrogen groups were 3.52±0.22, 3.61±0.24, 7.24±0.32, and 5.21±0.41, respectively. The ratio of lung wet to dry weight of mice in pure burn group was significantly higher than that in sham injury group ( P <0.001). The ratio of lung wet to dry weight of mice in burn+ hydrogen group was significantly lower than that in pure burn group ( P <0.001). (6) The survival rates of mice in sham injury group and hydrogen group during post injury days 7 were 100%. Compared with those in sham injury group, survival rates of mice in pure burn group from post injury days 3 to 7 were significantly decreased (with P values below 0.05). Compared with those in pure burn group, survival rates of mice in burn+ hydrogen group from post injury days 5 to 7 were significantly increased (with P values below 0.05). Conclusions: Hydrogen can significantly alleviate the infiltration of inflammatory cells and improve the pathological lesions of lung tissue of mice with severe burn. It has the effects of reducing inflammatory reaction and inhibiting oxidative stress, further showing the protective effect on the lung of burn mice.

  5. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  6. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  7. A model for treating avian aspergillosis: serum and lung tissue kinetics for Japanese quail (Coturnix japonica) following single and multiple aerosol exposures of a nanoparticulate itraconazole suspension.

    PubMed

    Rundfeldt, Chris; Wyska, Elżbieta; Steckel, Hartwig; Witkowski, Andrzej; Jeżewska-Witkowska, Grażyna; Wlaź, Piotr

    2013-11-01

    Aspergillosis is frequently reported in parrots, falcons and other birds held in captivity. Inhalation is the main route of infection for Aspergillus fumigatus, resulting in both acute and chronic disease conditions. Itraconazole (ITRA) is an antifungal commonly used in birds, but administration requires repeated oral dosing and the safety margin is narrow. We describe lung tissue and serum pharmacokinetics of a nanoparticulate ITRA suspension administered to Japanese quail by aerosol exposure. Aerosolized ITRA (1 and 10% suspension) administered over 30 min did not induce adverse clinical reactions in quail upon single or 5-day repeated doses. High lung concentrations, well above the inhibitory levels for A. fumigatus, of 4.14 ± 0.19 μg/g and 27.5 ± 4.58 μg/g (mean ± SEM, n = 3), were achieved following single-dose inhalation of 1% and 10% suspension, respectively. Upon multiple dose administration of 10% suspension, mean lung concentrations reached 104.9 ± 10.1 μg/g. Drug clearance from the lungs was slow with terminal half-lives of 19.7 h and 35.8 h following inhalation of 1% and 10% suspension, respectively. Data suggest that lung clearance is solubility driven. Lung concentrations of hydroxy-itraconazole reached 1-2% of the ITRA lung tissue concentration indicating metabolism in lung tissue. Steady, but low, serum concentrations of ITRA could be measured after multiple dose administration, reaching less than 0.1% of the lung tissue concentration. This formulation may represent a novel, easy to administer treatment modality for fungal lung infection, preventing high systemic exposure. It may also be useful as metaphylaxis to prevent the outbreak of aspergillosis in colonized animals.

  8. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  9. Anti-fibrotic effects of pirfenidone by interference with the hedgehog signalling pathway in patients with systemic sclerosis-associated interstitial lung disease.

    PubMed

    Xiao, Hua; Zhang, Guang-Feng; Liao, Xiang-Ping; Li, Xiao-Jie; Zhang, Jian; Lin, Haobo; Chen, Zhe; Zhang, Xiao

    2018-02-01

    To determine whether pirfenidone attenuates lung fibrosis by interfering with the hedgehog (Hh) signalling pathway in patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD). Twenty-five SSc-ILD patients (20 first visit, five who underwent pirfenidone treatment for 6 months) and 10 healthy controls were recruited. Lung tissues were obtained by open-chest surgery, and primary lung fibroblasts were isolated, cultured and stimulated with pirfenidone. The levels of the proteins glioma-associated oncogene 1 (GLI1), suppressor of fused (Sufu), α-smooth muscle actin, and fibronectin in lung tissues or fibroblasts were determined by Western blotting. The messenger RNA levels of GLI1, glioma-associated oncogene 2, protein patched homolog 1, and Sufu in lung tissues or fibroblasts were determined by quantitative reverse-transcription polymerase chain reaction. Meanwhile, the levels of phosphorylation glycogen synthase kinasep-3β (pGSK-3β), phosphorylation SMAD2 (pSMAD2), and phosphorylation c-Jun N-terminal kinase (pJNK) in fibroblasts were determined by Western blotting. Hh pathway activation was increased in the lung tissue of SSc-ILD patients and was decreased by pirfenidone, Sufu was upregulated in lung fibroblasts isolated from SSc-ILD patients after pirfenidone challenge, and pirfenidone inhibited the phosphorylation of GSK-3β signalling. Pirfenidone has anti-fibrotic effects in SSc-ILD patients by interfering with both the Hh signalling pathway and the GSK-3β signalling pathway via the regulation of Sufu expression. These results might promote its use in other Hh driven lung diseases such as idiopathic pulmonary fibrosis and especially the interstitial lung disease associated with connective tissue diseases. © 2018 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  10. STAT1-Regulated Lung MDSC-like Cells Produce IL-10 and Efferocytose Apoptotic Neutrophils With Relevance In Resolution of Bacterial Pneumonia

    PubMed Central

    Poe, Stephanie L.; Arora, Meenakshi; Oriss, Timothy B.; Yarlagadda, Manohar; Isse, Kumiko; Khare, Anupriya; Levy, David E.; Lee, Janet S.; Mallampalli, Rama; Ray, Anuradha; Ray, Prabir

    2012-01-01

    Bacterial pneumonia remains a significant burden worldwide. Although an inflammatory response in the lung is required to fight the causative agent, persistent tissue-resident neutrophils in non-resolving pneumonia can induce collateral tissue damage and precipitate acute lung injury. However, little is known about mechanisms orchestrated in the lung tissue that remove apoptotic neutrophils to restore tissue homeostasis. In mice infected with Klebsiella pneumoniae, a bacterium commonly associated with hospital-acquired pneumonia, we show that interleukin-10 is essential for resolution of lung inflammation and recovery of mice after infection. Although IL-10−/− mice cleared bacteria, they displayed increased morbidity with progressive weight loss and persistent lung inflammation in the later phase after infection. A source of tissue IL-10 was found to be resident CD11b+Gr1intF4/80+ cells resembling myeloid-derived suppressor cells that appeared with a delayed kinetics after infection. These cells efficiently efferocytosed apoptotic neutrophils, which was aided by IL-10. The lung neutrophil burden was attenuated in infected STAT1−/− mice with concomitant increase in the frequency of the MDSC-like cells and lung IL-10 levels. Thus, inhibiting STAT1 in combination with antibiotics may be a novel therapeutic strategy to address inefficient resolution of bacterial pneumonia. PMID:22785228

  11. Positron emission tomography-computed tomography and 4-hydroxynonenal-histidine immunohistochemistry reveal differential onset of lipid peroxidation in primary lung cancer and in pulmonary metastasis of remote malignancies.

    PubMed

    Živković, Nevenka Piskač; Petrovečki, Mladen; Lončarić, Čedna Tomasović; Nikolić, Igor; Waeg, Georg; Jaganjac, Morana; Žarković, Kamelija; Žarković, Neven

    2017-04-01

    The Aim of the study was to reveal if PET-CT analysis of primary and of secondary lung cancer could be related to the onset of lipid peroxidation in cancer and in surrounding non-malignant lung tissue. Nineteen patients with primary lung cancer and seventeen patients with pulmonary metastasis were involved in the study. Their lungs were analyzed by PET-CT scanning before radical surgical removal of the cancer. Specific immunohistochemistry for the major bioactive marker of lipid peroxidation, 4-hydroxynonenal (HNE), was done for the malignant and surrounding non-malignant lung tissue using genuine monoclonal antibody specific for the HNE-histidine adducts. Both the intensity of the PET-CT analysis and the HNE-immunohistochemistry were in correlation with the size of the tumors analyzed, while primary lung carcinomas were larger than the metastatic tumors. The intensity of the HNE-immunohistochemistry in the surrounding lung tissue was more pronounced in the metastatic than in the primary tumors, but it was negatively correlated with the cancer volume determined by PET-CT. The appearance of HNE was more pronounced in non-malignant surrounding tissue than in cancer or stromal cells, both in case of primary and metastatic tumors. Both PET-CT and HNE-immunohistochemistry reflect the size of the malignant tissue. However, lipid peroxidation of non-malignant lung tissue in the vicinity of cancer is more pronounced in metastatic than in primary malignancies and might represent the mechanism of defense against cancer, as was recently revealed also in case of human liver cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  13. Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography.

    PubMed

    Denison, D M; Morgan, M D; Millar, A B

    1986-08-01

    This study was intended to discover how well computed tomography could recover the volume and weight of lung like foams in a body like shell, and then how well it could recover the volume and weight of the lungs in supine man. Model thoraces were made with various loaves of bread submerged in water. Computed tomography scans recovered the volume of the model lungs (true volume range 250-12,500 ml) within +0.2 (SD 68) ml and their weights (true range 72-3125 g) within +30 (78) g. Scans also recovered successive injections of 50 ml of water, within +/- 5 ml. Scans in 12 healthy supine men recovered their vital capacities, total lung capacities (TLC), and predicted tissue volumes with comparable accuracy. At total lung capacity the mean tissue volume of single lungs was 431 (64) ml and at residual volume (RV) it was 427 (63) ml. Tissue volume was then used to match inspiratory and expiratory slices and calculate regional ventilation. Throughout the mid 90% of lung the RV/TLC ratio was fairly constant--mean 21% (5%). New methods of presenting such regional data graphically and automatically are also described.

  14. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b

  15. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    PubMed Central

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2015-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. PMID:23886933

  16. [Molecular mechanisms of lung cancer development at its different stages in nuclear industry workers].

    PubMed

    Rusinova, G G; Vyazovskaya, N S; Azizova, T V; Revina, V S; Glazkova, I V; Generozov, E V; Zakharzhevskaya, N B; Guryanov, M Yu; Belosokhov, M V; Osovets, S V

    2015-01-01

    to assess mutational events in exons 5, 7, and 8 of the p53 gene and to reveal mutant p53 protein in verified cases of morphologically altered (proliferative and precancerous changes, lung cancer) and histologically unaltered, lung tissues in workers exposed to occupational radiation. The investigation used formalin-fixed paraffin-embedded unaltered and altered lung tissue blocks (FFPBs) obtained from the human radiobiological tissue repository. The shelf-life of FFPBs was 5-31 years. An immunohistochemical technique using mouse antibodies against p53 protein (, Denmark), stained with diaminobenzidine (DAB) chromogen, was employed to determine p53 protein. DNA was isolated from lung tissue FFPBs with QIAmp DNA FFPE Tissue Kit, (, USA). Polymerase chain reaction (PCR) was performed to amplify the p53 gene exons 5, 7, and 8 selected for examination, by applying the sequences of genes and primers, the specificity of which was checked using the online resource (http://www.ncbi.nlm.nih.gov/blast). PCR products were detected by temporal temperature gradient gel-electrophoresis and the Sanger sequencing method. The obtained DNA fragments were analyzed on a sequencer ABI Prism 3100 Genetic Analizer (, USA). Computer-aided DNA analysis was made using the BLAST program. A package of applied Statistica 6.0 programs was employed for statistical data processing. Results. Immunohistochemical analysis showed that mutant p53 protein was absent in the cells of unaltered lung tissue and the number of cells with mutant p53 protein increased in all the patients with proliferative and precancerous changes and lung cancer, suggesting p53 protein dysfunction. The total number of p53 gene mutations in exons 5, 7, and 8, if there were proliferative and precancerous lung tissue changes and lung cancer, were 25, 20, and 40%, respectively. All the found mutations were transversions (the substitution of purine for pyrimidine or, conversely), indicating the action of exogenous mutagens. The results of this investigation have confirmed other investigators' data showing that p53 gene mutations in lung cancer are observed in 40-70% of cases. The differences in the number of cases of altered lung tissue with mutations in the p53 gene (not more than 40%) and in those of p53 protein expression were found in 100%, suggesting the regulation of p53 gene function in the cell at multiple levels.

  17. Protein regulator of cytokinesis-1 expression: prognostic value in lung squamous cell carcinoma patients

    PubMed Central

    Zhan, Ping; Xi, Guang-Min; Liu, Hong-Bing; Liu, Ya-Fang; Xu, Wu-Jian; Zhu, Qingqing; Zhou, Ze-Jun; Miao, Ying-Ying; Wang, Xiao-Xia; Jin, Jia-Jia

    2017-01-01

    Background Protein regulator of cytokinesis-1 (PRC1) has been shown to participate in the completion of cytokinesis, and it is dysregulated in cancer processes. However, its relevance in lung squamous cell carcinoma (SCC) remained largely unknown. We aimed to study the expression pattern of PRC1 and assess its clinical significance in lung SCC. Methods PRC1 protein expression in human lung SCC and adjacent normal lung tissues was detected by immunohistochemistry. PRC1 expression was assessed in association with clinicopathological features and clinical outcomes of lung SCC patients. Results In lung SCC tissues, PRC1 protein expression was significantly higher than those in paired normal lung tissues. The lung SCC patients with PRC1 overexpression had an advanced pathological stage (TNM stage), positive lymph node metastasis, and a shorter overall survival (OS) time more frequently than patients with low PRC1 expression. Additional, PRC1 expression was also shown to be poor as a prognostic factor for OS in patients with lung SCC. Conclusions Our study indicated that aberrant expression of PRC1 may point to biochemical recurrence in lung SCC. This highlights its potential as a valuable prognostic marker for lung SCC. PMID:28840006

  18. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  19. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  20. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival

    PubMed Central

    ZINRAJH, DAVID; HÖRL, GERD; JÜRGENS, GÜNTHER; MARC, JANJA; SOK, MIHA; CERNE, DARKO

    2014-01-01

    Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression. PMID:24932311

  1. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival.

    PubMed

    Zinrajh, David; Hörl, Gerd; Jürgens, Günther; Marc, Janja; Sok, Miha; Cerne, Darko

    2014-06-01

    Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression.

  2. Micromechanical model of lung parenchyma hyperelasticity

    NASA Astrophysics Data System (ADS)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic volumetric expansion, but also for three other anisotropic loading conditions for different levels of tissue porosity, while displaying superior computational efficiency and stability in estimating coarse-scale response when compared to direct numerical simulations of RVEs. Further, we find that the most influential microstructural parameters on the response of the micromechanical model are the reference porosity and the alveolar wall elasticity. We also show that the model can reproduce uniaxial experimental tests on lung tissue samples, and estimate the Poisson ratio to be 0.22. We envision that our model will enable predictive and efficient whole-organ simulations useful to study the normal and diseased lung.

  3. RESILIENCE OF THE HUMAN FETAL LUNG FOLLOWING STILLBIRTH

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Heger, Nicholas; Hall, Susan; Mao, Quanfu

    2013-01-01

    Recent advances in pulmonary regenerative medicine have increased the demand for alveolar epithelial progenitor cells. Fetal lung tissues from spontaneous pregnancy losses may represent a neglected, yet ethically and societally acceptable source of alveolar epithelial cells. The aim of this study was to determine the regenerative capacity of fetal lungs obtained from second trimester stillbirths. Lung tissues were harvested from 11 stillborn fetuses (13–22 weeks’ gestation) at post-delivery intervals ranging from 10 to 41 hours and grafted to the renal subcapsular space of immune suppressed rats to provide optimal growth conditions. Histology, epithelial and alveolar type II cell proliferation, and surfactant protein-C mRNA expression were studied in preimplantation lung tissues and in xenografts at post-transplantation week 2. All xenografts displayed advanced architectural maturation compared with their respective preimplantation tissues, regardless of gestational age and post-delivery interval. The proliferative activity of the grafts was significantly higher than that of the preimplantation tissues (mean Ki-67 labeling index 26.7 ± 7.7% versus 14.7 ± 10.5%, P < 0.01). The proliferative activity of grafts obtained after a long (> 36 h) post-delivery interval was significantly higher than that of the corresponding preimplantation tissue, and equivalent to that of grafts obtained after a short post-delivery interval (< 14 h). The regenerative capacity of fetal lung tissue was greater at younger (13–17 weeks) than at older (19–22 weeks) gestational ages. The presence of inflammation/chorioamnionitis did not appear to affect graft regeneration. All grafts studied displayed robust surfactant protein-C mRNA expression. In conclusion, fetal lung tissues from second trimester stillbirths can regain their inherent high regenerative potential following short-term culture, even if harvested more than 36 hours after delivery. PMID:22168578

  4. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  5. Neonatal lungs: maturational changes in lung resistivity spectra.

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-09-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Electrical impedance tomographic measurements have been used on 155 normal children over the first three years of life and 25 pre-term infants, to determine the absolute resistivity of lung tissue as a function of frequency. The results show consistent changes with increasing age in both lung tissue resistivity (5.8 ohm m at birth to 20.9 ohm m at 3 years of age) and in the changes of resistivity with frequency (Cole parameter ratio R/S=0.41 at birth and 0.84 at 3 years of age). Comparison with a lung model showed that the measurements are consistent with maturational changes in the number and size of alveoli, the extracapillary blood volume and the size of the extracapillary vessels. However, the results show that the process of maturation is not complete at the age of three years.

  6. Study on expression of CDH4 in lung cancer.

    PubMed

    Li, Zhupeng; Su, Dan; Ying, Lisha; Yu, Guangmao; Mao, Weimin

    2017-01-17

    The human CDH4 gene, which encodes the R-cadherin protein, has an important role in cell migration and cell adhesion, sorting, tissue morphogenesis, and tumor genesis. This study analyzed the relationship of CDH4 mRNA expression with lung cancer. Real time PCR was applied to detect CDH4 mRNA transcription in 142 paired cases of lung cancer and noncancerous regions. No correlation was identified between CDH4 mRNA expression and gender, age, lymphnode metastasis, TNM stage, family history, smoking state, drinking state (P > 0.05), but grade and histotype (P < 0.05). The relative CDH4 mRNA value was remarkably decreased in lung cancer tissues compared with noncancerous tissues (P = 0.001). We found that CDH4 mRNA expression was associated with grade and histotype. What is more, the relative CDH4 mRNA value was decreased in the lung cancer tissues. Our results suggested that CDH4 might be a putative tumor suppressor gene (TSG) in lung cancer.

  7. Application of RT-PCR in formalin-fixed and paraffin-embedded lung cancer tissues.

    PubMed

    Zhang, Fan; Wang, Zhuo-min; Liu, Hong-yu; Bai, Yun; Wei, Sen; Li, Ying; Wang, Min; Chen, Jun; Zhou, Qing-hua

    2010-01-01

    To analyze gene expression in formalin-fixed, paraffin-embedded lung cancer tissues using modified method. Total RNA from frozen tissues was extracted using TRIZOL reagent. RNA was extracted from formalin-fixed, paraffin-embedded tissues by digestion with proteinase K before the acid-phenol:chloroform extraction and carrier precipitation. We modified this method by using a higher concentration of proteinase K and a longer digestion time, optimized to 16 hours. RT-PCR and real-time RT-PCR were used to check reproducibility and the concordance between frozen and paraffin-embedded samples. The results showed that the RNA extracted from the paraffin-embedded lung tissues had high quality with the most fragment length between 28S and 18S bands (about 1000 to 2000 bases). The housekeeping gene GUSB exhibited low variation of expression in frozen and paraffin-embedded lung tissues, whereas PGK1 had the lowest variation in lymphoma tissues. Furthermore, real-time PCR analysis of the expression of known prognostic genes in non-small cell lung carcinoma (NSCLC) demonstrated an extremely high correlation (r>0.880) between the paired frozen and formalin-fixed, paraffin-embedded specimens. This improved method of RNA extraction is suitable for real-time quantitative RT-PCR, and may be used for global gene expression profiling of paraffin-embedded tissues.

  8. On the behaviour of lung tissue under tension and compression

    NASA Astrophysics Data System (ADS)

    Andrikakou, Pinelopi; Vickraman, Karthik; Arora, Hari

    2016-11-01

    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min-1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response.

  9. Febuxostat protects rats against lipopolysaccharide-induced lung inflammation in a dose-dependent manner.

    PubMed

    Fahmi, Alaa N A; Shehatou, George S G; Shebl, Abdelhadi M; Salem, Hatem A

    2016-03-01

    The aim of the present work was to investigate possible protective effects of febuxostat, a highly potent xanthine oxidase inhibitor, against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. Male Sprague Dawley rats were randomly divided into six groups, as follows: (i) vehicle control group; (ii) and (iii) febuxostat 10 and febuxostat 15 groups, drug-treated controls; (iv) LPS group, receiving an intraperitoneal injection of LPS (7.5 mg/kg); (v) and (vi) febuxostat 10-LPS and febuxostat 15-LPS groups, receiving oral treatment of febuxostat (10 and 15 mg/kg/day, respectively) for 7 days before LPS. After 18 h administration of LPS, blood was collected for C-reactive protein (CRP) measurement. Bronchoalveolar lavage fluid (BALF) was examined for leukocyte infiltration, lactate dehydrogenase (LDH) activity, protein content, and total nitrate/nitrite. Lung weight gain was determined, and lung tissue homogenate was prepared and evaluated for oxidative stress. Tumor necrosis factor-α (TNF-α) was assessed in BALF and lung homogenate. Moreover, histological changes of lung tissues were evaluated. LPS elicited lung injury characterized by increased lung water content (by 1.2 fold), leukocyte infiltration (by 13 fold), inflammation and oxidative stress (indicated by increased malondialdehyde (MDA), by 3.4 fold), and reduced superoxide dismutase (SOD) activity (by 34 %). Febuxostat dose-dependently decreased LPS-induced lung edema and elevations in BALF protein content, infiltration of leukocytes, and LDH activity. Moreover, the elevated levels of TNF-α in BALF and lung tissue of LPS-treated rats were attenuated by febuxostat pretreatment. Febuxostat also displayed a potent antioxidant activity by decreasing lung tissue levels of MDA and enhancing SOD activity. Histological analysis of lung tissue further demonstrated that febuxostat dose-dependently reversed LPS-induced histopathological changes. These findings demonstrate a significant dose-dependent protection by febuxostat against LPS-induced lung inflammation in rats.

  10. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2.

    PubMed

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer.

  11. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2

    PubMed Central

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer. PMID:26722475

  12. PCR assay detects Mannheimia haemolytica in culture-negative pneumonic lung tissues of bighorn sheep (Ovis canadensis) from outbreaks in the western USA, 2009-2010.

    PubMed

    Shanthalingam, Sudarvili; Goldy, Andrea; Bavananthasivam, Jegarubee; Subramaniam, Renuka; Batra, Sai Arun; Kugadas, Abirami; Raghavan, Bindu; Dassanayake, Rohana P; Jennings-Gaines, Jessica E; Killion, Halcyon J; Edwards, William H; Ramsey, Jennifer M; Anderson, Neil J; Wolff, Peregrine L; Mansfield, Kristin; Bruning, Darren; Srikumaran, Subramaniam

    2014-01-01

    Mannheimia haemolytica consistently causes severe bronchopneumonia and rapid death of bighorn sheep (Ovis canadensis) under experimental conditions. However, Bibersteinia trehalosi and Pasteurella multocida have been isolated from pneumonic bighorn lung tissues more frequently than M. haemolytica by culture-based methods. We hypothesized that assays more sensitive than culture would detect M. haemolytica in pneumonic lung tissues more accurately. Therefore, our first objective was to develop a PCR assay specific for M. haemolytica and use it to determine if this organism was present in the pneumonic lungs of bighorns during the 2009-2010 outbreaks in Montana, Nevada, and Washington, USA. Mannheimia haemolytica was detected by the species-specific PCR assay in 77% of archived pneumonic lung tissues that were negative by culture. Leukotoxin-negative M. haemolytica does not cause fatal pneumonia in bighorns. Therefore, our second objective was to determine if the leukotoxin gene was also present in the lung tissues as a means of determining the leukotoxicity of M. haemolytica that were present in the lungs. The leukotoxin-specific PCR assay detected leukotoxin gene in 91% of lung tissues that were negative for M. haemolytica by culture. Mycoplasma ovipneumoniae, an organism associated with bighorn pneumonia, was detected in 65% of pneumonic bighorn lung tissues by PCR or culture. A PCR assessment of distribution of these pathogens in the nasopharynx of healthy bighorns from populations that did not experience an all-age die-off in the past 20 yr revealed that M. ovipneumoniae was present in 31% of the animals whereas leukotoxin-positive M. haemolytica was present in only 4%. Taken together, these results indicate that culture-based methods are not reliable for detection of M. haemolytica and that leukotoxin-positive M. haemolytica was a predominant etiologic agent of the pneumonia outbreaks of 2009-2010.

  13. The TGF-beta-Pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae

    PubMed Central

    2010-01-01

    Background Nontypeable Haemophilus influenzae (NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-β. Methods NTHI infection in lung tissues obtained from COPD patients and controls was studied in vivo and using an in vitro model. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using in situ hybridization (ISH) in unstimulated and in in vitro infected lung tissue. For characterization of TGF-β signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-α and TGF-β expression were evaluated in lung tissue and cell culture using ELISA. Results In 38% of COPD patients infection with NTHI was detected in vivo in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-β receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after in vitro infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-β (p < 0.05) in combination with a strong proinflammatory response (p < 0.01). Conclusions We show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue in vivo and in vitro. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-β expression may influence inflammation induced tissue remodeling. PMID:20513241

  14. The TGF-beta-pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae.

    PubMed

    Drömann, Daniel; Rupp, Jan; Rohmann, Kristina; Osbahr, Sinia; Ulmer, Artur J; Marwitz, Sebastian; Röschmann, Kristina; Abdullah, Mahdi; Schultz, Holger; Vollmer, Ekkehard; Zabel, Peter; Dalhoff, Klaus; Goldmann, Torsten

    2010-05-31

    Nontypeable Haemophilus influenzae (NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-beta. NTHI infection in lung tissues obtained from COPD patients and controls was studied in vivo and using an in vitro model. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using in situ hybridization (ISH) in unstimulated and in in vitro infected lung tissue. For characterization of TGF-beta signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-alpha and TGF-beta expression were evaluated in lung tissue and cell culture using ELISA. In 38% of COPD patients infection with NTHI was detected in vivo in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-beta receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after in vitro infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-beta (p < 0.05) in combination with a strong proinflammatory response (p < 0.01). We show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue in vivo and in vitro. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-beta expression may influence inflammation induced tissue remodeling.

  15. Cryopreservation of Viable Human Lung Tissue for Versatile Post-thaw Analyses and Culture

    PubMed Central

    Baatz, John E.; Newton, Danforth A.; Riemer, Ellen C.; Denlinger, Chadrick E.; Jones, E. Ellen; Drake, Richard R.; Spyropoulos, Demetri D.

    2018-01-01

    Clinical trials are currently used to test therapeutic efficacies for lung cancer, infections and diseases. Animal models are also used as surrogates for human disease. Both approaches are expensive and time-consuming. The utility of human biospecimens as models is limited by specialized tissue processing methods that preserve subclasses of analytes (e.g. RNA, protein, morphology) at the expense of others. We present a rapid and reproducible method for the cryopreservation of viable lung tissue from patients undergoing lobectomy or transplant. This method involves the pseudo-diaphragmatic expansion of pieces of fresh lung tissue with cryoprotectant formulation (pseudo-diaphragmatic expansion-cryoprotectant perfusion or PDX-CP) followed by controlled-rate freezing in cryovials. Expansion-perfusion rates, volumes and cryoprotectant formulation were optimized to maintain tissue architecture, decrease crystal formation and increase long-term cell viability. Rates of expansion of 4 cc/min or less and volumes ranging from 0.8–1.2 × tissue volume were well-tolerated by lung tissue obtained from patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis, showing minimal differences compared to standard histopathology. Morphology was greatly improved by the PDX-CP procedure compared to simple fixation. Fresh versus post-thawed lung tissue showed minimal differences in histology, RNA integrity numbers and post-translational modified protein integrity (2-dimensional differential gel electrophoresis). It was possible to derive numerous cell types, including alveolar epithelial cells, fibroblasts and stem cells, from the tissue for at least three months after cryopreservation. This new method should provide a uniform, cost-effective approach to the banking of biospecimens, with versatility to be amenable to any post-acquisition process applicable to fresh tissue samples. PMID:24982205

  16. [Biomedicine in thoracic surgery: state of the art].

    PubMed

    Leistner, M; Steinke, M; Walles, T

    2013-06-01

    Biomedicine represents a new scientific field at the interface of human, molecular and cell biology and medicine. Comprising the diverse disciplines of stem cell research, tissue engineering and material sciences, biomedicine gives rise to new approaches in research and therapy for - to date - unmet medical issues. Biomedical research is currently conducted in many medical, especially surgical subspecialties, and a number of successful developments have already been brought to clinical application. Concerning thoracic surgery, biomedical approaches are pursued primarily for tissue and organ replacement of the upper airways, lung and thoracic wall. In spite of a comparatively small research foundation, five different concepts have been clinically implemented worldwide, due to a lack of established treatment options in the case of extensive disease of the greater airways. In this review, the clinical background and the tissue-specific basics of tracheobronchial biomedicine are presented. Georg Thieme Verlag KG Stuttgart · New York.

  17. Mimicking biological stress-strain behaviour with synthetic elastomers

    NASA Astrophysics Data System (ADS)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  18. Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.

    PubMed

    Carvalho, Mariana R; Lima, Daniela; Reis, Rui L; Oliveira, Joaquim M; Correlo, Vitor M

    2017-06-01

    Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current "state of art" on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their study.

  19. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke.

    PubMed

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C

    2015-02-12

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers.

  20. Technical advance: live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung.

    PubMed

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-09-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.

  1. Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Quirk, Bryden C.; Noble, Peter B.; Kirk, Rodney W.; Sampson, David D.; McLaughlin, Robert A.

    2017-10-01

    Transbronchial needle aspiration (TBNA) of small lesions or lymph nodes in the lung may result in nondiagnostic tissue samples. We demonstrate the integration of an optical coherence tomography (OCT) probe into a 19-gauge flexible needle for lung tissue aspiration. This probe allows simultaneous visualization and aspiration of the tissue. By eliminating the need for insertion and withdrawal of a separate imaging probe, this integrated design minimizes the risk of dislodging the needle from the lesion prior to aspiration and may facilitate more accurate placement of the needle. Results from in situ imaging in a sheep lung show clear distinction between solid tissue and two typical constituents of nondiagnostic samples (adipose and lung parenchyma). Clinical translation of this OCT-guided aspiration needle holds promise for improving the diagnostic yield of TBNA.

  2. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    PubMed Central

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  4. Effects of in vitro cultivated Calculus Bovis compound on pulmonary lesions in rabbits with schistosomiasis.

    PubMed

    Li, Tao; Yang, Zhen; Cai, Hong-Jiao; Song, Li-Wei; Lu, Ke-Yu; Zhou, Zheng; Wu, Zai-De

    2010-02-14

    To explore the interventional effects and mechanism of in vitro cultivated Calculus Bovis compound preparation (ICCBco) on pulmonary lesions in portal hypertensive rabbits with schistosomiasis. The experimental group included 20 portal hypertensive rabbits with schistosomiasis treated by ICCBco. The control group included 20 portal hypertensive rabbits with schistosomiasis treated by praziquantel. The morphological changes of the pulmonary tissues were observed under light and electron microscopy. The expression of fibronectin (FN) and laminin (LN) in the lung tissues was analyzed by immunohistochemistry. Under light microscope, the alveolar exudation in the lung tissue was more frequently observed in the control group, while the alveolar space was fairly dry in the lung tissue of ICCBco group. Under electron microscope, more alveolar exudation in the lung tissue, and more macrophages, alveolar angiotelectasis and the blurred three-tier structure of alveolar-capillary barrier could be seen in the control group. In ICCBco group, fibers within the alveolar interspace slightly increased in some lung regions, and the structure of type I epithelium, basement membrane and endodermis was complete, and no obvious exudation from the alveolar space, and novascular congestion could be observed. There was a positive or strong positive expression of FN and LN in the lung tissue of the control group, while there was a negative or weak positive expression of FN and LN in ICCBco group. ICCBco can effectively prevent pulmonary complications in portal hypertensive rabbits with schistosomiasis by means of improving lung microcirculation and lowering the content of extracellular matrix.

  5. Feasibility of using high-speed electron beam x-ray CT (EBCT) to follow the time course of the pulmonary response to pneumonectomy in rabbits

    NASA Astrophysics Data System (ADS)

    Olson, L. E.; Wright, V. P.; Hoffman, Eric A.

    1994-05-01

    This report focuses on preliminary experiments designed to determine regional blood flows and air, blood, and tissue contents at end expiratory lung volume in anesthetized, paralyzed, normal, sham-operated, and pneumonectomized (left lung removed) rabbits with and without wax plombage. High temporal resolution measurements were made with an EBCT scanner during the mechanical injection of a bolus of radiopaque contrast material into the pulmonary vasculature. The time-intensity curves of selected lung regions were analyzed with VIDAR using a modification of the myocardial blood flow model proposed by Wolfkiel et al. The resulting data provided an estimate of regional blood flow and total and regional air, blood and `tissue' contents, where `tissue' represents intracellular and interstitial water, i.e., lung water exclusive of blood. The estimates of mean lung air, blood and tissue contents were similar across groups and consistent with anticipated results.

  6. Esophagus and Contralateral Lung-Sparing IMRT for Locally Advanced Lung Cancer in the Community Hospital Setting.

    PubMed

    Kao, Johnny; Pettit, Jeffrey; Zahid, Soombal; Gold, Kenneth D; Palatt, Terry

    2015-01-01

    The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue-sparing IMRT can allow safe dose escalation resulting in decreased acute and late toxicity. We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of three-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT). From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity, and overall survival. Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 vs. 60.8 Gy, p = 0.04), patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, esophageal V60, and mean esophagus doses compared to patients treated with standard RT (p ≤ 0.001). Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0 vs. 11%, p < 0.001), acute grade ≥2 weight loss (2 vs. 16%, p = 0.04), and late grade ≥2 pneumonitis (7 vs. 21%, p = 0.02). The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p = 0.015). These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose-volume constraints are feasible in the community hospital setting without sacrificing disease control.

  7. Asbestosis

    MedlinePlus

    Pulmonary fibrosis - from asbestos exposure; Interstitial pneumonitis - from asbestos exposure ... Breathing in asbestos fibers can cause scar tissue (fibrosis) to form inside the lung. Scarred lung tissue does not expand and ...

  8. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    PubMed

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs.

  9. Supplemental and highly-elevated tocopherol doses differentially regulate allergic inflammation: reversibility of α-tocopherol and γ-tocopherol's effects

    PubMed Central

    McCary, Christine A.; Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M.

    2011-01-01

    We have reported that supplemental doses of the α- and γ-tocopherol isoforms of vitamin E decrease and increase, respectively, allergic lung inflammation. We have now assessed whether these effects of tocopherols are reversible. For these studies, mice were treated with antigen and supplemental tocopherols in a first phase of treatment followed by a 4 week clearance phase and then the mice received a second phase of antigen and tocopherol treatments. The pro-inflammatory effects of supplemental levels of γ-tocopherol in phase 1 were only partially reversed by supplemental α-tocopherol in phase 2 but were completely reversed by raising α-tocopherol levels 10-fold in phase 2. When γ-tocopherol levels were increased 10-fold (highly-elevated tocopherol) so that the lung tissue γ-tocopherol levels were equal to the lung tissue levels of supplemental α-tocopherol, γ-tocopherol reduced leukocyte numbers in the lung lavage fluid. In contrast to the lung lavage fluid, highly-elevated levels of γ-tocopherol increased inflammation in the lung tissue. These regulatory effects of highly-elevated tocopherols on tissue inflammation and lung lavage fluid were reversible in a second phase of antigen challenge without tocopherols. In summary, the pro-inflammatory effects of supplemental γ-tocopherol on lung inflammation were partially reversed by supplemental levels of α-tocopherol but were completely reversed by highly-elevated-levels of α-tocopherol. Also, highly-elevated levels of γ-tocopherol were inhibitory and reversible in lung lavage but, importantly, were pro-inflammatory in lung tissue sections. These results have implications for future studies with tocopherols and provide a new context in which to review vitamin E studies in the literature. PMID:21317387

  10. [Tripartite-motif protein 25 and pyruvate kinase M2 protein expression in non-small cell lung cancer].

    PubMed

    Jing, Huai-Zhi; Qiu, Feng; Chen, Shi-Zhi; Su, Lin; Qu, Can

    2015-03-01

    To investigate the expression of tripartite-motif protein 25 (TRIM25) and pyruvate kinase M2 (PKM2) protein in non-small cell lung cancer (NSCLC) and explore their role in the occurrence and progression of NSCLC. The expressions of TRIM25 and PKM2 protein were detected in 60 NSCLC specimens and 20 adjacent normal lung tissue (>5 cm from the lesions) with immunofluorescence histochemical method and in 10 fresh specimens of NSCLC with Western blotting. The results were analyzed in relation with the clinicopathological features of the patients. The positivity rates of TRIM25 expression was 45% in the 60 lung carcinoma specimens, significantly higher than that in the 20 normal lung tissues (10%, P=0.005). TRIM25 protein was expressed in 28.6% of lung adenocarcinoma tissues and in 59.4% of squamous carcinoma tissues (P=0.017). TRIM25 protein expression was positively correlated with the TNM stages and lymph node metastasis of NSCLC (P<0.05). The expressions of PKM2 protein in 60 cases of lung carcinoma was 73.3%,while in 20 cases of normal lung tissues the expressions was 30%(P=0.001). The positivity rates of PKM2 expression differed significantly between lung adenocarcinoma and squamous carcinoma (57.1% vs 87.5%, P=0.008). An inverse correlation was noted between TRIM25 and PKM2 expressions (P=0.026). TRIM25 and PKM2 protein may participate in the occurrence and progression of NSCLC, and their expressions are inversely correlated.

  11. Enhanced Re-Endothelialization of Decellularized Rat Lungs

    PubMed Central

    Stabler, Collin T.; Caires, Luiz C.; Mondrinos, Mark J.; Marcinkiewicz, Cezary; Lazarovici, Philip; Wolfson, Marla R.

    2016-01-01

    Decellularized lung tissue has been recognized as a potential platform to engineer whole lung organs suitable for transplantation or for modeling a variety of lung diseases. However, many technical hurdles remain before this potential may be fully realized. Inability to efficiently re-endothelialize the pulmonary vasculature with a functional endothelium appears to be the primary cause of failure of recellularized lung scaffolds in early transplant studies. Here, we present an optimized approach for enhanced re-endothelialization of decellularized rodent lung scaffolds with rat lung microvascular endothelial cells (ECs). This was achieved by adjusting the posture of the lung to a supine position during cell seeding through the pulmonary artery. The supine position allowed for significantly more homogeneous seeding and better cell retention in the apex regions of all lobes than the traditional upright position, especially in the right upper and left lobes. Additionally, the supine position allowed for greater cell retention within large diameter vessels (proximal 100–5000 μm) than the upright position, with little to no difference in the small diameter distal vessels. EC adhesion in the proximal regions of the pulmonary vasculature in the decellularized lung was dependent on the binding of EC integrins, specifically α1β1, α2β1, and α5β1 integrins to, respectively, collagen type-I, type-IV, and fibronectin in the residual extracellular matrix. Following in vitro maturation of the seeded constructs under perfusion culture, the seeded ECs spread along the vascular wall, leading to a partial reestablishment of endothelial barrier function as inferred from a custom-designed leakage assay. Our results suggest that attention to cellular distribution within the whole organ is of paramount importance for restoring proper vascular function. PMID:26935764

  12. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  13. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

    PubMed Central

    de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva

    2014-01-01

    OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964

  14. Cavin1; a Regulator of Lung Function and Macrophage Phenotype

    PubMed Central

    Govender, Praveen; Romero, Freddy; Shah, Dilip; Paez, Jesus; Ding, Shi-Ying; Liu, Libin; Gower, Adam; Baez, Elizabeth; Aly, Sherif Shawky; Pilch, Paul; Summer, Ross

    2013-01-01

    Caveolae are cell membrane invaginations that are highly abundant in adipose tissue, endothelial cells and the lung. The formation of caveolae is dependent on the expression of various structural proteins that serve as scaffolding for these membrane invaginations. Cavin1 is a newly identified structural protein whose deficiency in mice leads to loss of caveolae formation and to development of a lipodystrophic phenotype. In this study, we sought to investigate the functional role of Cavin1 in the lung. Cavin1 deficient mice possessed dramatically altered distal lung morphology and exhibited significant physiological alterations, notably, increased lung elastance. The changes in distal lung architecture were associated with hypercellularity and the accumulation of lung macrophages. The increases in lung macrophages occurred without changes to circulating numbers of mononuclear cells and without evidence for increased proliferation. However, the increases in lung macrophages were associated with higher levels of macrophage chemotactic factors CXCL2 and CCL2 in BAL fluid from Cavin1−/− mice suggesting a possible mechanism by which these cells accumulate. In addition, lung macrophages from Cavin1−/− mice were larger and displayed measurable differences in gene expression when compared to macrophages from wild-type mice. Interestingly, macrophages were also increased in adipose tissue but not in liver, kidney or skeletal muscle from Cavin1−/− mice, and similar tissue specificity for macrophage accumulation was observed in lungs and adipose tissue from Caveolin1−/− mice. In conclusion, this study demonstrates an important role for Cavin1 in lung homeostasis and suggests that caveolae structural proteins are necessary for regulating macrophage number and phenotype in the lung. PMID:23634221

  15. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    PubMed

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.

  16. Three Dimensional Imaging of Paraffin Embedded Human Lung Tissue Samples by Micro-Computed Tomography

    PubMed Central

    Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.

    2015-01-01

    Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902

  17. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  18. Pharmacokinetics and tissue distribution of psammaplin A, a novel anticancer agent, in mice.

    PubMed

    Kim, Hak Jae; Kim, Tae Hwan; Seo, Won Sik; Yoo, Sun Dong; Kim, Il Han; Joo, Sang Hoon; Shin, Soyoung; Park, Eun-Seok; Ma, Eun Sook; Shin, Beom Soo

    2012-10-01

    This study reports the pharmacokinetics and tissue distribution of a novel histone deacetylase and DNA methyltransferase inhibitor, psammaplin A (PsA), in mice. PsA concentrations were determined by a validated LC-MS/MS assay method (LLOQ 2 ng/mL). Following intravenous injection at a dose of 10 mg/kg in mice, PsA was rapidly eliminated, with the average half-life (t(1/2, λn)) of 9.9 ± 1.4 min and the systemic clearance (CL(s)) of 925.1 ± 570.1 mL/min. The in vitro stability of PsA was determined in different tissue homogenates. The average degradation t(1/2) of PsA in blood, liver, kidney and lung was found relatively short (≤ 12.8 min). Concerning the in vivo tissue distribution characteristics, PsA was found to be highly distributed to lung tissues, with the lung-to-serum partition coefficients (K(p)) ranging from 49.9 to 60.2. In contrast, PsA concentrations in other tissues were either comparable with or less than serum concentrations. The high and specific lung targeting characteristics indicates that PsA has the potential to be developed as a lung cancer treatment agent.

  19. Trace and major element levels in rats after oral administration of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) seeds.

    PubMed

    Aksoy, Laçine; Sözbilir, Nalan Bayşu

    2015-10-01

    The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.

  20. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis.

    PubMed

    Kempker, Russell R; Heinrichs, M Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A; Blumberg, Henry M; Vashakidze, Sergo

    2017-06-01

    Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary ( n = 6 patients), mass-like ( n = 3 patients), or consolidative ( n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis ( R = -0.66, P = 0.04) and acid-fast bacilli ( R = -0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. Copyright © 2017 American Society for Microbiology.

  1. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis

    PubMed Central

    Heinrichs, M. Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D.; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A.; Blumberg, Henry M.; Vashakidze, Sergo

    2017-01-01

    ABSTRACT Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary (n = 6 patients), mass-like (n = 3 patients), or consolidative (n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis (R = −0.66, P = 0.04) and acid-fast bacilli (R = −0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. PMID:28373198

  2. Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury

    PubMed Central

    Moodley, Yuben; Atienza, Daniel; Manuelpillai, Ursula; Samuel, Chrishan S.; Tchongue, Jorge; Ilancheran, Sivakami; Boyd, Richard; Trounson, Alan

    2009-01-01

    Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton’s jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury. uMSCs were administered systemically, and lungs were harvested at 7, 14, and 28 days post-bleomycin. Injected uMSCs were located in the lung 2 weeks later only in areas of inflammation and fibrosis but not in healthy lung tissue. The administration of uMSCs reduced inflammation and inhibited the expression of transforming growth factor-β, interferon-γ, and the proinflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor-α. Collagen concentration in the lung was significantly reduced by uMSC treatment, which may have been a consequence of the simultaneous reduction in Smad2 phosphorylation (transforming growth factor-β activity). uMSCs also increased matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, favoring a pro-degradative milieu following collagen deposition. Notably, injected human lung fibroblasts did not influence either collagen or matrix metalloproteinase levels in the lung. The results of this study suggest that uMSCs have antifibrotic properties and may augment lung repair if used to treat acute respiratory distress syndrome. PMID:19497992

  3. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    PubMed Central

    2013-01-01

    Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer. PMID:23374247

  4. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  5. Optical clearing: impact of optical and dielectric properties of clearing solutions on pulmonary tissue mechanics.

    PubMed

    Schwenninger, David; Priebe, Hans-Joachim; Schneider, Matthias; Runck, Hanna; Guttmann, Josef

    2017-07-01

    Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1 ) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2 ) tissue mechanics were affected by dehydration and the type of clearing solution, and 3 ) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = -0.98, P < 0.00001; and r = 0.69, P = 0.013, respectively). We show that the lower the dielectric constant of the clearing solutions, the larger the effect on tissue stiffness. This suggests that the dielectric constant is an important measure in determining the effect of a clearing solution on lung tissue biomechanics. Optimal tissue transparency requires complete tissue dehydration and a refractive index of 1.55 of the clearing solution. NEW & NOTEWORTHY Investigating optical clearing in porcine lung tissue strips, we found that refractive index and dielectric constant of the clearing solution affected tissue clearing and biomechanics. By documenting the impact of the composition of the clearing solution on clearing potency and preservation of tissue mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen. Copyright © 2017 the American Physiological Society.

  6. MICRO DOSE ASESSMENT OF INHALED PARTICLES IN HUMAN LUNGS: A STEP CLOSER TOWARDS THE TARGET TISSUE DOSE

    EPA Science Inventory

    Rationale: Inhaled particles deposit inhomogeneously in the lung and this may result in excessive deposition dose at local regions of the lung, particularly at the anatomic sites of bifurcations and junctions of the airways, which in turn leads to injuries to the tissues and adve...

  7. Monodisperse, Uniformly-Shaped Particles for Controlled Respiratory Vaccine Delivery

    NASA Astrophysics Data System (ADS)

    Fromen, Catherine Ann

    The majority of the world's most infectious diseases occur at the air-tissue interface called the mucosa, including HIV/AIDS, tuberculosis, measles, and bacterial or viral gut and respiratory infections. Despite this, vaccines have generally been developed for the systemic immune system and fail to provide protection at the mucosal site. Vaccine delivery directly to the lung mucosa could provide superior lung protection for many infectious diseases, such as TB or influenza, as well as systemic and therapeutic vaccines for diseases such as Dengue fever, asthma, or cancer. Specifically, precision engineered biomaterials are believed to offer tremendous opportunities for a new generation of vaccines. The goal of this approach is to leverage naturally occurring processes of the immune system to produce memory responses capable of rapidly destroy virulent pathogens without harmful exposure. Considerable knowledge of biomaterial properties and their interaction with the immune system of the lung is required for successful translation. The overall goal of this work was to fabricate and characterize nano- and microparticles using the Particle Replication In Non-wetting Templates (PRINT) fabrication technique and optimize them as pulmonary vaccine carriers. (Abstract shortened by ProQuest.).

  8. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Silva-Correia, J; Oliveira, J M; Caridade, S G; Oliveira, J T; Sousa, R A; Mano, J F; Reis, R L

    2011-06-01

    Intervertebral disc (IVD) degeneration is a challenging clinical problem that urgently demands viable nucleus pulposus (NP) implant materials. The best suited biomaterial for NP regeneration has yet to be identified, but it is believed that biodegradable hydrogel-based materials are promising candidates. In this work, we have developed ionic- and photo-crosslinked methacrylated gellan gum (GG-MA) hydrogels to be used in acellular and cellular tissue-engineering strategies for the regeneration of IVDs. The physicochemical properties of the developed hydrogels were investigated by Fourier-transform infrared spectroscopy, (1) H nuclear magnetic resonance and differential scanning calorimetry. The swelling ability and degradation rate of hydrogels were also analysed in phosphate-buffered saline solution at physiological pH for a period of 30 days. Additionally, the morphology and mechanical properties of the hydrogels were assessed under a scanning electron microscope and dynamic compression, respectively. An in vitro study was carried out to screen possible cytotoxicity of the gellan gum-based hydrogels by culturing rat lung fibroblasts (L929 cells) with hydrogel leachables up to 7 days. The results demonstrated that gellan gum was successfully methacrylated. We observed that the produced GG-MA hydrogels possess improved mechanical properties and lower water uptake ability and degradation rate as compared to gellan gum. This work also revealed that GG-MA hydrogels are non-cytotoxic in vitro, thus being promising biomaterials to be used in IVD tissue-engineering strategies. Copyright © 2010 John Wiley & Sons, Ltd.

  9. FNA, core biopsy, or both for the diagnosis of lung carcinoma: Obtaining sufficient tissue for a specific diagnosis and molecular testing.

    PubMed

    Coley, Shana M; Crapanzano, John P; Saqi, Anjali

    2015-05-01

    Increasingly, minimally invasive procedures are performed to assess lung lesions and stage lung carcinomas. In cases of advanced-stage lung cancer, the biopsy may provide the only diagnostic tissue. The aim of this study was to determine which method-fine-needle aspiration (FNA), core biopsy (CBx), or both (B)--is optimal for providing sufficient tissue for rendering a specific diagnosis and pursuing molecular studies for guiding tumor-specific treatment. A search was performed for computed tomography-guided lung FNA, CBx, or B cases with rapid onsite evaluation. Carcinomas were assessed for the adequacy to render a specific diagnosis; this was defined as enough refinement to subtype a primary carcinoma or to assess a metastatic origin morphologically and/or immunohistochemically. In cases of primary lung adenocarcinoma, the capability of each modality to yield sufficient tissue for molecular studies (epidermal growth factor receptor, KRAS, or anaplastic lymphoma kinase) was also assessed. There were 210 cases, and 134 represented neoplasms, including 115 carcinomas. For carcinomas, a specific diagnosis was reached in 89% of FNA cases (33 of 37), 98% of CBx cases (43 of 44), and 100% of B cases (34 of 34). For primary lung adenocarcinomas, adequate tissue remained to perform molecular studies in 94% of FNA cases (16 of 17), 100% of CBx cases (19 of 19), and 86% of B cases (19 of 22). No statistical difference was found among the modalities for either reaching a specific diagnosis (p = .07, Fisher exact test) or providing sufficient tissue for molecular studies (p = .30, Fisher exact test). The results suggest that FNA, CBx, and B are comparable for arriving at a specific diagnosis and having sufficient tissue for molecular studies: they specifically attained the diagnostic and prognostic goals of minimally invasive procedures for lung carcinoma. © 2015 American Cancer Society.

  10. The histopathologic reliability of tissue taken from cadavers within the gross anatomy laboratory.

    PubMed

    Rae, Guenevere; Newman, William P; McGoey, Robin; Donthamsetty, Supriya; Karpinski, Aryn C; Green, Jeffrey

    2018-03-01

    The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students' dissection course was completed. All of the cadavers were embalmed in a formalin-based fixative solution. The tissue was processed, embedded in paraffin, sectioned at six micrometers, and stained with H&E. The microscope slides were evaluated by a board certified pathologist to determine whether the cellular components of the tissues were preserved at a high enough quality to allow for histopathologic diagnosis. There was a statistically significant relationship between ratings and organ groups. Across all organs, there was a smaller proportion of "poor" ratings. The lung group had the highest percentage of "poor" ratings (23.1%). The heart group had the least "poor" ratings (0.0%). The largest percentage of "satisfactory" ratings were in the lung group (52.8%), and the heart group contained the highest percentage of "good" ratings (58.5%) The lung group had the lowest percentage of "good" ratings (24.2%). These results indicate that heart tissue is more reliable than lung, kidney, or liver tissue when utilizing tissue from the gross anatomy laboratory for research and/or educational purposes. This information advises educators and researchers about the quality and histopathologic reliability of tissue samples obtained from the gross anatomy laboratory. Anat Sci Educ 11: 207-214. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  11. Lung surgery

    MedlinePlus

    ... Lung tissue removal; Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... do surgery on your lungs are thoracotomy and video-assisted thoracoscopic surgery (VATS). Robotic surgery may also ...

  12. Experimental evaluation of a new system for laser tissue welding applied on damaged lungs.

    PubMed

    Schiavon, Marco; Marulli, Giuseppe; Zuin, Andrea; Lunardi, Francesca; Villoresi, Paolo; Bonora, Stefano; Calabrese, Fiorella; Rea, Federico

    2013-05-01

    Alveolar air leaks represent a challenging problem in thoracic surgery, leading to increased patient morbidity and prolonged hospitalization. Several methods have been used, but no ideal technique exists yet. We investigated the lung-sealing capacity of an experimental kit for laser tissue welding. The kit is composed of a semiconductor laser system applied on a protein substrate associated with a chromophore that increases absorption. In vitro tests on porcine lung tissue were done to define ideal laser parameters (power 100 Å, frequency 50 Hz, pulse duration 400 µs) and protein substrate dilution (50%). For in vivo tests, through a left thoracotomy, 14 pigs received two different lung damages: a linear incision and a circular incision. Protein substrate applied on damaged areas was treated with laser to obtain a layer that reconstituted the integrity of the visceral pleura. Air leaks were intraoperatively evaluated by water submersion test with an airway pressure of 20 cmH2O. Animals were sacrificed at postoperative days 0 and 7 to study early and late pathological features. After applying laser treatment, no air leaks were seen in all proofs except in 2 cases in which a second application was required. At time 0, pathological damage mostly consisted of superficial alveolar necrotic tissue covered by protein membrane. At time 7, a complete recovery of lung lesions by fibrous scar with slight inflammatory reaction of adjacent lung tissue was seen. This experimental study demonstrated the effectiveness of laser tissue welding applied to seal air leaks after lung surgery. Further studies are needed to verify acceptability for human application.

  13. Aberrant microRNA-137 promoter methylation is associated with lymph node metastasis and poor clinical outcomes in non-small cell lung cancer

    PubMed Central

    Min, Lingfeng; Wang, Fang; Hu, Suwei; Chen, Yong; Yang, Junjun; Liang, Sudong; Xu, Xingxiang

    2018-01-01

    MicroRNA-137 (miR-137) functions as a tumor suppressor and is silenced by aberrant promoter methylation. Previous studies have demonstrated that miR-137 is downregulated in lung cancer. The purpose of the present study was to investigate miR-137 promoter methylation and to assess its prognostic value in non-small cell lung cancer (NSCLC). The expression of miR-137 was analyzed inhuman lung cancer A549 and H1299 cells and normal bronchial epithelial BEAS-2B cells, 10 paired formalin-fixed paraffin-embedded lung cancer and normal tissue samples, and 56 archived paraffin-embedded lung cancer tissues. Quantitative methylation-specific polymerase chain reaction analysis was used to assess the miR-137 methylation status. The associations between miR-137 promoter methylation and the clinicopathological features and prognosis of patients with NSCLC (n=56) were analyzed using analysis of variance. miR-137 was markedly downregulated in lung cancer cells and lung cancer tissue specimens compared with expression in BEAS-2B cells and matched adjacent normal lung tissues. A significant negative correlation between miR-137 expression and miR-137 promoter methylation was observed in human lung cancer tissues (r=−0.343; P=0.01). Smoking, lymph node metastasis and advanced clinical stage were associated with significantly lower expression of miR-137 in variance analysis. High levels of miR-137 promoter methylation were associated with a significantly poorer disease-free survival rate (P=0.034), but were not associated with overall survival, in Kaplan-Meier analysis and univariate analysis. In conclusion, the results of the present study indicated that miR-137 is downregulated and that its promoter is aberrantly methylated in lung cancer, and that high levels of miR-137 promoter methylation may have prognostic value for poor disease-free survival. PMID:29740491

  14. Long-term study of ovine pulmonary adenocarcinogenesis in sheep with marginal vs. sufficient nutritional selenium supply: results from computed tomography, pathology, immunohistochemistry, JSRV-PCR and lung biochemistry.

    PubMed

    Humann-Ziehank, Esther; Renko, Kostja; Bruegmann, Michael L; Devi, Vemuri Rama; Hewicker-Trautwein, Marion; Andreae, Arnim; Ganter, Martin

    2013-10-01

    The impact of selenium (Se) in carcinogenesis is still debatable due to inconsistent results of observational studies, recent suspicion of diabetic side effects and e.g. dual roles of glutathione peroxidases (GPx). Previously, our group introduced long-term studies on lung carcinogenesis using the jaagtsiekte sheep retrovirus (JSRV) induced ovine pulmonary adenocarcinoma (OPA) as an innovative animal model. The present report describes the results of sufficient (0.2 mg Se/kg dry weight (dw)) vs. marginal (<0.05 mg Se/kg dw) nutritional Se supply on cancer progression over a two-year period in 16 animals. Computed tomography (CT) evaluation of lung cancer progression, final pathological examination, evidence of pro-viral JSRV-DNA in lung, lymph nodes and broncho-alveolar lavage cells as well as biochemical analysis of Se, GPx1 and thioredoxin reductase (TrxR) activity in lung tissue were recorded. Additionally, immunohistochemical determination of GPx1 expression in unaffected and neoplastic lung cells was implemented. The feeding regime caused significant differences in Se concentration and GPx1 activity in lung tissue between groups, whereas TrxR activity remained unaffected. JSRV was evident in broncho-alveolar lavage cells, lung tissue and lung lymph nodes. Quarterly executed CT could not demonstrate differences in lung cancer proliferation intensity. Necropsy and histopathology substantiated CT findings. Immunohistochemical analysis of GPx1 in lung tissue suggested a coherency of GPx1 immunolabelling intensity in dependence of tumour size. It was concluded that the model proved to be suitable for long-term studies of lung cancer proliferation including the impact of modifiable nutritional factors. Proliferation of OPA was unaffected by marginal vs. sufficient nutritional Se supply. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease.

    PubMed

    Fessler, Michael B; Summer, Ross S

    2016-05-01

    The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.

  16. Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    PubMed Central

    Wang, Liangrong; Chen, Baihui; Lin, Bi; Ye, Yuzhu; Bao, Caiying; Zhao, Xiyue; Jin, Lida

    2018-01-01

    Objective This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. Methods Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1β and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. Results Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1β and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1β and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. Conclusion Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress. PMID:29713238

  17. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and 
EML4-ALK-positive Lung Cancer Tissues].

    PubMed

    Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun

    2016-09-20

    The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.

  18. Unilateral pleural effusion in an animal model: evaluation of lung function with EBCT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Pallwein, Leo; Soegner, Peter; Faschingbauer, Ralph; Schmidbauer, Georg; Kleinsasser, Axel; Loeckinger, Alexander; Hoermann, Christoph; zur Nedden, Dieter

    2003-05-01

    The purpsoe was to evaluate the influence of a right-sided pleural effusion on the lung aeration dynamics in the respiratory cycle during pressure controlled ventilation. Pleural effusion was simulated by infusion of 3% gelatin into the pleural cavity in steps of 300ml totaling 1200ml in four anesthetized pigs. After each step, volume scans and respirator gated 50ms scans at a constant table position (carina niveau) were taken. The dynamic changes of the previously defined air-tissue ratios (in steps of 100HU) were evaluated in three separate regions of left and right lung: a ventral, an intermediate and a dorsal area. The affected side revealed dramatic alveolar collapse. There was a shift of the lung density to higher air-tissue ratios (+200HU) but showing the same air-tissue ratio dynamics. A slight lateral shift of 32mm (+/-14mm) the mediastinum was measured. The unaffected side showed no increase in the air-tissue ratios caused by hyperinflation but an increase of density due to mediastinal shift. Air-tissue ratio dynamics remained unchanged on the unaffected side compared to baseline measurements. We visualized the ventilation mismatch caused by pleural effusion. The contra-lateral lung is not affected by unilateral pleural effusion. Pressure controlled ventilation prevents hyper-inflation of non-dependent lung areas.

  19. Measurement of vibration-induced volumetric strain in the human lung.

    PubMed

    Hirsch, Sebastian; Posnansky, Oleg; Papazoglou, Sebastian; Elgeti, Thomas; Braun, Jürgen; Sack, Ingolf

    2013-03-01

    Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs. Copyright © 2012 Wiley Periodicals, Inc.

  20. [Correlations between OCT4 expression and clinicopathological factors and prognosis of patients with lung adenocarcinoma].

    PubMed

    Zhang, Xueyan; Wang, Huimin; Jin, Bo; Dong, Qianggang; Huang, Jinsu; Han, Baohui

    2013-04-01

    In recent years, cases of lung adenocarcinoma morbidity have consistently grown. OCT4 is the key gene that controls the automatic renewal of stem cells, and regulates the proliferation and differentiation of cancer stem cells. The aim of this study is to detect OCT4 expression in lung adenocarcinoma tissues, and to evaluate its relevance in the metastasis, chemotherapeutic effect, and prognosis in lung adenocarcinoma patients. Immunofluorescence method was employed to detect OCT4 expression in lung adenocarcinoma tissues. The relationship between OCT4 expression and clinical pathological indicators is examined through chi-square test. Moreover, the survival rate is calculated through the Kaplan-Meier survivorship curve. Finally, the relevance between the indicators and patient survival is estimated using Cox analysis. Among the 126 tissue samples of lung adenocarcinoma, 91 showed OCT4 positive cells. OCT4 expression is closely related to metastasis and chemoresistance in lung adenocarcinoma patients, and negatively corresponds to the patients' disease-free survival and survival periods. OCT4 expression is related to metastasis and chemoresistance in lung adenocarcinoma patients, and thus indicates poor prognosis.

  1. [Criteria of the molecular pathology testing of lung cancer].

    PubMed

    Tímár, József

    2014-06-01

    From the aspect of the contemporary pathologic diagnostics of lung cancer the tissue obtained is a key issue since small biopsies and cytology still play a major role. In the non-small cell lung cancer era cytology is considered equal to biopsy however, in recent years it is unable to provide quality diagnosis and must be replaced by biopsy. Various molecular techniques can handle various different tissue samples which must be considered during molecular pathology diagnosis. Moreover, tumor cell-normal cell ratio in the obtained tissue, as well as the absolute tumor cell number have great significance, which information must be provided in the primary lung cancer diagnosis. Last but not least, for continuous sustainable molecular diagnostics of lung cancer rational algorithms, affordable technology and appropriate reimbursement are equally necessary.

  2. Minimal requirements for the molecular testing of lung cancer.

    PubMed

    Popper, Helmut H; Tímár, József; Ryska, Ales; Olszewski, Wlodzimierz

    2014-10-01

    From the aspect of the contemporary pathologic diagnostics of lung cancer, it is a key issue of the tissue obtained since small biopsies and cytology still play a major role. In the non-small cell lung cancer era, cytology considered equal to biopsy. However, in recent years it is unable to provide quality diagnosis and must be replaced by biopsy. Various molecular techniques can handle various different tissue samples which must be considered during molecular pathology diagnosis. Besides, tumor cell-normal cell ratio in the obtained tissue as well as the absolute tumor cell number have great significance whose information must be provided in the primary lung cancer diagnosis. Last but not least, for continuous sustainable molecular diagnostics of lung cancer rational algorythms, affordable technology and appropriate reimbursement are equally necessary.

  3. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    PubMed

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  4. Local and systemic effects of fibrin and cyanoacrylate adhesives on lung lesions in rabbits

    PubMed Central

    Carvalho, Marcus V.H.; Marchi, Evaldo; Fruchi, Andre J.; Dias, Bruno V.B.; Pinto, Clovis L.; dos Santos, Geovane R.; Acencio, Milena M.P.

    2017-01-01

    OBJECTIVES: Tissue adhesives can be used to prevent pulmonary air leaks, which frequently occur after lung interventions. The objective of this study is to evaluate local and systemic effects of fibrin and cyanoacrylate tissue adhesives on lung lesions in rabbits. METHODS: Eighteen rabbits were submitted to videothoracoscopy + lung incision alone (control) or videothoracoscopy + lung incision + local application of fibrin or cyanoacrylate adhesive. Blood samples were collected and assessed for leukocyte, neutrophil and lymphocyte counts and interleukin-8 levels preoperatively and at 48 hours and 28 days post-operatively. After 28 days, the animals were euthanized for gross examination of the lung surface, and lung fragments were excised for histopathological analysis. RESULTS: Fibrin and cyanoacrylate produced similar adhesion scores of the lung to the parietal pleura. Microscopic analysis revealed uniform low-cellular tissue infiltration in the fibrin group and an intense tissue reaction characterized by dense inflammatory infiltration of granulocytes, giant cells and necrosis in the cyanoacrylate group. No changes were detected in the leukocyte, neutrophil or lymphocyte count at any time-point, while the interleukin-8 levels were increased in the fibrin and cyanoacrylate groups after 48 hours compared with the pre-operative control levels (p<0.01). CONCLUSION: Both adhesive agents promoted normal tissue healing, with a more pronounced local inflammatory reaction observed for cyanoacrylate. Among the serum markers of inflammation, only the interleukin-8 levels changed post-operatively, increasing after 48 hours and decreasing after 28 days to levels similar to those of the control group in both the fibrin and cyanoacrylate groups. PMID:29160425

  5. Local and systemic effects of fibrin and cyanoacrylate adhesives on lung lesions in rabbits.

    PubMed

    Carvalho, Marcus V H; Marchi, Evaldo; Fruchi, Andre J; Dias, Bruno V B; Pinto, Clovis L; Dos Santos, Geovane R; Acencio, Milena M P

    2017-10-01

    Tissue adhesives can be used to prevent pulmonary air leaks, which frequently occur after lung interventions. The objective of this study is to evaluate local and systemic effects of fibrin and cyanoacrylate tissue adhesives on lung lesions in rabbits. Eighteen rabbits were submitted to videothoracoscopy + lung incision alone (control) or videothoracoscopy + lung incision + local application of fibrin or cyanoacrylate adhesive. Blood samples were collected and assessed for leukocyte, neutrophil and lymphocyte counts and interleukin-8 levels preoperatively and at 48 hours and 28 days post-operatively. After 28 days, the animals were euthanized for gross examination of the lung surface, and lung fragments were excised for histopathological analysis. Fibrin and cyanoacrylate produced similar adhesion scores of the lung to the parietal pleura. Microscopic analysis revealed uniform low-cellular tissue infiltration in the fibrin group and an intense tissue reaction characterized by dense inflammatory infiltration of granulocytes, giant cells and necrosis in the cyanoacrylate group. No changes were detected in the leukocyte, neutrophil or lymphocyte count at any time-point, while the interleukin-8 levels were increased in the fibrin and cyanoacrylate groups after 48 hours compared with the pre-operative control levels (p<0.01). Both adhesive agents promoted normal tissue healing, with a more pronounced local inflammatory reaction observed for cyanoacrylate. Among the serum markers of inflammation, only the interleukin-8 levels changed post-operatively, increasing after 48 hours and decreasing after 28 days to levels similar to those of the control group in both the fibrin and cyanoacrylate groups.

  6. An optimized two-photon method for in vivo lung imaging reveals intimate cell collaborations during infection

    NASA Astrophysics Data System (ADS)

    Fiole, Daniel; Deman, Pierre; Trescos, Yannick; Douady, Julien; Tournier, Jean-Nicolas

    2013-02-01

    Lung tissue motion arising from breathing and heart beating has been described as the largest annoyance of in vivo imaging. Consequently, infected lung tissue has never been imaged in vivo thus far, and little is known concerning the kinetics of the mucosal immune system at the cellular level. We have developed an optimized post-processing strategy to overcome tissue motion, based upon two-photon and second harmonic generation (SHG) microscopy. In contrast to previously published data, we have freed the lung parenchyma from any strain and depression in order to maintain the lungs under optimal physiological parameters. Excitation beams swept the sample throughout normal breathing and heart movements, allowing the collection of many images. Given that tissue motion is unpredictably, it was essential to sort images of interest. This step was enhanced by using SHG signal from collagen as a reference for sampling and realignment phases. A normalized cross-correlation criterion was used between a manually chosen reference image and rigid transformations of all others. Using CX3CR1+/gfp mice this process allowed the collection of high resolution images of pulmonary dendritic cells (DCs) interacting with Bacillus anthracis spores, a Gram-positive bacteria responsible for anthrax disease. We imaged lung tissue for up to one hour, without interrupting normal lung physiology. Interestingly, our data revealed unexpected interactions between DCs and macrophages, two specialized phagocytes. These contacts may participate in a better coordinate immune response. Our results not only demonstrate the phagocytizing task of lung DCs but also infer a cooperative role of alveolar macrophages and DCs.

  7. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.

    PubMed

    Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan

    2018-03-01

    Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan geometries, employed as ground truth data. Image similarity between the simulated and ground truth scans was evaluated. The model validation experiments were conducted in a patient cohort of seventeen patients to assess the model robustness and inter-patient variation. The model error averaged over multiple tracked positions from several breathing cycles was found to be on the order of one millimeter. In modeling the density change under free breathing condition, the determinant of Jacobian matrix from the registration-derived deformation vector field yielded volume change information of the lung tissues. Correlation of the Jacobian values to the corresponding voxel Housfield units (HU) reveals that the density variation for the majority of lung tissues can be very well described by mass conservation relationship. Different tissue types were identified and separately modeled. Large trials of validation experiments were performed. The averaged deviation between the modeled and the reference lung density was 30 HU, which was estimated to be the background CT noise level. In characterizing the lung ventilation function, a novel method was developed to determine the extent of lung tissue volume change. Information on volume change was derived from the deformable image registration of the fast helical CT images in terms of Jacobian values with respect to a reference image. Assuming the multiple volume change measurements are independently and identically distributed, statistical formulation was derived to model ventilation distribution of each lung voxels and empirical minimum and maximum probability distribution of the Jacobian values was computed. Ventilation characteristic was evaluated as the difference of the expectation value from these extremal distributions. The resulting ventilation map was compared with an independently obtained ventilation image derived directly from the lung intensities and good correlation was found using statistical test. In addition, dynamic ventilation characterization was investigated by estimating the voxel-specific ventilation distribution. Ventilation maps were generated at different percentile levels using the tissue volume expansion metrics.

  9. Measurement of lung expansion with computed tomography and comparison with quantitative histology.

    PubMed

    Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C

    1995-11-01

    The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.

  10. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS)

    USDA-ARS?s Scientific Manuscript database

    Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG, IgM and leptospiral antigens. Three ...

  11. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion

    PubMed Central

    Andreasson, Anders S.I.; Karamanou, Danai M.; Gillespie, Colin S.; Özalp, Faruk; Butt, Tanveer; Hill, Paul; Jiwa, Kasim; Walden, Hannah R.; Green, Nicola J.; Borthwick, Lee A.; Clark, Stephen C.; Pauli, Henning; Gould, Kate F.; Corris, Paul A.; Ali, Simi; Dark, John H.

    2017-01-01

    Abstract OBJECTIVES: Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. METHODS: In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. RESULTS: Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. CONCLUSIONS: This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study. PMID:28082471

  12. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    PubMed

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as they establish residence in the lung. However, this transition does not edit CD4 T cell epitope specificity or the cytokine potential of the CD4 T cells. Thus, CD4 T cells that enter the infected lung can convey diverse functions and have a sufficiently broad viral antigen specificity to detect the complex array of infected cells within the infected tissue, offering the potential for more effective protective function. Copyright © 2018 American Society for Microbiology.

  13. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons.

    PubMed

    Fish, Trevor J; Benninghoff, Abby D

    2017-11-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gene expression in lung adenocarcinomas of smokers and nonsmokers.

    PubMed

    Powell, Charles A; Spira, Avrum; Derti, Adnan; DeLisi, Charles; Liu, Gang; Borczuk, Alain; Busch, Steve; Sahasrabudhe, Sudhir; Chen, Yangde; Sugarbaker, David; Bueno, Raphael; Richards, William G; Brody, Jerome S

    2003-08-01

    Adenocarcinoma (AC) has become the most frequent type of lung cancer in men and women, and is the major form of lung cancer in nonsmokers. Our goal in this paper was to determine if AC in smokers and nonsmokers represents the same genetic disease. We compared gene expression profiles in resected samples of nonmalignant lung tissue and tumor tissue in six never-smokers with AC and in six smokers with AC, who were matched for clinical staging and histologic criteria of cell differentiation. Results were analyzed using a variety of bioinformatic tools. Four times as many genes changed expression in the transition from noninvolved lung to tumor in nonsmokers as in smokers, suggesting that AC in nonsmokers evolves locally, whereas AC in smokers evolves in a field of genetically altered tissue. There were some similarities in gene expression in smokers and nonsmokers, but many differences, suggesting different pathways of cell transformation and tumor formation. Gene expression in the noninvolved lungs of smokers differed from that of nonsmokers, and multidimensional scaling showed that noninvolved lungs of smokers groups with tumors rather than noninvolved lungs of nonsmokers. In addition, expression of a number of genes correlated with smoking intensity. Our findings, although limited by small sample size, suggest that additional studies comparing noninvolved to tumor tissue may identify pathogenetic mechanisms and therapeutic targets that differ in AC of smokers and nonsmokers.

  15. Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.

    PubMed

    Zhou, Boran; Zhang, Xiaoming

    2018-05-23

    Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density by using the DNN model together with the surface wave speed and lung stiffness measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Screening for Helicobacter pylori in Idiopathic Pulmonary Fibrosis Lung Biopsies.

    PubMed

    Kreuter, Michael; Kirsten, Detlef; Bahmer, Thomas; Penzel, Roland; Claussen, Martin; Ehlers-Tenenbaum, Svenja; Muley, Thomas; Palmowski, Karin; Eichinger, Monika; Leider, Marta; Herth, Felix J F; Rabe, Klaus F; Bittmann, Iris; Warth, Arne

    2016-01-01

    Increasing evidence suggests a role of gastro-oesophageal reflux (GER) in idiopathic pulmonary fibrosis (IPF) pathogenesis. Recently, an association between serum Helicobacter pylori (HP) antibody positivity and more severe disease was described, but HP has not been directly analysed in lung tissue so far. To investigate the presence of HP in the lung tissue of IPF patients. Two tertiary interstitial lung disease care centre databases were screened for available lung biopsy material from IPF patients. Clinical and radiological data, including presence of GER and antiacid medication, were evaluated. HP-specific PCR was carried out on the IPF lung biopsy specimens. A total of 39 IPF patients were included, of whom 85% were male. The patients' median age was 66 years, their vital capacity was 79% predicted, and their diffusing capacity for carbon monoxide was 53% predicted. In all, 82% of the lung biopsies were surgical and 18% transbronchial. Comorbidities were GER disease in 23% (n = 9), sleep apnoea in 13% (n = 5) and hiatal hernia in 38% of the cases (n = 15). Proton pump inhibitors were prescribed at the time of biopsy in 21% of the cases (n = 9). After a median follow-up of 25 months (range 6-69), there were 1 death, 1 lung transplantation and 8 acute exacerbations without relevant differences between the GER and non-GER subgroups. HP DNA was not detected in any of the lung tissue samples. The fact that no HP DNA was detected in the lung tissues calls into question the proposed relevance of HP to the direct pathogenesis of IPF. © 2015 S. Karger AG, Basel.

  17. Predicting the response of the injured lung to the mechanical breath profile

    PubMed Central

    Smith, Bradford J.; Lundblad, Lennart K. A.; Kollisch-Singule, Michaela; Satalin, Joshua; Nieman, Gary; Habashi, Nader

    2015-01-01

    Mechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (Vt) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-Vt ventilation. To gain insight into the relative merits of these two ventilation modes, we measured lung mechanics and derecruitability in rats before and following Tween lavage. We fit to these lung mechanics measurements a computational model of the lung that accounts for both the degree of tissue distension of the open lung and the amount of lung derecruitment that takes place as a function of time. Using this model, we predicted how tissue distension, open lung fraction, and intratidal recruitment vary as a function of ventilator settings both for conventional low-Vt ventilation and for APRV. Our predictions indicate that APRV is more effective at recruiting the lung than low-Vt ventilation, but without causing more overdistension of the tissues. On the other hand, low-Vt ventilation generally produces less intratidal recruitment than APRV. Predictions such as these may be useful for deciding on the relative benefits of different ventilation modes and thus may serve as a means for determining how to ventilate a given lung in the least injurious fashion. PMID:25635004

  18. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  19. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    PubMed Central

    Maikawa, Caitlin L.; Zimmerman, Naomi; Ramos, Manuel; Wallace, James S.; Pollitt, Krystal J. Godri

    2018-01-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important. PMID:29494515

  20. Pharmacokinetic and pharmacometabolomic study of pirfenidone in normal mouse tissues using high mass resolution MALDI-FTICR-mass spectrometry imaging.

    PubMed

    Sun, Na; Fernandez, Isis E; Wei, Mian; Wu, Yin; Aichler, Michaela; Eickelberg, Oliver; Walch, Axel

    2016-02-01

    Given the importance of pirfenidone as the first worldwide-approved drug for idiopathic pulmonary fibrosis treatment, its pharmacodynamic properties and the metabolic response to pirfenidone treatment have not been fully elucidated. The aim of the present study was to get molecular insights of pirfenidone-related pharmacometabolomic response using MALDI-FTICR-MSI. Quantitative MALDI-FTICR-MSI was carried out for determining the pharmacokinetic properties of pirfenidone and its related metabolites 5-hydroxymethyl pirfenidone and 5-carboxy pirfenidone in lung, liver and kidney. To monitor the effect of pirfenidone administration on endogenous cell metabolism, additional in situ endogenous metabolite imaging was performed in lung tissue sections. While pirfenidone is highly abundant and delocalized across the whole micro-regions of lung, kidney and liver, 5-hydroxymethyl pirfenidone and 5-carboxy pirfenidone demonstrate heterogeneous distribution patterns in lung and kidney. In situ endogenous metabolite imaging study of lung tissue indicates no significant effects of pirfenidone on metabolic pathways. Remarkably, we found 129 discriminative m/z values which represent clear differences between control and treated lungs, the majority of which are currently unknown. PCA analysis and heatmap view can accurately distinguish control and treated groups. This is the first pharmacokinetic study to investigate the tissue distribution of orally administered pirfenidone and its related metabolites simultaneously in organs without labeling. The combination of pharmametabolome with histological features provides detailed mapping of drug effects on metabolism as response of healthy lung tissue to pirfenidone treatment.

  1. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  2. Epithelial neoplasia coincides with exacerbated injury and fibrotic response in the lungs of Gprc5a-knockout mice following silica exposure

    PubMed Central

    Zhong, Shuangshuang; Song, Hongyong; Sun, Beibei; Zhou, Binhua P.; Deng, Jiong; Han, Baohui

    2015-01-01

    Exposure to crystalline silica is suggested to increase the risk for a variety of lung diseases, including fibrosis and lung cancer. However, epidemiological evidences for the exposure-risk relationship are ambiguous and conflicting, and experimental study from a reliable animal model to explore the relationship is lacking. We reasoned that a mouse model that is sensitive to both lung injury and tumorigenesis would be appropriate to evaluate the exposure-risk relationship. Previously, we showed that, Gprc5a−/− mice are susceptible to both lung tumorigenesis and endotoxin-induced acute lung injury. In this study, we investigated the biological consequences in Gprc5a−/− mouse model following silica exposure. Intra-tracheal administration of fine silica particles in Gprc5a−/− mice resulted in more severe lung injury and pulmonary inflammation than in wild-type mice. Moreover, an enhanced fibrogenic response, including EMT-like characteristics, was induced in the lungs of Gprc5a−/− mice compared to those from wild-type ones. Importantly, increased hyperplasia or neoplasia coincided with silica-induced tissue injury and fibrogenic response in lungs from Gprc5a−/− mice. Consistently, expression of MMP9, TGFβ1 and EGFR was significantly increased in lungs from silica-treated Gprc5a−/− mice compared to those untreated or wild-type ones. These results suggest that, the process of tissue repair coincides with tissue damages; whereas persistent tissue damages leads to abnormal repair or neoplasia. Thus, silica-induced pulmonary inflammation and injury contribute to increased neoplasia development in lungs from Gprc5a−/− mouse model. PMID:26447616

  3. Involvement of MicroRNAs in Lung Cancer Biology and Therapy

    PubMed Central

    Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2011-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030

  4. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells

    NASA Astrophysics Data System (ADS)

    Tabish, Tanveer A.; Pranjol, Md Zahidul I.; Hayat, Hasan; Rahat, Alma A. M.; Abdullah, Trefa M.; Whatmore, Jacqueline L.; Zhang, Shaowei

    2017-12-01

    The intriguing properties of reduced graphene oxide (rGO) have paved the way for a number of potential biomedical applications such as drug delivery, tissue engineering, gene delivery and bio-sensing. Over the last decade, there have been escalating concerns regarding the possible toxic effects, behaviour and fate of rGO in living systems and environments. This paper reports on integrative chemical-biological interactions of rGO with lung cancer cells, i.e. A549 and SKMES-1, to determine its potential toxicological impacts on them, as a function of its concentration. Cell viability, early and late apoptosis and necrosis were measured to determine oxidative stress potential, and induction of apoptosis for the first time by comparing two lung cancer cells. We also showed the general trend between cell death rates and concentrations for different cell types using a Gaussian process regression model. At low concentrations, rGO was shown to significantly produce late apoptosis and necrosis rather than early apoptotic events, suggesting that it was able to disintegrate the cellular membranes in a dose dependent manner. For the toxicity exposures undertaken, late apoptosis and necrosis occurred, which was most likely resultant from limited bioavailability of unmodified rGO in lung cancer cells.

  5. [The characteristics of type I, III collagen and LN in pulmonary fibrosis induced by uranium ore dust in rats].

    PubMed

    Hu, Ying-chun; Luo, Zhen-hua; Yuan, Xing-jiang; Yang, Li-ping; Wang, Shou-feng; Li, Guang-yue; He, Xing-peng

    2011-02-01

    To explore the characteristics of LN and type I, III collagen in pulmonary fibrosis induced by uranium ore dust in rats. 60 adult Wistar rats were divided randomly into two groups, control group (30 rats) and uranium ore dust group (30 rats). Non-exposed intratracheal instillation method was used. Uranium ore dust group was exposed 20 mg/ml uranium ore dust suspension 1ml per rat, meanwhile control group was exposed normal saline 1ml per rat. Post-exposed the 7, 14, 21, 30 and 60 d, 6 rats in each group were killed randomly, lung tissue were collected. The pathological changes in lung tissue were observed by microscope using HE staining, the collagen I and III in lungs were observed by polarizing microscope using Biebrich scarlet staining. The expression of LN protein in lung tissue was observed by immunohistochemistry-SP. During lung fibrosis, a large amount of the proliferated I and III collagen in lungs were observed. Post-exposure to uranium ore dust, the characteristics in proliferated collagen in lungs were type I collagen deposited in lung interstitium mainly in the early stage. The area percentage of collagen I and III was increased significantly at 7, 14, 21, 30 and 60d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). The over expression of LN in the lung tissue were observed. The expression of LN was distributed in the lung tissue as thickening of the linear or cluster. The integral optical density of LN was increased significantly at 21, 30 and 60 d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). After exposure to uranium ore dust, the characteristics in proliferated collagen in lungs are the type of I collagen deposited in lung interstitium mainly in the early stage, while the type of III collagen increase significantly at the later period. The overexpression of LN exists in the process of pulmonary fibrosis. It suggests that LN has a role effect in the process of pulmonary fibrosis.

  6. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer.

    PubMed

    Chen, Yong; Min, Lingfeng; Ren, Chuanli; Xu, Xingxiang; Yang, Jianqi; Sun, Xinchen; Wang, Tao; Wang, Fang; Sun, Changjiang; Zhang, Xizhi

    2017-01-01

    Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.

  7. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung.

    PubMed

    Suki, Béla

    2014-09-01

    Recently, an exciting new approach has emerged in regenerative medicine pushing the forefront of tissue engineering to create bioartificial organs. The basic idea is to create biological scaffolds made of extracellular matrix (ECM) that preserves the three-dimensional architecture of an entire organ. These scaffolds are then used as templates for functional tissue and organ reconstruction after re-seeding the structure with stem cells or appropriately differentiated cells. In order to make sure that these bioartificial organs will be able to function in the mechanical environment of the native tissue, it is imperative to fully characterize their mechanical properties and match them with those of the normal native organs. This mini-review briefly summarizes modern measurement techniques of mechanical function characterized mostly by the material or volumetric stiffness. Micro-scale and macro-scale techniques such as atomic force microscopy and the tissue strip stress-strain approach are discussed with emphasis on those that combine mechanical measurements with structural visualization. Proper micro-scale stiffness helps attachment and differentiation of cells in the bioartificial organ whereas macro-scale functionality is provided by the overall mechanical properties of the construct. Several approaches including failure mechanics are also described, which specifically probe the contributions of the main ECM components including collagen, elastin, and proteoglycans to organ level ECM function. Advantages, drawbacks, and possible pitfalls as well as interpretation of the data are given throughout. Finally, specific techniques to assess the functionality of the ECM of bioartificial lungs are separately discussed. © 2014 Wiley Periodicals, Inc.

  8. Staging research of human lung cancer tissues by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1 H NMR) and multivariate data analysis.

    PubMed

    Chen, Wenxue; Lu, Shaohua; Wang, Guifang; Chen, Fener; Bai, Chunxue

    2017-10-01

    High-resolution magic-angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy technique was employed to analyze the metabonomic characterizations of lung cancer tissues in hope to identify potential diagnostic biomarkers for malignancy detection and staging research of lung tissues. HRMAS 1 H NMR spectroscopy technique can rapidly provide important information for accurate diagnosis and staging of cancer tissues owing to its noninvasive nature and limited requirement for the samples, and thus has been acknowledged as an excellent tool to investigate tissue metabolism and provide a more realistic insight into the metabonomics of tissues when combined with multivariate data analysis (MVDA) such as component analysis and orthogonal partial least squares-discriminant analysis in particular. HRMAS 1 H NMR spectra displayed the metabonomic differences of 32 lung cancer tissues at the different stages from 32 patients. The significant changes (P < 0.05) of some important metabolites such as lipids, aspartate and choline-containing compounds in cancer tissues at the different stages had been identified. Furthermore, the combination of HRMAS 1 H NMR spectroscopy and MVDA might potentially and precisely provided for a high sensitivity, specificity, prediction accuracy in the positive identification of the staging for the cancer tissues in contrast with the pathological data in clinic. This study highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for the diagnosis and staging prediction of lung cancer in future. © 2016 John Wiley & Sons Australia, Ltd.

  9. Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Yasuhiro; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology; Yoshida, Yukihiro

    2014-01-24

    Highlights: • Most of the adenocarcinomas and bronchioloalveolar carcinomas were LIPH-positive. • LIPH is necessary for the proliferation of lung cancer cells in vitro. • A high level of LIPH in serum is correlated with better survival in early phase lung-cancer patients after surgery. - Abstract: Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1)more » as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.« less

  10. Developmental origin of lung macrophage diversity

    PubMed Central

    Tan, Serena Y. S.; Krasnow, Mark A.

    2016-01-01

    Macrophages are specialized phagocytic cells, present in all tissues, which engulf and digest pathogens, infected and dying cells, and debris, and can recruit and regulate other immune cells and the inflammatory response and aid in tissue repair. Macrophage subpopulations play distinct roles in these processes and in disease, and are typically recognized by differences in marker expression, immune function, or tissue of residency. Although macrophage subpopulations in the brain have been found to have distinct developmental origins, the extent to which development contributes to macrophage diversity between tissues and within tissues is not well understood. Here, we investigate the development and maintenance of mouse lung macrophages by marker expression patterns, genetic lineage tracing and parabiosis. We show that macrophages populate the lung in three developmental waves, each giving rise to a distinct lineage. These lineages express different markers, reside in different locations, renew in different ways, and show little or no interconversion. Thus, development contributes significantly to lung macrophage diversity and targets each lineage to a different anatomical domain. PMID:26952982

  11. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution.

    PubMed

    Cui, Jia; Halbrook, Richard S; Zang, Shuying; Han, Shuang; Li, Xinyu

    2018-03-01

    Atmospheric pollution in urban areas is a major worldwide concern with potential adverse impacts on wildlife and humans. Biomonitoring can provide direct evidence of the bioavailability and bioaccumulation of toxic metals in the environment that is not available with mechanical air monitoring. The current study continues our evaluation of the usefulness of homing pigeon lung tissue as a biomonitor of atmospheric pollution. Homing pigeons (1-2, 5-6, and 9-10+ year old (yo)) collected from Guangzhou during 2015 were necropsied and concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) were measured in lung tissue. Lung Cd and Pb concentrations were significantly greater in 9-10+-year-old pigeons compared with those in other age groups, indicating their bioavailability and bioaccumulation. Lung Pb and Cd concentrations measured in 5-yo pigeons collected from Guangzhou during 2015 were significantly lower than concentrations reported in 5-yo homing pigeons collected from Guangzhou during 2011 and correlated with concentrations measured using mechanical air monitoring. In addition to temporal differences, spatial differences in concentrations of Cd, Pb, and Hg reported in ambient air samples and in pigeon lung tissues collected from Beijing and Guangzhou are discussed.

  12. Effects of trauma, hemorrhagic shock, and chronic stress on lung vascular endothelial growth factor.

    PubMed

    Loftus, Tyler J; Thomson, Andrew J; Kannan, Kolenkode B; Alamo, Ines G; Ramos, Harry N; Whitley, Elizabeth E; Efron, Philip A; Mohr, Alicia M

    2017-04-01

    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR-1 and VEGFR-2) regulate vascular permeability and endothelial cell survival. We hypothesized that hemorrhagic shock (HS) and chronic stress (CS) would increase expression of lung VEGF and its receptors, potentiating pulmonary edema in lung tissue. Male Sprague-Dawley rats aged 8-9 wk were randomized: naïve control, lung contusion (LC), LC followed by HS (LCHS), and LCHS with CS in a restraint cylinder for 2 h/d (LCHS/CS). Animals were sacrificed on days 1 and 7. Expressions of lung VEGF, VEGFR-1, and VEGFR-2 were determined by polymerase chain reaction. Lung Injury Score (LIS) was graded on light microscopy by inflammatory cell counts, interstitial edema, pulmonary edema, and alveolar integrity (range: 0 = normal; 8 = severe injury). Seven days after LC, lung VEGF and VEGFR-1 were increased, and lung tissue healed (LIS: 0.8 ± 0.8). However, 7 d after LCHS and LCHS/CS, lung VEGF and VEGFR-1 expressions were decreased. VEGFR-2 was also decreased after LCHS/CS. LIS was elevated 7 d after LCHS and LCHS/CS (6.5 ± 1.0 and 8.2 ± 0.8). Increased LIS after LCHS and LCHS/CS was because of higher inflammatory cell counts, increased interstitial edema, and loss of alveolar integrity, whereas pulmonary edema was unchanged. Elevation of lung VEGF and VEGFR-1 expressions after LC alone was associated with healing of injured lung tissue. Expressions of VEGF, VEGFR-1, and VEGFR-2 were reduced after LCHS and LCHS/CS, and injured lung tissue did not heal. Persistent lung injury after severe trauma was because of inflammation rather than pulmonary edema. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.

    PubMed

    Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R

    2015-10-05

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

  14. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales.

    PubMed

    Godwin, Alan R F; Starborg, Tobias; Sherratt, Michael J; Roseman, Alan M; Baldock, Clair

    2017-04-01

    Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.

    PubMed

    Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-07-01

    We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.

  16. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).

    PubMed

    Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2012-08-01

    This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  18. Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats.

    PubMed

    Wang, Y; Huang, G; Mo, B; Wang, C

    2016-06-03

    The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation.

  19. Forensic evaluation of STR typing reliability in lung cancer.

    PubMed

    Zhang, Peng; Zhu, Ying; Li, Yongguo; Zhu, Shisheng; Ma, Ruoxiang; Zhao, Minzhu; Li, Jianbo

    2018-01-01

    Short tandem repeats (STR) analysis is the gold standard method in the forensics field for personal identification and paternity testing. In cancerous tissues, STR markers are gaining attention, with some studies showing increased instability. Lung cancer, which is one of the most commonmalignancies, has become the most lethal among all cancers. In certain situations, lung cancer tissues may be the only resource available for forensic analysis. Therefore, evaluating the reliability of STR markers in lung cancer tissues is required to avoid false exclusions. In this study, 75 lung cancer tissue samples were examined to evaluate the reliability of various STR markers. Out of the 75 examined samples, 24 of the cancerous samples (32%) showed genetic alterations on at least one STR loci, totaling 55 times. The most common type of STR variation was a partial loss of heterozygosity, with the D5S818 loci having the highest variation frequency and no alterations detected on the D2S441 and Penta E loci. Moreover, STR variation frequencies were shown to increase with an increased patient age and increased clinical and pathological characteristics, thus an older patient with an advanced stage of progression exhibited a higher variation frequency. Overall, this study provides forensic scientists with further insight into STR analysis relating to lung cancer tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The concept of "baby lung".

    PubMed

    Gattinoni, Luciano; Pesenti, Antonio

    2005-06-01

    The "baby lung" concept originated as an offspring of computed tomography examinations which showed in most patients with acute lung injury/acute respiratory distress syndrome that the normally aerated tissue has the dimensions of the lung of a 5- to 6-year-old child (300-500 g aerated tissue). The respiratory system compliance is linearly related to the "baby lung" dimensions, suggesting that the acute respiratory distress syndrome lung is not "stiff" but instead small, with nearly normal intrinsic elasticity. Initially we taught that the "baby lung" is a distinct anatomical structure, in the nondependent lung regions. However, the density redistribution in prone position shows that the "baby lung" is a functional and not an anatomical concept. This provides a rational for "gentle lung treatment" and a background to explain concepts such as baro- and volutrauma. From a physiological perspective the "baby lung" helps to understand ventilator-induced lung injury. In this context, what appears dangerous is not the V(T)/kg ratio but instead the V(T)/"baby lung" ratio. The practical message is straightforward: the smaller the "baby lung," the greater is the potential for unsafe mechanical ventilation.

  1. Synergistically increased ILC2 and Th9 cells in lung tissue jointly promote the pathological process of asthma in mice.

    PubMed

    Ying, Xinyu; Su, Zhaoliang; Bie, Qingli; Zhang, Pan; Yang, Huijian; Wu, Yumin; Xu, Yunyun; Wu, Jing; Zhang, Mengying; Wang, Shengjun; Xu, Huaxi

    2016-06-01

    In recent years, T helper (Th) 9 cells have been demonstrated to be key mediators in immune responses in asthmatic lungs, and innate lymphoid cells 2 (ILC2s) have been described as a novel type of innate immunocyte with the ability to enhance immunoglobulin E (IgE) production. However, the interaction between ILC2s and Th9 cells in the pulmonary system of a mouse model of asthma remains to be elucidated. In the present study, the response state of lung tissue with regards to Th9 and ILC2s in a mouse model of asthma was investigated by detecting Th9‑ and ILC2‑associated cytokine receptors. The present study also investigated the association between the expression levels of the cytokine receptors in lung tissue samples and the IgE levels in sera samples from mouse models of asthma. Results from the present study demonstrated that the frequency of ILC2s and Th9 cells was significantly increased in the lung tissue samples, indicating that a Th2-type immune response had occurred. In addition, high mRNA expression levels of RAR‑related orphan receptor α, interleukin 1 receptor‑like 1, transcription factor PU.1 and interleukin (IL)‑9 were observed. Furthermore, IL‑5Rα, IL‑13Rα2 and high‑affinity IgE receptor were increased in mouse models of asthma, and a positive association was observed between the expression levels of ILC2‑ or Th9‑associated receptors in tissue samples and IgE levels in the sera. This indicated that ILC2s and Th9 were in a state of polarization and may promote each other in the lung tissue of mouse models of asthma, and that the lung tissue was responding to the two types of cells via increased expression of receptors.

  2. Midkine and pleiotrophin concentrations in needle biopsies of breast and lung masses.

    PubMed

    Giamanco, Nicole M; Jee, Youn Hee; Wellstein, Anton; Shriver, Craig D; Summers, Thomas A; Baron, Jeffrey

    2017-09-07

    Midkine (MDK) and pleiotrophin (PTN) are two closely related heparin-binding growth factors which are overexpressed in a wide variety of human cancers. We hypothesized that the concentrations of these factors in washout of biopsy needles would be higher in breast and lung cancer than in benign lesions. Seventy subjects underwent pre-operative core needle biopsies of 78 breast masses (16 malignancies). In 11 subjects, fine needle aspiration was performed ex vivo on 7 non-small cell lung cancers and 11 normal lung specimens within surgically excised lung tissue. The biopsy needle was washed with buffer for immunoassay. The MDK/DNA and the PTN/DNA ratio in most of the malignant breast masses were similar to the ratios in benign masses except one lobular carcinoma in situ (24-fold higher PTN/DNA ratio than the average benign mass). The MDK/DNA and PTN/DNA ratio were similar in most malignant and normal lung tissue except one squamous cell carcinoma (38-fold higher MDK/DNA ratio than the average of normal lung tissue). Both MDK and PTN are readily measurable in washout of needle biopsy samples from breast and lung masses and levels are highly elevated only in a specific subset of these malignancies.

  3. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John

    2013-09-01

    Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45-CD54+CD157+ lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.

  4. Relationship between air pollution and metal levels in cancerous and non-cancerous lung tissues.

    PubMed

    Binkowski, Łukasz J; Rogoziński, Paweł; Błaszczyk, Martyna; Semla, Magdalena; Melia, Patrick M; Stawarz, Robert

    2016-12-05

    We aimed to check the relationships between levels of metals (Ca, Cd, Cu, Fe, Hg and Zn) in cancerous and non-cancerous lung tissues and their link to air pollution, expressed as particulate matter (PM) concentrations. The study also examines the influence on metal concentration in the lung tissue of patients' sex and the distance of their homes from the nearest emitter. We found that the general pattern of ascending concentrations in tumor tissue was as follows: Hg < Cd < Cu < Ca < Zn < Fe. In non-affected lung tissue the order of concentrations of Ca and Fe was reversed. With the exception of Cd and Cu, levels of metals were found in higher accumulations in non-cancerous tissue (e.g., Fe 326.423 and Ca 302.730 μg/g d.w) than in tumorous tissue (Fe 150.735 and Ca 15.025 μg/g d.w). Neither the PM10 (PM of a diameter of 10 μm) concentration nor sex revealed any connection with metal concentrations. The shorter the distance from the emitter, the higher the metal concentrations that tended to be observed for almost all metals, but a statistically significant (but weak) relationship was noted only for Cu in tumor tissue (r s : -0.4869).

  5. Connective tissue diseases, multimorbidity and the ageing lung.

    PubMed

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.

  6. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury.

    PubMed

    Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco

    2013-11-01

    The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.

  7. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  8. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.

    PubMed

    Uhl, Franziska E; Vierkotten, Sarah; Wagner, Darcy E; Burgstaller, Gerald; Costa, Rita; Koch, Ina; Lindner, Michael; Meiners, Silke; Eickelberg, Oliver; Königshoff, Melanie

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs. Copyright ©ERS 2015.

  9. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion.

    PubMed

    Andreasson, Anders S I; Karamanou, Danai M; Gillespie, Colin S; Özalp, Faruk; Butt, Tanveer; Hill, Paul; Jiwa, Kasim; Walden, Hannah R; Green, Nicola J; Borthwick, Lee A; Clark, Stephen C; Pauli, Henning; Gould, Kate F; Corris, Paul A; Ali, Simi; Dark, John H; Fisher, Andrew J

    2017-03-01

    Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.

  10. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  11. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    PubMed

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p <0.0001) for each location and each frequency. The surface wave speeds of patients' lung were significantly higher than those of healthy patients (p <0.0001) for each location and each frequency. USWE is a non-invasive and non-ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  12. Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats.

    PubMed

    Chen, Shuchen; Chen, Liangwan; Wu, Xiaonan; Lin, Jiangbo; Fang, Jun; Chen, Xiangqi; Wei, Shijin; Xu, Jianxin; Gao, Qin; Kang, Mingqiang

    2012-11-01

    It has been reported that ischemic postconditioning (IPO) or mesenchymal stem cell (MSC) engraftment could protect organs from ischemia/reperfusion (I/R) injury. We investigated the synergetic effects of combined treatment on lung injury induced by I/R. Adult Sprague-Dawley rats were randomly assigned to one of the following groups: sham-operated control, I/R, IPO, MSC engraftment, and IPO plus MSC engraftment. Lung injury was assessed by arterial blood gas analysis, the wet/dry lung weight ratio, superoxide dismutase level, malondialdehyde content, myeloperoxidase activity, and tissue histologic changes. Cytokine expression was detected using real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end assay and annexin V staining. MSC engraftment or IPO alone markedly attenuated the lung wet/dry weight ratio, malondialdehyde and myeloperoxidase production, and lung pathologic injury and enhanced arterial partial oxygen pressure, superoxide dismutase content, inhibited pro-inflammatory cytokine levels, and decreased cell apoptosis in lung tissue, compared with the I/R group. In contrast, IPO pretreatment enhanced the protective effects of MSC on I/R-induced lung injury compared with treatment alone. Moreover, in the combined treatment group, the number of MSC engraftments in the lung tissue was increased, associated with enhanced survival of MSCs compared with MSC treatment alone. Additional investigation showed that IPO treatment increased expression of vascular endothelial growth factor and stromal cell-derived factor-1 in I/R lung tissue. IPO might contribute to the homing and survival of transplanted MSCs and enhance their therapeutic effects through improvement of the microenvironment of I/R injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    PubMed

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  14. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation

    PubMed Central

    Ziegler, Verena; Henninger, Christian; Simiantonakis, Ioannis; Buchholzer, Marcel; Ahmadian, Mohammad Reza; Budach, Wilfried; Fritz, Gerhard

    2017-01-01

    Thoracic radiotherapy causes damage of normal lung tissue, which limits the cumulative radiation dose and, hence, confines the anticancer efficacy of radiotherapy and impacts the quality of life of tumor patients. Ras-homologous (Rho) small GTPases regulate multiple stress responses and cell death. Therefore, we investigated whether pharmacological targeting of Rho signaling by the HMG-CoA-reductase inhibitor lovastatin influences ionizing radiation (IR)-induced toxicity in primary human lung fibroblasts, lung epithelial and lung microvascular endothelial cells in vitro and subchronic mouse lung tissue damage following hypo-fractionated irradiation (4x4 Gy). The statin improved the repair of radiation-induced DNA double-strand breaks (DSBs) in all cell types and, moreover, protected lung endothelial cells from IR-induced caspase-dependent apoptosis, likely involving p53-regulated mechanisms. Under the in vivo situation, treatment with lovastatin or the Rac1-specific small molecule inhibitor EHT1864 attenuated the IR-induced increase in breathing frequency and reduced the percentage of γH2AX and 53BP1-positive cells. This indicates that inhibition of Rac1 signaling lowers IR-induced residual DNA damage by promoting DNA repair. Moreover, lovastatin and EHT1864 protected lung tissue from IR-triggered apoptosis and mitigated the IR-stimulated increase in regenerative proliferation. Our data document beneficial anti-apoptotic and genoprotective effects of pharmacological targeting of Rho signaling following hypo-fractionated irradiation of lung cells in vitro and in vivo. Rac1-targeting drugs might be particular useful for supportive care in radiation oncology and, moreover, applicable to improve the anticancer efficacy of radiotherapy by widening the therapeutic window of thoracic radiation exposure. PMID:28796249

  15. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    PubMed

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  16. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance.

    PubMed

    Lowe, Kevin; Alvarez, Diego F; King, Judy A; Stevens, Troy

    2010-06-01

    Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Prospective, randomized, controlled study. Research laboratory. One hundred twenty male CD40 rats. To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Static and dynamic lung mechanics and hemodynamics were measured continuously. Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.

  17. The utility of electron microscopy in detecting asbestos fibers and particles in BALF in diffuse lung diseases.

    PubMed

    Kido, Takashi; Morimoto, Yasuo; Yatera, Kazuhiro; Ishimoto, Hiroshi; Ogoshi, Takaaki; Oda, Keishi; Yamasaki, Kei; Kawanami, Toshinori; Shimajiri, Shohei; Mukae, Hiroshi

    2017-04-21

    In patients with diffuse lung diseases, differentiating occupational lung diseases from other diseases is clinically important. However, the value of assessing asbestos and particles in bronchoalveolar lavage fluid (BALF) in diffuse lung diseases by electron microscopy (EM) remains unclear. We evaluated the utility of EM in detecting asbestos fibers and particles in patients with diffuse lung diseases. The BALF specimens of 107 patients with diffuse lung diseases were evaluated. First, detection of asbestos by EM and light microscopy (LM) were compared. Second, the detection of asbestos using surgically obtained lung tissues of 8 of 107 patients were compared with the results of EM and LM in BALF. Third, we compared the results of mineralogical components of particles in patients with (n = 48) and without (n = 59) a history of occupational exposure to inorganic dust. BALF asbestos were detected in 11 of 48 patients with a history of occupational exposure by EM; whereas asbestos as asbestos bodies (ABs) were detected in BALF in 4 of these 11 patients by LM. Eight of 107 patients in whom lung tissue samples were surgically obtained, EM detected BALF asbestos at a level of >1,000 fibers/ml in all three patients who had ABs in lung tissue samples by LM at a level of >1,000 fibers/g. The BALF asbestos concentration by EM and in lung tissue by LM were positively correlated. The particle fractions of iron and phosphorus were increased in patients with a history of occupational exposure and both correlated with a history of occupational exposure by a multiple regression analysis. EM using BALF seemed to be superior to LM using BALF and displayed a similar sensitivity to LM using surgically-obtained lung tissue samples in the detection of asbestos. Our results also suggest that detection of elements, such as iron and phosphorus in particles, is useful for evaluating occupational exposure. We conclude that the detection of asbestos and iron and phosphorus in particles in BALF by EM is very useful for the evaluation of occupational exposure.

  18. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibroticmore » scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.« less

  19. Microstructural consequences of blast lung injury characterised with digital volume correlation

    NASA Astrophysics Data System (ADS)

    Arora, Hari; Nila, Alex; Vitharana, Kalpani; Sherwood, Joseph M.; Nguyen, Thuy-Tien N.; Karunaratne, Angelo; Mohammed, Idris K.; Bodey, Andrew J.; Hellyer, Peter J.; Overby, Darryl R.; Schroter, Robert C.; Hollis, Dave

    2017-12-01

    This study focuses on microstructural changes that occur within the mammalian lung when subject to blast and how these changes influence strain distributions within the tissue. Shock tube experiments were performed to generate the blast injured specimens (cadaveric Sprague-Dawley rats). Blast overpressures of 100 kPa and 180 kPa were studied. Synchrotron tomography imaging was used to capture volumetric image data of lungs. Specimens were ventilated using a custom-built system to study multiple inflation pressures during each tomography scan. This data enabled the first digital volume correlation (DVC) measurements in lung tissue to be performed. Quantitative analysis was performed to describe the damaged architecture of the lung. No clear changes in the microstructure of the tissue morphology were observed due to controlled low to moderate level blast exposure. However, significant focal sites of injury were observed using DVC, which allowed detection of bias and concentration in the patterns of strain level. Morphological analysis corroborated the findings, illustrating that the focal damage caused by a blast can give rise to diffuse influence across the tissue. It is important to characterise the non-instantly fatal doses of blast, given the transient nature of blast lung in the clinical setting. This research has highlighted the need for better understanding of focal injury and its zone of influence (alveolar inter-dependency and neighbouring tissue burden as a result of focal injury). Digital volume correlation techniques show great promise as a tool to advance this endeavour, providing a new perspective on lung mechanics post-blast.

  20. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  1. Effects of emissions from sugar cane burning on the trachea and lungs of Wistar rats

    PubMed Central

    Matos, Verena Sampaio Barbosa; Gomes, Felipe da Silva; Oliveira, Tarcio Macena; Schulz, Renata da Silva; Ribeiro, Lídia Cristina Villela; Gonzales, Astria Dias Ferrão; Lima, Januário Mourão; Guerreiro, Marcos Lázaro da Silva

    2017-01-01

    ABSTRACT Objective: To evaluate the effects of exposure to emissions from sugar cane burning on inflammatory mechanisms in tissues of the trachea and lung parenchyma in Wistar rats after different periods of exposure. Methods: This was an experimental open randomized study. The animals were divided into four groups: a control group (CG) underwent standard laboratory conditions, and three experimental groups were exposed to emissions from sugar cane burning over different periods of time, in days-1 (EG1), 7 (EG7), and 21 (EG21). After euthanasia with 200 mg/kg of ketamine/xylazine, fragments of trachea and lung were collected and fixed in 10% formalin. Histological analyses were performed with H&E and picrosirius red staining. Results: No inflammatory infiltrates were found in the tissues of CG rats. The histological examination of tissues of the trachea and lung parenchyma revealed that the inflammatory process was significantly more intense in EG7 than in the CG (p < 0.05 and p < 0.01, respectively). In comparison with the CG and EG1, angiogenesis in the lung parenchyma and collagen deposition in tracheal tissues were significantly greater only in EG21 (p < 0.001 and p < 0.01, respectively). Conclusions: In this sample, emissions from sugar cane burning induced acute focal and diffuse inflammation in the lamina propria of tracheal tissues, with no loss of ciliated epithelial tissue. In the lung parenchyma of the animals in the experimental groups, there was interstitial and alveolar edema, together with polymorphonuclear cell infiltrates. PMID:28746532

  2. Effect of Fetal Mouse Lung Tissue Co-Culture on In Vitro Maturation of Mouse Immature Oocytes.

    PubMed

    Belbasi, Masomeh; Jorsaraei, Seyed Gholam Ali; Gholamitabar Tabari, Maryam; Khanbabaei, Ramzan

    2017-10-01

    The aim of this study was to evaluate the fetal mouse lung tissue co-culture on in vitro maturation (IVM) of mouse immature oocytes. In this experimental study, germinal vesicle (GV) oocytes from ovaries of a group of 25 female mice, 6-8 weeks of age, were dissected after being stimulated by 7.5 IU pregnant mare serum gonadotropin (PMSG) through an intraperitoneal (IP) injection. The fetal lung tissues were then prepared and cultured individually. A total number of 300 oocytes were cultured in the following three groups for 24 hours: control group (n=100) containing only base medium, group I (n=100) containing base medium co-cultured with 11.5- to 12.5-day old fetal mouse lung tissues, and group II (n=100) containing base medium co-cultured with 12.5- to 13.5-day old fetal mouse lung tissues. The proportion of GV and metaphase І (MI) oocytes matured into MІІ oocytes were compared among the three groups using analysis of variance (ANOVA). Correlation test were also used to evaluate the successful rate of IVM oocytes. The proportions of GV oocytes reaching MІІ stage were 46, 65, and 56%, in control, I and II groups, respectively (P<0.05). The percentage of the oocytes remaining at the GV stage were higher in control group as compared with two treatment groups (P<0.05). This study indicated that fetal mouse lung tissue co-culture method increased the percentage of GV oocytes reaching MII stage. Copyright© by Royan Institute. All rights reserved.

  3. IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression.

    PubMed

    Wenzel, Sally E; Balzar, Silvana; Ampleford, Elizabeth; Hawkins, Gregory A; Busse, William W; Calhoun, William J; Castro, Mario; Chung, K Fan; Erzurum, Serpil; Gaston, Benjamin; Israel, Elliot; Teague, W Gerald; Curran-Everett, Douglas; Meyers, Deborah A; Bleecker, Eugene R

    2007-03-15

    Severe asthma has been associated with severe exacerbations, lower lung function and greater tissue inflammation. Previous studies have suggested that mutations in interleukin-4 receptor alpha (IL4Ralpha) are associated with lower lung function, higher IgE, and a gain in receptor function. However, an effect on exacerbations and tissue inflammation has not been shown. Allelic substitutions in IL4Ralpha are associated with asthma exacerbations, lower lung function, and tissue inflammation, in particular to mast cells and IgE. Two well-characterized cohorts of subjects with severe asthma were analyzed for five single nucleotide polymorphisms (SNPs) in IL4Ralpha. These polymorphisms were compared with the history of severe asthma exacerbations and lung function. In the primary (National Jewish) cohort, these polymorphisms were also compared with endobronchial tissue inflammatory cells and local IgE. In both cohorts, the presence of the minor alleles at E375A and Q551R, which were more common in African Americans, was associated with a history of severe exacerbations and lower lung function. In the National Jewish cohort, the C allele at E375A was associated with higher tissue mast cells and higher levels of IgE bound to mast cells. The significance for most of these associations remained when whites (the larger racial subgroup) were analyzed separately. SNPs in IL4Ralpha, which are more common in African Americans, are associated with severe asthma exacerbations, lower lung function, and increased mast cell-related tissue inflammation. Further studies of the impact of these mutations in African Americans and on receptor function are indicated.

  4. SU-F-T-369: Validation of Monte-Carlo Beam Model for a Range of Small Fields in Heterogeneous Medium - A Measurement Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, N; Bharathiya University, Coimbatore, Tamilnadu; Ganesh, KM

    Purpose: To validate the Monaco montecorlo beam model for a range of small field in the heterogeneous medium. Methods: A in-house phantom with three different medium of Foam, PMMA and derlin resembling the densities of lung, soft tissue, and bone was used for the study. The field sizes of 8, 16, 24, 32 and 48mm were studied for the validation of montecarlo algorithm using 0.01cc volume ionchamber and gafchromic films. The 6MV photon beam from Elekta Beam modulator was used with 100cm SAD setup. The outputs were measured at the depth of 5, 10 and 20mm in every second mediummore » with 3cm buildup of first medium for the interface of lung-bone, lung-soft tissue, soft tissue-bone, bone-lung and soft tissue-lung. Similarly, the 2D dose analysis with gamma criteria of 2%2mm were done at the same depths using gafchromic film. For all the measurements 10.4×10.4cm were taken as reference to which the other field sizes were compared. Monaco TPSv.3.20 was used to calculate the dose distribution for all the simulated measurement setups. Results: The average maximum difference among the field sizes of 8, 16, 24, 32 and 48mm at the depth of 5mm in second medium with the interface of lung-bone, lung-soft tissue, soft tissue-bone, bone-lung and soft tissue-lung were observed as 1.29±0.14%, 0.49±0.16%, 0.87±0.23%, 0.92±0.11%, 1.01±0.19% respectively. The minimum and maximum variation of dose among different materials for the smallest field size of 8mm were observed as 0.23% and 1.67% respectively. The 2D analysis showed the average gamma passing of 98.9±0.5%. The calculated two-tailed P-value were showed insignificance with values of 0.562 and 0.452 for both ionchamber and film measurements. Conclusion: The accuracy of dose calculation for the small fields in Monaco Montecarlo TPS algorithm was validated in different inhomogeneous medium and found the results were well correlated with measurement data.« less

  5. Automating the expert consensus paradigm for robust lung tissue classification

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.

  6. Biphasic cellular and tissue response of rat lungs after eight-day aerosol exposure to the silicon dioxide cristobalite.

    PubMed Central

    Absher, M. P.; Trombley, L.; Hemenway, D. R.; Mickey, R. M.; Leslie, K. O.

    1989-01-01

    Cristobalite is a crystalline silicon dioxide that elicits pulmonary inflammation and fibrosis in humans and experimental animals. Exposure of rats to aerosols of respirable cristobalite for 8 days led to a rapid influx of neutrophils and macrophages into alveolar and tissue compartments of the lung followed by a more gradual accumulation of T lymphocytes. This inflammatory response persisted throughout 52 weeks after the end of the exposure. For some variables studied there appeared to be a cyclical nature to the response. Statistical analysis of alveolar cell populations and lung tissue weight, protein, and hydroxyproline showed significant time-dependent fluctuations. Histologic analysis revealed a progressive deposition of collagen and type II cell hyperplasia centered on airways, however, there appeared to be some correlation between fluctuations in alveolar cell populations and overall tissue pathology. The observed cellular and biochemical fluctuations and the persistence of the inflammatory response may be due to the presence of silica in the lung, which serves as a source of repetitive stimulation of lung cells. Images Figure 4 Figure 5 PMID:2547319

  7. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold.

    PubMed

    O'Leary, Cian; Cavanagh, Brenton; Unger, Ronald E; Kirkpatrick, C James; O'Dea, Shirley; O'Brien, Fergal J; Cryan, Sally-Ann

    2016-04-01

    Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with delamination occurring at stresses of 12-15 kPa. Crosslinked scaffolds had a compressive modulus of 1.9 kPa and mean pore diameters of 70 μm and 80 μm, depending on the freezing temperature. Histological analysis showed that the Calu-3 bronchial epithelial cell line attached and grew on CHyA-B with adoption of an epithelial monolayer on the film layer. Immunofluorescence and qRT-PCR studies demonstrated that the CHyA-B scaffolds facilitated Calu-3 cell differentiation, with enhanced mucin expression, increased ciliation and the formation of intercellular tight junctions. Co-culture of Calu-3 cells with Wi38 lung fibroblasts was achieved on the scaffold to create a submucosal tissue analogue of the upper respiratory tract, validating CHyA-B as a platform to support co-culture and cellular organisation reminiscent of in vivo tissue architecture. In summary, this study has demonstrated that CHyA-B is a promising tool for the development of novel 3D tracheobronchial co-culture in vitro models with the potential to unravel new pathways in drug discovery and drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    PubMed

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  9. Metastatic Lung Lesions as a Preferred Resection Site for Immunotherapy With Tumor Infiltrating Lymphocytes.

    PubMed

    Ben-Avi, Ronny; Itzhaki, Orit; Simansky, David; Zippel, Dov; Markel, Gal; Ben Nun, Alon; Schachter, Jacob; Besser, Michal J

    2016-06-01

    Adoptive cell therapy with tumor infiltrating lymphocytes (TIL) yields 50% response rates in metastatic melanoma and shows promising clinical results in other solid tumors. Autologous TIL cultures are isolated from resected tumor tissue, expanded ex vivo to large numbers and reinfused to the preconditioned patient. In this prospective study, we validate the origin of the tumor biopsy and its effect on T-cell function and clinical response. One hundred forty-four patients underwent surgery and 79 patients were treated with TIL adoptive cell therapy. Cultures from lung tissue were compared with other origins. The success rate of establishing TIL culture from lung tissue was significantly higher compared with nonlung tissue (94% vs. 72%, respectively, P≤0.003). Lung-derived TIL cultures gave rise to higher cell numbers (P≤0.011) and exhibited increased in vitro antitumor reactivity. The average fold expansion for lung-derived TIL during a rapid expansion procedure was 1349±557 compared with 1061±473 for nonlung TIL (P≤0.038). Patients treated with TIL cultures of lung origin (compared with nonlung) had prolonged median overall survival (29 vs. 9.5 mo; P≤0.065). Given the remarkable advancement in minimally invasive thoracic surgery and the results of this study, we suggest efforts should be taken to resect lung metastasis rather than other sites to generate TIL cultures for clinical use.

  10. Bronchoscopic culture

    MedlinePlus

    ... a laboratory exam to check a piece of tissue or fluid from the lungs for infection-causing germs. ... Culture - bronchoscopic ... used to get a sample ( biopsy ) of lung tissue or fluid. The sample ... a special dish (culture). It is then watched to see if bacteria ...

  11. SU-E-T-671: Range-Modulation Effects of Carbon Ion Beams in Lung Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, M; Weber, U; Simeonov, Y

    Purpose: When particles traversing inhomogeneous materials like lung they show a characteristic range modulation which cannot be observed in homogeneous materials. It is possible to describe the range modulation by a convolution of an unperturbed Bragg-Curve and a normal distribution. The sigma of the normal distribution is a parameter for the strength of the modulation effect. A new material parameter (modulation power, P-mod) is introduced which is independent of the material thickness. It is defined as the square of sigma divided by the mean water equivalent thickness of the target (µ). Methods: The modulation power of lung tissue was determinedmore » by actual Bragg-peak measurements after traversing an ex-vivo porcine lung and by Monte-Carlo simulations with micro-CT data of human lung tissue. The determined modulation powers were used to show the effect of range modulation effects in a simplified treatment situation. A four centimeter spread-out Bragg-peak after traversing eight centimeter of lung tissue was simulated in FLUKA. The SOBP with and without consideration of range modulation effects were compared. Results: As well in the measurements as in the MC simulations range modulation effects of lung tissue were observed. The determined modulation powers showed a great range from 0.05 mm, in the micro-CT data, to 0.7 mm in the lung measurements. The SOBP comparison showed that range modulation effects Result in over- and underdosages at the distal and proximal edge of the SOBP. In the investigated case, the last 0.5 cm of the SOBP showed an underdosage of up to 50% at the distal edge, while 0.5 cm distal to the SOBP an overdosage of up to 50% was observed. Conclusion: Range modulation effects occur in inhomogeneous materials like lung. These modulation effects may Result in clinically relevant over- and underdosages but are currently not considered in commercially available treatment planning systems.« less

  12. [Study on effect of cordyceps sinensis on early-stage silicotic pulmonary fibrosis in rabbits].

    PubMed

    Liu, Qianzhong; Zhang, Wei; Cui, Hongfu; Ying, Yanhong

    2014-07-01

    To establish a rabbit model of silicotic pulmonary fibrosis and to investigate the effect of cordyceps sinensis in this model. Thirty healthy male white rabbits were randomly divided into control group, silicosis model group, and intervention group. The rabbits in silicosis model group and intervention group received endotracheal perfusion of silicon dioxide suspension (120 mg/kg), and the control group was treated with the same volume of saline. All the rabbits were sacrificed 30 days later. The lung coefficient was calculated by comparing the lung weight and body weight; the right lung tissue was stained with hematoxylin-eosin (HE). The content of hydroxyproline in lung tissue was measured by alkaline hydrolysis. The mRNA levels of transforming growth factor beta 1 (TGF-β₁) and mothers against decapentaplegic homolog 7 (Smad7) in rabbit lung sections were determined by real-time PCR. No abnormalities were observed by HE staining in the lung tissues of control group, while fibrosis and silicotic nodules were discovered in the silicosis model group and intervention group. The lung coefficient and the content of hydroxyproline in lung tissue were significantly higher in the silicosis model group than in the control group and intervention group (P < 0.05 or P < 0.01). Compared with the control group, the silicosis model group and intervention group had significantly increased TGF-β₁ mRNA levels but significantly reduced Smad7 mRNA levels (P < 0.02). Compared with the silicosis model group, the intervention group had a significantly reduced TGF-β₁ mRNA level but a significantly increased Smad7 mRNA level (P < 0.05). Cordyceps sinensis is able to reduce the expression of TGF-β₁ mRNA and increase the expression of Smad7 mRNA in lung tissues of rabbits with silicotic pulmonary fibrosis, and thus postpone the progression of fibrosis.

  13. Reduced ischemia-reperfusion injury with isoproterenol in non-heart-beating donor lungs.

    PubMed

    Jones, D R; Hoffmann, S C; Sellars, M; Egan, T M

    1997-05-01

    Transplantation of lungs retrieved from non-heart-beating donors could expand the donor pool. Recent studies suggest that the ischemia-reperfusion injury (IRI) to the lung can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, as measured by Kfc, in lungs retrieved from non-heart-beating donors and reperfused with or without isoproterenol (iso). Using an in situ isolated perfused lung model, lungs were retrieved from non-heart-beating donor rats ventilated with O2 or not at varying intervals after death. The lungs were reperfused with or without iso (10 microM). Kfc, lung viability, and pulmonary hemodynamics were measured, and tissue levels of adenine nucleotides and cAMP were measured by HPLC. Iso-reperfusion decreased Kfc significantly (P < 0.05) compared to non-iso-reperfused groups at all postmortem ischemic times, irrespective of preharvest ventilation status. Pulmonary arterial pressures and resistances increased and venous resistances decreased with iso-reperfusion. Total adenine nucleotide (TAN) levels correlated with Kfc in non-iso-reperfused (r = 0.65) and iso-perfused (r = 0.84) lungs. cAMP levels increased significantly with iso-reperfusion. cAMP levels correlated with Kfc (r = 0.87) in iso-reperfused lungs. Iso-reperfusion of lungs retrieved from non-heart-beating donor rats results in decreased capillary permeability and increased lung tissue cAMP levels. Pharmacologic augmentation of tissue TAN and cAMP levels may further ameliorate the increased capillary permeability seen in lungs retrieved from non-heart-beating donors.

  14. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy.

    PubMed

    Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M

    2014-01-01

    To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.

  15. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    PubMed

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of proinflammatory cytokines. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. [Expression of high mobility group box-1 in the lung tissue and serum of patients with pulmonary tuberculosis].

    PubMed

    Yang, Xiao-min; Yang, Hua

    2013-07-01

    To explore the expression of high mobility group box-1 (HMGB1) in the lung tissue and serum of patients with pulmonary tuberculosis and to explore its relationship with tumor necrosis factor (TNF)-α and interleukin(IL)-1β. Sixty samples of lung tissues were obtained from patients with pulmonary tuberculosis who had underwent pneumonectomy in Department of Chest Surgery, First Affiliated Hospital of Zunyi Medical College from June 2010 to December 2011. At the same period, 40 normal lung samples were also obtained from patients with pulmonary contusion and lung cancer by surgical resections as the control group. The mRNA expressions of HMGB1 was detected by reverse transcription-polymerase chain reaction (RT-PCR), and the protein level of HMGB1 was measured by immunohistochemical staining of tissue microarrays in lung tissue. Blood samples were taken from 89 patients with active pulmonary tuberculosis (pulmonary tuberculosis group), including hematogenous disseminated pulmonary tuberculosis (type II) in 35 cases and secondary pulmonary tuberculosis (type III) in 54 cases, and 50 healthy volunteers (control group). Furthermore, the 54 patients with secondary pulmonary tuberculosis were divided into different subgroups according to cavity formation and the lung fields involved: patients without lung cavity (35 cases) vs those with lung cavity (19 cases), patients with involvement of <2 lung fields (31 cases) vs ≥ 2 lung fields (23 cases). Serum concentration of HMGB1, TNF-α and IL-1β were detected by ELISA. Two sample t-test was used to compare date among groups, liner correlation analysis was established for correlation analysis. The average optical density of HMGB1 in pulmonary tuberculosis (69 ± 29) was significantly higher than that in normal lung tissue (22 ± 12) (t = 2.389, P < 0.05). The mRNA relative transcript levels of HMGB1 in pulmonary tuberculosis (786 ± 86) was significantly higher than that in normal lung tissue (202 ± 60) (t = 3.872, P < 0.01). The serum concentration of HMGB1, TNF-α and IL-1β in the pulmonary tuberculosis group were (5.0 ± 3.2) µg/L, (118 ± 77) ng/L and (33 ± 20) ng/L, respectively, which were significantly higher than those in the control group [(1.7 ± 1.0) µg/L, (40 ± 11) ng/L and (18 ± 12) ng/L, respectively], the respective t values being -0.928, 4.268 and 11.064, all P < 0.01. In the subgroup of patients with hematogenous disseminated pulmonary tuberculosis, the serum concentration of HMGB1 and TNF-α[ (6.4 ± 3.3) µg/L, (147 ± 89) ng/L] were significantly higher than those in patients with secondary pulmonary tuberculosis [(4.1 ± 2.7) µg/L, (85 ± 37) ng/L] (t = 3.643 and t = 3.111, both P < 0.01). HMGB1 were correlated positively with TNF-α and IL-1β (r = 0.722 and r = 0.620, P < 0.01, respectively, n = 89) in the pulmonary tuberculosis group. Overexpression of HMGB1 in the lung tissue and serum of patients with pulmonary tuberculosis may play an important role in the inflammatory response of pulmonary tuberculosis. The measurement of serum HMGB1 is useful to evaluate the severity of disease.

  17. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  18. Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury

    PubMed Central

    Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.

    2009-01-01

    Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280

  19. Pulmonary Actinomycosis Imitating Lung Cancer on (18)F-FDG PET/CT: A Case Report and Literature Review.

    PubMed

    Qiu, Lin; Lan, Lianjun; Feng, Yue; Huang, Zhanwen; Chen, Yue

    2015-01-01

    Here we report a case of 41-year-old man with a soft tissue density mass at right upper lung and palpable abscesses at right upper backside and right wrist. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography demonstrated a 7.8 × 5.0 cm mass with soft-tissue density in the upper lobe of the right lung with high metabolic activity. The infiltrative mass extended to adjacent chest wall soft tissue. Final diagnosis of pulmonary actinomycosis with multiple abscesses was made. The patient responded well to antibiotics treatment.

  20. EIT images of ventilation: what contributes to the resistivity changes?

    PubMed

    Zhang, Jie; Patterson, Robert P

    2005-04-01

    One promising application of electrical impedance tomography (EIT) is the monitoring of pulmonary ventilation and edema. Using three-dimensional (3D) finite difference human models as virtual phantoms, the factors that contribute to the observed lung resistivity changes in the EIT images were investigated. The results showed that the factors included not only tissue resistivity or vessel volume changes, but also chest expansion and tissue/organ movement. The chest expansion introduced artifacts in the center of the EIT images, ranging from -2% to 31% of the image magnitude. With the increase of simulated chest expansion, the percentage contribution of chest expansion relative to lung resistivity change in the EIT image remained relatively constant. The averaged resistivity changes in the lung regions caused by chest expansion ranged from 0.65% to 18.31%. Tissue/organ movement resulted in an increased resistivity in the lung region and in the center anterior region of EIT images. The increased resistivity with inspiration observed in the heart region was caused mainly by a drop in the heart position, which reduced the heart area at the electrode level and was replaced by the lung tissue with higher resistivity. This study indicates that for the analysis of EIT, data errors caused by chest expansion and tissue/organ movement need to be considered.

  1. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    PubMed

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; p<0.01) and among patients with severe motor dysfunction (90% vs. 35%; p<0.001). Although we were not able to prove a causal relationship between esophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  2. Flow-controlled expiration: a novel ventilation mode to attenuate experimental porcine lung injury.

    PubMed

    Goebel, U; Haberstroh, J; Foerster, K; Dassow, C; Priebe, H-J; Guttmann, J; Schumann, S

    2014-09-01

    Whereas the effects of various inspiratory ventilatory modifications in lung injury have extensively been studied, those of expiratory ventilatory modifications are less well known. We hypothesized that the newly developed flow-controlled expiration (FLEX) mode provides a means of attenuating experimental lung injury. Experimental acute respiratory distress syndrome was induced by i.v. injection of oleic acid in 15 anaesthetized and mechanically ventilated pigs. After established lung injury ([Formula: see text]ratio <27 kPa), animals were randomized to either a control group receiving volume-controlled ventilation (VCV) or a treatment group receiving VCV with additional FLEX (VCV+FLEX). At predefined times, lung mechanics and oxygenation were assessed. At the end of the experiment, the pigs were killed, and bronchoalveolar fluid and lung biopsies were taken. Expression of inflammatory cytokines was analysed in lung tissue and bronchoalveolar fluid. Lung injury score was determined on the basis of stained tissue samples. Compared with the control group (VCV; n=8), the VCV+FLEX group (n=7) demonstrated greater dynamic lung compliance and required less PEEP at comparable [Formula: see text] (both P<0.05), had lower regional lung wet-to-dry ratios and lung injury scores (both P<0.001), and showed less thickening of alveolar walls (an indicator of interstitial oedema) and de novo migration of macrophages into lung tissue (both P<0.001). The newly developed FLEX mode is able to attenuate experimental lung injury. FLEX could provide a novel means of lung-protective ventilation. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Improved OCT imaging of lung tissue using a prototype for total liquid ventilation

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is used for imaging subpleural alveoli in animal models to gain information about dynamic and morphological changes of lung tissue during mechanical ventilation. The quality of OCT images can be increased if the refraction index inside the alveoli is matched to the one of tissue via liquid-filling. Thereby, scattering loss can be decreased and higher penetration depth and tissue contrast can be achieved. Until now, images of liquid-filled lungs were acquired in isolated and fixated lungs only, so that an in vivo measurement situation is not present. To use the advantages of liquid-filling for in vivo imaging of small rodent lungs, it was necessary to develop a liquid ventilator. Perfluorodecalin, a perfluorocarbon, was selected as breathing fluid because of its refraction index being similar to the one of water and the high transport capacity for carbon dioxide and oxygen. The setup is characterized by two independent syringe pumps to insert and withdraw the fluid into and from the lung and a custom-made control program for volume- or pressure-controlled ventilation modes. The presented results demonstrate the liquid-filling verified by optical coherence tomography and intravital microscopy (IVM) and the advantages of liquid-filling to OCT imaging of subpleural alveoli.

  4. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.

    PubMed

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-08-10

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.

  5. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium

    PubMed Central

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-01-01

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764

  6. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  7. Effect of hypoxia on lung gene expression and proteomic profile: insights into the pulmonary surfactant response

    PubMed Central

    Olmeda, Bárbara; Umstead, Todd M.; Silveyra, Patricia; Pascual, Alberto; López-Barneo, José; Phelps, David S.; Floros, Joanna; Pérez-Gil, Jesús

    2014-01-01

    Exposure of lung to hypoxia has been previously reported to be associated with significant alterations in the protein content of bronchoalveolar lavage (BAL) and lung tissue. In the present work we have used a proteomic approach to describe the changes in protein complement induced by moderate long-term hypoxia (rats exposed to 10% O2 for 72 hours) in BAL and lung tissue, with a special focus on the proteins associated with pulmonary surfactant, which could indicate adaptation of this system to limited oxygen availability. The analysis of the general proteomic profile indicates a hypoxia-induced increase in proteins associated with inflammation both in lavage and lung tissue. Analysis at mRNA and protein levels revealed no significant changes induced by hypoxia on the content in surfactant proteins or their apparent oligomeric state. In contrast, we detected a hypoxia-induced significant increase in the expression and accumulation of hemoglobin in lung tissue, at both mRNA and protein levels, as well as an accumulation of hemoglobin both in BAL and associated with surface-active membranes of the pulmonary surfactant complex. Evaluation of pulmonary surfactant surface activity from hypoxic rats showed no alterations in its spreading ability, ruling out inhibition by increased levels of serum or inflammatory proteins. PMID:24576641

  8. Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns.

    PubMed

    Pardo, Michal; Kuperman, Yael; Levin, Liron; Rudich, Assaf; Haim, Yulia; Schauer, James J; Chen, Alon; Rudich, Yinon

    2018-04-20

    Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Hyperspectral imaging of skin and lung cancers

    NASA Astrophysics Data System (ADS)

    Zherdeva, Larisa A.; Bratchenko, Ivan A.; Alonova, Marina V.; Myakinin, Oleg O.; Artemyev, Dmitry N.; Moryatov, Alexander A.; Kozlov, Sergey V.; Zakharov, Valery P.

    2016-04-01

    The problem of cancer control requires design of new approaches for instrumental diagnostics, as the accuracy of cancer detection on the first step of diagnostics in clinics is slightly more than 50%. In this study, we present a method of visualization and diagnostics of skin and lung tumours based on registration and processing of tissues hyperspectral images. In a series of experiments registration of hyperspectral images of skin and lung tissue samples is carried out. Melanoma, basal cell carcinoma, nevi and benign tumours are studied in skin ex vivo and in vivo experiments; adenocarcinomas and squamous cell carcinomas are studied in ex vivo lung experiments. In a series of experiments the typical features of diffuse reflection spectra for pathological and normal tissues were found. Changes in tissues morphology during the tumour growth lead to the changes of blood and pigments concentration, such as melanin in skin. That is why tumours and normal tissues maybe differentiated with information about spectral response in 500-600 nm and 600 - 670 nm areas. Thus, hyperspectral imaging in the visible region may be a useful tool for cancer detection as it helps to estimate spectral properties of tissues and determine malignant regions for precise resection of tumours.

  10. Evidence for Tissue Toxicity in BALB/c Exposed to a Long-Term Treatment with Oxiranes Compared to Meglumine Antimoniate

    PubMed Central

    Oliveira, Luiz Filipe Gonçalves; Souza-Silva, Franklin; Cysne-Finkelstein, Léa; Rabelo, Kíssila; Amorim, Juliana Fernandes; Azevedo, Adriana de Souza; Bourguignon, Saulo Cabral; Ferreira, Vitor Francisco; Paes, Marciano Viana

    2017-01-01

    Leishmaniasis remains a serious public health problem in developing countries without effective control, whether by vaccination or chemotherapy. Part of the failure of leishmaniasis control is due to the lack of new less toxic and more effective drugs able to eliminate both the lesions and the parasite. Oxiranes derived from naphthoquinones now being assayed are promising drugs for the treatment of this group of diseases. The predicted pharmacokinetic properties and toxicological profiles of epoxy-α-lapachone and epoxymethoxy-lawsone have now been compared to those of meglumine antimoniate, and histological changes induced by these drugs in noninfected BALB/c mice tissues are described. Effects of these compounds on liver, kidney, lung, heart, and cerebral tissues of healthy mice were examined. The data presented show that both these oxiranes and meglumine antimoniate induce changes in all BALB/c mice tissues, with the lung, heart, and brain being the most affected. Epoxymethoxy-lawsone was the most toxic to lung tissue, while most severe damage was caused in the heart by epoxy-α-lapachone. Meglumine antimoniate caused mild-to-moderate changes in heart and lung tissues. PMID:28798938

  11. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    PubMed

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  12. Port d’Entrée for Respiratory Infections – Does the Influenza A Virus Pave the Way for Bacteria?

    PubMed Central

    Siemens, Nikolai; Oehmcke-Hecht, Sonja; Mettenleiter, Thomas C.; Kreikemeyer, Bernd; Valentin-Weigand, Peter; Hammerschmidt, Sven

    2017-01-01

    Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health. PMID:29312268

  13. Lung tumor motion prediction during lung brachytherapy using finite element model

    NASA Astrophysics Data System (ADS)

    Shirzadi, Zahra; Sadeghi Naini, Ali; Samani, Abbas

    2012-02-01

    A biomechanical model is proposed to predict deflated lung tumor motion caused by diaphragm respiratory motion. This model can be very useful for targeting the tumor in tumor ablative procedures such as lung brachytherapy. To minimize motion within the target lung, these procedures are performed while the lung is deflated. However, significant amount of tissue deformation still occurs during respiration due to the diaphragm contact forces. In the absence of effective realtime image guidance, biomechanical models can be used to estimate tumor motion as a function of diaphragm's position. To develop this model, Finite Element Method (FEM) was employed. To demonstrate the concept, we conducted an animal study of an ex-vivo porcine deflated lung with a tumor phantom. The lung was deformed by compressing a diaphragm mimicking cylinder against it. Before compression, 3D-CT image of this lung was acquired, which was segmented and turned into FE mesh. The lung tissue was modeled as hyperelastic material with a contact loading to calculate the lung deformation and tumor motion during respiration. To validate the results from FE model, the motion of a small area on the surface close to the tumor was tracked while the lung was being loaded by the cylinder. Good agreement was demonstrated between the experiment results and simulation results. Furthermore, the impact of tissue hyperelastic parameters uncertainties in the FE model was investigated. For this purpose, we performed in-silico simulations with different hyperelastic parameters. This study demonstrated that the FEM was accurate and robust for tumor motion prediction.

  14. [Arf6, RalA and BIRC5 protein expression in non small cell lung cancer].

    PubMed

    Knizhnik, A V; Kovaleva, O B; Laktionov, K K; Mochal'nikova, V V; Komel'kov, A V; Chevkina, E M; Zborovskaia, I B

    2011-01-01

    Evaluation of tumor markers expression pattern which determines individual progression parameters is one of the major topics in molecular oncopathology research. This work presents research on expression analysis of several Ras-Ral associated signal transduction pathway proteins (Arf6, RalA and BIRC5) in accordance with clinical criteria in non small cell lung cancer patients. Using Western-blot analysis and RT-PCR Arf6, RalA and BIRC5 expression has been analyzed in parallel in 53 non small cell lung cancer samples of different origin. Arf6 protein expression was elevated in 55% non small cell lung cancer tumor samples in comparison with normal tissue. In the group of squamous cell lung cancer Arf6 expression elevation was observed more often. RalA protein expression was decreased in comparison to normal tissue samples in 64% of non small cell lung cancer regardless to morphological structure. Correlation between RalA protein expression decrease and absence of regional metastases was revealed for squamous cell lung cancer. BIRC5 protein expression in tumor samples versus corresponding normal tissue was 1.3 times more often elevated in the squamous cell lung cancer group (in 76% tumor samples). At the same time elevation of BIRC5 expression was fixed only in 63% of adenocarcinoma tumor samples. A statistically significant decrease (p = 0.0158) of RalA protein expression and increase (p = 0.0498) of Arf6 protein expression in comparison with normal tissue was found for T1-2N0M0 and T1-2N1-2M0 groups of squamous cell lung cancer correspondingly.

  15. Overexpression of K-p21Ras play a prominent role in lung cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Peng-bo; Zhou, Xin-liang; Yang, Ju-lun

    2018-06-01

    The proto-oncogene ras product, p21Ras, has been found overexpression in many human tumors. However, the subtypes of overexpressed p21Ras still remain unclear. The purpose of this study was to investigate overexpressed isoforms of p21Ras and their roles in the progress of lung cancer. Method: The expression of total p21Ras in normal lung tissues and lung cancers was determined by immunohistochemically staining with monoclonal antibody (Mab) KGHR-1 which could recognize and broad spectrum reaction with the (K/H/N) ras protein. Then, the isoforms of p21Ras was examined by specific Mab for each p21Ras subtypes. Results: Low expression of total p21Ras was found in 26.67% (8/30) of normal lung tissues, and 81.31% (87/107) of adenocarcinoma harbored overexpressed total p21Ras. Besides, 70.00% (35/50) of squamous cell carcinoma were detected overexpressed total p21Ras. In addition, 122 lung cancer tissues from overexpression of total p21Ras protein were selected to detect the expression of each subtype. And all the 122 lung cancer tissues were K-p21Ras overexpression. Moreover, there was a statistical significance difference between the expression level of total p21Ras and differentiation, and the same results were observed between the expression level of total p21Ras and lymph node metastasis (P<0.05). However, there was no correlation between the expression level of total p21Ras and gender, age, tumor size (P>0.05). Conclusions: Overexpression of K-p21Ras plays a prominent role in the progress of lung cancer and it is suggested that the p21Ras could serve as a promising treatment target in lung cancer.

  16. Structural and quantitative expression analyses of HERV gene family in human tissues.

    PubMed

    Ahn, Kung; Kim, Heui-Soo

    2009-08-31

    Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.

  17. [Transport of dinitrosyl iron complexes into animal lungs].

    PubMed

    Mojokina, G N; Elistratova, N A; Mikoyan, V D; Vanin, A F

    2015-01-01

    Effective accumulation of binuclear dinitrosyl iron complexes with glutathione was shown after a subcutaneous para lymphatic injection of an aqueous solution of a dinitrosyl-iron complex into animal lung tissue at a single-dose of 2 micromoles per kilogram two times a day with a 2-h interval. Two hours later after the administration was repeated the concentration of these complexes was 16 micromoles per kilogram of tissue dropping down for the last two hours to 7 micromoles per kilogram of tissue. At one dose injection of binuclear dinitrosyl iron complexes with glutathione their concentration in 2 and 4 hours was two times lower than in the previous experiments. Presumably at the obtained concentration of dinitrosyl iron complexes a bactericidal effect in lungs can be observed against mycobacterium tuberculosis and rapidly proliferating lung tumors.

  18. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  19. Lipidomic Perturbations in Lung, Kidney, and Liver Tissues of p53 Knockout Mice Analyzed by Nanoflow UPLC-ESI-MS/MS.

    PubMed

    Park, Se Mi; Byeon, Seul Kee; Sung, Hyerim; Cho, Soo Young; Seong, Je Kyung; Moon, Myeong Hee

    2016-10-07

    Lipids are important signaling molecules regulating biological processes under normal and diseased conditions. Although p53 mutation is well-known for causing cancer, the relationship between p53-related tumorigenesis and altered lipid profile is unclear. We profiled differences in lipid expressions in liver, lung, and kidney in p53 knockout (KO) mice by high-speed quantitative analysis of 320 lipids (399 species identified) using nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry (nUPLC-MS/MS). Lung tissues were most severely affected by the lack of p53 gene, as shown by significant reduction (24-44%, P < 0.05) in total phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), diacylglycerol (DG), and triacylglycerol (TG), and significant increases (30-50%) in phosphatidylserine (PS), phosphatidylinositol (PI), and monohexosylceramide (MHC). MHC levels increased in all tissues. Dihexosylceramide (DHC) level decreased only in kidney tissue. Most PI, PS, and phosphatidic acid (PA) species showing significant increases contained a saturated acyl chain (18:0) in lung and liver tissues. Neutral glycerolipids (16:0/22:0-DG and most TGs with saturated and monounsaturated acyl chains) decreased 2-4-fold in the liver tissue. Our results suggest that the lack of p53 and altered lipid profiles are closely related, but as their changes vary from one tissue to another, the lipid alterations are tissue-specific.

  20. Mitochondrial DNA Damage Initiates Acute Lung Injury and Multi-Organ System Failure Evoked in Rats by Intra-Tracheal Pseudomonas Aeruginosa.

    PubMed

    Lee, Yann-Leei; Obiako, Boniface; Gorodnya, Olena M; Ruchko, Mykhaylo V; Kuck, Jamie L; Pastukh, Viktor M; Wilson, Glenn L; Simmons, Jon D; Gillespie, Mark N

    2017-07-01

    Although studies in rat cultured pulmonary artery endothelial cells, perfused lungs, and intact mice support the concept that oxidative mitochondrial (mt) DNA damage triggers acute lung injury (ALI), it has not yet been determined whether enhanced mtDNA repair forestalls development of ALI and its progression to multiple organ system failure (MOSF). Accordingly, here we examined the effect of a fusion protein construct targeting the DNA glycosylase, Ogg1, to mitochondria in a rat model intra-tracheal Pseudomonas aeruginosa (strain 103; PA103)-induced ALI and MOSF. Relative to controls, animals given PA103 displayed increases in lung vascular filtration coefficient accompanied by transient lung tissue oxidative mtDNA damage and variable changes in mtDNA copy number without evidence of nuclear DNA damage. The approximate 40% of animals surviving 24 h after bacterial administration exhibited multiple organ dysfunction, manifest as increased serum and tissue-specific indices of kidney and liver failure, along with depressed heart rate and blood pressure. While administration of mt-targeted Ogg1 to control animals was innocuous, the active fusion protein, but not a DNA repair-deficient mutant, prevented bacteria-induced increases in lung tissue oxidative mtDNA damage, failed to alter mtDNA copy number, and attenuated lung endothelial barrier degradation. These changes were associated with suppression of liver, kidney, and cardiovascular dysfunction and with decreased 24 h mortality. Collectively, the present findings indicate that oxidative mtDNA damage to lung tissue initiates PA103-induced ALI and MOSF in rats.

  1. Testing lung cancer drugs and therapies in mice

    Cancer.gov

    National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with

  2. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats

    PubMed Central

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC0-∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities. PMID:25643802

  3. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats.

    PubMed

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao; Zeng, Zhenling

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC00∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities.

  4. Protective effect of gel form of gastric gavage applicated aloe vera on ischemia reperfusion injury in renal and lung tissue.

    PubMed

    Sahin, Hasan; Yener, Ali Umit; Karaboga, Ihsan; Sehitoglu, Muserref Hilal; Dogu, Tugba; Altinisik, Hatice Betul; Altinisik, Ugur; Simsek, Tuncer

    2017-12-30

    The aloe vera plant has become increasingly popular in recent years. This study aimed to research the effect of aloe vera to prevent renal and lung tissue damage in an experimental ischemia-reperfusion (I/R) injury model. The study included 21 male Wistar Albino rats, which were categorized into control group, n = 7 (no procedures), Sham group n = 7 (I/R); and aloe vera therapy group, n = 7 (aloe vera and I/R). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) were evaluated from lung and kidney tissues for biochemical investigations. As histopathological, hematoxylin and eosin and anti-iNOS were also examined. In biochemical investigations, SOD, CAT, and GPx levels of the Sham group were found to be lower compared with the other groups (P < 0.05). The aloe vera therapy group was not statistically different from control groups but significantly different compared with the Sham group. In the same way, the MDA levels of kidney and lung tissues were statistically significant in the aloe vera therapy group, compared to the Sham group. In the Sham group, the peribronchial and perialveolar edema were observed in lung parenchyma. Also, excess interstitial hemorrhage, leukocyte infiltration, and alveolar wall thickening were identified in ischemic groups. The histopathological changes were much lighter than in the aloe vera therapy group. In renal tissues, excess epithelial cell deterioration, tubular desqumination, and glomerular atrophy were observed in the Sham group. The histopathological changes were markedly reduced in the aloe vera therapy  group. In the kidney and lung tissue, the level of iNOS activity in the Sham group was significantly higher than in the control and aloe vera therapy group. This study indicated that aloe vera is protective against oxidative damage formed by I/R in distant organs like the lungs and kidneys.

  5. Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway

    PubMed Central

    Wu, You; Zhao, Feng

    2017-01-01

    Lung ischemia/reperfusion (I/R) injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF) leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase) activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway. PMID:28751936

  6. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  7. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei

    2007-06-15

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction ofmore » lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log-Jacobian value and the air flow rate correlated well (R{sup 2}=0.858 on average for the entire lung). The correlation for the fifth individual was not as good (R{sup 2}=0.377 on average for the entire lung) and can be explained by the small variation in tidal volume for this individual. The correlation of the average log-Jacobian value and the air flow rate for images near the diaphragm correlated well in all five individuals (R{sup 2}=0.943 on average). These preliminary results indicate a strong correlation between the expansion/compression of the lung measured by image registration and the air flow rate measured by spirometry. Predicting the location, motion, and compression/expansion of the tumor and normal tissue using image registration and spirometry could have many important benefits for radiotherapy treatment. These benefits include reducing radiation dose to normal tissue, maximizing dose to the tumor, improving patient care, reducing treatment cost, and increasing patient throughput.« less

  8. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry.

    PubMed

    Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A

    2007-06-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log-Jacobian value and the air flow rate correlated well (R2 = 0.858 on average for the entire lung). The correlation for the fifth individual was not as good (R2 = 0.377 on average for the entire lung) and can be explained by the small variation in tidal volume for this individual. The correlation of the average log-Jacobian value and the air flow rate for images near the diaphragm correlated well in all five individuals (R2 = 0.943 on average). These preliminary results indicate a strong correlation between the expansion/compression of the lung measured by image registration and the air flow rate measured by spirometry. Predicting the location, motion, and compression/expansion of the tumor and normal tissue using image registration and spirometry could have many important benefits for radiotherapy treatment. These benefits include reducing radiation dose to normal tissue, maximizing dose to the tumor, improving patient care, reducing treatment cost, and increasing patient throughput.

  9. Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy.

    PubMed

    Shields, Chelsea A; Schechter, David A; Tetzlaff, Phillip; Baily, Ali L; Dycus, Sean; Cosgriff, Ned

    2004-01-01

    Bipolar radiofrequency (RF) energy can successfully seal vascular structures up to 7 mm by fusing collagen and elastin in the lumen. Valleylab has created a system to expand this technology beyond vessel sealing with the development of a closed-loop, feedback-control RF generator that closely monitors tissue fusion. This generator, operating with a loop time of approximately 250 micros, continuously adjusts energy output, creating optimized soft-tissue fusion through structural protein amalgamation. In the first study, RF energy was applied to canine lung using the new-generation generator and lung-prototype device. A lobectomy was completed, sealing the lobar bronchus, parenchyma, and pulmonary vasculature. Chronic performance of the seals was evaluated at necropsy on postoperative days 7 and 14. In a second study, RF energy was applied to porcine small intestine using the same closed-loop generator and anastomosis prototype device. Acute tissue fusion was assessed qualitatively for hemostasis and seal quality. Terminal tissue evaluation was completed on postoperative day 7 and analyzed histopathologically. Histopathology confirmed acute and chronic tissue fusion in both the lung and intestine. Normal pathological healing was substantiated by angiogenesis, granulation, and proliferation of fibroblasts. Preliminary studies using canine lung and porcine small intestine demonstrate the potential of this closed-loop generator for soft-tissue amalgamation. Advanced monitoring capabilities make this fusion system applicable in many soft-tissue structures with adequate collagen and elastin. Further investigation of potential surgical applications needs to be completed.

  10. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

    PubMed Central

    Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N.; Chen, Lung-Chi; Tang, Moon-shong

    2015-01-01

    Second-hand smoke (SHS) is associated with 20–30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers. PMID:26431382

  11. Refractive errors and corrections for OCT images in an inflated lung phantom

    PubMed Central

    Golabchi, Ali; Faust, J.; Golabchi, F. N.; Brooks, D. H.; Gouldstone, A.; DiMarzio, C. A.

    2012-01-01

    Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real-time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ’ground truth,’ as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with cellular foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred μm in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT. PMID:22567599

  12. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR.

    PubMed

    Ouyang, Jinsong; Chun, Se Young; Petibon, Yoann; Bonab, Ali A; Alpert, Nathaniel; Fakhri, Georges El

    2013-10-01

    This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs.

  13. Effects of kefir on ischemia-reperfusion injury.

    PubMed

    Yener, A U; Sehitoglu, M H; Ozkan, M T A; Bekler, A; Ekin, A; Cokkalender, O; Deniz, M; Sacar, M; Karaca, T; Ozcan, S; Kurt, T

    2015-01-01

    We aimed to investigate the effect of kefir on Ischemia-Reperfusion (I/R) injury on rats. 24 male Sprague-Dawley rats between 250-350 g were selected. Rats were divided into three groups, and there were eight rats in each group. Rats were fed for 60 days. All of the rats were fed with the same diet for the first 30 days. In the second thirty days, kefir [10 cc/kg/day body weight (2 x 109 cfu/kg/day)] was added to the diet of the study group by gavage method. In all groups, lung and kidney tissues were removed after the procedure and rats were sacrificed. The biochemical and histopathological changes were observed in the lung and kidney within the samples. Serum urea, creatinine and tumor necrosis factor (TNF-α) were determined. Kefir + I/R groups was compared with I/R groups, a significant decrease (p < 0.05) was seen in Lipid peroxidation (MDA) levels of lung and renal tissues. Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GSH-Px) activities of lung and kidney tissues decreased in I/R groups (p < 0.05). The enzyme activities in Kefir + I/R groups of renal tissues were significantly (p < 0.05) higher than I/R, not significantly different in lung tissues (p < 0.05). Kefir reduced the levels of serum urea, creatinine and TNF-α significantly.   This would be useful in this model against ischemia/reperfusion, and shows the protective effect of kefir in tissue and serum functions.

  14. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  15. Towards in vivo bacterial detection in human lung(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin

    2017-04-01

    Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).

  16. Evaluation of computed tomography numbers for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Fullerton, G.D.; Ezekiel, J.

    1982-09-01

    Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less

  17. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture.

    PubMed

    Kumar, Jyoti; Dixit, Shivendra Kumar; Kumar, Rajiv

    2015-09-01

    This study was aimed to detect Mannheimia haemolytica in lung tissues of sheep and from a bacterial culture. M. haemolytica is one of the most important and well-established etiological agents of pneumonia in sheep and other ruminants throughout the world. Accurate diagnosis of M. haemolytica primarily relies on bacteriological examination, biochemical characteristics and, biotyping and serotyping of the isolates. In an effort to facilitate rapid M. haemolytica detection, polymerase chain reaction assay targeting Pasteurella haemolytica serotype-1 specific antigens (PHSSA), Rpt2 and 12S ribosomal RNA (rRNA) genes were used to detect M. haemolytica directly from lung tissues and from bacterial culture. A total of 12 archived lung tissues from sheep that died of pneumonia on an organized farm were used. A multiplex polymerase chain reaction (mPCR) based on two-amplicons targeted PHSSA and Rpt2 genes of M. haemolytica were used for identification of M. haemolytica isolates in culture from the lung samples. All the 12 lung tissue samples were tested for the presence M. haemolytica by PHSSA and Rpt2 genes based PCR and its confirmation by sequencing of the amplicons. All the 12 lung tissue samples tested for the presence of PHSSA and Rpt2 genes of M. haemolytica by mPCR were found to be positive. Amplification of 12S rRNA gene fragment as internal amplification control was obtained with each mPCR reaction performed from DNA extracted directly from lung tissue samples. All the M. haemolytica were also positive for mPCR. No amplified DNA bands were observed for negative control reactions. All the three nucleotide sequences were deposited in NCBI GenBank (Accession No. KJ534629, KJ534630 and KJ534631). Sequencing of the amplified products revealed the identity of 99-100%, with published sequence of PHSSA and Rpt2 genes of M. haemolytica available in the NCBI database. Sheep specific mitochondrial 12S rRNA gene sequence also revealed the identity of 98% with published sequences in the NCBI database. The present study emphasized the PCR as a valuable tool for rapid detection of M. haemolytica in clinical samples from animals. In addition, it offers the opportunity to perform large-scale epidemiological studies regarding the role of M. haemolytica in clinical cases of pneumonia and other disease manifestations in sheep and other ruminants, thereby providing the basis for effective preventive strategies.

  18. [Mechanism of action for oligomeric proanthocyaniclins in pava qnat-induced acute lung injury].

    PubMed

    Liu, P; Zhou, Y S; Qin, Y L; Li, L; Liu, Y; Xu, B; Huang, K; Ji, C C; Lin, F; Wang, Y G; Li, K; Chen, S H; Shao, L F; Mu, J S

    2017-11-20

    Objective: The present study was designed to evaluate the protective effects of oligomeric proanthocyanidins (OPC) in mice exposed to paraquat (PQ) , and to explore the molecular mechanism. Methods: Four experimental groups were designed. 10 BALB/c mice were intraperitoneally injected with normal saline) . PQ group: 10 BALB/c mice were intraperitoneally injected with PQ (100 mg/kg) . PQ+OPC group: 10 BALB/c mice were administered with OPC (100 mg/kg) for 1 h before PQ (100 mg/kg) expo-sure. OPC group: 10 BALB/c mice were intraperitoneally injected with OPC (100 mg/kg) . The peripheral blood samples or lung tissue samples were collected at the designed time points for measuring the levels of oxi-dative stress indicators, the related protein levels of nuclear factor-kappa B (NF-κB) pathway and nuclear fac-tor erythroid related factor-2 (Nrf2) pathway. Results: Compared with the control group, the level of reactive oxygen species (ROS) , the content of malondialdehyde (MDA) in the PQ group were significantly induced, and the activity of superoxide dismutase (SOD) in the PQ group was decreased in the peripheral blood. As com-pared with the PQ group, the level of ROS and the content of MDA in the PQ+OPC group were significantly re-duced, the activity SOD in the PQ+OPC group was increased in the peripheral blood; the level of ROS and the content of MDA were also reduced in lung tissues in the PQ+OPC group. Moreover, compared with the con-trol group, the phosphorylation of IκBα and the expression of NF-κB p65 were increased in lung tissues in the PQ group. The phosphorylation of IκBα and the expression of NF-κB p65 were decreased in lung tissues in the PQ+OPC group as compared with the PQ group. In addition, compared with the control group, the expressions of HO-1 and Nrf2 were increased in lung tissues in OPC group, and these were decreased in lung tissues in PQ groups. Furthermore, the expressions of HO-1 and Nrf2 were also increased in lung tissues in PQ+OPC as com-pared with the PQ group. Conclusion: OPC could alleviate PQ-induced systemic toxicity in mice by regulating oxidative stress via NF-κB and Nrf2 pathway.

  19. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis

    PubMed Central

    Tascilar, Oge; Cakmak, Güldeniz Karadeniz; Tekin, Ishak Ozel; Emre, Ali Ugur; Ucan, Bulent Hamdi; Bahadir, Burak; Acikgoz, Serefden; Irkorucu, Oktay; Karakaya, Kemal; Balbaloglu, Hakan; Kertis, Gürkan; Ankarali, Handan; Comert, Mustafa

    2007-01-01

    AIM: To investigate the effect of exogenous erythro-poietin (EPO) administration on acute lung injury (ALI) in an experimental model of sodium taurodeoxycholate-induced acute necrotizing pancreatitis (ANP). METHODS: Forty-seven male Wistar albino rats were randomly divided into 7 groups: sham group (n = 5), 3 ANP groups (n = 7 each) and 3 EPO groups (n = 7 each). ANP was induced by retrograde infusion of 5% sodium taurodeoxycholate into the common bile duct. Rats in EPO groups received 1000 U/kg intramuscular EPO immediately after induction of ANP. Rats in ANP groups were given 1 mL normal saline instead. All animals were sacrificed at postoperative 24 h, 48 h and 72 h. Serum amilase, IL-2, IL-6 and lung tissue malondialdehyde (MDA) were measured. Pleural effusion volume and lung/body weight (LW/BW) ratios were calculated. Tissue levels of TNF-α, IL-2 and IL-6 were screened immunohistochemically. Additionally, ox-LDL accumulation was assessed with immune-fluorescent staining. Histopathological alterations in the lungs were also scored. RESULTS: The mean pleural effusion volume, calculated LW/BW ratio, serum IL-6 and lung tissue MDA levels were significantly lower in EPO groups than in ANP groups. No statistically significant difference was observed in either serum or tissue values of IL-2 among the groups. The level of tumor necrosis factor-α (TNF-α) and IL-6 and accumulation of ox-LDL were evident in the lung tissues of ANP groups when compared to EPO groups, particularly at 72 h. Histopathological evaluation confirmed the improvement in lung injury parameters after exogenous EPO administration, particularly at 48 h and 72 h. CONCLUSION: EPO administration leads to a significant decrease in ALI parameters by inhibiting polymorphonuclear leukocyte (PMNL) accumulation, decreasing the levels of proinflammatory cytokines in circulation, preserving microvascular endothelial cell integrity and reducing oxidative stress-associated lipid peroxidation and therefore, can be regarded as a cytoprotective agent in ANP-induced ALI. PMID:18069756

  20. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  1. SU-E-T-283: Dose Perturbations Near Heterogeneity Junctions for Modulated-Scanning Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Y; Li, Y; Sheng, Y

    2015-06-15

    Purpose: To compare calculated and measured doses near heterogeneity junctions of tissue-substitute materials for modulated-scanning protons. Methods: Three heterogeneous phantoms were configured using slabs of various plastics to simulate lung, fat, soft-tissue (polystyrene), and bone with known relative linear stopping powers (RLSPs). Each phantom consisted of soft-tissue and a single heterogeneity of a 5 or 10 cm thickness of a non-soft-tissue material. CT images were loaded into a Syngo treatment planning system and each material contoured and assigned its RLSP. Planning target volumes (PTVs) were drawn such that a beam would partially traverse the heterogeneity and partially only soft-tissue. Lateralmore » profiles were measured using EDR2 films at a minimum of six depths between the phantom surface and the depth corresponding to the beam range. Absolute doses were measured inside and distal to the PTV in all phantoms using either a parallel plate or thimble chamber. Additional dose measurements were made between two lung slabs. Results: Profiles measured by film generally agreed with calculations except for depths distal to lung and fat junctions. Measured lateral penumbras for depths at the distal junction of lung were found to be wider than calculated ones. Compared with calculated doses, measured doses in the PTVs were 5.19% and 2.51% lower for lung and fat respectively but for bone were 0.2% higher. Measured doses for depths distal to the PTV were up to 29.65% and 10.58% higher for lung and fat, respectively but 6.30% lower for bone. Conclusion: The low measured doses in the PTVs for lung and fat might be due to underestimation of lateral scattering of protons. The higher measured doses distal to the PTV for the lung and fat are a Result of a shortened calculated beam range whereas the higher dose distal to the bone junction is within uncertainties.« less

  2. Chronic Hypoxia Accentuates Dysanaptic Lung Growth.

    PubMed

    Llapur, Conrado J; Martínez, Myriam R; Grassino, Pedro T; Stok, Ana; Altieri, Héctor H; Bonilla, Federico; Caram, María M; Krowchuk, Natasha M; Kirby, Miranda; Coxson, Harvey O; Tepper, Robert S

    2016-08-01

    Adults born and raised at high altitudes have larger lung volumes and greater pulmonary diffusion capacity compared with adults at low altitude; however, it remains unclear whether the air and tissue volumes have comparable increases and whether there is a difference in airway size. To assess the effect of chronic hypoxia on lung growth using in vivo high-resolution computed tomography measurements. Healthy adults born and raised at moderate altitude (2,000 m above sea level; n = 19) and at low altitude (400 m above sea level; n = 23) underwent high-resolution computed tomography. Differences in total lung, air, and tissue volume, mean lung density, as well as airway lumen and wall areas in anatomically matched airways were compared between groups. No significant differences for age, sex, weight, or height were found between the two groups (P > 0.05). In a multivariate regression model, altitude was a significant contributor for total lung volume (P = 0.02), air volume (P = 0.03), and tissue volume (P = 0.03), whereby the volumes were greater for the moderate- versus the low-altitude group. However, altitude was not a significant contributor for mean lung density (P = 0.35) or lumen and wall areas in anatomically matched segmental, subsegmental, and subsubsegmental airways. Our findings suggest that the adult lung did not increase lung volume later in life by expansion of an existing number of alveoli, but rather from increased alveolarization early in life. In addition, chronic hypoxia accentuates dysanaptic lung growth by increasing the lung parenchyma but not the airways.

  3. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  4. Chest x-ray

    MedlinePlus

    ... also be done if you have signs of tuberculosis , lung cancer , or other chest or lung diseases . ... the blood vessels Pneumonia Scarring of lung tissue Tuberculosis In the heart: Problems with the size or ...

  5. Afatinib

    MedlinePlus

    ... to treat certain types of non-small cell lung cancer that has spread to nearby tissues or to ... ever had lung or breathing problems (other than lung cancer); eye problems, including dry eyes; heart problems; liver ...

  6. Reverse engineering the cooperative machinery of human hemoglobin.

    PubMed

    Ren, Zhong

    2013-01-01

    Hemoglobin transports molecular oxygen from the lungs to all human tissues for cellular respiration. Its α2β2 tetrameric assembly undergoes cooperative binding and releasing of oxygen for superior efficiency and responsiveness. Over past decades, hundreds of hemoglobin structures were determined under a wide range of conditions for investigation of molecular mechanism of cooperativity. Based on a joint analysis of hemoglobin structures in the Protein Data Bank (Ren, companion article), here I present a reverse engineering approach to elucidate how two subunits within each dimer reciprocate identical motions that achieves intradimer cooperativity, how ligand-induced structural signals from two subunits are integrated to drive quaternary rotation, and how the structural environment at the oxygen binding sites alter their binding affinity. This mechanical model reveals the intricate design that achieves the cooperative mechanism and has previously been masked by inconsistent structural fluctuations. A number of competing theories on hemoglobin cooperativity and broader protein allostery are reconciled and unified.

  7. [Effects of small RNA interference targeting mammalian target of rapamycin on paraquat-induced pulmonary fibrosis in rats].

    PubMed

    Yang, Wenbin; Zhao, Xiaoqing; Liang, Ran; Chen, Da

    2017-09-01

    To investigate the effects of small RNA interference targeting mammalian target of rapamycin (mTOR) expression on paraquat-induced pulmonary fibrosis in rats. Human embryonic kidney cells HEK-293 were cultured in vitro. The mTOR small interfering RNA (mTOR-siRNA) expression plasmid transfection lentivirus was constructed, and non-specific sequence plasmid with no homology to mTOR gene was set as the control. Seventy-two healthy male Sprague-Dawley (SD) rats were randomly divided into normal saline (NS) control group, paraquat model group, mTOR unrelated sequence group, and mTOR-siRNA group, with 18 rats in each group. Paraquat poisoning animal model was reproduced by intraperitoneally injecting 20% paraquat solution 15 mg/kg, while the NS control group was intraperitoneally injected the same volumes of NS. Rats in the mTOR unrelated sequence group and mTOR-siRNA group were injected 1×10 9 TU/mL lentivirus solution 50 μL into the airway, respectively, while in the NS control group and paraquat model group were injected the same volumes of NS. At 7, 14 and 28 days after treatment, 6 rats in each group were sacrificed respectively for lung tissue, the pathological changes and fibrosis of lung tissues were observed under light microscope. The levels of hydroxyproline (HYP) in lung tissues were determined by alkaline hydrolysis. The mRNA and protein expressions of mTOR in lung tissues were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot. Under light microscope, there was no obvious pathological changes in the lung tissues in the NS control group, while in the paraquat model group and mTOR unrelated sequence group, lung tissue in rats were damaged, there were a lot of inflammatory cell infiltration, a large number of matrix collagen and fibrous tissues hyperplasia, and gradually increased with time, and it was consistent with paraquat-induced lung tissue fibrosis process. The pathological and fibrotic changes in lung tissue of mTOR-siRNA group were obviously reduced after silencing mTOR gene. The levels of HYP and the expression levels of mTOR mRNA and mTOR protein of lung tissues in the paraquat model group and mTOR unrelated sequence group were continuously increased in time-dependent manner, and they were significantly higher than those in the NS control group at all of the time points, but no significant difference was found between mTOR unrelated sequence group and paraquat model group. In mTOR-siRNA group, silencing mTOR gene could inhibit paraquat poisoning induced HYP increase in lung tissue, and the expressions increase in mTOR mRNA and mTOR protein, the values were close to the levels of NS control group, and the significant difference was found as compared with paraquat model group at 7 days or 14 days, and the change was maintained to 28 days [7 days: HYP (μg/mg) was 1.13±0.06 vs. 1.25±0.07; 14 days: HYP (μg/mg) was 1.19±0.09 vs. 1.29±0.12, mTOR mRNA (2 -Δ ΔCt ) was 0.99±0.11 vs. 1.94±0.12, mTOR protein (gray value) was 0.39±0.08 vs. 0.75±0.09; 28 days: HYP (μg/mg) was 1.28±0.06 vs. 1.40±0.05, mTOR mRNA (2 -Δ ΔCt ) was 1.15±0.13 vs. 2.85±0.15, mTOR protein (gray value) was 0.45±0.10 vs. 0.86±0.12, all P < 0.05]. Lentivirus-mediated mTOR-siRNA could effectively inhibit the expressions of mTOR in lung tissues of paraquat-poisoned rats, and reduce the damage and fibrosis of lung tissues caused by paraquat.

  8. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer

    PubMed Central

    Davidson, Shawn M.; Papagiannakopoulos, Thales; Olenchock, Benjamin A.; Heyman, Julia E.; Keibler, Mark A.; Luengo, Alba; Bauer, Matthew R.; Jha, Abhishek K.; O’Brien, James P.; Pierce, Kerry A.; Gui, Dan Y.; Sullivan, Lucas B.; Wasylenko, Thomas M.; Subbaraj, Lakshmipriya; Chin, Christopher R.; Stephanopolous, Gregory; Mott, Bryan T.; Jacks, Tyler; Clish, Clary B.; Vander Heiden, Matthew G.

    2016-01-01

    SUMMARY Cultured cells convert glucose to lactate and glutamine is the major source of tricarboxylic acid (TCA) cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells. PMID:26853747

  9. Electrical Impedance Spectroscopy Study of Biological Tissues

    PubMed Central

    Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R.

    2008-01-01

    The objective of this study was to investigate the electrical impedance properties of rat lung and other tissues ex vivo using Electrical Impedance Spectroscopy. Rat lungs (both electroporated and naïve (untreated)), and mesenteric vessels (naïve) were harvested from male Sprague-Dawley rats; their electrical impedance were measured using a Solartron 1290 impedance analyzer. Mouse lung and heart samples (naïve) were also studied. The resistance (Real Z, ohm) and the reactance (Im Z, negative ohm)) magnitudes and hence the Cole-Cole (Real Z versus Im Z) plots are different for the electroporated lung and the naive lung. The results confirm the close relationship between the structure and the functional characteristic. These also vary for the different biological tissues studied. The impedance values were higher at low frequencies compared to those at high frequencies. This study is of practical interest for biological applications of electrical pulses, such as electroporation, whose efficacy depends on cell type and its electrical impedance characteristics. PMID:19255614

  10. Correlation between alveolar ventilation and electrical properties of lung parenchyma.

    PubMed

    Roth, Christian J; Ehrl, Andreas; Becher, Tobias; Frerichs, Inéz; Schittny, Johannes C; Weiler, Norbert; Wall, Wolfgang A

    2015-06-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

  11. The clinical use of regenerative therapy in COPD

    PubMed Central

    Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario

    2014-01-01

    Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. PMID:25548520

  12. [Enterococcus faecium lung abscess: one case report and literature review].

    PubMed

    Fang, Xiang-Qun; Liu, You-Ning

    2010-02-01

    to study the diagnosis and treatment of enterococcus faecium lung abscess. a retrospective analysis of one case of Enterococcus faecium lung abscess and literature review was conducted. this patient suffered from cough and sputum over 6 months and complicated with hemoptysis over 3 months. Pulmonary embolism and lung cancer were suspected initially. After 2 times of CT-guided percutaneous transthoracic needle aspiration biopsy the diagnosis of pneumonia was made in other hospitals. However, the consolidation in the lung progressed and cavity appeared although antibiotic therapy was conducted. After admission to our hospital, CT-guided percutaneous transthoracic needle aspiration biopsy was made and the lung tissue was sent for bacterial culture. Enterococcus faecium was cultured and it was susceptible to vancomycin, teicoplanin and linezolid. The disease improved significantly after treatment with these 3 antibiotics in turn. In addition, 13 cases of enterococcus pneumonia or lung abscess were reviewed, including 3 cases of enterococcus faecium lung abscess. enterococcus faecium is rarely a pathogen for lung abscess. The diagnosis of enterococcus faecium lung abscess could be confirmed by lung biopsy and bacterial culture of lung tissue which could also provide the susceptibility of antibiotics and guide the antibiotic therapy.

  13. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis.

    PubMed

    Yang, Yan; Ding, Lili; Hu, Qun; Xia, Jia; Sun, Junjie; Wang, Xudong; Xiong, Hua; Gurbani, Deepak; Li, Lianbo; Liu, Yan; Liu, Aiguo

    2017-08-22

    Aberrant expression of microRNAs in different human cancer types has been widely reported. MiR-218 acts as a tumor suppressor in diverse human cancer types impacting regulation of multiple genes in oncogenic pathways. Here, we evaluated the expression and function of miR-218 in human lung cancer and ALDH positive lung cancer cells to understand the potential mechanisms responsible for disease pathology. Also, the association between its host genes and the target genes could be useful towards the better understanding of prognosis in clinical settings. Publicly-available data from The Cancer Genome Atlas (TCGA) was mined to compare the levels of miR-218 and its host gene SLIT2/3 between lung cancer tissues and normal lung tissues. Transfection of miR-218 to investigate its function in lung cancer cells was done and in vivo effects were determined using miR-218 expressing lentiviruses. Aldefluor assay and Flow cytometry was used to quantify and enrich ALDH positive lung cancer cells. Levels of miR-218, IL-6R, JAK3 and phosphorylated STAT3 were compared in ALDH1A1 positive and ALDH1A1 negative cells. Overexpression of miR-218 in ALDH positive cells was carried to test the survival by tumorsphere culture. Finally, utilizing TCGA data we studied the association of target genes of miR-218 with the prognosis of lung cancer. We observed that the expression of miR-218 was significantly down-regulated in lung cancer tissues compared to normal lung tissues. Overexpression of miR-218 decreased cell proliferation, invasion, colony formation, and tumor sphere formation in vitro and repressed tumor growth in vivo. We further found that miR-218 negatively regulated IL-6 receptor and JAK3 gene expression by directly targeting the 3'-UTR of their mRNAs. In addition, the levels of both miR-218 host genes and the components of IL-6/STAT3 pathway correlated with prognosis of lung cancer patients. MiR-218 acts as a tumor suppressor in lung cancer via IL-6/STAT3 signaling pathway regulation.

  14. Immunohistochemical quantification of expression of a tight junction protein, claudin-7, in human lung cancer samples using digital image analysis method.

    PubMed

    Lu, Zhe; Liu, Yi; Xu, Junfeng; Yin, Hongping; Yuan, Haiying; Gu, Jinjing; Chen, Yan-Hua; Shi, Liyun; Chen, Dan; Xie, Bin

    2018-03-01

    Tight junction proteins are correlated with cancer development. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies. We have previously reported that claudin-7 was strongly expressed in benign bronchial epithelial cells at the cell-cell junction while expression of claudin-7 was either altered with discontinued weak expression or completely absent in lung cancers. Based on these results, we continued working on the expression pattern of claudin-7 and its relationship with lung cancer development. We herein proposed a new Digital Image Classification, Fragmentation index, Morphological analysis (DICFM) method for differentiating the normal lung tissues and lung cancer tissues based on the claudin-7 immunohistochemical staining. Seventy-seven lung cancer samples were obtained from the Second Affiliated Hospital of Zhejiang University and claudin-7 immunohistochemical staining was performed. Based on C++ and Open Source Computer Vision Library (OpenCV, version 2.4.4), the DICFM processing module was developed. Intensity and fragmentation of claudin-7 expression, as well as the morphological parameters of nuclei were calculated. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis. Agreement between these computational results and the results obtained by two pathologists was demonstrated. The intensity of claudin-7 expression was significantly decreased while the fragmentation was significantly increased in the lung cancer tissues compared to the normal lung tissues and the intensity was strongly positively associated with the differentiation of lung cancer cells. Moreover, the perimeters of the nuclei of lung cancer cells were significantly greater than that of the normal lung cells, while the parameters of area and circularity revealed no statistical significance. Taken together, our DICFM approach may be applied as an appropriate approach to quantify the immunohistochemical staining of claudin-7 on the cell membrane and claudin-7 may serve as a marker for identification of lung cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact.

    PubMed

    Yang, Tian; Wang, Jinyuan; Pang, Yamei; Dang, Xiaomin; Ren, Hui; Liu, Ya; Chen, Mingwei; Shang, Dong

    2016-11-01

    Pulmonary silicosis is characterized by lung fibrosis, which leads to impairment of pulmonary function; the specific mechanism remains to be fully elucidated Emodin shows antifibrotic effects in several organs with fibrosis, however, it has not been investigated in pulmonary silicosis. In the present study, the possible mechanism of lung fibrosis and the antifibrotic effect of emodin in silica inhalation‑induced lung fibrosis were investigated. Pulmonary silica particle inhalation was used to induce lung fibrosis in mice. Emodin and or the sirtuin 1 (Sirt1) inhibitor, nicotinamide, were used to treat the modeled animals. Pulmonary function was assessed using an occlusion method. The deposition of collagen I and α‑smooth muscle actin (SMA) in the lung tissue were detected using fluorescence staining; transforming growth factor‑β1 (TGF‑β1) in the bronchoalveolar lavage fluid (BALF) was examined using an enzyme‑linked immunosorbent assay; TGF-β1/Sirt1/small mothers against decapentaplegic (Smad) signaling activation in lung tissue was also examined. The molecular contacts between emodin were evaluated using liquid chromatography‑mass spectrometry analysis. The deposition of collagen I and α‑SMA in lung tissues were found to be elevated following silica exposure, however, this was relieved by emodin treatment. The pulmonary function of the animals was impaired by silica inhalation, and this was improved by emodin administration. However, the therapeutic effects of emodin on lung fibrosis were impaired by nicotinamide administration. The levels of TGF‑β1 in the BALF and lung tissue were elevated by silica inhalation, however, they were not affected by either emodin or nicotinamide treatment. Additionally, emodin was found to increase the expression level of Sirt1, which decreased the level of deacetylated Smad3 to attenuate collagen deposition. Furthermore, the data suggested that there was direct binding between emodin and Sirt1. Sirt1‑regulated TGF‑β1/Smad signaling was involved in silica inhalation‑induced lung fibrosis. Emodin attenuated this lung fibrosis to improve pulmonary function by targeting Sirt1, which regulated TGF-β1/Smad fibrotic signaling.

  16. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact

    PubMed Central

    Yang, Tian; Wang, Jinyuan; Pang, Yamei; Dang, Xiaomin; Ren, Hui; Liu, Ya; Chen, Mingwei; Shang, Dong

    2016-01-01

    Pulmonary silicosis is characterized by lung fibrosis, which leads to impairment of pulmonary function; the specific mechanism remains to be fully elucidated Emodin shows antifibrotic effects in several organs with fibrosis, however, it has not been investigated in pulmonary silicosis. In the present study, the possible mechanism of lung fibrosis and the antifibrotic effect of emodin in silica inhalation-induced lung fibrosis were investigated. Pulmonary silica particle inhalation was used to induce lung fibrosis in mice. Emodin and or the sirtuin 1 (Sirt1) inhibitor, nicotinamide, were used to treat the modeled animals. Pulmonary function was assessed using an occlusion method. The deposition of collagen I and α-smooth muscle actin (SMA) in the lung tissue were detected using fluorescence staining; transforming growth factor-β1 (TGF-β1) in the bronchoalveolar lavage fluid (BALF) was examined using an enzyme-linked immunosorbent assay; TGF-β1/Sirt1/small mothers against decapentaplegic (Smad) signaling activation in lung tissue was also examined. The molecular contacts between emodin were evaluated using liquid chromatography-mass spectrometry analysis. The deposition of collagen I and α-SMA in lung tissues were found to be elevated following silica exposure, however, this was relieved by emodin treatment. The pulmonary function of the animals was impaired by silica inhalation, and this was improved by emodin administration. However, the therapeutic effects of emodin on lung fibrosis were impaired by nicotinamide administration. The levels of TGF-β1 in the BALF and lung tissue were elevated by silica inhalation, however, they were not affected by either emodin or nicotinamide treatment. Additionally, emodin was found to increase the expression level of Sirt1, which decreased the level of deacetylated Smad3 to attenuate collagen deposition. Furthermore, the data suggested that there was direct binding between emodin and Sirt1. Sirt1-regulated TGF-β1/Smad signaling was involved in silica inhalation-induced lung fibrosis. Emodin attenuated this lung fibrosis to improve pulmonary function by targeting Sirt1, which regulated TGF-β1/Smad fibrotic signaling. PMID:27748907

  17. Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology.

    PubMed

    Burrowes, Kelly S; Iravani, Amin; Kang, Wendy

    2018-01-12

    The lung is a delicately balanced and highly integrated mechanical system. Lung tissue is continuously exposed to the environment via the air we breathe, making it susceptible to damage. As a consequence, respiratory diseases present a huge burden on society and their prevalence continues to rise. Emergent function is produced not only by the sum of the function of its individual components but also by the complex feedback and interactions occurring across the biological scales - from genes to proteins, cells, tissue and whole organ - and back again. Computational modeling provides the necessary framework for pulling apart and putting back together the pieces of the body and organ systems so that we can fully understand how they function in both health and disease. In this review, we discuss models of lung tissue mechanics spanning from the protein level (the extracellular matrix) through to the level of cells, tissue and whole organ, many of which have been developed in isolation. This is a vital step in the process but to understand the emergent behavior of the lung, we must work towards integrating these component parts and accounting for feedback across the scales, such as mechanotransduction. These interactions will be key to unlocking the mechanisms occurring in disease and in seeking new pharmacological targets and improving personalized healthcare. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling

    PubMed Central

    Bai, Xiaozhi; Fan, Lei; He, Ting; Jia, Wenbin; Yang, Longlong; Zhang, Jun; Liu, Yang; Shi, Jihong; Su, Linlin; Hu, Dahai

    2015-01-01

    Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. PMID:25992481

  19. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use

    PubMed Central

    Pirela, Sandra V.; Lu, Xiaoyan; Miousse, Isabelle; Sisler, Jennifer D.; Qian, Yong; Guo, Nancy; Koturbash, Igor; Castranova, Vincent; Thomas, Treye; Godleski, John; Demokritou, Philip

    2016-01-01

    Incorporation of engineered nanomaterials (ENMs) into toners used in laser printers has led to countless quality and performance improvements. However, the release of ENMs during printing (consumer use) has raised concerns about their potential adverse health effects. The aim of this study was to use “real world” printer-emitted particles (PEPs), rather than raw toner powder, and assess the pulmonary responses following exposure by intratracheal instillation. Nine-week old male Balb/c mice were exposed to various doses of PEPs (0.5, 2.5 and 5 mg/kg body weight) by intratracheal instillation. These exposure doses are comparable to real world human inhalation exposures ranging from 13.7 to 141.9 h of printing. Toxicological parameters reflecting distinct mechanisms of action were evaluated, including lung membrane integrity, inflammation and regulation of DNA methylation patterns. Results from this in vivo toxicological analysis showed that while intratracheal instillation of PEPs caused no changes in the lung membrane integrity, there was a pulmonary immune response, indicated by an elevation in neutrophil and macrophage percentage over the vehicle control and low dose PEPs groups. Additionally, exposure to PEPs upregulated expression of the Ccl5 (Rantes), Nos1 and Ucp2 genes in the murine lung tissue and modified components of the DNA methylation machinery (Dnmt3a) and expression of transposable element (TE) LINE-1 compared to the control group. These genes are involved in both the repair process from oxidative damage and the initiation of immune responses to foreign pathogens. The results are in agreement with findings from previous in vitro cellular studies and suggest that PEPs may cause immune responses in addition to modifications in gene expression in the murine lung at doses that can be comparable to real world exposure scenarios, thereby raising concerns of deleterious health effects. PMID:26989787

  20. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxelmore » and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for{sup 103}Pd seeds and smallest but still considerable differences for {sup 131}Cs seeds. Conclusions: Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.« less

  1. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis

    PubMed Central

    YANG, ZHIZHOU; SUN, ZHAORUI; LIU, HONGMEI; REN, YI; SHAO, DANBING; ZHANG, WEI; LIN, JINFENG; WOLFRAM, JOY; WANG, FENG; NIE, SHINAN

    2015-01-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson’s trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury. PMID:25815693

  2. Programmed cell death-ligand 1 (PD-L1) expression is associated with RAS/TP53 mutations in lung adenocarcinoma.

    PubMed

    Serra, Pierre; Petat, Arthur; Maury, Jean-Michel; Thivolet-Bejui, Françoise; Chalabreysse, Lara; Barritault, Marc; Ebran, Nathalie; Milano, Gérard; Girard, Nicolas; Brevet, Marie

    2018-04-01

    The systematic assessment of anti-programmed cell death ligand 1 (PD-L1) expression by immunohistochemistry (IHC) in lung adenocarcinomas is becoming standard practice. However, the assessment of PD-L1 expression on small tissue specimens needs to be evaluated and the association with other features more thoroughly analyzed. This retrospective single center study evaluated the immunohistochemical expression of the SP263 anti-PD-L1 antibody on tissue microarrays (TMA) of 152 surgically resected lung adenocarcinomas, using a 25% positivity threshold. The positive cases and 50 randomly chosen negative cases in tissue microarray (TMA) were reassessed on whole tissue sections. The results were correlated to clinical, histopathological and to molecular data obtained through the screening of 214 mutations in 26 genes (LungCarta panel, Agena Biosciences). Among 152 primary lung adenocarcinomas, 19 cases (13%) showed PD-L1 expression. The agreement between TMA and whole tissue sections was 89%, specificity was 97%. PD-L1 expression was correlated to RAS mutations (p = .04), RAS/TP53 co-mutations (p = .01) and to the solid or acinar subtype (p = .048). With the SP263 PD-L1 antibody, small samples appear as a reliable means to evaluate the PD-L1 status in lung adenocarcinoma. The association between PD-L1 expression and RAS/TP53 mutations may have clinical relevance to predict the efficacy of PD-1/PD-L1 immune checkpoints inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Adipose Gene Expression Profile Changes With Lung Allograft Reperfusion.

    PubMed

    Diamond, Joshua M; Arcasoy, Selim; McDonnough, Jamiela A; Sonett, Joshua R; Bacchetta, Matthew; D'Ovidio, Frank; Cantu, Edward; Bermudez, Christian A; McBurnie, Amika; Rushefski, Melanie; Kalman, Laurel H; Oyster, Michelle; D'Errico, Carly; Suzuki, Yoshikazu; Giles, Jon T; Ferrante, Anthony; Lippel, Matthew; Singh, Gopal; Lederer, David J; Christie, Jason D

    2017-01-01

    Obesity is a risk factor for primary graft dysfunction (PGD), a form of lung injury resulting from ischemia-reperfusion after lung transplantation, but the impact of ischemia-reperfusion on adipose tissue is unknown. We evaluated differential gene expression in thoracic visceral adipose tissue (VAT) before and after lung reperfusion. Total RNA was isolated from thoracic VAT sampled from six subjects enrolled in the Lung Transplant Body Composition study before and after allograft reperfusion and quantified using the Human Gene 2.0 ST array. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed enrichment for genes involved in complement and coagulation cascades and Jak-STAT signaling pathways. Overall, 72 genes were upregulated and 56 genes were downregulated in the postreperfusion time compared with baseline. Long pentraxin-3, a gene and plasma protein previously associated with PGD, was the most upregulated gene (19.5-fold increase, p = 0.04). Fibronectin leucine-rich transmembrane protein-3, a gene associated with cell adhesion and receptor signaling, was the most downregulated gene (4.3-fold decrease, p = 0.04). Ischemia-reperfusion has a demonstrable impact on gene expression in visceral adipose tissue in our pilot study of nonobese, non-PGD lung transplant recipients. Future evaluation will focus on differential adipose tissue gene expression and the development of PGD after transplant. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Lung and Intestine: A Specific Link in an Ulcerative Colitis Rat Model

    PubMed Central

    Liu, Yuan; Wang, Xin-Yue; Yang, Xue; Jing, Shan; Zhu, Li; Gao, Si-Hua

    2013-01-01

    Background. To investigate the link and mechanisms between intestine and lung in the ulcerative colitis (UC) rat model. Materials and Methods. We used the UC rat model by immunological sensitization combined with local 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) in 50% ethanol enema, observed dynamically animal general state and body weight, examined the histological and functional changes in the colon, lung, liver, and kidney tissues, and detected microvascular endothelium response towards inflammation characterized with the expression of iNOS, TXB2, P-selectin, ICAM-1, and vascular endothelial growth factor A (VEGF-A) in the colon and lung tissue. Results. Pulmonary function results suggested ventilator disorder, and pathological findings showed interstitial pneumonia. There were no significant changes in the liver and kidney function and histopathology. The colon and lung tissue iNOS, TXB2, P-selectin, ICAM-1, and VEGF-A expression of the model rats was significantly higher than the normal rats at both time points. Conclusions. Our study is the first to demonstrate the close association between the large intestine and lung in the immune-TNBS-ethanol-induced UC rat model. Different organs and tissues with the same embryonic origin may share the same pathological specificities in a disease. The present study provided a new way of thinking for pathological changes in clinical complex diseases manifested with multiorgan damage. PMID:23606829

  5. Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.

    2016-03-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a 3 year survival rate of 50%. Diagnostic certainty of IPF is essential to determine the most effective therapy for patients, but often requires surgery to resect lung tissue and look for microscopic honeycombing not seen on chest computed tomography (CT). Unfortunately, surgical lung resection has high risks of associated morbidity and mortality in this patient population. We aim to determine whether bronchoscopic optical coherence tomography (OCT) can serve as a novel, low-risk paradigm for in vivo IPF diagnosis without surgery or tissue removal. OCT provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We have designed bronchoscopic OCT catheters to effectively and safely access the peripheral lung, and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We utilized these OCT catheters to perform bronchoscopic imaging in lung tissue from patients with pulmonary fibrosis to determine if bronchoscopic OCT could successfully visualize features of IPF through the peripheral airways. OCT was able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.

  6. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration.

    PubMed

    Pietrofesa, Ralph A; Solomides, Charalambos C; Christofidou-Solomidou, Melpo

    Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O 2 (O 2 ); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O 2 and IR (O 2 +IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration.

  7. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration. PMID:25705570

  8. Anti-inflammatory and antioxidant effects of infliximab on acute lung injury in a rat model of intestinal ischemia/reperfusion.

    PubMed

    Guzel, Ahmet; Kanter, Mehmet; Guzel, Aygul; Pergel, Ahmet; Erboga, Mustafa

    2012-06-01

    The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.

  9. Airway mechanics and lung tissue viscoelasticity: effects of altered blood hematocrit in the pulmonary circulation.

    PubMed

    Peták, Ferenc; Fodor, Gergely H; Babik, Barna; Habre, Walid

    2016-07-01

    The contribution of the hematocrit (Hct) of the blood in the pulmonary vasculature to the overall lung mechanics has not been characterized. We therefore set out to establish how changes of the Hct level in the pulmonary circulation affect the airway and lung tissue viscoelastic properties. The Hct level of the blood in an isolated perfused rat lung model was randomly altered. Intermediate (26.5%), followed by low (6.6%) or normal (43.7%), Hct was set in two consecutive sequences. The pulmonary capillary pressure was maintained constant throughout the experiment, and the pulmonary hemodynamic parameters were monitored continuously. The airway resistance (Raw), the viscous (G) and elastic (H) parameters, and the hysteresivity (η = G/H) of the lung tissues were obtained from measurements of forced oscillatory input impedance data. Raw was not affected by the alterations of the Hct levels. As concerns the lung tissues, the decrease of Hct to intermediate or low levels resulted in close to proportional decreases in the viscoelastic parameters G [16.5 ± 7.7% (SD), 12.1 ± 9.5%, P < 0.005] and H (13.2 ± 8.6%, 10.8 ± 4.7%, P < 0.001). No significant changes in η were detected in a wide range of Hct, which indicates that coupled processes cause alterations in the resistive and elastic properties of the lungs following Hct changes in the pulmonary circulation. The diminishment of the viscous and elastic parameters of the pulmonary parenchyma following a reduction of blood Hct demonstrates the significant contribution of the red blood cells to the overall lung viscoelasticity. Copyright © 2016 the American Physiological Society.

  10. Parecoxib reduced ventilation induced lung injury in acute respiratory distress syndrome.

    PubMed

    Meng, Fan-You; Gao, Wei; Ju, Ying-Nan

    2017-03-29

    Cyclooxygenase-2 (COX-2) contributes to ventilation induced lung injury (VILI) and acute respiratory distress syndrome (ARDS). The objective of present study was to observe the therapeutic effect of parecoxib on VILI in ARDS. In this parallel controlled study performed at Harbin Medical University, China between January 2016 and March 2016, 24 rats were randomly allocated into sham group (S), volume ventilation group/ARDS (VA), parecoxib/volume ventilation group/ARDS (PVA). Rats in the S group only received anesthesia; rats in the VA and PVA group received intravenous injection of endotoxin to induce ARDS, and then received ventilation. Rats in the VA and PVA groups were treated with intravenous injection of saline or parecoxib. The ratio of arterial oxygen pressure to fractional inspired oxygen (PaO 2 /FiO 2 ), the wet to dry weight ratio of lung tissue, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF), and histopathologic analyses of lung tissue were examined. In addition, survival was calculated at 24 h after VILI. Compared to the VA group, in the PVA group, PaO 2 /FiO 2 was significantly increased; lung tissue wet to dry weight ratio; macrophage and neutrophil counts, total protein and neutrophil elastase levels in BALF; tumor necrosis factor-α, interleukin-1β, and prostaglandin E 2 levels in BALF and serum; and myeloperoxidase (MPO) activity, malondialdehyde levels, and Bax and COX-2 protein levels in lung tissue were significantly decreased, while Bcl-2 protein levels were significantly increased. Lung histopathogical changes and apoptosis were reduced by parecpxib in the PVA group. Survival was increased in the PVA group. Parecoxib improves gas exchange and epithelial permeability, decreases edema, reduces local and systemic inflammation, ameliorates lung injury and apoptosis, and increases survival in a rat model of VILI.

  11. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S; Kakakhel, MB; Ahmed, SBS

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shieldedmore » to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international body for the presented work.« less

  12. Exposure to diesel and gasoline engine emissions and the risk of lung cancer.

    PubMed

    Parent, Marie-Elise; Rousseau, Marie-Claude; Boffetta, Paolo; Cohen, Aaron; Siemiatycki, Jack

    2007-01-01

    Pollution from motor vehicles constitutes a major environmental health problem. The present paper describes associations between diesel and gasoline engine emissions and lung cancer, as evidenced in a 1979-1985 population-based case-control study in Montreal, Canada. Cases were 857 male lung cancer patients. Controls were 533 population controls and 1,349 patients with other cancer types. Subjects were interviewed to obtain a detailed lifetime job history and relevant data on potential confounders. Industrial hygienists translated each job description into indices of exposure to several agents, including engine emissions. There was no evidence of excess risks of lung cancer with exposure to gasoline exhaust. For diesel engine emissions, results differed by control group. When cancer controls were considered, there was no excess risk. When population controls were studied, the odds ratios, after adjustments for potential confounders, were 1.2 (95% confidence interval: 0.8, 1.8) for any exposure and 1.6 (95% confidence interval: 0.9, 2.8) for substantial exposure. Confidence intervals between risk estimates derived from the two control groups overlapped considerably. These results provide some limited support for the hypothesis of an excess lung cancer risk due to diesel exhaust but no support for an increase in risk due to gasoline exhaust.

  13. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.

    PubMed

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-05-30

    Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.

  14. Regional Mapping of Gas Uptake by Blood and Tissue in the Human Lung using Hyperpolarized Xenon-129 MRI

    PubMed Central

    Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.

    2013-01-01

    Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559

  15. An efficient method to predict and include Bragg curve degradation due to lung-equivalent materials in Monte Carlo codes by applying a density modulation

    NASA Astrophysics Data System (ADS)

    Baumann, Kilian-Simon; Witt, Matthias; Weber, Uli; Engenhart-Cabillic, Rita; Zink, Klemens

    2017-05-01

    Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic ‘modulation power’ is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue’s density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.

  16. The Transient Receptor Potential Vanilloid 1 Antagonist Capsazepine Improves the Impaired Lung Mechanics during Endotoxemia.

    PubMed

    Cabral, Layla D M; Giusti-Paiva, Alexandre

    2016-11-01

    Acute lung injury (ALI) caused by systemic inflammatory response remains a leading cause of morbidity and mortality in critically ill patients. Management of patients with sepsis is largely limited to supportive therapies, reflecting an incomplete understanding of the underlying pathophysiology. Furthermore, there have been limited advances in the treatments for ALI. In this study, lung function and a histological analysis were performed to evaluate the impact of transient receptor potential vanilloid-1 receptor (TRPV1) antagonist (capsazepine; CPZ) on the lipopolysaccharide (LPS)-induced lung injury in mice. For this, adult mice pre-treated with CPZ or vehicle received intraperitoneal injections of LPS or saline and 24 hr after, the mice were anaesthetized, and lung mechanics was evaluated. The LPS-challenged mice exhibited substantial mechanical impairment, characterized by increases in respiratory system resistance, respiratory system elastance, tissue damping and tissue elastance. The pre-treatment with CPZ prevented the increase in respiratory system resistance and decreased the increase in tissue damping during endotoxemia. In addition, mice pre-treated with CPZ had an attenuated lung injury evidenced by reduction on collapsed area of the lung parenchyma induced by LPS. This suggests that the TRPV1 antagonist capsazepine has a protective effect on lung mechanics in ALI during endotoxemia and that it may be a target for enhanced therapeutic efficacy in ALI. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    PubMed

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue

    PubMed Central

    Vierkotten, Sarah; Lindner, Michael; Königshoff, Melanie; Eickelberg, Oliver

    2015-01-01

    During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment. PMID:26092995

  19. Recovery of human remains after shark attack.

    PubMed

    Byard, Roger W; James, Ross A; Heath, Karen J

    2006-09-01

    Two cases of fatal shark attack are reported where the only tissues recovered were fragments of lung. Case 1: An 18-year-old male who was in the sea behind a boat was observed by friends to be taken by a great white shark (Carcharodon carcharias). The shark dragged him under the water and then, with a second shark, dismembered the body. Witnesses noted a large amount of blood and unrecognizable body parts coming to the surface. The only tissues recovered despite an intensive beach and sea search were 2 fragments of lung. Case 2: A 19-year-old male was attacked by a great white shark while diving. A witness saw the shark swim away with the victim's body in its mouth. Again, despite intensive beach and sea searches, the only tissue recovered was a single piece of lung, along with pieces of wetsuit and diving equipment. These cases indicate that the only tissue to escape being consumed or lost in fatal shark attacks, where there is a significant attack with dismemberment and disruption of the integrity of the body, may be lung. The buoyancy of aerated pulmonary tissue ensures that it rises quickly to the surface, where it may be recovered by searchers soon after the attack. Aeration of the lung would be in keeping with death from trauma rather than from drowning and may be a useful marker in unwitnessed deaths to separate ante- from postmortem injury, using only relatively small amounts of tissues. Early organ recovery enhances the identification of human tissues as the extent of morphologic alterations by putrefactive processes and sea scavengers will have been minimized. DNA testing is also possible on such recovered fragments, enabling confirmation of the identity of the victim.

  20. Increased expression of connective tissue growth factor (CTGF) in multiple organs after exposure of non-human primates (NHP) to lethal doses of radiation

    PubMed Central

    Zhang, Pei; Cui, Wanchang; Hankey, Kim G.; Gibbs, Allison M.; Smith, Cassandra P.; Taylor-Howell, Cheryl; Kearney, Sean R.; MacVittie, Thomas J.

    2015-01-01

    Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP, and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition respectively, suggesting possible crosstalk between spleen and other organs. Our data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs. PMID:26425899

  1. Analysis of speckle patterns in phase-contrast images of lung tissue

    NASA Astrophysics Data System (ADS)

    Kitchen, M. J.; Paganin, D.; Lewis, R. A.; Yagi, N.; Uesugi, K.

    2005-08-01

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  2. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    NASA Astrophysics Data System (ADS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.; Fossati, F.; Vittor, K.; Nano, R.; Facoetti, A.; Chiari, P.; Bakeine, J.; Clerici, A.; Ferrari, C.; Salvucci, O.

    2006-05-01

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher 10B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of 10B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  3. Non-invasive microstructure and morphology investigation of the mouse lung: qualitative description and quantitative measurement.

    PubMed

    Zhang, Lu; Li, Dongyue; Luo, Shuqian

    2011-02-25

    Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.

  4. Circadian Timing in the Lung; A Specific Role for Bronchiolar Epithelial Cells

    PubMed Central

    Gibbs, J. E.; Beesley, S.; Plumb, J.; Singh, D.; Farrow, S.; Ray, D. W.; Loudon, A. S. I.

    2015-01-01

    In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology. PMID:18787022

  5. [Distributions of H3K27me3 and its modification enzymes in different tissues of mice].

    PubMed

    Wang, Yuying; Wang, Xinli; Zhang, Ran; Zhang, Zhiyan; Wang, Yu; Yang, Bo; Wang, Guanjie; Zhang, Xin; Ma, Fuhao; Xu, Hongye; Wu, Xiaohui; Zhang, Feng; Li, Qing

    2017-11-01

    Objective To investigate the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3) and its modification enzymes Zeste gene enhancer homolog 2 (EZH2), lysine-specific demethylase 6B (Kdm6B/JMJD3) and lysine-specific demethylase 6A (Kdm6A/UTX) in tissues and organs of 7-day and 2-month postnatal mice. Methods Immunohistochemistry was used to detect the expressions of H3K27me3 and its modification enzymes EZH2, JMJD3 and UTX in the brain, salivary glands, back fat, thymus, lung, heart, stomach, intestines, liver, testes, and skin of 7-day and 2-month mice. Real-time quantitative PCR was used to confirm the results. The relationships between H3K27me3 and its modification enzymes were analyzed statistically. Results Immunohistochemistry showed H3K27me3 persistently present in all examined tissues of 7-day and 2-month mice. EZH2 was persistently expressed in the brain, heart, liver, and skin of 7-day and 2-month mice, but only expressed in the salivary glands, adipose tissues, thymus, lung, intestines, and testes of 2-month mice. JMJD3 was expressed in the brain, salivary glands, adipose tissues, lung, heart, stomach, intestines, testes, skin of 7-day mice, but was not expressed in the lung, adipose tissues and stomach of 2-month mice. UTX was expressed in the brain, salivary glands, adipose tissues, lung, heart, testes, skin of 7-day mice, but only expressed in the testes of 2-month mice. Most mRNA of H3K27 modification enzymes were moderately or highly expressed as their immunohistochemical results were positive. Conclusion There was H3K27me3 persistently present in the all examined tissues at different stages. EZH2 was mostly expressed in the brain, salivary glands, adipose tissues, thymus, lung, heart, intestines, liver, testes and skin of 2-month-old mice. JMJD3 and UTX were mostly expressed in the brain, salivary glands, adipose tissues, lung, heart, skin and testes of 7-day-old mice. No significant association was found between the distribution of H3K27me3 and the expression of EZH2. There was also no obvious inverse distribution relationship between H3K27me3 and JMJD3 or UTX. Moreover, there was no negative relationship between the distribution of EZH2, JMJD3 and UTX. These results suggest that EZH2, JMJD3 and UTX may play important roles in many tissues of mice after birth. The levels of H3K27me3 and its modified enzymes may be controlled by multiple factors in vivo to fulfill complex physiological functions.

  6. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  7. Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.

    PubMed

    Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana

    2018-07-01

    Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.

  8. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation.

    PubMed

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.

  9. Occupational exposure to diesel engine emissions and risk of lung cancer: evidence from two case-control studies in Montreal, Canada.

    PubMed

    Pintos, Javier; Parent, Marie-Elise; Richardson, Lesley; Siemiatycki, Jack

    2012-11-01

    To examine the risk of lung cancer among men associated with exposure to diesel engine emissions incurred in a wide range of occupations and industries. 2 population-based lung cancer case-control studies were conducted in Montreal. Study I (1979-1986) comprised 857 cases and 533 population controls; study II (1996-2001) comprised 736 cases and 894 population controls. A detailed job history was obtained, from which we inferred lifetime occupational exposure to 294 agents, including diesel engine emissions. ORs were estimated for each study and in the pooled data set, adjusting for socio-demographic factors, smoking history and selected occupational carcinogens. While it proved impossible to retrospectively estimate absolute exposure concentrations, there were estimates and analyses by relative measures of cumulative exposure. Increased risks of lung cancer were found in both studies. The pooled analysis showed an OR of lung cancer associated with substantial exposure to diesel exhaust of 1.80 (95% CI 1.3 to 2.6). The risk associated with substantial exposure was higher for squamous cell carcinomas (OR 2.09; 95% CI 1.3 to 3.2) than other histological types. Joint effects between diesel exhaust exposure and tobacco smoking are compatible with a multiplicative synergistic effect. Our findings provide further evidence supporting a causal link between diesel engine emissions and risk of lung cancer. The risk is stronger for the development of squamous cell carcinomas than for small cell tumours or adenocarcinomas.

  10. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung

    PubMed Central

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L.

    2014-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation. PMID:25449036

  11. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342

  12. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    PubMed

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated neighboring areas of lung tissue, indicating a global lung response to focal high-dose irradiation.

  13. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Mark W.; Olch, Arthur

    2010-10-01

    Intracavitary injections of 32P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V30) for 340 MBq 32P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V30 of 43%. At higher densities of the lung tissue V30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm2. Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  14. GC-MS/MS Analyses of Biological Samples in Support of Developmental Toxic Effects on Percutaneous Exposure of Rats to VX

    DTIC Science & Technology

    2016-07-01

    of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, diaphragm, and skin) that were obtained from rats (postnatal days 42 and 70...of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, and diaphragm) that were used to quantify the amounts of free and regenerated...Biosamples (brain, diaphragm, eye, heart, lung, liver, and kidney ) were collected at time of death or 48 h post-exposure for survivors. All

  15. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    PubMed Central

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  16. Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen

    PubMed Central

    Gan, Zhuohui; Roerig, David L.; Clough, Anne V.

    2011-01-01

    Rat exposure to 60% O2 (hyper-60) or 85% O2 (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O2. The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH2), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH2 and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (Vmax1) and complex III-mediated DQH2 oxidation (Vmax2) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, Vmax1 increased by ∼80%, with no effect on Vmax2. Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O2 observed in hyper-85 rats. PMID:21551015

  17. Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen.

    PubMed

    Gan, Zhuohui; Roerig, David L; Clough, Anne V; Audi, Said H

    2011-07-01

    Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ∼80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.

  18. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov; Hatfield, Meghan K., E-mail: wla4@cdc.gov; Farcas, Mariana T., E-mail: woe7@cdc.gov

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-basedmore » D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.« less

  19. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.

    1987-11-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-(/sup 68/Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of (/sup 68/Ga)citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escapemore » rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury.« less

  20. Heterozygous Vangl2Looptail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair

    PubMed Central

    Poobalasingam, Thanushiyan; Yates, Laura L.; Walker, Simone A.; Pereira, Miguel; Gross, Nina Y.; Ali, Akmol; Kolatsi-Joannou, Maria; Jarvelin, Marjo-Riitta; Pekkanen, Juha; Papakrivopoulou, Eugenia; Long, David A.; Griffiths, Mark; Wagner, Darcy; Königshoff, Melanie; Hind, Matthew; Minelli, Cosetta; Lloyd, Clare M.

    2017-01-01

    ABSTRACT Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema. PMID:28237967

  1. [The expression and significance of chemokines eotaxin and RANTES in the rat model of allergic rhinitis].

    PubMed

    Tian, Cuiling; Lei, Xiaoping; Shui, Minhong; Zhang, Yanhong; Jia, Qianwei; Tu, Jing; Lian, Gang; Tang, Siquan

    2014-07-01

    To explore the expression and significance of Eotaxin and RANTES in the rat model of allergic rhinitis (AR). 20 female SD rats in 6-7 weeks were randomly divided into control group and AR group (n = 10, respectively). AR rat model was made with ovalbumin stimulation. To detect pathological changes in mucosa and chemokine Eotaxin, RANTES in their nasal and lung tissues after execution. Compared with the control group, Lung EOS cell counted higher in AR group and the difference was significant (P < 0.01); the AR rats nasal mucosa and lung tissue of Eotaxin, RANTES expression was significantly increased (P < 0.01). There exist high expression of Eotaxin, RANTES, infiltration of eosinophils in nasal and lung tissue of model rats with allergic rhinitis, inferring that the upper and lower respiratory tract inflammatory response has obvious consistency.

  2. Comparison of dual and single exposure techniques in dual-energy chest radiography.

    PubMed

    Ho, J T; Kruger, R A; Sorenson, J A

    1989-01-01

    Conventional chest radiography is the most effective tool for lung cancer detection and diagnosis; nevertheless, a high percentage of lung cancer tumors are missed because of the overlap of lung nodule image contrast with bone image contrast in a chest radiograph. Two different energy subtraction strategies, dual exposure and single exposure techniques, were studied for decomposing a radiograph into bone-free and soft tissue-free images to address this problem. For comparing the efficiency of these two techniques in lung nodule detection, the performances of the techniques were evaluated on the basis of residual tissue contrast, energy separation, and signal-to-noise ratio. The evaluation was based on both computer simulation and experimental verification. The dual exposure technique was found to be better than the single exposure technique because of its higher signal-to-noise ratio and greater residual tissue contrast. However, x-ray tube loading and patient motion are problems.

  3. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis

    PubMed Central

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-01-01

    SUMMARY The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zeitgebers, such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PMID:27153497

  4. 76 FR 31617 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Emphasis Panel, Utilization of a Human Lung Tissue Resource for Vascular Research. Date: June 23, 2011... Research; 93.838, Lung Diseases Research; 93.839, Blood Diseases and Resources Research, National... Sunnarborg, PhD, Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute...

  5. Advances in tumor diagnosis using OCT and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Kornilin, D. V.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Complex investigation of malignant tumors was performed with combined optical coherence tomography (OCT) and Raman spectroscopy (RS) setup: 22 ex vivo lung tissue samples and 23 in vivo experiments with skin tumors. It was shown that combined RS-OCT unit may be used for precise tissue morphology visualization with simultaneous tumor type determination (BCC, malignant melanoma of skin tissues, adenocarcinoma and squamous cell carcinoma of lung). Fast RS phase method for skin and lung tumors identification was proposed. It is based on alteration of Raman spectral intensity in 1300-1340, 1440-1460 and 1640-1680 cm-1 bands for healthy and malignant tissue. Complex method could identify: malignant melanoma with 88.9% sensitivity and 87.8% specificity; adenocarcinoma with 100% sensitivity and 81.5% specificity; squamous cell carcinomas with 90.9% sensitivity and 77.8% specificity.

  6. Engineered in vitro disease models.

    PubMed

    Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E

    2015-01-01

    The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.

  7. Apigenin Attenuates Inflammation in Experimentally Induced Acute Pancreatitis-Associated Lung Injury.

    PubMed

    Basios, Neofitos; Lampropoulos, Pavlos; Papalois, Apostolos; Lambropoulou, Maria; Pitiakoudis, Michael K; Kotini, Athanasia; Simopoulos, Constantinos; Tsaroucha, Alexandra K

    2016-06-01

    Acute pancreatitis is associated with acute lung injury. The aim of the present study is to evaluate alterations of lungs in an experimental model of acute pancreatitis (AP) following both bilio-pancreatic duct obstruction close to the duodenum. Acute pancreatitis is a common disease with significant mortality. This situation makes the need of finding protective factors for the lung parenchyma, imperative. In the present study there is an effort to clarify the role of apigenin, a substance which is well known for its antioxidant and anti-inflammatory effects, on lung injury, following acute pancreatitis in rats. In the present study, 126 male Wistar-type rats 3-4 months old and 220-350 g weight were used. At time 0 we randomly assigned the following groups: Group Sham: Rats were subjected to virtual surgery. Group Control: Rats were subjected to surgery for induction of acute pancreatitis. Group Apigenin: Rats were subjected to surgery for induction of acute pancreatitis and enteral feeding with apigenin. Immunochemistry for TNF-α and IL-6 as well as MPO activity were measured at predetermined time intervals 6, 12, 24, 48, and 72 h, in order to evaluate architectural disturbances of the lung tissue. From the pathological reports we realized that comparing the control group with the apigenin group, there is an improvement of lung tissue damage following apigenin administration, with statistical significance. Apigenin reduces most histopathological alterations of the pulmonary tissue, reduces MPO and TNF-α activity at 48 hours and, furthermore, reduces IL-6 activity at 72 hours post-administration. Oral Apigenin administration in rats, following experimental induced acute pancreatitis, seems to be protective on the lung tissue. Apigenin administration to humans could potentially ameliorate acute lung injuries. However, special caution is required for humans' use, as more detailed studies are needed.

  8. IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma.

    PubMed

    Huang, Qi; Duan, Limin; Qian, Xin; Fan, Jinshuo; Lv, Zhilei; Zhang, Xiuxiu; Han, Jieli; Wu, Feng; Guo, Mengfei; Hu, Guorong; Du, Jiao; Chen, Caiyun; Jin, Yang

    2016-11-07

    Inflammation and angiogenesis are two hallmarks of carcinoma. The proinflammatory cytokine interleukin-17 (IL-17) facilitates angiogenesis in lung cancer; however, the underlying mechanism is not fully understood. In this study, tumour microvessel density (MVD) was positively associated with IL-17, interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial cell growth factor (VEGF) expression in human lung adenocarcinoma tissues, and it was increased in tumour tissues of A549-IL-17 cell-bearing nude mice. Importantly, positive correlations were also detected between IL-17 expression and IL-6, IL-8 and VEGF expression in human lung adenocarcinoma tissues. Furthermore, IL-6, IL-8 and VEGF production, as well as STAT1 phosphorylation, were increased in tumour tissues of A549-IL-17 cell-bearing nude mice in vivo and in A549 and H292 cells following IL-17 stimulation in vitro. In addition, STAT1 knockdown using an inhibitor and siRNA attenuated the IL-17-mediated increases in IL-6, IL-8 and VEGF expression in A549 and H292 cells. In conclusion, IL-17 may promote the production of the angiogenic inducers IL-6, IL-8 and VEGF via STAT1 signalling in lung adenocarcinoma.

  9. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    PubMed

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  10. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  11. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.

    PubMed

    Charest, Jonathan M; Okamoto, Tatsuya; Kitano, Kentaro; Yasuda, Atsushi; Gilpin, Sarah E; Mathisen, Douglas J; Ott, Harald C

    2015-06-01

    The primary treatment for end-stage lung disease is lung transplantation. However, donor organ shortage remains a major barrier for many patients. In recent years, techniques for maintaining lungs ex vivo for evaluation and short-term (<12 h) resuscitation have come into more widespread use in an attempt to expand the donor pool. In parallel, progress in whole organ engineering has provided the potential perspective of patient derived grafts grown on demand. As both of these strategies advance to more complex interventions for lung repair and regeneration, the need for a long-term organ culture system becomes apparent. Herein we describe a novel clinical scale bioreactor capable of maintaining functional porcine and human lungs for at least 72 h in isolated lung culture (ILC). The fully automated, computer controlled, sterile, closed circuit system enables physiologic pulsatile perfusion and negative pressure ventilation, while gas exchange function, and metabolism can be evaluated. Creation of this stable, biomimetic long-term culture environment will enable advanced interventions in both donor lungs and engineered grafts of human scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  13. Tissue engineering: state of the art in oral rehabilitation.

    PubMed

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  14. Targeting Nuclear EGFR: Strategies for Improving Cetuximab Therapy in Lung Cancer

    DTIC Science & Technology

    2013-09-01

    has been identified in various human tumor tissues, including cancers of the breast, ovary, oropharynx, and esophagus , and has predicted poor patient...been identified in various human tumor tissues, including cancers of the breast, ovary, oropharynx, and esophagus , and has predicted...Improving Cetuximab Therapy in Lung Cancer PRINCIPAL INVESTIGATOR: Deric L Wheeler

  15. Respirator triggering of electron-beam computed tomography (EBCT): differences in dynamic changes between augmented ventilation and controlled mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter

    2000-04-01

    The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.

  16. Study on the Dose Uncertainties in the Lung during Passive Proton Irradiation with a Proton Beam Range Compensator

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Hoon; Son, Jae Man; Yoon, Myonggeun; Park, Sung Yong; Shin, Dongho; Min, Byung Jun

    2018-06-01

    A moving phantom is manufactured for mimicking lung model to study the dose uncertainty from CT number-stopping power conversion and dose calculation in the soft tissue, light lung tissue and bone regions during passive proton irradiation with compensator smearing value. The phantom is scanned with a CT system, and a proton beam irradiation plan is carried out with the use of a treatment planning system (Eclipse). In the case of the moving phantom, a RPM system is used for respiratory gating. The uncertainties in the dose distribution between the measured data and the planned data are investigated by a gamma analysis with 3%-3 mm acceptance criteria. To investigate smearing effect, three smearing values (0.3 cm, 0.7 cm, 1.2 cm) are used to for fixed and moving phantom system. For both fixed and moving phantom, uncertainties in the light lung tissue are severe than those in soft tissue region in which the dose uncertainties are within clinically tolerable ranges. As the smearing value increases, the uncertainty in the proton dose distribution decreases.

  17. Plasmin-dependent proteolysis of Tissue Factor Pathway Inhibitor in a mouse model of endotoxemia

    PubMed Central

    Lupu, Cristina; Herlea, Oana; Tang, Haiwang; Lijnen, Roger H.; Lupu, Florea

    2012-01-01

    Summary Background Development of a procoagulant state in sepsis, due to aberrant expression of tissue factor (TF) and sharp decrease of its major inhibitor tissue factor pathway inhibitor (TFPI), could lead to microthrombotic organ failure. The mechanism for the decline of TFPI activity in the lung could involve plasmin-mediated cleavage of the inhibitor. Objective To investigate the effect of plasmin generation on lung-associated TFPI activity, in normal conditions and during infusion of endotoxin (LPS) in mice. Methods Plasmin generation and TFPI activity were assayed in the lungs of mice deficient of tissue-type plasminogen activator (t-PA) or plasminogen (Plg), at 2-hrs after LPS or saline injection. Results The sharp loss of lung-associated TFPI activity at 2-hrs post LPS paralleled the abrupt increase of plasmin generation. TFPI activity was significantly retained in both t-PA-/- and Plg-/- mice, which are unable to generate plasmin. Conclusion The increased plasmin generation during the early stages of sepsis could cleave/inactivate TFPI and thus lead to thrombotic complications. PMID:23106863

  18. PM2.5-induced alterations of cell cycle associated gene expression in lung cancer cells and rat lung tissues.

    PubMed

    Zhao, Hui; Yang, Biao; Xu, Jia; Chen, Dong-Mei; Xiao, Chun-Ling

    2017-06-01

    The aim of the current study was to investigate the expression of cell cycle-associated genes induced by fine particulate matter (PM 2.5 ) in lung cancer cell line and tissues. The pulmonary lymph node metastasis cells (H292) were treated with PM 2.5 in vitro. Wistar rats were used to perform an in vivo study. Rats were randomly assigned to experiment and control groups and those in the experiment group were exposed to PM 2.5 once every 15 d, while those in the control group were exposed to normal saline. The cell cycle-associated genes expression was analyzed by real-time PCR. Trachea and lung tissues of rats were processed for scanning electron microscopic (SEM) examinations. Exposure of H292 cells to PM 2.5 dramatically increased the expressions of p53 and cyclin-dependent kinase 2 (CDK2) after 24h of exposure (p<0.01) and markedly increased the expressions of the cell division cycle 2 (Cdc2) and cyclin B after 48h of exposure (p<0.01), while those genes expressions were significantly reduced after 72h of exposure, at which time the expression of p21 was predominant (p<0.01). In vivo studies further demonstrated these results. The results of SEM suggested that both of the trachea and lung tissues were damaged and the degree of damage was time-dependent. In conclusion, PM 2.5 can induce significantly alterations of p53 and CDK2 in the early phase, Cdc2 and cyclin B in mid-term and p21 in long-term exposure. The degree of PM 2.5 -induced damage to the trachea and lung tissue was time-dependent. Copyright © 2017. Published by Elsevier B.V.

  19. Lactic Acid Is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation via pH-Dependent Activation of Transforming Growth Factor-β

    PubMed Central

    Kottmann, Robert Matthew; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.

    2012-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods: We used metabolomic analysis to examine cellular metabolism in lung tissue from patients with IPF and determined the effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-β activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; α-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-β. TGF-β induced expression of LDH5 via hypoxia-inducible factor 1α (HIF1α). Importantly, overexpression of both HIF1α and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low-dose TGF-β to induce differentiation. Furthermore, inhibition of both HIF1α and LDH5 inhibited TGF-β–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pH-dependent activation of TGF-β. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders. PMID:22923663

  20. Evaluation of contralateral kidney, liver and lung after extracorporeal shock wave lithotripsy in rabbits.

    PubMed

    Senyucel, M F; Boybeyi, O; Ayva, S; Aslan, M K; Soyer, T; Demet, A I; Kısa, U; Basar, M; Cakmak, M A

    2013-10-01

    An experimental study was carried out to evaluate the effects of extracorporeal shock wave lithotripsy (ESWL) on contralateral kidney, liver and lung by histopathological and biochemical methods. Twelve New Zealand rabbits were allocated to two groups (n = 6). Tissues of control group (CG, n = 6) were harvested without any intervention. In ESWL group (EG), right kidneys were exposed to 3,000 shock waves at 14 kV energy using electro-hydraulic type ESWL device three times every other day. Both kidneys, liver, and right lobe of lung tissues in EG were harvested on seventh day. Kidneys were examined histopathologically for presence of glomerular and tubular injury, interstitial edema, congestion, inflammation and fibrosis. Livers were examined for hepatocyte vacuolization, congestion, portal inflammation and fibrosis. Lung tissues were examined for loss of normal structure, emphysema, interstitial congestion-edema, prominent alveolar septal vessels, interstitial inflammation, intra-alveolar hemorrhage, intraluminal hemorrhage, peribronchial edema, congestion, inflammation in bronchial wall and epithelial desquamation. Biochemical analysis of tissue samples was performed for oxidative injury markers. Histopathological evaluations revealed that tubular injury was found in both shocked and contralateral kidneys (p < 0.05). EG showed higher grades of portal fibrosis in liver and higher grades of peribronchial congestion in lung when compared to CG (p < 0.05). Biochemical evaluations of both kidneys showed that malondialdehyde levels were higher in EG than in CG (p < 0.05). ESWL causes histopathologic alterations both in shocked and contralateral kidneys. Extrarenal tissues such as liver and lung can be affected by shock waves histopathologically and oxidative injury of contralateral kidney may occur acutely after ESWL.

  1. Deep Proteome Profiling Reveals Common Prevalence of MZB1-Positive Plasma B Cells in Human Lung and Skin Fibrosis.

    PubMed

    Schiller, Herbert B; Mayr, Christoph H; Leuschner, Gabriela; Strunz, Maximilian; Staab-Weijnitz, Claudia; Preisendörfer, Stefan; Eckes, Beate; Moinzadeh, Pia; Krieg, Thomas; Schwartz, David A; Hatz, Rudolf A; Behr, Jürgen; Mann, Matthias; Eickelberg, Oliver

    2017-11-15

    Analyzing the molecular heterogeneity of different forms of organ fibrosis may reveal common and specific factors and thus identify potential future therapeutic targets. We sought to use proteome-wide profiling of human tissue fibrosis to (1) identify common and specific signatures across end-stage interstitial lung disease (ILD) cases, (2) characterize ILD subgroups in an unbiased fashion, and (3) identify common and specific features of lung and skin fibrosis. We collected samples of ILD tissue (n = 45) and healthy donor control samples (n = 10), as well as fibrotic skin lesions from localized scleroderma and uninvolved skin (n = 6). Samples were profiled by quantitative label-free mass spectrometry, Western blotting, or confocal imaging. We determined the abundance of more than 7,900 proteins and stratified these proteins according to their detergent solubility profiles. Common protein regulations across all ILD cases, as well as distinct ILD subsets, were observed. Proteomic comparison of lung and skin fibrosis identified a common upregulation of marginal zone B- and B1-cell-specific protein (MZB1), the expression of which identified MZB1 + /CD38 + /CD138 + /CD27 + /CD45 - /CD20 - plasma B cells in fibrotic lung and skin tissue. MZB1 levels correlated positively with tissue IgG and negatively with diffusing capacity of the lung for carbon monoxide. Despite the presumably high molecular and cellular heterogeneity of ILD, common protein regulations are observed, even across organ boundaries. The surprisingly high prevalence of MZB1-positive plasma B cells in tissue fibrosis warrants future investigations regarding the causative role of antibody-mediated autoimmunity in idiopathic cases of organ fibrosis, such as idiopathic pulmonary fibrosis.

  2. Clubbing of the fingers or toes

    MedlinePlus

    ... occur in people with bronchiectasis , cystic fibrosis , or lung abscess Infection of the lining of the heart chambers and heart valves (infectious endocarditis). This can be caused by ... substances Lung disorders in which the deep lung tissues become ...

  3. Accumulation of heavy metals and As in liver, hair, femur, and lung of Persian jird (Meriones persicus) in Darreh Zereshk copper mine, Iran.

    PubMed

    Khazaee, Manoochehr; Hamidian, Amir Hossein; Alizadeh Shabani, Afshin; Ashrafi, Sohrab; Mirjalili, Seyyed Ali Ashghar; Esmaeilzadeh, Esmat

    2016-02-01

    Rodents frequently serve as bioindicator to monitor the quality of the environment. Concentrations of 11 elements (Cd, Co, Ti, Fe, Mn, Cu, Sb, As, Sr, Ni, and Cr) were investigated and compared in liver, hair, femur, and lung of the Persian jird (Meriones persicus) from Darreh Zereshk copper mine, Iran. Metals were determined in different tissues of 39 individuals of Persian jird, collected by snap trap in 2014 from five areas of Darreh Zereshk copper mine. Samples were prepared by wet digestion method, and the contents of elements were analyzed with ICP-OES (VARIAN, 725-ES) instrument. Cadmium, Sb, and Co were below the limit of detection, and Mn and As were found only in hair and liver tissues. We detected the highest concentration of Cu, As, Ti, Fe, Mn, Cr, and Ni in hair in comparison with other tissues. Significant higher levels of Ti in femur and hair; Fe in liver and hair; Mn in liver; As in hair; Sr in lung; Cr in lung, hair, femur, and liver; Cu in femur; and Ni in liver and lung tissues were observed in females. Nearly all element concentrations in the tissues of Persian jird from flotation site, Darreh Zereshk and Hasan Abad villages and leaching site (mining areas) were higher than those from tailing dump site (reference site). We found the highest concentrations of As in liver and hair; Ni and Cr in liver, hair, and lung; and Sr in lung and hair tissues of Persian jird in leaching site. We tried to specify the status of elements before fully exploitation of Darreh Zereshk copper mine by using bioindicator species. Based on our achievements, initial activities did not strongly pollute the surrounded environment of the mine. The high abundance of Persian jird as well as their several proper features makes them a suitable species for biomonitoring programs especially for further studies will be performed after full exploitation of Darreh Zereshk copper mine.

  4. Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers.

    PubMed

    Zhang, Yu-An; Ma, Xiaotu; Sathe, Adwait; Fujimoto, Junya; Wistuba, Ignacio; Lam, Stephen; Yatabe, Yasushi; Wang, Yi-Wei; Stastny, Victor; Gao, Boning; Larsen, Jill E; Girard, Luc; Liu, Xiaoyun; Song, Kai; Behrens, Carmen; Kalhor, Neda; Xie, Yang; Zhang, Michael Q; Minna, John D; Gazdar, Adi F

    2016-03-01

    The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer. We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays. The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non-small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta. Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. Patterns of Emphysema Heterogeneity

    PubMed Central

    Valipour, Arschang; Shah, Pallav L.; Gesierich, Wolfgang; Eberhardt, Ralf; Snell, Greg; Strange, Charlie; Barry, Robert; Gupta, Avina; Henne, Erik; Bandyopadhyay, Sourish; Raffy, Philippe; Yin, Youbing; Tschirren, Juerg; Herth, Felix J.F.

    2016-01-01

    Background Although lobar patterns of emphysema heterogeneity are indicative of optimal target sites for lung volume reduction (LVR) strategies, the presence of segmental, or sublobar, heterogeneity is often underappreciated. Objective The aim of this study was to understand lobar and segmental patterns of emphysema heterogeneity, which may more precisely indicate optimal target sites for LVR procedures. Methods Patterns of emphysema heterogeneity were evaluated in a representative cohort of 150 severe (GOLD stage III/IV) chronic obstructive pulmonary disease (COPD) patients from the COPDGene study. High-resolution computerized tomography analysis software was used to measure tissue destruction throughout the lungs to compute heterogeneity (≥ 15% difference in tissue destruction) between (inter-) and within (intra-) lobes for each patient. Emphysema tissue destruction was characterized segmentally to define patterns of heterogeneity. Results Segmental tissue destruction revealed interlobar heterogeneity in the left lung (57%) and right lung (52%). Intralobar heterogeneity was observed in at least one lobe of all patients. No patient presented true homogeneity at a segmental level. There was true homogeneity across both lungs in 3% of the cohort when defining heterogeneity as ≥ 30% difference in tissue destruction. Conclusion Many LVR technologies for treatment of emphysema have focused on interlobar heterogeneity and target an entire lobe per procedure. Our observations suggest that a high proportion of patients with emphysema are affected by interlobar as well as intralobar heterogeneity. These findings prompt the need for a segmental approach to LVR in the majority of patients to treat only the most diseased segments and preserve healthier ones. PMID:26430783

  6. Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China.

    PubMed

    Cui, Jia; Wu, Bin; Halbrook, Richard S; Zang, Shuying

    2013-12-01

    Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment. In the current study, 1-2, 5-6, and 9-10+ year old homing pigeons collected from the Haidian District of Beijing during 2011 were necropsied and concentrations of cadmium, lead, and mercury were measured in liver, lung, and kidney tissue. At necropsy, gray/black discoloration of the margins of the lungs was observed in 98 % of the pigeons. There were no significant differences in metal concentrations as a function of gender. Cadmium concentrations in all tissues and Pb concentrations in the lung tissues were significantly greater in 9-10+ year old pigeons compared to other age groups indicating that Cd and Pb were bioavailable. Mercury concentrations were not significantly different among age groups. Cadmium concentrations in kidney and lung tissues of 9-10+ year old pigeons were similar to or exceeded concentrations of Cd reported in pigeons from another high traffic urban area and most wild avian species from Korea suggesting that Cd in this region of Beijing may be of concern. Homing pigeons provide valuable exposure and bioaccumulation data not readily available from air monitoring alone, thus providing information regarding potential health effects in wildlife and humans in urban areas. As environmental quality standards are implemented in China, homing pigeons will serve as a valuable bio-monitor of the efficacy of these actions.

  7. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy.

    PubMed

    Tabish, Tanveer A; Lin, Liangxu; Ali, Muhammad; Jabeen, Farhat; Ali, Muhammad; Iqbal, Rehana; Horsell, David W; Winyard, Paul G; Zhang, Shaowei

    2018-06-06

    Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg -1 ) and high (15 mg kg -1 ) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

  8. Capnographic Parameters in Ventilated Patients: Correspondence with Airway and Lung Tissue Mechanics.

    PubMed

    Csorba, Zsofia; Petak, Ferenc; Nevery, Kitti; Tolnai, Jozsef; Balogh, Adam L; Rarosi, Ferenc; Fodor, Gergely H; Babik, Barna

    2016-05-01

    Although the mechanical status of the lungs affects the shape of the capnogram, the relations between the capnographic parameters and those reflecting the airway and lung tissue mechanics have not been established in mechanically ventilated patients. We, therefore, set out to characterize how the mechanical properties of the airways and lung tissues modify the indices obtained from the different phases of the time and volumetric capnograms and how the lung mechanical changes are reflected in the altered capnographic parameters after a cardiopulmonary bypass (CPB). Anesthetized, mechanically ventilated patients (n = 101) undergoing heart surgery were studied in a prospective consecutive cross-sectional study under the open-chest condition before and 5 minutes after CPB. Forced oscillation technique was applied to measure airway resistance (Raw), tissue damping (G), and elastance (H). Time and volumetric capnography were performed to assess parameters reflecting the phase II (SII) and phase III slopes (SIII), their transition (D2min), the dead-space indices according to Fowler, Bohr, and Enghoff and the intrapulmonary shunt. Before CPB, SII and D2min exhibited the closest (P = 0.006) associations with H (0.65 and -0.57; P < 0.0001, respectively), whereas SIII correlated most strongly (P < 0.0001) with Raw (r = 0.63; P < 0.0001). CPB induced significant elevations in Raw and G and H (P < 0.0001). These adverse mechanical changes were reflected consistently in SII, SIII, and D2min, with weaker correlations with the dead-space indices (P < 0.0001). The intrapulmonary shunt expressed as the difference between the Enghoff and Bohr dead-space parameters was increased after CPB (95% ± 5% [SEM] vs 143% ± 6%; P < 0.001). In mechanically ventilated patients, the capnographic parameters from the early phase of expiration (SII and D2min) are linked to the pulmonary elastic recoil, whereas the effect of airway patency on SIII dominates over the lung tissue stiffness. However, severe deterioration in lung resistance or elastance affects both capnogram slopes.

  9. Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis.

    PubMed

    Gilhodes, Jean-Claude; Julé, Yvon; Kreuz, Sebastian; Stierstorfer, Birgit; Stiller, Detlef; Wollin, Lutz

    2017-01-01

    Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes automated analysis as a novel end-point measure of BLM-induced lung fibrosis in mice, which will be very valuable for future preclinical drug explorations.

  10. Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis

    PubMed Central

    Gilhodes, Jean-Claude; Kreuz, Sebastian; Stierstorfer, Birgit; Stiller, Detlef; Wollin, Lutz

    2017-01-01

    Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes automated analysis as a novel end-point measure of BLM-induced lung fibrosis in mice, which will be very valuable for future preclinical drug explorations. PMID:28107543

  11. MHC class II expression in lung cancer.

    PubMed

    He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R

    2017-10-01

    Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.

  12. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    PubMed

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  14. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. HISTOPATHOLOGICAL ANALYSIS OF THE F344 RAT LUNG UPON EXPOSURE TO RETENOIC ACID, OVALBUMIN, MOLD SPORES AND CITRAL.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Benghuzzi, Hamed

    2017-01-01

    The paradoxical role of retinoic acid (All Trans Retinoic Acid; ATRA) in the development of allergic and/or inflammatory complications in contrast to a therapeutic modality for lung pathology is not well understood or established in the literature. As well, the role of Citral (inhibitor of retinoid function; a non-toxic chemical that exists in two forms (diethyl; C1 or cis-trans dimethyl; C2), in the reversal of retinoic acid, ovalbumin and allergic mold spore pathophysiology is also not well ascertained under an in vivo setting. Therefore, it is hypothesized that exposure of F344 lung tissues to supra-physiologic levels of retinoic acid, ovalbumin and mold spores individually or in combination with each other will lead to inflammatory tissue pathology and that Citral 1 and 2 will reverse or ameliorate the related pathological damage to lung tissues. Even though ovalbumin and retinoic acid have been previously applied through intra-tracheal route in cancer prevention and immunological research, the objective of this study was to evaluate the histopathological implications of such exposure in vivo. This IACUC approved in vivo study used Fischer 344 rats ( n = 80 ; 229 to 273g), which were randomly assigned to controls as well as ovalbumin and mold-sensitized treatment groups (0.80 mg/kg and 1×10 9 mold spores combined from 4 strains/100 μl intra-tracheal; all others were dosed by intra-peritoneal injection at days 1 and 7 with 80 mg/kg each of ATRA as well as 20 and 50 mg/kg each of Citrals 1 or 2 individually or in combination to represent all four chemicals and mold spores treatments. Positive and negative controls for each treatment were also included in the study. Animals were housed in rat cages at the JSU Research Animal Core Facilities and were placed on a 12:12 light-dark cycle. A standard rodent diet and water access were provided ad libidum. All animals were sacrificed on day 21 and lung tissues were processed for histopathology. Slides were prepared and were digitized for comparison of tissues pathology. Results showed that exposure of the F344 rats to ovalbumin and ATRA showed various levels of lung tissue damage that was ameliorated by Citral 2 in combination. Mold and ATRA exposure caused various levels of lung tissue damage that was reversed by C1 in combination with each other. Taken together, the study showed that there are variable pathologic inflammatory responses from the interaction of ovalbumin, Citrals, mold spores and retinoic acid, and that the addition of Citrals have reversed lung tissue pathologies. These findings warrants further investigation as to the actual role of these interactions in relation to acute/chronic lung disease and the possibility of reversing retinoid-mediated pathologies in the Fisher rat model.

  16. In vivo gene expression and immunoreactivity of Leptospira collagenase.

    PubMed

    Janwitthayanan, Weena; Keelawat, Somboon; Payungporn, Sunchai; Lowanitchapat, Alisa; Suwancharoen, Duangjai; Poovorawan, Yong; Chirathaworn, Chintana

    2013-06-12

    Pulmonary hemorrhage is an increasing cause of death of leptospirosis patients. Bacterial collagenase has been shown to be involved in lung hemorrhage induced by various infectious agents. According to Leptospira whole genome study, colA, a gene suggested to code for bacterial collagenase has been identified. We investigated colA gene expression in lung tissues of Leptospira infected hamsters. Golden Syrian Hamsters were injected intraperitoneally with Leptospira interrogans serovar Pyrogenes. The hamsters were sacrificed on days 3, 5 and 7 post-infection and lung tissues were collected for histological examination and RNA extraction. Lung pathologies including atelectasis and hemorrhage were observed. Expression of colA gene in lung tissues was demonstrated by both RT-PCR and real time PCR. In addition, ColA protein was cloned and the purified protein could react with sera from leptospirosis patients. Leptospira ColA protein may play a role in Leptospira survival or pathogenesis in vivo. Its reaction with leptospirosis sera suggests that this protein is immunogenic and could be another candidate for vaccine development. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists

    PubMed Central

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R.; Rosas, Ivan; Ai, Xingbin

    2016-01-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca2+-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca2+ oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921

  18. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  19. Mechanisms of alveolar fibrosis after acute lung injury.

    PubMed

    Marinelli, W A; Henke, C A; Harmon, K R; Hertz, M I; Bitterman, P B

    1990-12-01

    In patients who die after severe acute lung injury, a dramatic fibroproliferative response occurs within the alveolar air space, interstitium, and microvessels. Profound shunt physiology, dead space ventilation, and pulmonary hypertension are the physiologic consequences of this fibroproliferative response. The anatomic pattern of the response is unique within each alveolar compartment. For example, the air space is obliterated by granulation tissue, with replicating mesenchymal cells, their connective tissue products, and an expanding network of intra-alveolar capillaries. In contrast, the vascular fibroproliferative response is dominated by mesenchymal cell replication and connective tissue deposition within the walls of microvessels. Despite the unique anatomic features of these fibroproliferative processes, the regulatory signals involved are likely to be similar. Although our current understanding of the signals regulating the fibroproliferative response to acute lung injury is limited, inferences can be made from in vitro studies of mesenchymal cell behavior and several better understood fibroproliferative processes, including wound healing and chronic fibrotic lung diseases. As clinicians, our future ability to enhance effective lung repair will likely utilize therapeutic strategies specifically targeted to the signals that regulate the fibroproliferative process within the alveolar microenvironment.

  20. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists.

    PubMed

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin

    2016-05-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.

  1. Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation

    PubMed Central

    Sellers, Katherine; Fox, Matthew P.; Bousamra, Michael; Slone, Stephen P.; Higashi, Richard M.; Miller, Donald M.; Wang, Yali; Yan, Jun; Yuneva, Mariia O.; Deshpande, Rahul; Lane, Andrew N.; Fan, Teresa W.-M.

    2015-01-01

    Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased anabolic and energy demands; however, different cancer cell types exhibit differential requirements for PC- and GLS-mediated pathways for anaplerosis and cell proliferation. Here, we infused patients with early-stage non–small-cell lung cancer (NSCLC) with uniformly 13C-labeled glucose before tissue resection and determined that the cancerous tissues in these patients had enhanced PC activity. Freshly resected paired lung tissue slices cultured in 13C6-glucose or 13C5,15N2-glutamine tracers confirmed selective activation of PC over GLS in NSCLC. Compared with noncancerous tissues, PC expression was greatly enhanced in cancerous tissues, whereas GLS1 expression showed no trend. Moreover, immunohistochemical analysis of paired lung tissues showed PC overexpression in cancer cells rather than in stromal cells of tumor tissues. PC knockdown induced multinucleation, decreased cell proliferation and colony formation in human NSCLC cells, and reduced tumor growth in a mouse xenograft model. Growth inhibition was accompanied by perturbed Krebs cycle activity, inhibition of lipid and nucleotide biosynthesis, and altered glutathione homeostasis. These findings indicate that PC-mediated anaplerosis in early-stage NSCLC is required for tumor survival and proliferation. PMID:25607840

  2. Importance of tissue sampling, laboratory methods, and patient characteristics for detection of Pneumocystis in autopsied lungs of non-immunosuppressed individuals.

    PubMed

    Vargas, S L; Ponce, C; Bustamante, R; Calderón, E; Nevez, G; De Armas, Y; Matos, O; Miller, R F; Gallo, M J

    2017-10-01

    To understand the epidemiological significance of Pneumocystis detection in a lung tissue sample of non-immunosuppressed individuals, we examined sampling procedures, laboratory methodology, and patient characteristics of autopsy series reported in the literature. Number of tissue specimens, DNA-extraction procedures, age and underlying diagnosis highly influence yield and are critical to understand yield differences of Pneumocystis among reports of pulmonary colonization in immunocompetent individuals.

  3. Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue.

    PubMed

    Vasilescu, Dragoş M; Phillion, André B; Tanabe, Naoya; Kinose, Daisuke; Paige, David F; Kantrowitz, Jacob J; Liu, Gang; Liu, Hanqiao; Fishbane, Nick; Verleden, Stijn E; Vanaudenaerde, Bart M; Lenburg, Marc; Stevenson, Christopher S; Spira, Avrum; Cooper, Joel D; Hackett, Tillie-Louise; Hogg, James C

    2017-01-01

    Micro-computed tomography (CT) enables three-dimensional (3D) imaging of complex soft tissue structures, but current protocols used to achieve this goal preclude cellular and molecular phenotyping of the tissue. Here we describe a radiolucent cryostage that permits micro-CT imaging of unfixed frozen human lung samples at an isotropic voxel size of (11 µm) 3 under conditions where the sample is maintained frozen at -30°C during imaging. The cryostage was tested for thermal stability to maintain samples frozen up to 8 h. This report describes the methods used to choose the materials required for cryostage construction and demonstrates that whole genome mRNA integrity and expression are not compromised by exposure to micro-CT radiation and that the tissue can be used for immunohistochemistry. The new cryostage provides a novel method enabling integration of 3D tissue structure with cellular and molecular analysis to facilitate the identification of molecular determinants of disease. The described micro-CT cryostage provides a novel way to study the three-dimensional lung structure preserved without the effects of fixatives while enabling subsequent studies of the cellular matrix composition and gene expression. This approach will, for the first time, enable researchers to study structural changes of lung tissues that occur with disease and correlate them with changes in gene or protein signatures. Copyright © 2017 the American Physiological Society.

  4. Syndecan-2 Is a Novel Target of Insulin-Like Growth Factor Binding Protein-3 and Is Over-Expressed in Fibrosis

    PubMed Central

    Ruiz, Ximena D.; Mlakar, Logan R.; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T.; Pilewski, Joseph M.; Feghali-Bostwick, Carol A.

    2012-01-01

    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3. PMID:22900087

  5. Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis.

    PubMed

    Ruiz, Ximena D; Mlakar, Logan R; Yamaguchi, Yukie; Su, Yunyun; Larregina, Adriana T; Pilewski, Joseph M; Feghali-Bostwick, Carol A

    2012-01-01

    Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.

  6. Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers.

    PubMed

    Stueve, Theresa Ryan; Li, Wen-Qing; Shi, Jianxin; Marconett, Crystal N; Zhang, Tongwu; Yang, Chenchen; Mullen, Daniel; Yan, Chunli; Wheeler, William; Hua, Xing; Zhou, Beiyun; Borok, Zea; Caporaso, Neil E; Pesatori, Angela C; Duan, Jubao; Laird-Offringa, Ite A; Landi, Maria Teresa

    2017-08-01

    Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  7. Glucose Transporter-1 Distribution in Fibrotic Lung Disease

    PubMed Central

    Malide, Daniela; Yao, Jianhua; Nathan, Steven D.; Rosas, Ivan O.; Gahl, William A.; Moss, Joel; Gochuico, Bernadette R.

    2013-01-01

    Background: [18F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases. Methods: We applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis. Results: In normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages. Conclusions: Glut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis. PMID:23699745

  8. Redox regulation of epithelial sodium channels examined in alveolar type 1 and 2 cells patch-clamped in lung slice tissue.

    PubMed

    Helms, My N; Jain, Lucky; Self, Julie L; Eaton, Douglas C

    2008-08-15

    The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.

  9. A highly adhesive and naturally derived sealant.

    PubMed

    Assmann, Alexander; Vegh, Andrea; Ghasemi-Rad, Mohammad; Bagherifard, Sara; Cheng, George; Sani, Ehsan Shirzaei; Ruiz-Esparza, Guillermo U; Noshadi, Iman; Lassaletta, Antonio D; Gangadharan, Sidhu; Tamayol, Ali; Khademhosseini, Ali; Annabi, Nasim

    2017-09-01

    Conventional surgical techniques to seal and repair defects in highly stressed elastic tissues are insufficient. Therefore, this study aimed to engineer an inexpensive, highly adhesive, biocompatible, and biodegradable sealant based on a modified and naturally derived biopolymer, gelatin methacryloyl (GelMA). We tuned the degree of gelatin modification, prepolymer concentration, photoinitiator concentration, and crosslinking conditions to optimize the physical properties and adhesion of the photocrosslinked GelMA sealants. Following ASTM standard tests that target wound closure strength, shear resistance, and burst pressure, GelMA sealant was shown to exhibit adhesive properties that were superior to clinically used fibrin- and poly(ethylene glycol)-based glues. Chronic in vivo experiments in small as well as translational large animal models proved GelMA to effectively seal large lung leakages without the need for sutures or staples, presenting improved performance as compared to fibrin glue, poly(ethylene glycol) glue and sutures only. Furthermore, high biocompatibility of GelMA sealant was observed, as evidenced by a low inflammatory host response and fast in vivo degradation while allowing for adequate wound healing at the same time. Combining these results with the low costs, ease of synthesis and application of the material, GelMA sealant is envisioned to be commercialized not only as a sealant to stop air leakages, but also as a biocompatible and biodegradable hydrogel to support lung tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The influence of Actinobacillus pleuropneumoniae infection on tulathromycin pharmacokinetics and lung tissue disposition in pigs.

    PubMed

    Gajda, A; Bladek, T; Jablonski, A; Posyniak, A

    2016-04-01

    A tulathromycin concentration and pharmacokinetic parameters in plasma and lung tissue from healthy pigs and Actinobacillus pleuropneumoniae (App)-infected pigs were compared. Tulathromycin was administered intramuscularly (i.m.) to all pigs at a single dose of 2.5 mg/kg. Blood and lung tissue samples were collected during 33 days postdrug application. Tulathromycin concentration in plasma and lung was determined by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method. The mean maximum plasma concentration (Cmax ) in healthy pigs was 586 ± 71 ng/mL, reached by 0.5 h, while the mean value for Cmax of tulathromycin in infected pigs was 386 ± 97 ng/mL after 0.5 h. The mean maximum tulathromycin concentration in lung of healthy group was calculated as 3412 ± 748 ng/g, detected at 12 h, while in pigs with App, the highest concentration in lung was 3337 ± 937 ng/g, determined at 48 h postdosing. The higher plasma and lung concentrations in pigs with no pulmonary inflammation were observed at the first time points sampling after tulathromycin administration, but slower elimination with elimination half-life t1/2el  = 126 h in plasma and t1/2el  = 165 h in lung, as well as longer drug persistent in infected pigs, was found. © 2015 John Wiley & Sons Ltd.

  11. ACE phenotyping in human heart.

    PubMed

    Tikhomirova, Victoria E; Kost, Olga A; Kryukova, Olga V; Golukhova, Elena Z; Bulaeva, Naida I; Zholbaeva, Aigerim Z; Bokeria, Leo A; Garcia, Joe G N; Danilov, Sergei M

    2017-01-01

    Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10-15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. "Conformational fingerprint" of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk.

  12. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes.

    PubMed

    Desch, A Nicole; Gibbings, Sophie L; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J; Prabagar, Miglena; Atif, Shaikh M; Segura, Elodie; Xavier, Ramnik J; Bratton, Donna L; Janssen, William J; Henson, Peter M; Jakubzick, Claudia V

    2016-03-15

    The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.

  13. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.

    PubMed

    Humayun, Mouhita; Chow, Chung-Wai; Young, Edmond W K

    2018-05-01

    Chronic lung diseases (CLDs) are regulated by complex interactions between many different cell types residing in lung airway tissues. Specifically, interactions between airway epithelial cells (ECs) and airway smooth muscle cells (SMCs) have been shown in part to play major roles in the pathogenesis of CLDs, but the underlying molecular mechanisms are not well understood. To advance our understanding of lung pathophysiology and accelerate drug development processes, new innovative in vitro tissue models are needed that can reconstitute the complex in vivo microenvironment of human lung tissues. Organ-on-a-chip technologies have recently made significant strides in recapitulating physiological properties of in vivo lung tissue microenvironments. However, novel advancements are still needed to enable the study of airway SMC-EC communication with matrix interactions, and to provide higher throughput capabilities and manufacturability. We have developed a thermoplastic-based microfluidic lung airway-on-a-chip model that mimics the lung airway tissue microenvironment, and in particular, the interactions between SMCs, ECs, and supporting extracellular matrix (ECM). The microdevice is fabricated from acrylic using micromilling and solvent bonding techniques, and consists of three vertically stacked microfluidic compartments with a bottom media reservoir for SMC culture, a middle thin hydrogel layer, and an upper microchamber for achieving air-liquid interface (ALI) culture of the epithelium. A unique aspect of the design lies in the suspended hydrogel with upper and lower interfaces for EC and SMC culture, respectively. A mixture of type I collagen and Matrigel was found to promote EC adhesion and monolayer formation, and SMC adhesion and alignment. Optimal culturing protocols were established that enabled EC-SMC coculture for more than 31 days. Epithelial monolayers displayed common morphological markers including ZO-1 tight junctions and F-actin cell cortices, while SMCs exhibited enhanced cell alignment and expression of α-SMA. The thermoplastic device construction facilitates mass manufacturing, allows EC-SMC coculture systems to be arrayed for increased throughput, and can be disassembled to allow extraction of the suspended gel for downstream analyses. This airway-on-a-chip device has potential to significantly advance our understanding of SMC-EC-matrix interactions, and their roles in the development of CLDs.

  14. Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data.

    PubMed

    Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani

    2012-11-02

    The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated. All down regulated genes in this panel were highly up regulated in most other types of cancers. These panels of proteins may represent signature biomarkers for lung cancer and will aid in lung cancer diagnosis and disease monitoring as well as in the prediction of responses to therapeutics.

  15. Genetic variation at the microRNA binding site of CAV1 gene is associated with lung cancer susceptibility

    PubMed Central

    Fang, Xue; Li, Xuelian; Yin, Zhihua; Xia, Lingzi; Quan, Xiaowei; Zhao, Yuxia; Zhou, Baosen

    2017-01-01

    Single nucleotide polymorphism (SNP) may influence the genesis and development of cancer in a variety of ways depending on their location. Here we conducted a study in Chinese female non-smokers to investigate the relationship between rs1049337, rs926198 and the risk or survival of lung cancer. Further, we explored whether rs1049337 could alter the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. Finally, we evaluated the relationship between expression level of CAV1 and prognosis of lung cancer. The results showed that the rs1049337-C allele and rs926198-C allele were the protective alleles of lung cancer risk. Haplotype analysis indicated that the C-C haplotype (constructed by rs1049337 and rs926198) was a protective haplotype for lung cancer risk. The result of luciferase reporter assay showed that rs1049337 can affect the binding affinity of CAV1 mRNA to the corresponding microRNAs both in A549 cell line and H1299 cell line. Compared with C allele, T allele had a relatively decreased luciferase activity. Compared with paired normal adjacent tissue or normal lung tissue, lung cancer tissue showed a relatively low level of CAV1. Refer to those patients at early stage of lung cancer, the expression level of CAV1 in patients at late stage of lung cancer was relatively low. In conclusion, the results indicated that rs1049337, it's a SNP located at 3′UTR region of CAV1 may affect lung cancer risk by altering the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. PMID:29190968

  16. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    PubMed

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  17. Targeted aerosolized delivery of ascorbate in the lungs of chlorine-exposed rats.

    PubMed

    Bracher, Andreas; Doran, Stephen F; Squadrito, Giuseppe L; Postlethwait, Edward M; Bowen, Larry; Matalon, Sadis

    2012-12-01

    Chlorine (Cl(2))-induced lung injury is a serious public health threat that may result from industrial and household accidents. Post-Cl(2) administration of aerosolized ascorbate in rodents decreased lung injury and mortality. However, the extent to which aerosolized ascorbate augments depleted ascorbate stores in distal lung compartments has not been assessed. We exposed rats to Cl(2) (300 ppm for 30 min) and returned them to room air. Within 15-30 min postexposure, rats breathed aerosolized ascorbate and desferal or vehicle (mean particle size 3.3 μm) through a nose-only exposure system for 60 min and were euthanized. We measured the concentrations of reduced ascorbate in the bronchoalveolar lavage (BAL), plasma, and lung tissues with high-pressure liquid chromatography, protein plasma concentration in the BAL, and the volume of the epithelia lining fluid (ELF). Cl(2)-exposed rats that breathed aerosolized vehicle had lower values of ascorbate in their BAL, ELF, and lung tissues compared to air-breathing rats. Delivery of aerosolized ascorbate increased reduced ascorbate in BAL, ELF, lung tissues, and plasma of both Cl(2) and air-exposed rats without causing lung injury. Based on mean diameter of aerosolized particles and airway sizes we calculated that approximately 5% and 1% of inhaled ascorbate was deposited in distal lung regions of air and Cl(2)-exposed rats, respectively. Significantly higher ascorbate levels were present in the BAL of Cl(2)-exposed rats when aerosol delivery was initiated 1 h post-Cl(2). Aerosol administration is an effective, safe, and noninvasive method for the delivery of low molecular weight antioxidants to the lungs of Cl(2)-exposed individuals for the purpose of decreasing morbidity and mortality. Delivery is most effective when initiated 1 h postexposure when the effects of Cl(2) on minute ventilation subside.

  18. Fibulin-1 functions as a prognostic factor in lung adenocarcinoma.

    PubMed

    Cui, Yuan; Liu, Jian; Yin, Hai-Bing; Liu, Yi-Fei; Liu, Jun-Hua

    2015-09-01

    Fibulin-1 is a member of the fibulin gene family, characterized by tandem arrays of epidermal growth factor-like domains and a C-terminal fibulin-type module. Fibulin-1 plays important roles in a range of cellular functions including morphology, growth, adhesion and mobility. It acts as a tumor suppressor gene in cutaneous melanoma, prostate cancer and gastric cancer. However, whether fibulin-1 also acts as a tumor suppressor gene in lung adenocarcinoma remains unknown. We also determined the association of fibulin-1 expression with various clinical and pathological parameters, which would show its potential role in clinical prognosis. We investigated and followed up 140 lung adenocarcinoma patients who underwent lung resection without pre- and post-operative systemic chemotherapy at the Affiliated Hospital of Nantong University from 2009 to 2013. Western blot assay and immunohistochemistry were used to evaluate the expression of fibulin-1 in lung adenocarcinoma tissues. We then analyzed the correlations between fibulin-1 expression and clinicopathological variables as well as the patients' overall survival rate. Both western blot assay and immunohistochemistry demonstrated that the level of fibulin-1 was downregulated in human lung adenocarcinoma tissues compared with that of normal lung tissues. Fibulin-1 expression significantly correlated with histological differentiation (P = 0.046), clinical stage (P< 0.01), lymph node status (P = 0.038) and expression of Ki-67 (P = 0.013). More importantly, multivariate analysis revealed that fibulin-1 was an independent prognostic marker for lung adenocarcinoma, and high expression of fibulin-1 was significantly associated with better prognosis of lung adenocarcinoma patients. The results supported our hypothesis that fibulin-1 can act as a prognostic factor in lung adenocarcinoma progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  20. [Brain emboli in the lungs of cattle].

    PubMed

    Horlacher, Sabine; Lücker, E; Eigenbrodt, E; Wenisch, Sabine

    2002-01-01

    There is no information whether the BSE agent is introduced into the human food chain through contamination of the lungs of cattle with central nervous system tissue (CNS). Studies in the United Kingdom and in the USA showed that CNS tissue could contaminate the lungs after using pneumatic powered air injection stunners (e.g. "The Knocker") or after pithing. Thus, pithing was forbidden in the European Union since January 2001. In German abattoirs conventional cartridge-fired stunners (e.g. model by Schermer) are usually applied. Pithing was used up to December 2000 in approx. 75% of the German abattoirs. In the present study 323 lungs of cattle were analysed for CNS. The lungs were derived from cattle exclusive stunned by use of the knocker from Schermer. 60% of the lungs contained emboli which were tested with immuno chemistry as well as immuno histochemistry to detect CNS. Two of 108 pooled samples showed a faint immuno reaction in the anti-NSE and anti-GFAP immunoblot. Further two particles showed a faint reaction for NSE and GFAP in immuno histochemistry, thus suggesting the presence of CNS. Even though CNS tissue could not be shown in the histological investigation, we used our findings to estimate the worst case scenario for human BSE exposure risk (HER) by lung contaminated by CNS emboli. The content of CNS in the samples was estimated to be about 0.11% when the respective immuno reactions were calibrated against standards containing known brain concentrations. Under the assumption that only one lung in the pooled samples was contaminated with BSE-infected central nervous tissue, the HER was calculated to reach a maximum of 2.2 x 10(-5) CoID50/consumer after consumption of a sausage with a portion of 10% lung. The results of our study suggest that the contamination of the lung with CNS after using a conventional cartridge-fired stunner cannot be excluded, however, the incidence appears to be very low. In addition, presumed CNS emboli, if at all, are microscopically small. Furthermore the incidence of BSE in Germany is very low and lungs of cattle are usually not consumed. Thus we can judge the potential for human oral exposure after consumption of lungs of cattle which were stunned in Germany to be extremely low. A final assessment, however, is impossible as there is no knowledge about the minimum infectious dose for humans.

  1. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    PubMed

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.

  2. Development of novel force-limiting grasping forceps with a simple mechanism.

    PubMed

    Sakaguchi, Yasuto; Sato, Toshihiko; Yutaka, Yojiro; Muranishi, Yusuke; Komatsu, Teruya; Yoshizawa, Akihiko; Nakajima, Naoki; Nakamura, Tatsuo; Date, Hiroshi

    2018-06-06

    In endoscopic surgery, fragile tissues may be damaged by the application of excessive force. Thus, we developed novel endoscopic forceps with a simple force-limiting mechanism. The novel forceps were constructed with a leaf spring, and the spring thickness determines grasping pressure. We established an evaluation system (maximum score is 11 points) for lung tissue damage leading to complications. We tested the conventional forceps (186.8 kPa) and 3 novel spring forceps with the following thicknesses: 1.3 mm (53.0 kPa), 2.2 mm (187.7 kPa) and 2.8 mm (369.2 kPa). After grasping, peripheral canine lung tissues were microscopically examined for acute- and late-phase damages. In the acute phase (20 sites), the novel forceps caused capillary congestion and haemorrhage in the subpleural tissue, whereas the conventional forceps caused deep tissue and pleural damages. In the late phase (30 sites), both forceps caused fibroblast formation and interstitial thickening, which progressed to the deeper tissues as grasping pressure increased. In the acute phase, the median scores were 2.0 and 6.0 for the novel and conventional forceps, respectively (P = 0.003). In the late phase, the median scores were 2.0, 2.5 and 5.0 for 1.3-, 2.2- and 2.8-mm thick forceps, respectively, and 5.0 for the conventional forceps (P < 0.001). In both phases, the novel forceps with grasping pressure set below 187.7 kPa (2.2 mm) caused significantly less lung tissue damage than the conventional forceps. The novel endoscopic forceps are able to regulate the tissue-grasping pressure and induce less damage in lung tissues than conventional forceps.

  3. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  4. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  5. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  6. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    PubMed

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC. © 2014 Wiley Periodicals, Inc.

  7. The total alkaloids of Aconitum tanguticum protect against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Wu, Guotai; Du, Lidong; Zhao, Lei; Shang, Ruofeng; Liu, Dongling; Jing, Qi; Liang, Jianping; Ren, Yuan

    2014-09-29

    Aconitum tanguticum has been widely used as a remedy for infectious diseases in traditional Tibetan medicine in China. The total alkaloids of Aconitum tanguticum (TAA) are the main active components of Aconitum tanguticum and have been demonstrated to be effective in suppressing inflammation. Our aim was to investigate the protective effects of TAA on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. TAA was extracted in 95% ethanol and purified in chloroform. After vacuum drying, the TAA powder was dissolved in dimethyl sulfoxide. Adult male Sprague-Dawley rats were randomly divided into six groups. Rats were given dexamethasone (DXM, 4 mg/kg) or TAA (60 mg/kg, 30 mg/kg) before LPS injection. The PaO2and PaO2/FiO2 values, lung wet/dry (W/D) weight ratio and histological changes in lung tissue were measured. The cell counts, protein concentration, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF), and myeloperoxidase (MPO) activity in lung tissue were determined at 6, 12 or 24 h after LPS treatment. In addition, the NF-κ B activation in lung tissue was analyzed by western blot. In ALI rats, TAA significantly reduced the lung W/D ratio and increased the value of PaO2 or PaO2/FiO2 at 6, 12 or 24 h after LPS challenge. TAA also reduced the total protein concentration and the number of total cells, neutrophils or lymphocytes in BALF. In addition, TAA decreased MPO activity in the lung and attenuated histological changes in the lung. Furthermore, TAA inhibited the concentration of TNF-α, IL-6 and IL-1β in BALF at 6, 12 or 24 h after LPS treatment. Further study demonstrated that TAA significantly inhibited NF-κ B activation in lung tissue. The current study proved that TAA exhibited a potent protective effect on LPS-induced ALI in rats through its anti-inflammatory activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; He, Yao; Chen, Shanshan

    Lung cancer has been a hot area of research because of its high incidence and mortality. In this study, WWP2, an E3 ubiquitin ligase, is proposed to be an oncoprotein contributing to lung tumorigenesis. We attempted to determine if WWP2 gene expression is correlated with the development of human lung adenocarcinoma. Real-time PCR and western blotting were used to detect the expression of WWP2 in 65 paired lung adenocarcinoma and adjacent normal lung tissues. We found that WWP2 expression was elevated in lung adenocarcinoma tissues and was correlated with the tumor differentiation stage, TNM stage and presence of lymph nodemore » metastasis. We performed CCK-8 and colony formation assays and found that down-regulation of WWP2 inhibited proliferation in A549 and SPC-A-1 cells. A wound healing assay and trans-well invasion assays showed that down-regulation of WWP2 inhibited the migration and invasion of lung adenocarcinoma cells. It could be predicted from these data that elevated expression of WWP2 may play a role in facilitating the development of lung adenocarcinoma. - Highlights: • Expression of WWP2 is firstly reported in human lung adenocarcinoma. • Function of WWP2 is firstly explored in lung adenocarcinoma cells.« less

  9. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  10. [Water-cooled laser sealing of lung tissue in an ex-vivo ventilated porcine lung model].

    PubMed

    Tonoyan, T; Prisadov, G; Menges, P; Herrmann, K; Bobrov, P; Linder, A

    2014-06-01

    Laser resections of lung metastases are followed by air leaks from the parenchymal defect. Large surfaces after metastasectomy are closed by sutures or sealants while smaller areas are frequently sealed thermally by cautery or laser. In this study two different techniques of thermal sealing of lung tissue with laser light are investigated. Carbonisation of lung tissue during thermal sealing appears at temperatures higher than 180 °C. Hypothetically this is contraproductive to haemo- as well as to pneumostasis. In this experimental study thermal laser sealing with and without carbonisation is investigated. In one series tissue temperatures higher than 100 °C are avoided by water dropping from the tip of the light guide onto the parenchymal leak. In the other series carbonisation appeared because the laser light was applied in the non-contact mode without tissue cooling. The characteristics of the laser were 40 W, 1350 nm continuous mode. Air leaks (Vt) were measured with a simple and fast technique with high precision. The sealing effect of either series was defined as S = (1-Vt/V0) and the difference of S was statistically examined. The basic values V0 before sealing were about the same in both series. The air leaks Vt after 15, 30 and 45 s of sealing varied significantly in both series (p = 0.03). During simultaneous cooling the sealing effect was increasing with the duration of laser application, while it became worse in the series without cooling. Histological examination of the sealing zone showed only coagulation of the tissue, while ruptured alveolae could be seen more often in the non-cooled sealing area. It could be shown in the ex-vivo lung model that laser sealing of parenchymal leaks is improved by simultaneous cooling during laser application. Non cooled laser sealing seems to heat up the tissue abruptly and create carbonisation followed by multiple ruptures of alveola and small airways. In accordance with our clinical experience this experimental study confirms that laser sealing for pneumostasis after metastasectomy can be improved by simultaneously cooling the resection area when treated with the laser. Georg Thieme Verlag KG Stuttgart · New York.

  11. Lung tissue remodelling in MCT-induced pulmonary hypertension: a proposal for a novel scoring system and changes in extracellular matrix and fibrosis associated gene expression.

    PubMed

    Franz, Marcus; Grün, Katja; Betge, Stefan; Rohm, Ilonka; Ndongson-Dongmo, Bernadin; Bauer, Reinhard; Schulze, P Christian; Lichtenauer, Michael; Petersen, Iver; Neri, Dario; Berndt, Alexander; Jung, Christian

    2016-12-06

    Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.

  12. Tissue engineering on the nanoscale: lessons from the heart.

    PubMed

    Fleischer, Sharon; Dvir, Tal

    2013-08-01

    Recognizing the limitations of biomaterials for engineering complex tissues and the desire for closer recapitulation of the natural matrix have led tissue engineers to seek new technologies for fabricating 3-dimensional (3D) cellular microenvironments. In this review, through examples from cardiac tissue engineering, we describe the nanoscale hallmarks of the extracellular matrix that tissue engineers strive to mimic. Furthermore, we discuss the use of inorganic nanoparticles and nanodevices for improving and monitoring the performance of engineered tissues. Finally, we offer our opinion on the main challenges and prospects of applying nanotechnology in tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  14. Mineralization Induction of Gingival Fibroblasts and Construction of a Sandwich Tissue-Engineered Complex for Repairing Periodontal Defects

    PubMed Central

    Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng

    2018-01-01

    Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454

  15. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Li, Dong; Xu, Li-yan; Chang, Zi-juan; Zhao, Guang-ju; Nan, Chao; Lu, Zhong-qiu

    2013-03-01

    To investigate the intervention effect of thalidomide on paraquat-induced acute lung injury in mice and its mechanism. Male ICR mice were randomly allocated to negative control group (n = 30), thalidomide control group (n = 30), paraquat poisoning group (n = 30), 50 mg/kg thalidomide treatment group (n = 30), 100 mg/kg thalidomide treatment group (n = 30), and 150 mg/kg thalidomide treatment group (n = 30). The negative control group was intraperitoneally injected with the same volume of saline; the thalidomide control group was intraperitoneally injected with thalidomide (150 mg/kg); the paraquat poisoning group was intraperitoneally injected with diluted paraquat solution (22 mg/kg); each thalidomide treatment group was intraperitoneally injected with the same volume of paraquat solution (22 mg/kg) and was injected with thalidomide (50, 100, or 150 mg/kg) 1 h later. All mice were anesthetized and sacrificed at 1, 3, or 7 d after paraquat poisoning, and their lung tissue was collected. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in lung tissue were measured by double-antibody sandwich ELISA; the mRNA expression of nuclear factor-kappa B (NF-κB) was measured by RT-PCR; the protein expression of nuclear NF-kgr;B p65 was measured by Western blot. The pathological changes of lung tissue were observed under light microscope; the wet/dry ratio of the lung was calculated. Compared with the negative control group, the paraquat poisoning group had significantly increased levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65 and wet/dry ratio of the lung (P < 0.05). Compared with the paraquat poisoning group, the thalidomide treatment groups had significantly decreased levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65 and wet/dry ratios of the lung (P < 0.05), and the 150 mg/kg thalidomide treatment group showed the most significant decrease in the levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65. The observation of pathological changes showed that the paraquat poisoning group had the most marked lung tissue damage at 3 d after poisoning, and the lung tissue damage was lessened in the thalidomide treatment groups. Thalidomide can reduce paraquat-induced acute lung injury and lung edema. The mechanism may include inhibition of NF-κB activation and expression and downregulation of TNF-α, IL-1β, and IL-6.

  16. Extrapulmonary transport of MWCNT following inhalation exposure.

    PubMed

    Mercer, Robert R; Scabilloni, James F; Hubbs, Ann F; Wang, Liying; Battelli, Lori A; McKinney, Walter; Castranova, Vincent; Porter, Dale W

    2013-08-09

    Inhalation exposure studies of mice were conducted to determine if multi-walled carbon nanotubes (MWCNT) distribute to the tracheobronchial lymphatics, parietal pleura, respiratory musculature and/or extrapulmonary organs. Male C57BL/6 J mice were exposed in a whole-body inhalation system to a 5 mg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks, lung burden 28.1 ug/lung). At 1 day and 336 days after the 12 day exposure period, mice were anesthetized and lungs, lymph nodes and extrapulmonary tissues were preserved by whole body vascular perfusion of paraformaldehyde while the lungs were inflated with air. Separate, clean-air control groups were studied at 1 day and 336 days post-exposure. Sirius Red stained sections from lung, tracheobronchial lymph nodes, diaphragm, chest wall, heart, brain, kidney and liver were analyzed. Enhanced darkfield microscopy and morphometric methods were used to detect and count MWCNT in tissue sections. Counts in tissue sections were expressed as number of MWCNT per g of tissue and as a percentage of total lung burden (Mean ± S.E., N = 8 mice per group). MWCNT burden in tracheobronchial lymph nodes was determined separately based on the volume density in the lymph nodes relative to the volume density in the lungs. Field emission scanning electron microscopy (FESEM) was used to examine MWCNT structure in the various tissues. Tracheobronchial lymph nodes were found to contain 1.08 and 7.34 percent of the lung burden at 1 day and 336 days post-exposure, respectively. Although agglomerates account for approximately 54% of lung burden, only singlet MWCNT were observed in the diaphragm, chest wall, liver, kidney, heart and brain. At one day post exposure, the average length of singlet MWCNT in liver and kidney, was comparable to that of singlet MWCNT in the lungs 8.2 ± 0.3 versus 7.5 ± 0.4 um, respectively. On average, there were 15,371 and 109,885 fibers per gram in liver, kidney, heart and brain at 1 day and 336 days post-exposure, respectively. The burden of singlet MWCNT in the lymph nodes, diaphragm, chest wall and extrapulmonary organs at 336 days post-exposure was significantly higher than at 1 day post-exposure. Inhaled MWCNT, which deposit in the lungs, are transported to the parietal pleura, the respiratory musculature, liver, kidney, heart and brain in a singlet form and accumulate with time following exposure. The tracheobronchial lymph nodes contain high levels of MWCNT following exposure and further accumulate over nearly a year to levels that are a significant fraction of the lung burden 1 day post-exposure.

  17. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    PubMed

    Choi, Jiwoong; Hoffman, Eric A; Lin, Ching-Long; Milhem, Mohammed M; Tessier, Jean; Newell, John D

    2017-01-01

    Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells) through interactions with host cells. We explored this with serial inspiratory computed tomography (CT) and image matching to assess regional changes in lung expansion. We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05. Lung regions of metastatic sarcoma patients (but not the normal control group) demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05). There was also evidence of increased lung "tissue" volume (non-air components) in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions. This new quantitative CT (QCT) method for linking serial acquired inspiratory CT images may provide a diagnostic and prognostic means to objectively characterize regional responses in the lung following oncological treatment and monitoring for lung metastases.

  18. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redler, G; Cifter, G; Templeton, A

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lungmore » tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated patient images demonstrate the clinical utility of scatter imaging for real-time tumor tracking during lung SBRT.« less

  19. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  20. Design Approaches to Myocardial and Vascular Tissue Engineering.

    PubMed

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  1. A fluorescence model of the murine lung for optical detection of pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Durkee, Madeleine S.; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2017-07-01

    We present a computer model of intravital excitation and external fluorescence detection in the murine lungs validated with a three-dimensional lung tissue phantom. The model is applied to optical detection of pulmonary tuberculosis infection.

  2. Occupational exposures to leaded and unleaded gasoline engine emissions and lung cancer risk.

    PubMed

    Xu, Mengting; Siemiatycki, Jack; Lavoué, Jérôme; Pasquet, Romain; Pintos, Javier; Rousseau, Marie-Claude; Richardson, Lesley; Ho, Vikki

    2018-04-01

    To determine whether occupational exposure to gasoline engine emissions (GEE) increased the risk of lung cancer and more specifically whether leaded or unleaded GEE increased the risk. Two population-based case-control studies were conducted in Montreal, Canada. The first was conducted in the early 1980s and included many types of cancer including lung cancer. The second was conducted in the late 1990s and focused on lung cancer. Population controls were used in both studies. Altogether, there were 1595 cases and 1432 population controls. A comprehensive expert-based exposure assessment procedure was implemented and exposure was assessed for 294 agents, including unleaded GEE, leaded GEE and diesel engine emissions (DEE). Logistic regression analyses were conducted to estimate ORs between various metrics of GEE exposure and lung cancer, adjusting for smoking, DEE and other potential confounders. About half of all controls were occupationally exposed to GEE. Irrespective of the metrics of exposure (any exposure, duration of exposure and cumulative exposure) and the type of lung cancer, and the covariates included in models, none of the point estimates of the ORs between occupational exposure to leaded or unleaded GEE and lung cancer were above 1.0. Pooling two studies, the OR for any exposure to leaded GEE was 0.82 (0.68-1.00). Our results do not support the hypothesis that occupational exposure to GEE increases the risk of lung cancer. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  4. Characteristic patterns in the fibrotic lung. Comparing idiopathic pulmonary fibrosis with chronic lung allograft dysfunction.

    PubMed

    Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver

    2015-03-01

    Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.

  5. Harnessing the potential of lung stem cells for regenerative medicine.

    PubMed

    McQualter, Jonathan L; Anthony, Desiree; Bozinovski, Steven; Prêle, Cecilia M; Laurent, Geoffrey J

    2014-11-01

    In response to recurrent exposure to environmental insults such as allergens, pollution, irritants, smoke and viral/bacterial infection, the epithelium of the lung is continually damaged. Homeostasis of the lung requires a balance between immune regulation and promotion of tissue regeneration, which requires the co-ordinated proliferation and differentiation of stem and progenitor cells. In this review we reflect on the current understanding of lung epithelial stem and progenitor cells and advocate a model hierarchy in which self-renewing multipotent lung epithelial stem cells give rise to lineage restricted progenitor cells that repopulate airway and alveolar epithelial cell lineages during homeostasis and repair. We also discuss the role of mesenchymal progenitor cells in maintaining the structural integrity of the lung and propose a model in which mesenchymal cells act as the quintessential architects of lung regeneration by providing molecular signals, such as FGF-10, to regulate the fate and specificity of epithelial stem and progenitor cells. Moreover, we discuss the current status and future prospects for translating lung stem cell therapies to the clinic to replace, repair, or regenerate diseased lung tissue. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Expression of HIF1-alpha on myocardium and lung in rats model of asphyxia death].

    PubMed

    Zhang, Geng-qian; Zhou, Bin; Du, Bing; Yang, Zhi-hui; Zhang, Bei-lei; Zhu, Yin-hua; Zhang, Lin

    2006-12-01

    To investigate the expression of HIF1-alpha in heart and lung tissue died from asphyxia. The rats model of asphyxia death was constructed by hanging, different asphyxia groups and control group sets were made according the postmortem time (0,2,6,24 h), immunohistochemistry and half-quantitative RT-PCR methods were used to investigate expression of HIF1-alpha and mRNA changes on heart and lung tissue. The positive staining of HIF1-alpha could be observed in the myocardium and lung tissue. Significant differences were found between the groups of asphyxia and their corresponding control group. HIF1-alpha expression was found in all the asphyxia groups while it was only expressed in the control groups of 2 h, 6 h and 24 h. Nucleic positive staining could be detected in all the asphyxia groups but none was found in the control groups. RT-PCR showed that the expression of mRNA between 0 h asphyxia group and 0 h control group were equal in both cardic muscle and lung, but elevated expression in groups of 2,6,24h compared to their control groups. The nuclear positive staining of HIF1-alpha in heart and lung can be a special character of suffocation death.

  7. Silica inhalation altered telomere length and gene expression of telomere regulatory proteins in lung tissue of rats.

    PubMed

    Shoeb, Mohammad; Joseph, Pius; Kodali, Vamsi; Mustafa, Gul; Farris, Breanne Y; Umbright, Christina; Roberts, Jenny R; Erdely, Aaron; Antonini, James M

    2017-12-11

    Exposure to silica can cause lung fibrosis and cancer. Identification of molecular targets is important for the intervention and/or prevention of silica-induced lung diseases. Telomeres consist of tandem repeats of DNA sequences at the end of chromosomes, preventing chromosomal fusion and degradation. Regulator of telomere length-1 (RTEL1) and telomerase reverse transcriptase (TERT), genes involved in telomere regulation and function, play important roles in maintaining telomere integrity and length. The goal of this study was to assess the effect of silica inhalation on telomere length and the regulation of RTEL1 and TERT. Lung tissues and blood samples were collected from rats at 4, 32, and 44 wk after exposure to 15 mg/m 3 of silica × 6 h/d × 5 d. Controls were exposed to air. At all-time points, RTEL1 expression was significantly decreased in lung tissue of the silica-exposed animals compared to controls. Also, significant increases in telomere length and TERT were observed in the silica group at 4 and 32 wk. Telomere length, RTEL1 and TERT expression may serve as potential biomarkers related to silica exposure and may offer insight into the molecular mechanism of silica-induced lung disease and tumorigeneses.

  8. LungMAP: The Molecular Atlas of Lung Development Program

    PubMed Central

    Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam

    2017-01-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251

  9. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    PubMed Central

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues. PMID:23721503

  10. Immunoregulation of Bone Marrow-Derived Mesenchymal Stem Cells on the Chronic Cigarette Smoking-Induced Lung Inflammation in Rats

    PubMed Central

    Li, Xiaoyan; Wang, Junyan; Cao, Jing; Ma, Lijuan; Xu, Jianying

    2015-01-01

    Impact of bone mesenchymal stem cell (BMSC) transfusion on chronic smoking-induced lung inflammation is poorly understood. In this study, a rat model of smoking-related lung injury was induced and the rats were treated with vehicle or BMSCs for two weeks. Different subsets of CD4+ T cells, cytokines, and anti-elastin in the lungs as well as the lung injury were characterized. Serum and lung inducible nitric oxide synthase (iNOS) and STAT5 phosphorylation in lymphocytes from lung tissue were also analyzed. Results indicated that transfusion of BMSCs significantly reduced the chronic smoking-induced lung injury, inflammation, and levels of lung anti-elastin in rats. The frequency of Th1 and Th17 cells and the levels of IL-2, IL-6, IFN-γ, TNF-α, IL-17, IP-10, and MCP-1 increased, but the frequency of Tregs and IL-10 decreased. Transfusion of BMSCs significantly modulated the imbalance of immune responses by mitigating chronic smoking-increased Th1 and Th17 responses, but enhancing Treg responses in the lungs of rats. Transfusion of BMSCs limited chronic smoking-related reduction in the levels of serum and lung iNOS and mitigated smoking-induced STAT5 phosphorylation in lymphocytes from lung tissue. BMSCs negatively regulated smoking-induced autoimmune responses in the lungs of rats and may be promising for the intervention of chronic smoking-related lung injury. PMID:26665150

  11. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue.

    PubMed

    Roszkowska, Anna; Tascon, Marcos; Bojko, Barbara; Goryński, Krzysztof; Dos Santos, Pedro Reck; Cypel, Marcelo; Pawliszyn, Janusz

    2018-06-01

    The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g -1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group

    PubMed Central

    Dietel, Manfred; Bubendorf, Lukas; Dingemans, Anne-Marie C; Dooms, Christophe; Elmberger, Göran; García, Rosa Calero; Kerr, Keith M; Lim, Eric; López-Ríos, Fernando; Thunnissen, Erik; Van Schil, Paul E; von Laffert, Maximilian

    2016-01-01

    Background There is currently no Europe-wide consensus on the appropriate preanalytical measures and workflow to optimise procedures for tissue-based molecular testing of non-small-cell lung cancer (NSCLC). To address this, a group of lung cancer experts (see list of authors) convened to discuss and propose standard operating procedures (SOPs) for NSCLC. Methods Based on earlier meetings and scientific expertise on lung cancer, a multidisciplinary group meeting was aligned. The aim was to include all relevant aspects concerning NSCLC diagnosis. After careful consideration, the following topics were selected and each was reviewed by the experts: surgical resection and sampling; biopsy procedures for analysis; preanalytical and other variables affecting quality of tissue; tissue conservation; testing procedures for epidermal growth factor receptor, anaplastic lymphoma kinase and ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) in lung tissue and cytological specimens; as well as standardised reporting and quality control (QC). Finally, an optimal workflow was described. Results Suggested optimal procedures and workflows are discussed in detail. The broad consensus was that the complex workflow presented can only be executed effectively by an interdisciplinary approach using a well-trained team. Conclusions To optimise diagnosis and treatment of patients with NSCLC, it is essential to establish SOPs that are adaptable to the local situation. In addition, a continuous QC system and a local multidisciplinary tumour-type-oriented board are essential. PMID:26530085

  13. Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis.

    PubMed

    Vukmirovic, Milica; Herazo-Maya, Jose D; Blackmon, John; Skodric-Trifunovic, Vesna; Jovanovic, Dragana; Pavlovic, Sonja; Stojsic, Jelena; Zeljkovic, Vesna; Yan, Xiting; Homer, Robert; Stefanovic, Branko; Kaminski, Naftali

    2017-01-12

    Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average ~62 million reads (53.4% of ~116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR < 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR < 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter® we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Our results demonstrate that RNA sequencing of RNA obtained from archived FFPE lung tissues is feasible. The results obtained from FFPE tissue are highly comparable to FF tissues. The ability to perform RNA-Seq on archived FFPE IPF tissues should greatly enhance the availability of tissue biopsies for research in IPF.

  14. An Overview of Recent Patents on Musculoskeletal Interface Tissue Engineering

    PubMed Central

    Rao, Rohit T.; Browe, Daniel P.; Lowe, Christopher J.; Freeman, Joseph W.

    2018-01-01

    Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues e.g. between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose. PMID:26577344

  15. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE PAGES

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  16. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  17. Investigation of alveolar tissue deformations using OCT combined with fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2011-06-01

    In critical care medicine, artificial ventilation is a life saving tool providing sufficient blood oxygenation to patients suffering from respiratory failure. Essential for their survival is the use of protective ventilation strategies to prevent further lung damage due to ventilator induced lung injury (VILI). Since there is only little known about implications of lung tissue overdistension on the alveolar level, especially in the case of diseased lungs, this research deals with the investigation of lung tissue deformation on a microscale. A combined setup utilizing optical coherence tomography (OCT) and confocal fluorescence microscopy, is used to study the elastic behavior of the alveolar tissue. Three-dimensional geometrical information with voxel sizes of 6 μm × 6 μm × 11 μm (in air) is provided by OCT, structural information about localization of elastin fibers is elucidated via confocal fluorescence microscopy with a lateral resolution of around 1 μm. Imaging depths of 90 μm for OCT and 20 μm for confocal fluorescence microscopy were obtained. Dynamic studies of subpleural tissue were carried out on the basis of an in vivo mouse model post mortem, mimicking the physiological environment of an intact thorax and facilitating a window for the application of optical methods. Morphological changes were recorded by applying constant positive airway pressures of different values. With this, alveolar volume changes could clearly be recognized and quantified to form a compliance value of 3.5 • 10-6(see manuscript). The distribution of elastin fibers was detected and will be subject to further elasticity analysis.

  18. Impact of Collection and Storage of Lung Tumor Tissue on Whole Genome Expression Profiling

    PubMed Central

    Freidin, Maxim B.; Bhudia, Neesa; Lim, Eric; Nicholson, Andrew G.; Cookson, William O.; Moffatt, Miriam F.

    2012-01-01

    Gene expression profiling could assist in revealing biomarkers of lung cancer prognosis and progression. The handling of biological samples may strongly influence global gene expression, a fact that has not been addressed in many studies. We sought to investigate the changes in gene expression that may occur as a result of sample processing time and conditions. Using Illumina Human WG-6 arrays, we quantified gene expression in lung carcinoma samples from six patients obtained at chest opening before and immediately after lung resection with storage in RNAlater [T1a(CO) and T1b(LR)], after receipt of the sample for histopathology, placed in RNAlater [T2a(HP)]; snap frozen [T2b(HP.SF)]; or snap frozen and stored for 1 week [T2c(HP.SFA)], as well as formalin-fixed, paraffin-embedded (FFPE) block samples. Sampling immediately after resection closely represented the tissue obtained in situ, with only 1% of genes differing more than twofold [T1a(CO) versus T1b(LR)]. Delaying tissue harvest for an average of 30 minutes from the operating theater had a significant impact on gene expression, with approximately 25% of genes differing between T1a(CO) and T2a(HP). Many genes previously identified as lung cancer biomarkers were altered during this period. Examination of FFPE specimens showed minimal correlation with fresh samples. This study shows that tissue collection immediately after lung resection with conservation in RNAlater is an optimal strategy for gene expression profiling. PMID:22240448

  19. Gene mutation analysis in non-small cell lung cancer patients using bronchoalveolar lavage fluid and tumor tissue as diagnostic markers.

    PubMed

    Li, Jian; Hu, Yi-Ming; Wang, Yi; Tang, Xing-Ping; Shi, Wei-Lin; Du, Yong-Jie

    2014-12-09

    Non-small cell lung cancer (NSCLC) is one of the main causes of cancer death in the world. Early detection of NSCLC can improve its outcome. The aim of this study was to identify the mutations of the KRAS and p53 genes in bronchoalveoar lavage (BAL) fluid for the early detection of peripheral NSCLC. We examined the DNA obtained from the tumor, nearby normal lung tissue, and matched BAL fluid for mutations in the KRAS and p53 genes; the material was obtained from 48 patients with peripheral NSCLC, and was analyzed by PCR-single strand conformation polymorphism and DNA sequencing. BAL fluids from 26 patients with benign lung disease were used as controls. Positive rates of KRAS and p53 mutations were distributed as follows: in NSCLC tissue, 52% and 58%; in BAL fluid of NSCLC patients, 38% and 44%; in normal lung tissue, 6% and 4%; and in BAL fluid of patients with benign lung disease, 8% and 4%. The combined detection of both KRAS and p53 mutations yielded a sensitivity of 66% for the diagnosis of peripheral NSCLC, which is markedly higher than that of cytology plus histology by first bronchoscopy (38%, p=0.008). In each patient with the 2 gene mutations in BAL fluid, mutation type and location were the same as those of the primary tumor. Our study indicates that the detection of the KRAS and p53 mutations in BAL fluids could be a helpful addition to cytology and histology examination for the diagnosis of peripheral NSCLC.

  20. Effects of inhaled fine dust on lung tissue changes and antibody response induced by spores of opportunistic fungi in goats.

    PubMed

    Purdy, Charles W; Layton, Robert C; Straus, David C; Ayers, J R

    2008-04-01

    To investigate the effects of sterile fine dust aerosol inhalation on antibody responses and lung tissue changes induced by Mucor ramosissimus or Trichoderma viride spores following intratracheal inoculation in goats. 36 weanling Boer-Spanish goats. 6 goats were allocated to each of 2 M ramosissimus-inoculated groups, 2 T viride-inoculated groups, and 2 control (tent or pen) groups. One of each pair of sporetreated groups and the tent control group were exposed 7 times to sterilized fine feedyard dust (mean+/-SD particle diameter, <7.72+/-0.69 microm) for 4 hours in a specially constructed tent. Goats in the 4 fungal treatment groups were inoculated intratracheally 5 times with a fungal spore preparation (30 mL), whereas tent control goats were intratracheally inoculated with physiologic saline (0.9% NaCl) solution (30 mL). Pen control goats were not inoculated or exposed to dust. Goats received an IV challenge with equine RBCs to assess antibody responses to foreign antigens. Postmortem examinations were performed at study completion (day 68) to evaluate lung tissue lesions. 5 of 7 deaths occurred between days 18 and 45 and were attributed to fine dust exposures prior to fungal treatments. Fine dust inhalation induced similar lung lesions and precipitating antibodies among spore-treated goats. Following spore inoculations, dust-exposed goats had significantly more spores per gram of consolidated lung tissue than did their nonexposed counterparts. Fine dust inhalation appeared to decrease the ability of goats to successfully clear fungal spores from the lungs following intratracheal inoculation.

Top